
Software evolution: the lifetime of
fine-grained elements
Diomidis Spinellis1,2, Panos Louridas1 and Maria Kechagia3

1 Department of Management Science and Technology, Athens University of Economics and
Business, Athens, Greece

2 Department of Software Technology, Delft University of Technology, Delft, The Netherlands
3 Department of Computer Science, University College London, London, UK

ABSTRACT
A model regarding the lifetime of individual source code lines or tokens can estimate
maintenance effort, guide preventive maintenance, and, more broadly, identify
factors that can improve the efficiency of software development. We present methods
and tools that allow tracking of each line’s or token’s birth and death. Through them,
we analyze 3.3 billion source code element lifetime events in 89 revision control
repositories. Statistical analysis shows that code lines are durable, with a median
lifespan of about 2.4 years, and that young lines are more likely to be modified or
deleted, following a Weibull distribution with the associated hazard rate decreasing
over time. This behavior appears to be independent from specific characteristics
of lines or tokens, as we could not determine factors that influence significantly their
longevity across projects. The programing language, and developer tenure and
experience were not found to be significantly correlated with line or token longevity,
while project size and project age showed only a slight correlation.

Subjects Programming Languages, Software Engineering
Keywords Software evolution, Code decay, Software aging, Hazard rate, Repository mining

INTRODUCTION
Although there is a significant body of work regarding the macroscopic characteristics
(González-Barahona et al., 2009) and even laws (Lehman, 1980) of software evolution
(Herraiz et al., 2013), much less is known about how software evolves at the microscopic
scale, namely at the level of lines, statements, expressions, and individual tokens. A study
of such details, apart from its self-supporting merits as curiosity-driven empirical
research, can derive results that can in the future be used for improving software
development processes (Humphrey, 1989, p. 3), architecting software systems (Barnes,
Pandey & Garlan, 2013; Breivold, Crnkovic & Larsson, 2012), developing machine learning
algorithms (Allamanis et al., 2018; Alon et al., 2019), organizing software development
teams (Rodríguez et al., 2012), estimating maintenance effort (Albrecht & Gaffney, 1983;
Atkins et al., 2002; Zimmermann et al., 2005), designing new features for configuration
management systems (White et al., 2015; Jiang, Armaly & McMillan, 2017), locating
software faults (Cotroneo, Natella & Pietrantuono, 2013; Giger, Pinzger & Gall, 2011;
Kechagia et al., 2019; Salfner, Lenk & Malek, 2010), guiding probabilistic programing
(Gordon et al., 2014), and enhancing programing languages (Vallée-Rai et al., 2010).
Here we report on methods, tools, and the results we obtained by studying the lifetime of

How to cite this article Spinellis D, Louridas P, Kechagia M. 2021. Software evolution: the lifetime of fine-grained elements. PeerJ Comput.
Sci. 7:e372 DOI 10.7717/peerj-cs.372

Submitted 12 November 2020
Accepted 4 January 2021
Published 9 February 2021

Corresponding author
Diomidis Spinellis, dds@aueb.gr

Academic editor
Philipp Leitner

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.372

Copyright
2021 Spinellis et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.372
mailto:dds@�aueb.�gr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.372
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

unmodified code lines and tokens in 89 revision control repositories over 3.3 billion
source code element lifetime events.

At the point where the rubber hits the road, software consists of code lines.
Their number has been extensively studied to gain insights on topics ranging from
development effort (Albrecht & Gaffney, 1983; Gousios, Kalliamvakou & Spinellis, 2008;
Lind & Vairavan, 1989) and quality (Buse & Weimer, 2008; Kan, 2002; Stamelos et al.,
2002; Zhang, 2009) to software growth (Van Genuchten & Hatton, 2013; Godfrey &
Tu, 2000; Hatton, Spinellis & Van Genuchten, 2017; Herraiz, González-Barahona &
Robles, 2007). This work contributes to the study of software evolution by looking
quantitatively, not at changes in the number of code lines, but how and why individual
lines or tokens change over the software’s lifetime.

First, consider how long a line of code survives in its initial form. As software evolves
over time, some lines are added, others are deleted, and existing ones are modified.
From the time that a line enters the code base of a project, for how long does it live, that is,
for how long does it remain there unchanged? Are lines of code more of a durable
asset that will be around for the long time, or are they more like perishable assets, that
will only remain for a short time? How is their lifetime related to factors such as a system’s
size or the employed programing language?

A process model of aging can be further elaborated through quantitative characteristics.
These include the mathematical function that determines when existing lines are likely
to “die”. We define as the line’s death its deletion or the modification of its non-whitespace
elements, and further examine the validity of this construct by also looking at the lifetimes
of individual tokens. In functions that are used to characterize decay processes, their
characteristic unit is often expressed through the measure of median lifespan: t½. If a
line i is added at time ti,1 and is changed or disappears at time ti;2, its lifespan is ti,2 − ti,1.
The median lifespan, over all lines of a project, is the median value of all line lifespans, that
is, the median of ti,2 − ti,1 for all i.

Now take an added line of code. When will this code be changed or be entirely
removed and how does its age factor into this question? One can imagine three
possibilities. The first, a high infant mortality scenario, in which new lines of code are often
changed as developers fix newly-introduced faults and refactor the code. The second, a
senescence scenario, has code lines become outdated and less useful as they age and
therefore face increasing chances of being replaced. The third, stochastic scenario, has
lines getting replaced mostly due to other factors through what appears to be a random
process with regard to their age. In practice, it is likely that all three scenarios play a role,
but it is still possible that one of them dominates the aging process.

Finally, consider some reasons for which a line may change. These include
misunderstood requirements, a fault in the code, or changes cascading from other work.
While these are typically qualitatively analyzed, one can also examine the factors associated
with them, such as the line’s complexity, its developer’s seniority, the project’s size, or
the employed programing language.

Apart from its theoretical importance, a model of code aging at the level of code lines is
useful in several ways. Many potential applications are listed in the opening paragraph;

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 2/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

here are two concrete examples. First, the model can inform managers where to direct
maintenance effort, for example to reduce the acquired technical debt (Kruchten, Nord &
Ozkaya, 2012) or address newly-discovered security vulnerabilities (Ozment & Schechter,
2006; Penta, Cerulo & Aversano, 2009; Shin et al., 2010). Under the infant mortality
scenario old lines are likely to remain in a project for ages, so they should periodically
receive some love and care to keep them up to date with modern practices. In contrast,
under the senescence scenario these will gradually fade away, so effort invested in
maintaining them may be wasted. Second, the function expressing code age and its
coefficients for a specific project can be used to guide maintenance effort estimation.
This is important because humans are often biased when estimating development effort
(Løhre & Jørgensen, 2016). Simplistically, effort is often measured in terms of code lines
(Albrecht & Gaffney, 1983; Gousios, Kalliamvakou & Spinellis, 2008; Lind & Vairavan,
1989). Therefore, if, given the age of existing lines, we can estimate how many of the
project’s lines are likely to change in the next year, this, together with the project’s
estimated code growth rate (Hatton, Spinellis & Van Genuchten, 2017), can roughly
determine the required development effort. More broadly and importantly, given that code
lines require effort to change, identifying and controlling factors that promote longer-
living lines—for instance through better abstraction mechanisms—can direct
improvements in software development efficiency.

The contributions of this article are the development of an efficient method and tools
that allow the tracking of the birth and death of individual source code lines and tokens
over periods that can span decades and the empirical analysis of 3.3 billion source code
element lifetime events to answer the following research questions.

RQ1 For how long does a line of code or token live? The answer to this question
determines whether code elements are durable or perishable.

RQ2 How is a line’s or token’s age related to the probability of its change or deletion? The
answer tells us whether younger code elements are more vulnerable to change and
deletion (infant mortality), or whether older ones are more frail (senescence), or
whether there are no age-related hazards.

RQ3 What other product or process factors may influence a line’s or a token’s survival?
We investigate this question along the following dimensions.

RQ3a The line’s characteristics, which may reveal change-prone programing constructs or
drivers of change.

RQ3b The different token types, which may affect the lifetime of the tokens.
RQ3c The committer’s experience and tenure; one might expect senior developers to write

more stable code.
RQ3d The project’s size, which might lend it inertia against change.
RQ3e The employed programing language, demonstrating whether some programing

languages lend themselves for writing more stable (or, alternatively, flexible) code.

METHODS
We studied code aging at the level of individual source code lines by selecting a number
of suitable revision control repositories to study, coming up with a way to handle merges of

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 3/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

development branches, constructing a tool that can track the lifetime of individual
lines across successive software releases, creating a process and tools to also study the
lifetime of individual tokens, choosing the statistical methods that best suited the domain,
and applying them to the collected data.

As recommended by Ince, Hatton & Graham-Cumming (2012), the source code and
data associated with our results are openly available online.1

Material selection
We ran our study on open source software repositories due to their liberal availability
and the fact that this simplifies the replication of our findings. We selected the revision
control repositories to study based on five objective criteria consistent with our research
goals.

GitHub hosting
We only selected projects whose history is available on GitHub. This decision
simplified the methods we used to select the projects and to traverse a project’s revisions.
The choice to use only GitHub-hosted repositories is not as restrictive as it sounds,
because nowadays even projects that use other version control systems and hosting often
make a (typically read-only) Git version of their repository available on GitHub.

Longevity
We selected projects with at least ten years of commit data in order to obtain enough
samples for statistical analysis.

Active development
The code in the repository had to be actively developed as determined by code commits.
Obviously, code in dormant projects does not exhibit aging processes and cannot be
usefully modeled. To examine projects that are actively developed we calculated the
number of weeks over the project’s lifetime in which at least one commit had occurred. We
then selected projects in which commits occurred in at least 85% of the weeks to take into
account vacation time. We examined activity at weekly granularity, because some open
source developers may only work over weekends.

Popularity
We selected projects having at least 100 GitHub “stars”. Results from popular projects
are likely to be relevant to more people than those from obscure ones. Studying code aging
in small test projects or student exercises is less likely to yield results of industrial
relevance.

Programming language
To study source code evolution at the level of individual tokens as well as lines,
we only selected projects whose main programing language, as reported in GHTorrent
(Gousios & Spinellis, 2012), is supported by the tokenizer we used (Spinellis, 2019).
These languages were selected based on their popularity among the projects selected using

1 Data: https://doi.org/10.5281/zenodo.
4319986 (3.5 GB compressed, 69 GB
uncompressed); source code: https://doi.
org/10.5281/zenodo.4319993.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 4/33

https://doi.org/10.5281/zenodo.4319986
https://doi.org/10.5281/zenodo.4319986
https://doi.org/10.5281/zenodo.4319993
https://doi.org/10.5281/zenodo.4319993
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

the other criteria, and cover 76% of the repositories initially selected. The languages
processed are C, C#, Java, PHP, and Python.

