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Skin lesions are one of the typical symptoms of many diseases in humans and indicative of many types of
cancer worldwide. Increased risks caused by the effects of climate change and a high cost of treatment,
highlight the importance of skin cancer prevention efforts like this. The methods used to detect these
diseases vary from a visual inspection performed by dermatologists to computational methods, and the
latter has widely used automatic image classification applying Convolutional Neural Networks (CNNs) in
medical image analysis in the last few years.

This paper presents an approach that uses CNNs with a NASNet architecture to recognize in more
accuracy way, without segmentation, eight skin diseases. The model was trained end-to-end on Keras
with augmented skin diseases images from the International Skin Imaging Collaboration (ISIC). The CNN
architectures were initialized with weight from ImageNet, fine-tuned in order to discriminate well among
the different types of skin lesions, and then 10-fold cross-validation was applied.

Finally, some evaluation metrics are calculated as accuracy, sensitivity, and specificity and compare with
other CNN trained architectures. This comparation shows that the proposed system offers higher
accuracy results, with a significantly reduction on the training paraments. To the best of our knowledge
and based in the state-of-art recompiling in this work, the application of the NASNet architecture training
with skin image lesion from ISIC archive for multi-class classification and evaluated by cross-validation,
represents a novel skin disease classification system.
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19 Abstract

20 Skin lesions are typical symptoms of many diseases in humans, they also are indicative of many 

21 types of cancer worldwide. Increased risks caused by the effects of climate change and a high cost 

22 of treatment, highlight the importance of skin cancer prevention efforts like this. The methods used 

23 to detect these diseases vary from a visual inspection performed by dermatologists to 

24 computational methods, this last method has widely used automatic images classification applying 

25 Convolutional Neural Networks (CNNs) in medical image analysis in the last few years. 

26 This paper presents an approach that uses CNNs with a NASNet architecture to recognize eight 

27 types of skin diseases in a more accuracy way. The model was trained end-to-end on Keras with 

28 augmented skin diseases images from the International Skin Imaging Collaboration (ISIC). The 

29 CNN architectures were initialized with weight from ImageNet, fine-tuned in order to discriminate 

30 well among the different types of skin lesions, and then 10-fold cross-validation was applied. 

31 Finally, some evaluation metrics are calculated as accuracy, sensitivity, and specificity and 

32 compare with other CNN trained architectures. This comparation shows that the proposed system 
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33 offers higher accuracy results, with a significantly reduction on the training paraments. To the best 

34 of our knowledge and based in the state-of-art recompiling in this work, the application of the 

35 NASNet architecture training with skin image lesion from ISIC archive for multi-class 

36 classification and evaluated by cross-validation, represents a novel skin disease classification 

37 system. 

38 Keywords: Skin cancer, Skin diseases, Convolutional Neural Network, Image analysis, 

39 NASNet.

40 1. Introduction

41 Skin cancer is frequent in the USA, Australia, and Europe [1] with 20 percent of Americans 

42 developing this kind of disease by the age of 70, 4 percent of all cancers in Asians, 5 percent in 

43 Hispanics and an annual cost of treating in the U.S. estimated at  $8.1 billion, signifying skin 

44 cancer as a severe public health problems [2].  

45 Mutations in the DNA of epidermal cells lead to out-of-control, abnormal growth and cause 

46 skin cells to multiply rapidly forming a malignant tumor, the main causes of that mutation are 

47 harmful ultraviolet (UV) rays and the use of UV tanning machines. The chief types of skin cancer 

48 are squamous cell carcinoma (SCC), basal cell carcinoma (BCC), Merkel cell carcinoma (MCC) 

49 and melanoma (MEL). Despite how deadly skin cancer is, with a 5-year survival rate, it can be up 

50 to 99% if diagnosed and treated early enough; however, a delayed diagnosis causes a decrease to 

51 23% in the survival rate.

52 The diagnosis of skin cancer starts with a visual inspection of a dermatologist. Due to the nature 

53 of some lesion’s types, a correct diagnosis is important [3], although the accuracy of the diagnosis 

54 is correlated to the professional experience. Using dermatoscopic images and visual inspection, 

55 dermatologists can achieve an accuracy of 75%-84% [4], [5]. Finally, biopsies can detect the 

56 malignancy of a skin growth, but they are also the most invasive techniques. This process takes 

57 approximately fifteen minutes. Despite being a short time, technological advances open the 

58 possibility of improving accuracy while reducing time and costs through image analysis. This work 

59 gives an approach to increase the accuracy and reduce the time response in non-invasive way.
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60 Automatic image classification using Convolutional Neural Networks (CNN) has been widely 

61 used in the analysis of medical images  [6], [7]; however, until 2012 with the work of  [8] using 

62 the AlexNet architecture that increases the work used by these models for classification of images 

63 through CNNs. Other works have used convolutional architectures with important results [9]–[15].