We performed the project selection through analytical processing of the GHTorrent
data set (January 2018 version) based on the process described by Gousios & Spinellis
(2017). The code information was obtained by downloading and processing each selected
revision of the corresponding repository. Other than the stated selection criteria, we did
not perform any other manual adjustments to add popular projects or exclude obscure
ones. We ensured that our data set did not include duplicated projects by pairing it
with a dataset for GitHub repository deduplication (Spinellis, Kotti & Mockus, 2020).
From the one duplicate and two triplicate sets we thus found we retained the repositories
with the longer commit history. Specifically, we chose github.com/droolsjbpm/drools over
kiegroup/drools and droolsjbpm/guvnor, lede-project/source over openwrt-mirror/
openwrt and openwrt/packages, and doctrine/doctrine2 over doctrine/dbal. In total
we analyzed 89 projects, comprising at the end of the studied period 372 thousands of
source code files, 83 millions of source code lines, 404 millions of source code tokens,
and 2.2 millions of examined commits. In terms of source code lines, we analyzed
497 million code line lifetime events: the appearance of 290 and the demise of 207 millions
of source code lines. In terms of individual source code tokens, we analyzed 2.2 billion code
token lifetime events: the appearance of 1,290 and the demise of 886 millions of source
code tokens. Key metrics of the projects we analyzed are listed in Table 1.

History simplification
Software development with distributed version control repositories is characterized by
the frequent generation of feature development branches and their subsequent merging
into a more mainstream trunk (German, Adams & Hassan, 2016). For example, the
repositories we analyzed contained a total of 243 thousand merges, or about three

Table 1 Descriptive statistics of the analyzed repositories and aggregate totals.

Metric Min Max Median Mean σ Total

All files 384 110,737 2,786 7,986 17,522 710,798

Analyzed Source Code Files 165 73,655 1,291 4,175 11,177 371,566

Analyzed source code lines (thousands) 3 15,699 298 935 2,083 83,204

Analyzed source code tokens (thousands) 0 72,480 1,423 4,537 9,793 403,804

Committers 29 2,211 247 397 407 35,374

GHTorrent project duration (Years) 11 29 12 14 4

Analyzed branch duration (Years) 6 41 13 15 5

All commits (thousands) 6 299 19 39 51 3,508

Analyzed commits (thousands) 0 192 11 24 36 2,150

Line deaths (thousands) 1 28,680 827 2,326 4,482 207,022

Token deaths (thousands) 0 157,530 3,266 9,954 21,516 885,935

Project stars 117 34,193 878 2,207 4,289

Commit density (weekly %) 85 100 93 93 5

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 5/33

http://github.com/droolsjbpm/drools
https://github.com/kiegroup/drools
https://github.com/droolsjbpm/guvnor
http://github.com/lede-project/source
http://github.com/openwrt-mirror/openwrt
http://github.com/openwrt-mirror/openwrt
http://github.com/openwrt/packages
http://github.com/doctrine/doctrine2
http://github.com/doctrine/dbal
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

thousand per project. As we detail below, merges confuse and complicate the processing of
history and therefore required devising a scheme to deal with them.

The confusion arises from the fact that a topological ordering implied by the directed
acyclic graph structure of a project’s commit history will lose code changes or their
time ordering. (A topological ordering of a directed graph is a linear ordering of its vertices
such that for every directed edge ab from vertex a to vertex b, the linear ordering has a
appear before b.) Applying the typically-used three-way merge algorithm will result in the
loss of code modifications, because the common ancestor will no longer be correctly
represented.

The complexity of merges has to do with how changes listed at the point of a
merge can be automatically processed to obtain the code after it. In experiments we
performed with diverse Git output options we found that the output of git log and also
git format-patch was not a reliable way to reconstruct the state of a project from its history
(Spinellis, 2016a). Consequently, the output could also not be used to track the lifetime
of individual lines. Although we did not look for the root cause of these problems in
depth, we only encountered them when working with merges, which leads us to believe
that they were indeed caused by merges. Using Git’s combined diff format for merges
is also unlikely to help, because, according to Git’s git diff documentation “Combined diff
format was created for review of merge commit changes, and was not meant for apply”.
And if dealing with binary merges was not bad enough, handling n-way merges, such as
those handled by Git’s octopus-merge algorithm, added even more complexity to the
problem.

Consequently, we decided to simplify the commit history into a linear ordering by
removing the least essential branches and merges. The rationale behind this decision is that
each merge point captures changes that have happened on both branches; if the time
difference from the branch to the subsequent merge is not too large, then the represented
lifetime of the affected lines does not change substantially. (See analysis in the “Threats
to Validity” Section.) An additional advantage of this approach is that it presents a commit
sequence that is both topologically and temporarily ordered.

To obtain this linear ordering, we took the topological ordering of the project’s commit
graph and obtained the longest path in it. For directed acyclic graphs this path can be
calculated in linear time, by having each vertex record its length as the maximum length of
its parent neighbors plus one. Then the longest path can be obtained by traversing the
graph along the vertices with the maximum recorded values. Figure 1 illustrates an
example of a commit graph and its longest path. The simplification of history resulted in
the reduction of examined commits from 3.106 million to 2.256 million, meaning that
we processed about 73% of all commits.

Lifetime tracking
One could in theory obtain an indication regarding the lifetime of individual lines by
sampling the output of the Git’s blame command at various time points. However, this
process is computationally intensive and will only provide an approximation. To address
these issues we designed an online algorithm and a corresponding open source tool

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 6/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

(named lifetime) that continuously tracks the lifetime of code lines across successive
commits.

Tracking the lifetime of individual code lines across code commits is not trivial.
An earlier study that demonstrated the estimation of code decay in the Unix operating
system source code over the period 1975–2015, employed the git blame command to
record the age of lines at the point of each one of 71 releases (Spinellis, 2016b). Changes
over the sampled releases in the cardinality of sets representing lines born at a specific
point of time were then used to estimate the lifetime of the corresponding lines.
However, this method is quite inaccurate, since the lifetime estimates are bound between
the dates of two successive releases. Furthermore, it is also computationally expensive.
The specific task required (on a massively parallel supercomputer) 9.9 core years
CPU time, 3,815 cores, 7.6 TB RAM, and 588 GB of disk space. In fact, our case of
711 k files × 3.5 M commits would require two orders of magnitude more resources.

In common with most version control systems, Git can output the differences in a
file between two commits as a series of line additions and removals. (Changes are
represented as an addition and removal.) By default, this operation uses the popular Myers
algorithm (Myers, 1986) to minimize the presented differences. In common with the work
by Zimmermann et al. (2006), we processed the output of Unix (Git) diff, rather than
alternatives such as LHDiff (Asaduzzaman et al., 2013a), because diff operates fast and its
output is machine-readable.

A line may appear in the output of a commit’s differences for several reasons: (1) actual
deletion—within a retained file or through a file’s deletion, (2) changes in identifier names,
(3) other non-whitespace changes, (4) movement to another part of the same file,
(5) movement to another file, (6) change of indentation, or (7) other cosmetic—
whitespace—changes. Reasons 1 and 3 are definitely signs of the line’s death that are
relevant to this study: a (most-probably) functional modification. Our methods also
consider as a line death reasons 2 and 4, because it is difficult to identify such changes with
the tools we employed. We deal with these potential shortcomings by expanding our
methods to track changes of individual tokens and by measuring the effect of line moves.
We were also able to continue tracking through their lifetime lines that change due to
reasons 5–7. First, we set git diff to ignore all changes in a line’s whitespace. This filtered
out noise introduced by indentation adjustments induced through other changes as well as

Figure 1 Branch graph path length attributes and the longest path.
Full-size DOI: 10.7717/peerj-cs.372/fig-1

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 7/33

http://dx.doi.org/10.7717/peerj-cs.372/fig-1
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

changes in a file’s tab (hard vs soft tabs) or end-of-line (the use of line feed and carriage
return) representation. Second, we configured git diff to detect file renaming and copying,
in order to follow cross-file code movements.

An example of the git diff output format processed by the lifetime tool we built appears
in Listing 1. Line 1 is a custom commit header we employed, containing the commit’s
SHA identifier and its timestamp. The commit involves changes to two files; lines 3 and
13 show the old and new names of the files being compared. When a file is removed or
newly added the new file name (in the case of removals) or old file name (for additions) is
/dev/null (the Unix empty file). Lines 4–6 and 15–17 contain metadata that is not
important for the task at hand. Lines 7–9 show the addition of two lines at the new file
range +3,2 listed in the @@ line. Lines 18–19 do the same for the second (newly-created)
file. Lines 10–12 show a line’s change: line 5 of the old version’s file is replaced by line
7 in the new version’s file. in the new file version. A series of extended headers can appear
after the diff line to indicate file deletions, renames, and copies, which Git detects by
applying heuristics in the compressed repository state snapshot stored for each commit.

The lifetime program2 works by processing a series of git diff outputs (such as those
detailed in the preceding paragraph) using the state machine depicted in Fig. 2. State
transitions take place when input lines match the regular expressions shown in the
diagram.

Listing 1 Example of git diff output.

1 commit dfdcb9a67686[…]de95524b845d 1470512904

2

3 diff −−git a/main.c b/main.c

4 index 63161da..7a6f21d 100644

5 −−− a/main.c

6 +++ b/main.c

7 @@ −2,0 +3,2 @@

8 +#include “message.h”

9 +

10 @@ −5 +7 @@ main(int argc, char *argv[])

11 − printf (“hello, world”);

12 + printf (MESSAGE);

13 diff −−git a/message.h b/message.h

14 new file mode 100644

15 index 0000000..be10a6e

16 −−−/dev/null

17 +++ b/message.h

18 @@ −0,0 +1 @@

19 +#define MESSAGE “hello, world”

2 Available in this study’s source code
package at https://doi.org/10.5281/
zenodo.4319993 and also on GitHub
https://github.com/dspinellis/code-
lifetime.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 8/33

https://doi.org/10.5281/zenodo.4319993
https://doi.org/10.5281/zenodo.4319993
https://github.com/dspinellis/code-lifetime
https://github.com/dspinellis/code-lifetime
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

The operations can be expressed through the following notation.

� The timestamp Tc associated with commit currently being processed.

� A partial function T : ðF; LÞ ! TB mapping each integer-numbered line L of file F onto
its birth time TB.

� Another partial function B : F ! v, that yields true when a file F contains binary data
(e.g., an image).

� The last line of each file FE ¼ max l : T F; lð Þ 6¼ ?f gð Þ.
The rules applied when processing the git diff data are the following.
1. For each code line numbered L added to file F that the program encounters (e.g., lines

8, 9, 12, 19 in Listing 1), it remaps existing timestamps from L until the end of the file
E in the map T it maintains to make space for the new line, and it inserts an entry in the
timestamp map with the current timestamp Tc (1470512904 in line 1 of Listing 1).

8l 2 ðL::FEÞ;T 0ðF; l þ 1Þ ¼ TðF; lÞ
T 0ðF; LÞ ¼ Tc

2. For each code line numbered L deleted from file F that the program encounters
(e.g., line 11 in Listing 1), it outputs a tuple with the line’s birth time and the time of its
demise,

Figure 2 State machine for git diff output processing. Full-size DOI: 10.7717/peerj-cs.372/fig-2

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 9/33

http://dx.doi.org/10.7717/peerj-cs.372/fig-2
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

ðTðF; LÞ;TcÞ
and it remaps the timestamps of the lines from L until the end of the file E to close-up the
gap of the deleted line.

8l 2 ðL::FE � 1Þ;T 0ðF; lÞ ¼ TðF; l þ 1Þ
T 0ðF; FEÞ ¼ ?

3. When changes to a binary file F are encountered, this file is marked as binary in a map
B, and no further output is ever performed on operations on that file. This is needed
because changes to binary files are not identified in terms of lines, so further changes when
a file reverts to text format will not have correct timestamps to refer to.

BðFÞ ¼ true

4. When a file Fa is identified as copied to file Fb, new map entries are established with
the original line birth dates and the binary file status is also transferred to the new file.

8l 2 1::max FaE; FbEð Þð Þ;TðFb; lÞ ¼ TðFa; lÞ
BðFbÞ ¼ BðFaÞ

5. When a file Fa is identified as renamed to file Fb, new map entries are created as above,
and the existing ones are removed.

6. After processing all commits, lifetime outputs tuples with the birth timestamps of all
lines that are still alive and the word alive.

TðF; LÞ; aliveð Þ : TðF; LÞ 6¼ ?f g
The processing is complicated by the fact that all change references to the existing state

of a commit, refer to the state before any change has been applied to any of the files;
changes are not supposed to be applied while processing a commit. For example, if a
commit renames file Fa to Fb and Fb to Fa the names of the two files will be correctly
swapped. Also, changes to a file that has been copied or renamed in the same commit
refer to the name of the file before the corresponding operation. This complication is
addressed by recording all changes in a queue as instructions to add or remove elements
from the timestamp map T. When all elements of a commit have been processed, a routine
replays the recorded changes on the current state to generate the new one.

Considerable effort was invested in making the lifetime program easy to test and
troubleshoot. This was needed for three reasons. First, the output of git-diff seems to be
only informally defined and involves many special cases. Second, tracking line timestamps
by hand to verify the program’s operation is a complex and error-prone process.
Third, errors were encountered in the middle of processing data hundreds of gigabytes
in size; isolating these errors proved to be a challenging task.

In order to help testing and troubleshooting the lifetime program supports eight
command-line options that configure it to output diverse data regarding the processing
it performs. A separate option can be used to terminate the processing at a specific commit,
thus allowing the examination of the data at the given time point. The most important of

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 10/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

the debug options, modifies the program’s operation to store in the map T the
complete content of each added line, rather than the current timestamp Tc. Then, when
a line is removed, it is compared with the map’s content to verify that the two match.
Any differences signify a failure in the process to record the changes. Such differences
allowed us to find that the output of git log and git format-patch were not
trustworthy enough for our purposes. Furthermore, the same debug option uses the map’s
contents to reconstruct a copy of the project’s file tree, when all its commits have been
processed. Comparing the file tree against a checked-out version of the project allows
the end-to-end verification of the program’s operation. The lifetime program is
accompanied by two Git repositories containing tens of diverse commit cases. A test script
is used to compare the reconstructed state against the original one at the end of each
commit.

Analysis of individual tokens
Although lines of code are often used to measure software and its evolution, tracking
changes at the level of lines can threaten the results’ validity. Specifically, small changes,
such as renaming an identifier, will appear to change many lines. In addition, a line may
appear to change through edits unrelated to it, such as the addition of a brace when a
statement is added below it. Consequently, it would be valuable to track evolution at the
level of individual tokens rather than lines.

We designed and implemented a process and tools to track the birth and demise of
individual tokens based on an idea by German, Adams & Stewart (2019). This involves
creating a synthetic Git repository where files are stored as one token per line. The setup
can be traced to the more general concept of using a synthetic Git repository to track
arbitrary fine-grained elements (Hata, Mizuno & Kikuno, 2011). The downloaded
repositories amount to 30 GB and the synthetic ones to 32 GB. Tracking changes
between revisions in such a repository will show the addition and removal of individual
tokens, rather than complete lines. All other workflow and tools can remain the same.

We created tokenized versions of the selected repositories through two tools: a file
tokenizer and a repository tokenizer. The repository tokenizer is a Perl script that acts as a
filter between a git fast-export and a git fast-import command. It reads the dump of the
original repository generated by the git fast-export command, queueing file content blobs it
encounters, while passing the remaining data unchanged to its output. When it reads a
commit packet, it matches the file extensions of the committed files against previously
encountered blobs. For any blob whose file extension matches the languages supported
by the file tokenizer, the repository tokenizer invokes the file tokenizer to convert the
file into tokens, dumping the tokenized results on its output as the corresponding blob.

To tokenize the contents of each file, we used the tokenizer tool, which splits its input
into tokens using simple look-ahead lexical analysis (Spinellis, 2019). Support for each
language is provided through a separate lexical analyzer to cater for differences in
operators, reserved words, commenting, and string delimiters. Through command-line
options we directed the file tokenizer to split its input into a token per line replacing the

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 11/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

content of strings and comments with an ellipsis (…), thus also allowing us to ignore
non-code changes.

Analysis of moved lines
Given that the file differencing program we employed will not report line moves within the
same file, we attempted to quantify the effect of this behavior on our results. For this, we
developed a tool that uses Heckel’s linear time differencing algorithm (Heckel, 1978),
which does attempt to locate line moves. Although the output of this program is not
suitable for running the fully fledged analysis, its summary of added and removed lines
can be tallied against that of the git diff program to compare their performance in detecting
lines that have not changed. By configuring git diff to run the alternative program
between all successive revisions, we found that Heckel’s algorithm, despite taking into
account line moves, reports 2.2% more line additions and deletions than Git’s stock
algorithm. While differencing algorithms can always be tweaked to handle elaborate
special cases, this result indicates that the differencing program we employed for the
study works pretty hard to identify a competitively small set of differences, and that taking
into account line moves using Heckel’s algorithm would reduce the accuracy of our results
by failing to track about 2% more lines.

Effect of the histogram algorithm
Following the recommendation of a recent systematic survey of studies that use diff
(Nugroho, Hata & Matsumoto, 2020), we also examined whether the use of Git’s
Histogram difference algorithm would substantially alter our results. Using a process
similar to that described in the “Analysis of Moved Lines”, we measured the differences in
the reported added and deleted lines between the Myers and the Histogram algorithms.
Both differences were below 0.5%: 0.28% for deletions and −0.45% for additions.
The effect’s small size is not surprising, because the Histogram algorithm mainly improves
the readability of the provided patch.

Statistical analysis
If we had the time of birth and the time of death for each line of code and token in a
project we could estimate the median lifespan of the line or token directly, by calculating
lifespans and finding their median value. We are interested in the median and not the
mean, because lifetimes may be skewed, so the mean, or average, would not give a
representative metric.

Unfortunately, we do not have the lifespans of all lines and tokens that we have tracked
in the repositories we have examined. We do have their birth timestamps, but there are
many lines and tokens that are still alive at the end of our follow-up period: these are
the lines and the tokens that are part of the code base of a project at the last time we check.
Their lifespans are right censored; they extend to the future. Across projects, the mean
of the percentage of right censored lines is 29.97% and the median is 28.25%; for tokens,
the corresponding values are 33.38% and 30.87% respectively.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 12/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

To estimate the median lifespan under such circumstances we use the Kaplan–Meier
or product-limit survival estimate (Kaplan &Meier, 1958). If our measurements take place
at times t1 < t2 <… < tn and at time ti we have ni that are alive, of which di die right at that
moment, then the probability of being alive at time ti is given by:

SðtiÞ ¼ Sðti�1Þ ni � di
ni

� �

The recursive definition assumes t0 < t1 and S(t0) = 1.
In our data, lines and tokens are born at different times during a project. Since

we are interested in their lifespans and not at the chronological times of birth and death,
we work only with the differences between birth and death timestamps. That means
that the times ti are time offsets; time 0 is the birth time for all lines. For example, if we have
a line with a lifespan from ti to tj we take for its death time the difference tj − ti. For the lines
and the tokens that are right censored, we assign as their death timestamp the latest
timestamp in the project. We also flag them as being alive, which means that in the
Kaplan–Meier estimation their lifespan will be taken to be at least until the latest
project timestamp. Note that we do not have censoring due to other causes, for
example, a line being “lost” somewhere in the project’s timeline, without being able to
follow it up.

The function S(t) is stepwise, with constant values between the different ti. It estimates
the survival function of a data set, which is formally defined as follows: S(t) is the
probability that an individual (line of code in our case) survives longer than a time t:

SðtÞ ¼ PðT > tÞ
In the above, T is a variable indicating the time of death. We would also like to know
what is the risk of dying at t. For this, we have to turn to the hazard function, or hazard
rate, h(t), which is the rate at which an individual that has made it to time t will die within
an interval δ t that tends to zero:

hðtÞ ¼ lim
Dt!0

Pðt � T < DtjT � tÞ
Dt

We have three alternative hypotheses regarding the hazard function:

� Individuals run the same, constant, risk of death at each time t.

� Individuals run a higher risk of death when they are young; these are populations whose
demographics are characterized by high infant mortality.

� Individuals run a higher risk of death when they are old; these are populations whose
frailty increases with age (senescence).

To test these hypotheses we will check whether the hazard function for lines of code
follows a Weibull distribution, a standard parametric model in survival analysis that has

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 13/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

been used widely in science and engineering (Padgett, 2011). The Weibull distribution
specifies the following hazard rate, with two parameters l > 0, a > 0

hðt;�;aÞ ¼ a�ta�1

The corresponding survival function is:

Sðt;�;aÞ ¼ e��ta

The parameter a is called the shape parameter and the parameter l is called the scale
parameter. Together they determine the form of the corresponding Weibull probability
density function f ðt;�;aÞ ¼ a�ta�1e��ta . The parameter l stretches or contracts the
distribution along the x axis. There are three different cases for the parameter a:

� If a < 1, the hazard rate decreases over time.

� If a = 1, the hazard rate is constant.

� If a > 1, the hazard rate increases with time.

The three alternatives for αmirror the three hypotheses we want to check and can be the
basis of the statistical analysis of the code aging process.

RESULTS AND DISCUSSION
RQ1
The Kaplan–Meier estimate provided the median lifespan for the projects we examined.
This is the point in time at which 50% of the population has died. Figure 3 shows the
Kaplan–Meier survival functions for all projects, in increasing order.

The minimum line median lifespan, at 0.000105 years (about 0.9 h), is for the project
HandBrake; the maximum line median lifespan, at 10.03 years, is for collectd, while for
torque and boto the lifespan could not be calculated, because not enough lines had died by

Figure 3 Kaplan–Meier median lifespan estimates. Lifespan estimates per project, in increasing order,
calculated for lines and for individual tokens. Full-size DOI: 10.7717/peerj-cs.372/fig-3

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 14/33

http://dx.doi.org/10.7717/peerj-cs.372/fig-3
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

the end of the data collection period to be able to get to the 50% point. We investigated the
extremely low value for HandBrake. It appears that the project features large commits and
incorporates the entire Mac Sparkle framework within the repository.

Turning to tokens, the minimummedian lifespan was for odoo at 0.02 years. There were
four projects for which no median lifespan could be calculated: thrift, mpc-hc, boto,
collectd, torque. The maximum median lifespan that could be calculated was for docuwiki,
at 12.33 years.

Taking all line results together, the median of the median lifespans is at 2.37 years,
while the 25% percentile is at 1.54 years and the 75% percentile is at 4.25 years. For tokens,
the corresponding median is 2.93 years, the 25% percentile 1.67 years, and the 75%
percentile 5.36 years. These results indicate that lines and their individual tokens are
durable rather than perishable, with lifespans measured in years rather than days. Figure 4
shows the histograms of the median lifespans.

The growth of projects is punctuated with bursts of additions and deletes; these
occur when a large body of code is imported or removed en masse from the project.
We examined whether the estimates would change if we remove outliers. We therefore
carried out the same statistics after removing the lines and tokens that where introduced
in commits that were in the top 1% of commit size in every project. The line median lifespan
moved to 2.54 years, an increase of 7.17%; the token median lifespan moved to 3.18 years, an
increase of 8.53%. That is not trivial, but it does not change the overall picture.

To determine whether the differences in the medians between the line-oriented and
the tokenized data can be explained away by chance, we carried out a Wilcoxon signed-
rank test. The null hypothesis was that the two median populations come from the
same distribution. The test allowed us to reject the null hypothesis with high probability
(p-value close to zero). It follows that code tokens lead longer lives than code lines;

Figure 4 Histogram of median lifespans. Distributions of median lifespans of lines and individual
tokens. Full-size DOI: 10.7717/peerj-cs.372/fig-4

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 15/33

http://dx.doi.org/10.7717/peerj-cs.372/fig-4
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

after all, every token that changes affects the line in which it belongs, but the opposite does
not hold.

As project lifespans vary, the variability of code lifespans may be explained by the
variability of project lifespans: code in longer-lived projects may live longer than code in
younger projects. To investigate that, we performed correlation tests between median
line lifespans and project lifespans. The Spearman correlation test for lines produced
ρ = 0.29 (p < 0.01), which indicates a slight monotonically increasing relationship between
median life lifespan and project lifespan. The Pearson correlation test produced r = 0.39
(p ≪ 0.01); the difference with the Spearman result can be explained if the relationship
is monotonically increasing, but not linear. For tokenized data, the correlation was a bit
stronger, with Spearman ρ = 0.37 (p ≪ 0.01) and Pearson r = 0.44 (p ≪ 0.01). Figure 5
shows a scatterplot of line and tokens median lifespans with a regression line; the
regression coefficient for lines is 0.23 and for tokens is 0.28. In all, although the effect of
project age is statistically significant, its effect on the longevity of code is small.

RQ2
Moving beyond the estimates of median line lifespan, we checked the three hypotheses
on hazard rates by fitting a Weibull distribution to each project’s data. The fit was
performed on the full line data of each project; we are interested in the fitted Weibull a
parameter that controls the shape of the distribution and therefore the evolution of the
hazard rate. The results of the fit showed that for all projects the a parameter is less than
one, indicating a process with high infant mortality. Figure 6 shows the Weibull fitted
distributions for all projects, each line being a project. The median of a is 0.52, while
the 25% percentile is 0.43 and the 75% percentile 0.63. The situation is almost the same
if we do the same analysis for tokens. Two projects have a � 1 (by a whisker, ojs with
a = 1.01 and xmbc with a = 1.07). The median is 0.53, the 25% percentile 0.43 and the 75%
percentile 0.70.

Project lifespan (years)

lines

M
ed

ia
n

lif
es

pa
n

(y
ea

rs
)

Figure 5 Line median lifespan on project lifespan. Scatterplots and regression lines of the lifespan of
each project vs the median lifespan. Full-size DOI: 10.7717/peerj-cs.372/fig-5

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 16/33

http://dx.doi.org/10.7717/peerj-cs.372/fig-5
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

From the above, it follows that young lines run higher risks. Old lines die as well, but
younger ones at higher rates. This suggests a software development process where lines
that are introduced into the code base of the project are subject to more change pressures.
A line that has just been committed may not have been as thoroughly tested as older lines;
it may need to be modified to accommodate factors that had not been foreseen; lines just
added may impact more those recently introduced than parts of the older code base.

Conversely, old lines seem to have proved their mettle. They have survived a long
time and they are less likely to suffer changes than young lines. In a more negative light, old
lines may gain a “don’t touch” status, where developers are wary to change anything that
works, which therefore lives on.

Whichever may hold, that a line lives on because it is really valuable or because
nobody dares to change it, developers should be aware that they work for the long term.
A line of code may live for years, well beyond the developers’ involvement with a project or
their ability to remember the rationale behind a cryptic choice. Consequently, our findings
provide one more reason for writing clear and well-documented code.

Our findings also support the need to manage and perform what have been called
anti-regressive changes (Lehman, 1978) to the software (effort required to combat the
growth in complexity) in order to avoid the accumulation of technical debt (Kruchten,
Nord & Ozkaya, 2012). Code lines that live long are likely to become out of sync with
respect to the software’s evolving architecture, design, APIs, third-party libraries, language
standards, as well as coding conventions and practices. As we have shown, such lines
are not very likely to go away. Consequently, it is required to find those code lines that need
care and bring them up to scratch. This is typically accomplished through the detection of
code smells and the corresponding refactoring of code (Fowler, 2000).

Figure 6 Hazard rates of lines of code per project. For all projects, the hazard rate for lines decreases
with time, i.e., older lines run a smaller risk of dying. Full-size DOI: 10.7717/peerj-cs.372/fig-6

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 17/33

http://dx.doi.org/10.7717/peerj-cs.372/fig-6
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

RQ3a
We investigated whether particular features of lines are conducive to more changes.
We ran a linear multiple regression model for each project with the lifespan of a line as the
dependent variable and as independent variables the length of the line, the indentation, the
number of strings in the line, whether it (or part of it) is a comment, the number of
commas, the number of brackets, the number of access operators (method and pointer),
the number of assignments, the number of scope delimiters, the number of array
accesses, and the number of logical operators. The elements we tested point to code smells
or other code features that may make the code less stable, affecting its lifetime. We selected
the aforementioned features for the following reasons. A large number of brackets may
indicate complicated conditions or expressions, or long statements, which are a known
code smell (Sharma, Fragkoulis & Spinellis, 2016). A large number of commas may indicate
a long parameter list smell (Mäntylä & Lassenius, 2006). Strings may indicate the
entanglement of presentation elements with business logic (Nguyen et al., 2012).

The results showed a very low fit (R2 < 0.1) for all projects, apart from canu with
R2 = 0.44, HandBrake, with R2 = 0.29, and pyparallel, with R2 = 0.11. The regression
coefficients were found with very small p values, which indicates that the influence they
have on the lifespan cannot be explained away by chance, but the whole linear model, and
therefore each particular predictor in it, accounts for a tiny part of lifetime variance.

RQ3b
To conduct a similar analysis for tokens, we divided tokens in four types: identifiers
(391 million), numbers (91 million), keywords (112 million), and other tokens (mainly
operators and punctuation—723 million). We ran pairwise Mann–Whitney U tests
between the lifetimes of different token types for each project. The distributions of the
lifetimes of token types per project are different in the vast majority of projects (ranging
from the distributions of 86/89 projects for identifiers vs other tokens to the distributions
of 82/89 projects for keywords vs numbers). However, when we take the medians of
the lifetimes of different token types for all projects, their distributions are then all
indistinguishable. As for lines, we could not determine that some particular types of tokens
are associated with longer lifetimes across projects.

RQ3c
A different factor that may influence the lifespan of a line is the committer who enters,
alters, or deletes a line. We examined possible correlations between the lifespan and the
number of developer commits in the project and between the experience and the tenure of
the developer in the project. For this, we looked at commits in the middle year of the
examined period (2012), thus providing at least 4.5 years time to gather line and developer
data and then another 4.5 for lines to disappear. We used the number of a developer’s
project commits until each examined commit as a measure of a developer’s experience,
and the difference in time between the developer’s first project commit and the examined
one as a measure of the developer’s tenure in the project. We carried out both Spearman
and Pearson correlation tests to examine the relationship between line lifetime and the

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 18/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

experience and tenure of the developer who added the line. We could not identify a
single rule across projects. In some projects, committer activity and tenure appear to
be positive correlated with line lifespan, in other projects they appear to be negative
correlated, and in most projects the correlation seems to be weak: the median is close to
zero. The situation changes when we examine the lifetime of lines vs the experience
and tenure of the author who removed them: we find that the lifetime is positively
correlated with developer experience, that is, more experienced developers remove
longer-lived lines. The median of the correlation of line lifetime and developer experience
across projects is 0.27 (Spearman) and 0.24 (Pearson) for p < 0.05; for the correlation
of line lifetime and developer tenure the medians are 0.42 (Spearman) and 0.33 (Pearson)
for p < 0.05.

Alternatively, the above can mean that it takes experienced developers to remove a
long-lived line, bringing us back to the “don’t touch” status. The “don’t touch” status
also hints at a different facet of the way lines are handled. Could it be that lines are more
likely to be changed or deleted by the same developer who entered them into a project
in the first place, rather than by a different committer? We contrasted, for each
project, the lifetimes of lines that are changed by the same developer against those that
are changed by a different one. The two distributions are different (checking with the
Mann–Whitney U test) for all projects except drush and grails-core. In most projects, the
median lifetime of lines removed by the same author who entered them is less than the
median lifetime of lines removed by a different author (81/89); and similarly for the means
(85/89). In short, lines are more likely to be touched by their original author (see also
Fig. 7).

Figure 7 Per project lifetime medians for same and different committers.
Full-size DOI: 10.7717/peerj-cs.372/fig-7

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 19/33

http://dx.doi.org/10.7717/peerj-cs.372/fig-7
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

RQ3d
We investigated whether project size affects the longevity of lines and tokens. We checked
the number of lines and the number of tokens for all commits, using both Pearson and
Spearman correlations. We found only slight positive correlations, r = 0.35 (p < 0.01),for
the Pearson correlation (but not the Spearman) for both the number of lines and the
number of tokens in a project. Of course, the size of the project may be related to its age
and indeed the results are concordant with our preceding investigation on code lifespans
and project lifespans.

RQ3e
Turning to programing languages, although we expected to find greater lifespans in
languages with features that promote modularity, we did not detect that. Table 2 shows
that median lifetime estimates over projects grouped by programing language (excluding a
single project in C#). If anything, we see that, for instance, C exhibits greater lifespans than
C++. However, note that none of the differences between programing languages was
statistically significant at the 0.01 level using the Mann–Whitney U test.

THREATS TO VALIDITY
Internal validity
Thankfully, by basing our study on historical data, many threats that typically appear
in evolving experiments, such as design contamination, experimental mortality, and
maturation, can be ruled out. The main remaining threats are associated with confounding
factors, noise in the data, commit granularity, file differencing, and statistical methods.

An important consideration is that the independent variable we used in our study, a
code line’s age, can encompass many other variables. Specifically with the passage of
time, the number of faults in a line will decrease as these are winnowed out (Ozment &
Schechter, 2006), the developers’ familiarity will increase as they read it again and again,
and the line’s afferent couplings may increase as other code may depend on its elements.

Another factor is noise in the data we used. Although we were careful to include
(through simple measures) in our study what has been termed engineered software projects
(Munaiah et al., 2017), we cannot exclude the possibility that the underlying commit
data contain infelicities that may influence our results. These include the addition or
removal of large third-party software systems, wrongly set commit dates, history rewrites

Table 2 Languages and Kaplan–Meier (KM) estimates.

Language # Projects Median Median
Line KM Token KM

PHP 16 1.93 2.42

C++ 17 1.86 2.81

Python 12 2.75 3.61

Java 18 2.45 2.74

C 25 2.80 3.63

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 20/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

performed after the code was written, and errors introduced when one type of repository
(e.g., CVS) gets converted into Git.

Third-party code changes can have a significant effect on software evolution. Gall et al.
(1997) conducted an empirical study on a large telecommunication switching system, and
identified important differences in the patterns of software evolution over time of the
whole system vs its subsystems. A similar strategy of separately examining the growth of
subsystems of large software projects has been followed byGonzález-Barahona et al. (2014)
and by González-Barahona et al. (2009). Other studies of software evolution have also
identified the ripples caused by the inclusion or removal of third-party components
(Robles, González-Barahona & Herraiz, 2005), and some, such as the one by Hatton,
Spinellis & Van Genuchten (2017), have attempted to address the issue by filtering them
out. As we have not performed such filtering, these changes may affect our reported results.
On the other hand, filtering introduces another threat to validity due to the subjective
nature of the required decisions or parameters.

A related factor is the granularity of the studied commits. Our study is missing
many intermediary commits, first because we removed about 32% through history
simplification, and second because many others may have occurred in third-party
repositories and then pushed upstream as a single commit (German, Adams & Hassan,
2016). One could argue that the effects of history simplification should cancel out: lines
would on average appear later and also disappear later. Nevertheless, to quantify the
effect of history simplification, we measured the interval between commits in both the
complete tree and the simplified longest path. As expected, the longer time paths upstream
from merges in the complete tree, which were simplified away in the linear path, gave the
tree a longer interval between commits (a median of 40 min) than its longest path
(27 min). However, the difference between the median value of the two intervals (13 min)
is five orders of magnitude smaller than the line lifespan we report, making any effect
negligible.

The use of Git to list the differences between two file versions is also a threat. First, the
employed file difference algorithm (Myers, 1986) will display a movement of code as a
deletion and an insertion. Then, relatively minor changes, such as the renaming of an
identifier, will appear as line deletions and insertions, which may skew the results toward
higher infant mortality. We examined the effect of these two issues through methods
described in the sections on the analysis of individual tokens and moved lines. Also,
the detection of file renaming and copying is based on a heuristic and a threshold. We used
the default thresholds, only increasing the number of files that would be checked for
copies; there may conceivably be better values to use.

A related issue is that our investigation focuses on individual code lines. We do not
take context into account. A line that is moved from one place to the next impacts both
places and may cause cascading changes in the lifespans of other lines. However, the same
applies in traditional survival analysis: deaths may be related to other deaths (e.g., via
disease); we are interested in the lifespan of lines, no matter the relationships that may exist
between them.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 21/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

Given that we used custom-developed tools to track the birth and death of lines of
code, human error is an inevitable factor. We tried to minimize this through numerous test
cases, manual verification, and the use of internal consistency checks.

Turning to our statistical methods, we have used two statistical techniques to answer
two different, but related questions. We used the Kaplan–Meier estimator to investigate
the median lifespan of code in projects, and a Weibull process to investigate the overall
aging process. The Kaplan–Meier estimator provided us with approximations of the
survival functions, while the Weibull fit gave us approximations of the hazard functions.
We assumed that the hazard rate is characterized by a Weibull function, because the
Weibull distribution is a popular model for several related process such as component
failure rates and Weibull covers different aging processes depending on the value of a.
Moreover, we are not interested in the exact values of the parameters of the Weibull
distribution, but in the relation of a to 1, where we found consistent results.
The remarkable agreement in the shape of the Weibull distributions among many
diverse projects (Fig. 6) leads us to believe that our findings are reproducible and
generalizable. We examined whether the lognormal distribution, which is also often
used in failure models, would be a better fit for our data. To compare the two models,
Weibull and lognormal, we used the Akaike Information Criterion (AIC), defined as

AIC ¼ 2k� 2 logðL̂Þ, where k is the number of parameters of the model and L̂ is the
maximum likelihood of the model. A lower AIC value corresponds to a better fit, as this
maximizes the goodness of fit, given by the log-likelihood, but penalizes the complexity
of the model, given by the number of parameters. We found overwhelmingly that the
Weibull distribution was a better fit. Only five projects had better fit with the lognormal
distribution when we examined the lines, and six projects had better fit with the lognormal
distribution when we examined the tokens (four projects were the same). We used the
Python lifelines package for calculating the estimates and comparing the distributions
(Davidson-Pilon et al., 2020).

External validity
The generalizability of our findings is threatened by our choice of analyzed projects.
Although we included projects from diverse development communities, written in
numerous programing languages, and serving many different application areas, we cannot
claim that our choice represents adequately all software development. In particular,
we feel that our sample excludes or underrepresents the following software types: small
software projects, projects developed with tightly managed or formal processes,
proprietary and bespoke systems, projects written in programing languages not favored by
the open source community, and systems that target specific application domains rather
than the provision of systems infrastructure.

More importantly, our findings are based on large, successful projects that have run
for several years. There are many more projects that are discontinued after a short
period of time, for any reason. All lines of code in these projects freeze at an early stage of
what could have been a longer period of evolution. Therefore our findings cannot be
generalized to all software development—this would be an instance of survival bias,

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 22/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

reaching conclusions for all the population based only on the characteristics of the
survivors. That said, people usually aspire to create successful, long-lasting projects, so our
findings are pertinent for those projects that want to achieve longevity.

RELATED WORK
All living beings degenerate and die with age. The origin of senescence, however, remains
an unsolved problem for biologists (Kirkwood & Austad, 2000). Likewise, many software
components evolve, age, and are eventually removed or replaced. This section presents
related work regarding the fields of software evolution, aging, and decay, and records
empirical studies that use the statistical method of survival analysis (Elandt-Johnson &
Johnson, 1990; Klein & Moeschberger, 2003).

The process of software evolution refers to the modification and adaptation of software
programs so that programs can survive as their environment changes. The software
evolution laws of Lehman (1980) describe the constraints practitioners should take into
account to continuously adapt actively used software systems. A detailed literature review
regarding Lehman’s software evolution laws has been conducted by Herraiz et al. (2013).
Many empirical studies focus on predictive models of software projects’ evolution at
macroscopic scale. Relevant studies have looked at long-term sustainability factors in
the evolution of LibreOffice (Gamalielsson & Lundell, 2014), the change of program
dependencies in the Apache ecosystem (Bavota et al., 2013), and the early identification
of source code evolution pattern in open source projects (Karus, 2013). Additionally,
many empirical studies examine software evolution at the microscopic level, considering
the evolution of source-code elements such as methods. In particular, Bevan et al. (2005)
developed Kenyon, which supports different types of stratigraphic software evolution
research, ranging from code feature evolution to dependency graph-based maintenance.
Zimmermann (2006) presented APFEL for fine-grained processing of source code elements
such as tokens, method calls, exceptions, and variable usages. Hata, Mizuno & Kikuno
(2011) introduced Historage, which provides entire histories of fine-grained entities in
Java, such as methods, constructors, and fields. This tool has been applied to quantitatively
evaluate the remaining change identification of open source software projects.

The term software aging was coined by Parnas (1994) and refers to the idea that
programs, like people, are getting old. According to Parnas, software aging happens for
two reasons: (1) software fails to adapt to changing needs, and (2) software changes but
in an inappropriate way (addition of bad fixes and features). Given, however, that it is
infeasible for developers to prevent software evolution and, consequently, software
degradation, researchers attempt to limit program damages by predicting the software’s
lifetime and inventing rejuvenation approaches (Karus & Dumas, 2012; Li et al., 2011;
Qin et al., 2005; Robillard & Murphy, 2007; Salfner, Lenk & Malek, 2010). In the field of
software aging, empirical studies have been conducted on the identification of aging
trends. In particular, Robles et al. (2005) found that a system becomes “old” when it
turns five. The authors also defined the absolute 5-year aging index to compare the relative
aging of different projects. Finally, Cotroneo, Natella & Pietrantuono (2013) developed an
approach that predicts the location of aging-related bugs using software complexity

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 23/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

metrics and machine learning algorithms. They found that the most significant signs of
software aging manifest themselves as: leaked memory, unterminated threads, unreleased
files and locks, numerical errors, and disk fragmentation.

As software evolves, developers should overcome software erosion by fighting
software decay. A significant research body is also devoted to this field. Eick et al. (2001)
used the term code decay to describe the situation where evolving software increasingly
hinders software maintenance. The authors, also, proposed measurements (code decay
indices) as decay predictors. For their study, they statically analyzed millions of lines of a
fifteen-year old telephone switching software system. Similarly to our work, the authors
tracked added and deleted source code lines. However, they did not use survival analysis
and they examined a single project to find particular code decay factors. Additionally,
Arisholm & Sjøberg (2000) proposed a framework for the empirical assessment of
changeability decay and Araújo, Monteiro & Travassos (2012) built a software decay model
regarding software deterioration causes.

Extensive work has been done on identifying and tracking code changes. Kim &
Notkin (2006) were the first that defined the problem of matching code elements between
two program versions based on syntactic and textual similarity. To compute the difference
between two programs several tools have been implemented. Canfora, Cerulo & Penta
(2007) developed a technique that combines Space Vector Models and the Levenshtein
edit distance for finding CVS/SVN differences that occur due to line additions or deletions,
as well as due to line modifications. Furthermore, the LHDiff tool implements language-
independent techniques to track how source code lines evolve across different versions
of a software system (Asaduzzaman et al., 2013b). The tool uses the simhash technique
together with heuristics. In addition, the GumTree tool identifies edits in scripts when
moving code in version repositories (Falleri et al., 2014). This tool is based on a abstract
syntax tree (AST) differencing algorithm. The ChangeDistiller is another differencing tool
that is based on a tree differencing algorithm for fine-grained source code change
extraction (Fluri et al., 2007). To represent how lines evolve over time in source code
version repositories researchers have also used annotation graphs (Zimmermann et al.,
2006). More recently, Servant & Jones (2017) proposed a fine-grained model based on
optimizing the Levenshtein difference between lines of successive versions. Finally,
CVSscan is a visual tool for representing software evolution based on the tracking of
line-based source code changes extracted by using Unix’s diff (Voinea, Telea & Van Wijk,
2005). The lifetime tool we present here, balances computational cost with accuracy by
processing a series of git diff outputs and uses a state machine for the parsing of their
output.

Other researchers have also employed the tools of survival analysis in software
(Elandt-Johnson & Johnson, 1990; Klein &Moeschberger, 2003). Sentas, Angelis & Stamelos
(2008) developed a statistical framework based on survival analysis and the Kaplan–Meier
estimator (Kaplan & Meier, 1958) to predict the duration of software projects and the
factors that affect it. The authors applied their approach on proprietary software projects
taking into account industrial factors that have an impact on a project’s lifetime.
They found that the median duration of the examined projects is 14 months. Similarly,

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 24/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

Samoladas, Angelis & Stamelos (2010) applied survival analysis on 1,147 open source
projects to forecast software evolution trends. The authors observed that projects that
existed more than ten years ago continue to evolve. Comparably, our insights confirm that
code in long-lived projects lives longer. Scanniello (2011) used the Kaplan–Meier estimator
on five software projects (at method level) to investigate how dead code affects software
evolution.

Our finding regarding the lower hazard of older lines is mirrored by Zheng et al.
(2008) who report that in Gentoo Linux packages, a network graph new node is connected
to an old node with a probability that depends not only on the degree but also on the
age of the old node. Other survival analysis studies include the one by Claes et al. (2015) on
the longevity of Debian packages with conflicts and the one by Goeminne & Mens (2015)
on the survival and influence of five Java database frameworks. To the best of our
knowledge, this article is the first work that uses survival analysis to track the birth and
death of code lines and tokens over periods that span decades, and presents a theoretical
and statistical model regarding the aging process of code lines.

Another research strand that the study of the evolution of fine-grained code elements
is related to includes genetic improvement. Genetic improvement (GI) uses automated
search (i.e., optimization and machine learning techniques) in order to improve existing
software. Typically, GI involves making small changes or edits (also known as mutations)
in source-code elements (i.e., lines of code or tokens) to improve existing software.
Topics covered by GI research include program transformation, approximate computing,
and program repair (Petke et al., 2018). As an example, Petke et al. (2014) apply GI
with automated code transplantation, by mutating the code at the level of lines of source
code, to improve software performance. Additionally, Barr et al. (2014) introduced the
plastic surgery hypothesis, which states that changes to a codebase refer to source code
elements that already exist in the codebase at the time of a change. Related work (Nguyen
et al., 2013; Goues, Forrest & Weimer, 2013) considers repetitiveness of code changes
(abstracted to abstract syntax trees) that is associated with the plastic surgery hypothesis.
Furthermore, Martinez, Weimer & Monperrus (2014) consider changes that could be
constructed based on existing code snippets. Therefore, the study of the evolution of code
elements, such as code lines or tokens that we take into account here, could help, in the
future, in the guidance of software improvement based on evolutionary approaches.

CONCLUSIONS AND IMPLICATIONS
When we began working on this study, we did not know whether code lines were
durable or perishable and whether their demise was a result of infant mortality or
senescence. By devising a method and implementing tools to follow source code lines from
89 revision control repositories from their birth to their demise, we were able to arrive at
the answers through the statistical analysis of 3.3 billion source code lifetime events.
We found that code lines are durable with a median lifespan of about 2.4 years, the
corresponding median for the tokens is 2.9 years, and that the associated hazard rate
decreases over time following a Weibull distribution; that is, young lines are more likely to

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 25/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

be modified or deleted. We investigated whether line and token longevity are associated
with particular line and token features, developer experience and tenure in a project,
and programing language. Our results did not show strong patterns, indicating that line
and token longevity may be the result of a complex interaction of various, potentially
context specific, factors. Project age and project size had a small correlation with code
longevity.

On the practical front, our model, suitably calibrated, can provide input for estimating
maintenance effort, while the corresponding tool could aid the management of technical
debt and the risk assessment of software vulnerabilities. Our model derives statistical
estimates of lifespan estimates and hazard rates, based on the source code of projects.
They can be run on other projects, apart from the ones we used, to give the calibrated
figures for them. Knowing how lines and token age (or churn) in a project may help in
managing technical debt and risk assessment (Ozment & Schechter, 2006; Shin et al., 2010).
For example, a large number of long-lived lines/tokens can be a sign of stability or
“don’t touch” status. Moreover, our regression model of lines lifespan vs project lifespan
can be used against a particular project to gauge where it stands, or whether (perhaps
problematically) it is an outlier. All these potential uses need to be empirically validated in
future studies.

On the research front, the study of code evolution at the level of individual lines can be
extended both theoretically and in empirical breadth and depth. On the theoretical
side, significant work is required to establish the precise mechanisms underlying the
observed hazard rate. Features we did not examine here, such as as the interplay of
requirements, architecture, and syntax, might be worthy candidates for further study.
Corresponding theories should then be empirically evaluated using our methods and tools.
On the breadth side examining more, and more diverse, repositories will strengthen the
generalizability of our findings.

Tying together this area’s research and practical implications is the enticing quest to
identify and control factors that do play a role in the lifetime of code elements. Once these
are nailed down, software engineering practices can be correspondingly adjusted so as
to reduce potentially wasteful effort by delivering code lines with longer lifespans. This line
of research can lead to a new promising and exciting avenue for improving the efficiency of
software development.

ACKNOWLEDGEMENTS
The authors thank Alexander Chatzigeorgiou for his valuable and timely feedback.
This work’s first author thanks Michiel van Genuchten and Les Hatton for their fruitful
collaboration on software growth modeling.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The project associated with this work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No. 825328.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 26/33

http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
European Union’s Horizon: 825328.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Diomidis Spinellis conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Panos Louridas analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Maria Kechagia analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data and source code are available on Zenodo: DOI 10.5281/zenodo.4319993.
- Spinellis, Diomidis, Louridas, Panos, & Kechagia, Maria. (2020). Evolution of software

code at the level of fine-grained elements: data files (Version 1.3) [Data set]. Zenodo.
DOI 10.5281/zenodo.4319986.

- Kechagia, Maria, Louridas, Panos, & Kechagia, Maria. (2020, December 13).
Evolution of software code at the level of fine-grained elements: source code. Zenodo.
DOI 10.5281/zenodo.4319993.

REFERENCES
Albrecht AJ, Gaffney JE. 1983. Software function, source lines of code, and development effort

prediction: a software science validation. IEEE Transactions on Software Engineering
SE-9(6):639–648 DOI 10.1109/TSE.1983.235271.

Allamanis M, Barr ET, Devanbu P, Sutton C. 2018. A survey of machine learning for big code and
naturalness. ACM Computing Surveys 51(4):1–37 DOI 10.1145/3212695.

Alon U, Zilberstein M, Levy O, Yahav E. 2019. Code2Vec: learning distributed representations of
code. Proceedings of the ACM on Programming Languages 3(POPL):1–29 DOI 10.1145/3290353.

Araújo MAP, Monteiro VF, Travassos GH. 2012. Towards a model to support in silico studies of
software evolution. In: Proceedings of the 2012 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’12. 281–289.

Arisholm E, Sjøberg DIK. 2000. Towards a framework for empirical assessment of changeability
decay. Journal of Systems and Software 53(1):3–14 DOI 10.1016/S0164-1212(00)00003-0.

Asaduzzaman M, Roy CK, Schneider KA, Di Penta M. 2013a. LHDiff: a language-independent
hybrid approach for tracking source code lines. In: ICSM 2013: 29th IEEE International
Conference on Software Maintenance. Piscataway: IEEE, 230–239.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 27/33

https://dx.doi.org/10.5281/zenodo.4319993
http://dx.doi.org/10.5281/zenodo.4319986
http://dx.doi.org/10.5281/zenodo.4319993
http://dx.doi.org/10.1109/TSE.1983.235271
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1145/3290353
http://dx.doi.org/10.1016/S0164-1212(00)00003-0
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

Asaduzzaman M, Roy CK, Schneider KA, Penta MD. 2013b. LHDiff: tracking source code lines
to support software maintenance activities. In: 2013 IEEE International Conference on Software
Maintenance. 484–487.

Atkins DL, Ball T, Graves TL, Mockus A. 2002. Using version control data to evaluate the impact
of software tools: a case study of the Version Editor. IEEE Transactions on Software Engineering
28(7):625–637 DOI 10.1109/TSE.2002.1019478.

Barnes JM, Pandey A, Garlan D. 2013. Automated planning for software architecture evolution.
In: 28th IEEE/ACM International Conference on Automated Software Engineering (ASE ’13).
213–223.

Barr ET, Brun Y, Devanbu P, Harman M, Sarro F. 2014. The plastic surgery hypothesis. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014. New York: Association for Computing Machinery, 306–317.

Bavota G, Canfora G, Penta MD, Oliveto R, Panichella S. 2013. The evolution of project
inter-dependencies in a software ecosystem: the case of Apache. In: Proceedings of the 29th IEEE
International Conference on Software Maintenance, ICSM ’13. Washington: IEEE Computer
Society, 280–289.

Bevan J, Whitehead EJ, Kim S, Godfrey M. 2005. Facilitating software evolution research with
Kenyon. In: Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13. New York: Association for Computing Machinery, 177–186.

Breivold HP, Crnkovic I, Larsson M. 2012. A systematic review of software architecture evolution
research. Information and Software Technology 54(1):16–40 DOI 10.1016/j.infsof.2011.06.002.

Buse RP, Weimer WR. 2008. A metric for software readability. In: Proceedings of the 2008
International Symposium on Software Testing and Analysis, ISSTA ’08. New York:
ACM, 121–130.

Canfora G, Cerulo L, Penta MD. 2007. Identifying changed source code lines from version
repositories. In: Proceedings of the 4th International Workshop on Mining Software Repositories,
MSR ’07. Washington, D.C: IEEE Computer Society, 14.

Claes M, Mens T, Di Cosmo R, Vouillon J. 2015. A historical analysis of Debian package
incompatibilities. In: Proceedings of the 12th Working Conference on Mining Software
Repositories, MSR ’15. Piscataway: IEEE Press, 212–223.

Cotroneo D, Natella R, Pietrantuono R. 2013. Predicting aging-related bugs using software
complexity metrics. Performance Evaluation 70(3):163–178 DOI 10.1016/j.peva.2012.09.004.

Davidson-Pilon C, Kalderstam J, Jacobson N, Sean R, Kuhn B, Zivich P, Williamson M,
Abdeali JK, Datta D, Fiore-Gartland D, Parij A, WIlson A, Gabriel D, Moneda L,
Moncada-Torres A, Stark K, Gadgil H, Jona S, Besson K, Peña MS, Anton S,
Klintberg A, Growth J, Noorbakhsh J, Begun M, Kumar R, Hussey S, Golland D, jlim13.
2020. Camdavidsonpilon/lifelines: v0.25.6. DOI 10.5281/zenodo.4136578.

Kaplan EL, Meier P. 1958.Nonparametric estimation from incomplete observations. Journal of the
American Statistical Association 53(282):457–481 DOI 10.1080/01621459.1958.10501452.

Eick SG, Graves TL, Karr AF, Marron JS, Mockus A. 2001. Does code decay? Assessing the
evidence from change management data. IEEE Transactions on Software Engineering 27(1):1–12
DOI 10.1109/32.895984.

Elandt-Johnson RC, Johnson NL. 1990. Survival models and data analysis. Hoboken: Wiley.

Falleri J-R, Morandat F, Blanc X, Martinez M, Monperrus M. 2014. Fine-grained and accurate
source code differencing. In: Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, New York: ACM, 313–324.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 28/33

http://dx.doi.org/10.1109/TSE.2002.1019478
http://dx.doi.org/10.1016/j.infsof.2011.06.002
http://dx.doi.org/10.1016/j.peva.2012.09.004
http://dx.doi.org/10.5281/zenodo.4136578
http://dx.doi.org/10.1080/01621459.1958.10501452
http://dx.doi.org/10.1109/32.895984
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

Fluri B, Wuersch M, PInzger M, Gall H. 2007. Change distilling: tree differencing for fine-grained
source code change extraction. IEEE Transactions on Software Engineering 33(11):725–743
DOI 10.1109/TSE.2007.70731.

Fowler M. 2000. Refactoring: improving the design of existing code. Boston: Addison-Wesley.

Gall H, Jazayeri M, Klosch RR, Trausmuth G. 1997. Software evolution observations based on
product release history. In: 1997 Proceedings International Conference on Software Maintenance.
160–166.

Gamalielsson J, Lundell B. 2014. Sustainability of open source software communities beyond a
fork: how and why has the LibreOffice project evolved? Journal of Systems and Software
89:128–145 DOI 10.1016/j.jss.2013.11.1077.

German DM, Adams B, Hassan AE. 2016. Continuously mining distributed version control
systems: an empirical study of how Linux uses Git. Empirical Software Engineering
21(1):260–299 DOI 10.1007/s10664-014-9356-2.

German DM, Adams B, Stewart K. 2019. cregit: token-level blame information in git version
control repositories. Empirical Software Engineering 24:2725–2763.

Giger E, Pinzger M, Gall HC. 2011. Comparing fine-grained source code changes and code churn
for bug prediction. In: Proceedings of the 8th Working Conference on Mining Software
Repositories, MSR ’11. New York: ACM, 83–92.

Godfrey MW, Tu Q. 2000. Evolution in open source software: a case study. In: Proceedings of the
2000 International Conference on Software Maintenance, ICSM ’00. Piscataway: IEEE, 131–142.

Goeminne M, Mens T. 2015. Towards a survival analysis of database framework usage in Java
projects. In: Proceedings of the 31st IEEE International Conference on Software Maintenance and
Evolution. 551–555.

González-Barahona JM, Robles G, Herraiz I, Ortega F. 2014. Studying the laws of software
evolution in a long-lived FLOSS project. Journal of Software: Evolution and Process
26(7):589–612 DOI 10.1002/smr.1615.

González-Barahona JM, Robles G, Michlmayr M, Amor JJ, German DM. 2009. Macro-level
software evolution: a case study of a large software compilation. Empirical Software Engineering
14(3):262–285 DOI 10.1007/s10664-008-9100-x.

Gordon AD, Henzinger TA, Nori AV, Rajamani SK. 2014. Probabilistic programming. In:
Proceedings of the on Future of Software Engineering, FOSE 2014. New York: ACM, 167–181.

Goues C, Forrest S, Weimer W. 2013. Current challenges in automatic software repair. Software
Quality Journal 21(3):421–443 DOI 10.1007/s11219-013-9208-0.

Gousios G, Kalliamvakou E, Spinellis D. 2008. Measuring developer contribution from software
repository data. In: Proceedings of the 2008 International Working Conference on Mining
Software Repositories, MSR ’08. New York: ACM, 129–132.

Gousios G, Spinellis D. 2012. GHTorrent: GitHub’s data from a firehose. In: Lanza M, Penta MD,
Xie T, eds. 9th IEEE Working Conference on Mining Software Repositories (MSR). Piscataway:
IEEE, 12–21.

Gousios G, Spinellis D. 2017. Mining software engineering data from GitHub. In: Proceedings of
the 39th International Conference on Software Engineering Companion, ICSE-C ’17. Piscataway:
IEEE Press, 501–502.

Hata H, Mizuno O, Kikuno T. 2011. Historage: fine-grained version control system for Java. In:
Proceedings of the 12th International Workshop on Principles of Software Evolution and the 7th
Annual ERCIM Workshop on Software Evolution, IWPSE-EVOL ’11. New York: Association for
Computing Machinery, 96–100.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 29/33

http://dx.doi.org/10.1109/TSE.2007.70731
http://dx.doi.org/10.1016/j.jss.2013.11.1077
http://dx.doi.org/10.1007/s10664-014-9356-2
http://dx.doi.org/10.1002/smr.1615
http://dx.doi.org/10.1007/s10664-008-9100-x
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

Hatton L, Spinellis D, Van Genuchten M. 2017. The long-term growth rate of evolving software:
empirical results and implications. Journal of Software: Evolution and Process 29(5):e1847.

Heckel P. 1978. A technique for isolating differences between files. Communications of the ACM
21(4):264–268 DOI 10.1145/359460.359467.

Herraiz I, González-Barahona JM, Robles G. 2007. Towards a theoretical model for software
growth. In: Proceedings of the 4th International Workshop on Mining Software Repositories, MSR
’07. Washington, DC: IEEE Computer Society, 21.

Herraiz I, Rodriguez D, Robles G, González-Barahona JM. 2013. The evolution of the laws of
software evolution: a discussion based on a systematic literature review. ACM Computing
Surveys 46(2):28:1–28:28 DOI 10.1145/2543581.2543595.

Humphrey WS. 1989. Managing the software process. Reading: Addison-Wesley.

Ince D, Hatton L, Graham-Cumming J. 2012. The case for open program code. Nature
482(7386):485–488 DOI 10.1038/nature10836.

Jiang S, Armaly A, McMillan C. 2017. Automatically generating commit messages from Diffs
using neural machine translation. In: Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017. Piscataway: IEEE Press, 135–146.

Kan SH. 2002. Metrics and models in software quality engineering. Second Edition. Boston:
Addison-Wesley Longman Publishing Co., Inc.

Karus S. 2013. Automatic means of identifying evolutionary events in software development. In:
Proceedings of the 29th IEEE International Conference on Software Maintenance, ICSM ’13.
Piscataway: IEEE, 412–415.

Karus S, Dumas M. 2012. Code churn estimation using organisational and code metrics:
An experimental comparison. Information and Software Technology 54(2):203–211
DOI 10.1016/j.infsof.2011.09.004.

Kechagia M, Devroey X, Panichella A, Gousios G, van Deursen A. 2019. Effective and efficient
API misuse detection via exception propagation and search-based testing. In: Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019.
New York: ACM, 192–203.

Kim M, Notkin D. 2006. Program element matching for multi-version program analyses. In:
Proceedings of the 2006 International Workshop on Mining Software Repositories, MSR ’06.
New York: ACM, 58–64.

Kirkwood TB, Austad SN. 2000. Why do we age? Nature 408(6809):233–238
DOI 10.1038/35041682.

Klein JP, Moeschberger ML. 2003. Survival analysis: techniques for censored and truncated data.
Second Edition. Springer.

Kruchten P, Nord RL, Ozkaya I. 2012. Technical debt: from metaphor to theory and practice.
IEEE Software 29(6):18–21 DOI 10.1109/MS.2012.167.

Lehman MM. 1978. Programs, cities, students—limits to growth? In: Gries D, ed. Programming
Methodology: A Collection of Articles by Members of IFIP WG2.3. New York: Springer, 42–69.

Lehman MM. 1980. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE
68(9):1060–1076 DOI 10.1109/PROC.1980.11805.

Li X, Li YF, Xie M, Ng SH. 2011. Reliability analysis and optimal version-updating for open source
software. Information and Software Technology 53(9):929–936 DOI 10.1016/j.infsof.2011.04.005.

Lind RK, Vairavan K. 1989. An experimental investigation of software metrics and their
relationship to software development effort. IEEE Transanctions on Software Engineering
15(5):649–653 DOI 10.1109/32.24715.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 30/33

http://dx.doi.org/10.1145/359460.359467
http://dx.doi.org/10.1145/2543581.2543595
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.1016/j.infsof.2011.09.004
http://dx.doi.org/10.1038/35041682
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.1016/j.infsof.2011.04.005
http://dx.doi.org/10.1109/32.24715
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

Løhre E, Jørgensen M. 2016. Numerical anchors and their strong effects on software development
effort estimates. Journal of Systems and Software 116:49–56 DOI 10.1016/j.jss.2015.03.015.

Mäntylä MV, Lassenius C. 2006. Subjective evaluation of software evolvability using code smells:
an empirical study. Empirical Software Engineering 11(3):395–431.

Martinez M, Weimer W, Monperrus M. 2014. Do the fix ingredients already exist? an empirical
inquiry into the redundancy assumptions of program repair approaches. In: Companion
Proceedings of the 36th International Conference on Software Engineering, ICSE Companion
2014. New York: Association for Computing Machinery, 492–495.

Munaiah N, Kroh S, Cabrey C, Nagappan M. 2017. Curating GitHub for engineered software
projects. Empirical Software Engineering 22(6):3219–3253 DOI 10.1007/s10664-017-9512-6.

Myers EW. 1986. An O(ND) difference algorithm and its variations. Algorithmica 1(1–4):251–266
DOI 10.1007/BF01840446.

Nguyen HA, Nguyen AT, Nguyen TT, Nguyen TN, Rajan H. 2013. A study of repetitiveness of
code changes in software evolution. In: 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 180–190.

Nguyen HV, Nguyen HA, Nguyen TT, Nguyen AT, Nguyen TN. 2012. Detection of embedded
code smells in dynamic web applications. In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012. New York: Association for
Computing Machinery, 282–285.

Nugroho YS, Hata H, Matsumoto K. 2020. How different are different diff algorithms in Git?
Empirical Software Engineering 25(1):790–823 DOI 10.1007/s10664-019-09772-z.

Ozment A, Schechter SE. 2006. Milk or wine: does software security improve with age? In:
Proceedings of the 15th Conference on USENIX Security Symposium. Berkeley: USENIX
Association.

Padgett WJ. 2011. Weibull distribution. In: Lovric M, ed. International Encyclopedia of Statistical
Science. Berlin: Springer, 1651–1653.

Parnas DL. 1994. Software aging. In: Proceedings of the 16th International Conference on Software
Engineering, ICSE ’94. Los Alamitos: IEEE Computer Society Press, 279–287.

Penta MD, Cerulo L, Aversano L. 2009. The life and death of statically detected vulnerabilities: an
empirical study. Information and Software Technology 51(10):1469–1484
DOI 10.1016/j.infsof.2009.04.013.

Petke J, Haraldsson SO, Harman M, Langdon WB, White DR, Woodward JR. 2018. Genetic
improvement of software: a comprehensive survey. IEEE Transactions on Evolutionary
Computation 22(3):415–432 DOI 10.1109/TEVC.2017.2693219.

Petke J, Harman M, Langdon WB, Weimer W. 2014. Using genetic improvement and code
transplants to specialise a C++ program to a problem class. In: Nicolau M, Krawiec K,
Heywood MI, Castelli M, García-Sánchez P, Merelo JJ, Rivas Santos VM, Sim K, eds. Genetic
Programming. Berlin: Springer, 137–149.

Qin F, Tucek J, Sundaresan J, Zhou Y. 2005. Rx: treating bugs as allergies—a safe method to
survive software failures. In: Proceedings of the 20th ACM Symposium on Operating Systems
Principles, SOSP ’05. New York: ACM, 235–248.

Robillard MP, Murphy GC. 2007. Representing concerns in source code. ACM Transactions on
Software Engineering and Methodology 16(1):3 DOI 10.1145/1189748.1189751.

Robles G, Amor JJ, Gonzalez-Barahona JM, Herraiz I. 2005. Evolution and growth in large libre
software projects. In: Eighth International Workshop on Principles of Software Evolution
(IWPSE’05). 165–174.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 31/33

http://dx.doi.org/10.1016/j.jss.2015.03.015
http://dx.doi.org/10.1007/s10664-017-9512-6
http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1007/s10664-019-09772-z
http://dx.doi.org/10.1016/j.infsof.2009.04.013
http://dx.doi.org/10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1145/1189748.1189751
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

Robles G, González-Barahona JM, Herraiz I. 2005. An empirical approach to software
archaeology. In: Poster Proceedings of the 2005 International Conference on Software
Maintenance, ICSM ’05. 47–50.

Rodríguez D, Sicilia M, GarcÃa E, Harrison R. 2012. Empirical findings on team size and
productivity in software development. Journal of Systems and Software 85(3):562–570
DOI 10.1016/j.jss.2011.09.009.

Salfner F, Lenk M, Malek M. 2010. A survey of online failure prediction methods.
ACM Computing Surveys 42(3):1–42 DOI 10.1145/1670679.1670680.

Samoladas I, Angelis L, Stamelos I. 2010. Survival analysis on the duration of open source
projects. Information and Software Technology 52(9):902–922 DOI 10.1016/j.infsof.2010.05.001.

Scanniello G. 2011. Source code survival with the Kaplan Meier. In: Proceedings of the 27th IEEE
International Conference on Software Maintenance, ICSM ’11. 524–527.

Sentas P, Angelis L, Stamelos I. 2008. A statistical framework for analyzing the duration of
software projects. Empirical Software Engineering 13(2):147–184
DOI 10.1007/s10664-007-9051-7.

Servant F, Jones JA. 2017. Fuzzy fine-grained code-history analysis. In: Proceedings of the 49th
International Conference on Software Engineering, ICSE ’17. Los Alamitos: IEEE Computer
Society Press.

Sharma T, Fragkoulis M, Spinellis D. 2016. Does your configuration code smell? In: 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR). Los Alamitos:
IEEE Computer Society, 189–200.

Shin Y, Meneely A, Williams L, Osborne JA. 2010. Evaluating complexity, code churn, and
developer activity metrics as indicators of software vulnerabilities. IEEE Transactions on
Software Engineering 37(6):772–787 DOI 10.1109/TSE.2010.81.

Spinellis D. 2016a. How can I obtain with git log a series of patches that can be auto-applied?
Available at http://www.webcitation.org/6jyf48Ue7.

Spinellis D. 2016b. A repository of Unix history and evolution. Empirical Software Engineering
22:1372–1404.

Spinellis D. 2019. Dspinellis/tokenizer: version 1.1. Available at https://github.com/dspinellis/
tokenizer/.

Spinellis D, Kotti Z, Mockus A. 2020. A dataset for GitHub repository deduplication. In: 17th
International Conference on Mining Software Repositories, MSR ’20. New York: Association for
Computing Machinery, 523–527.

Stamelos I, Angelis L, Oikonomou A, Bleris GL. 2002. Code quality analysis in open source
software development. Information Systems Journal 12(1):43–60
DOI 10.1046/j.1365-2575.2002.00117.x.

Vallée-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V. 2010. Soot: a java bytecode
optimization framework. In: CASCON First Decade High Impact Papers, CASCON ’10. Riverton:
IBM Corp, 214–224.

Van Genuchten M, Hatton L. 2013. Metrics with impact. IEEE Software 30(4):99–101
DOI 10.1109/MS.2013.81.

Voinea L, Telea A, Van Wijk JJ. 2005. CVSscan: visualization of code evolution. In: Proceedings of
the 2005 ACM Symposium on Software Visualization, SoftVis–05. New York: Association for
Computing Machinery, 47–56.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 32/33

http://dx.doi.org/10.1016/j.jss.2011.09.009
http://dx.doi.org/10.1145/1670679.1670680
http://dx.doi.org/10.1016/j.infsof.2010.05.001
http://dx.doi.org/10.1007/s10664-007-9051-7
http://dx.doi.org/10.1109/TSE.2010.81
http://www.webcitation.org/6jyf48Ue7
https://github.com/dspinellis/tokenizer/
https://github.com/dspinellis/tokenizer/
http://dx.doi.org/10.1046/j.1365-2575.2002.00117.x
http://dx.doi.org/10.1109/MS.2013.81
http://dx.doi.org/10.7717/peerj-cs.372
https://peerj.com/computer-science/

White M, Vendome C, Linares-Vásquez M, Poshyvanyk D. 2015. Toward deep learning software
repositories. In: Proceedings of the 12th Working Conference on Mining Software Repositories,
MSR ’15. Piscataway: IEEE Press, 334–345.

Zhang H. 2009. An investigation of the relationships between lines of code and defects. In:
Proceedings of the 25th IEEE International Conference on Software Maintenance, ICSM ’09.
274–283.

Zheng X, Zeng D, Li H, Wang F. 2008. Analyzing open-source software systems as complex
networks. Physica A: Statistical Mechanics and its Applications 387(24):6190–6200
DOI 10.1016/j.physa.2008.06.050.

Zimmermann T. 2006. Fine-grained processing of CVS archives with APFEL. In: Proceedings of
the 2006 OOPSLAWorkshop on Eclipse Technology EXchange, eclipse ’06.New York: Association
for Computing Machinery, 16–20.

Zimmermann T, Kim S, Zeller A, Whitehead EJ Jr. 2006.Mining version archives for co-changed
lines. In: Proceedings of the 2006 International Workshop on Mining Software Repositories, MSR
’06. New York: ACM, 72–75.

Zimmermann T, Zeller A, Weissgerber P, Diehl S. 2005. Mining version histories to guide
software changes. IEEE Transactions on Software Engineering 31(6):429–445
DOI 10.1109/TSE.2005.72.

Spinellis et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.372 33/33

http://dx.doi.org/10.1016/j.physa.2008.06.050
http://dx.doi.org/10.1109/TSE.2005.72
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.372

	Software evolution: the lifetime of fine-grained elements
	Introduction
	Methods
	Results and discussion
	Threats to validity
	Related work
	Conclusions and implications
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