64 Deep learning technique was applied in the search for automated lesion classification for 

65 unifying the dermatologist's professional experiences and supporting them in the diagnosis, 

66 convolutional neural network (CNN) training for the detection and classification of skin diseases 

67 is carried out using a set of data. This uses highly standardized dermatoscopic images that are 

68 acquired through a specialized instrument or histological images acquired through invasive biopsy 

69 and microscopy. To train the network, some authors operate with datasets from open-access 

70 dermatology repositories, others with repositories belonging to hospitals or clinics where samples 

71 are taken [3], [16], or a combination of the previous two. On the other hand, the images used for 

72 diagnosis can be taken using digital cameras [17]–[24] or the camera of a smartphone.

73 The authors in [3] trained a Inception v4 architecture to perform a binary classification between 

74 of melanoma and benign skin  lesions. The results were compared with the opinion of 58 

75 dermatologists with different levels of experience. The paper outcome is especially valuable 

76 because offers proof of the importance of computer aid, independent of the physician experience 

77 level.

78 One of the most significant advances in the field of skin disease classification and detection 

79 comes with the creation of ISIC Challenge in 2016 [1]. ISIC publishes the largest skin disease data 

80 set, divided by 14 classes. Some of the classes were merged or omitted as a result of the small 

81 number of images on it. 

82 Since 2016 CNN was used in skin lesions classifications with several approaches based on the 

83 number of classes to classify (binary, multi-class), the way the CNN is used (Feature Extractor, 

84 end-to-end training and learning from scratch) [25] and some use the segmentation with a U-net 

85 before feeding the training model.

86 A CNN is used as a feature extractor when is pre-trained with a large dataset (ImageNet) and 

87 the fully connected layer is removed—usually, the data is augmented and normalized. In most of 
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88 the papers found with this approach, AlexNet architecture is used as feature extractor with a K-

89 neighbor or support vector machine as classifier. 

90 The images used to classify could come from their own source as in [26] with 399 photos taken 

91 with a standard camera—achieving a sensitivity of 92.1%, specificity of 95.18% and an accuracy 

92 of 93.64%. In contrast, in [27] and [28] use a public libraries as DermoFit [29] and ISIC dataset 

93 respectively. 

94 The authors in [27] present a multi-classification performed by logistic regression with a final 

95 accuracy of 81.8% — the data is splinted in validation, training and test. In other hand, two-

96 fold cross-validation is used in [28] for two task of binary classification— melanomas vs non-

97 melanoma (accuracy of 93.1%) and melanoma vs atypical nevi (73.9% accuracy).

98 A widely used approach is transfer learning, were an architecture is initialized with the weight 

99 of another data and fine-tuned to fit the new dataset. As in [30] were the authors train a Inception 

100 v3 with 129,450 images from a private source and 3374 images obtained from dermatoscopic 

101 devices. Two problems of binary classification were tested, keratinocyte carcinomas versus benign 

102 seborrheic keratosis and malignant melanomas versus benign nevi. The outcome was present with 

103 the Area Under the Receiver Operating Characteristics metric— 0.96 for carcinomas and 0.94 for 

104 melanomas.

105 The authors in [31] proposed train a ResNets for a multi-classification of 12 skin lesions tested 

106 with the ASAN dataset (Average AUC 0.91 ± 0.01,sensitivity 86.4 ± 3.5 and specificity 85.5 ±3.2) 

107 and DermoFit [29]( Average AUC 0.89 ± 0.01, sensitivity 85.1±2.2 and specificity 81.3 ±2.9) . 

108 Residual neural network is also used in [32] to evaluate three approaches  multi-class  classification 

109 (Melanoma, Seborrheic keratosis and Nevus), binary classification(Melanoma Vs Seborrheic 

110 keratosis and Nevus), and the ensemble approach. The latter approach got the best AUC results 

111 with Melanoma 85.40, Seborrheic keratosis 97.60 and average of 91.50 with the ISIC 2017 

112 Challenge dataset. 

113 Other architecture implemented with transfer learning is the VGGNet. One of the first examples 

114 of this is show in [33] with DermQuest archive classifying among 198 classes (accuracy 50.27 %) 

115 .After, the authors [34] modified VGGNet train with the ISIC 2016 Challenge dataset to 
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116 discriminate between malignant and benign. The best configuration achieved the accuracy of 

117 81.33%, sensitivity 0.78 and precision 0.79. 

118 In this paper, NASNet architecture is implemented to recognize 8 skin diseases more than of 

119 the majority previous cases. We can identify three types of cancer: Squamous Cell Carcinoma, 

120 Melanoma and Basal Cell Carcinoma. Also, our model can discriminate nevus, the most common 

121 kind of mole, of the Melanomas. 

122 The rest of the paper is organized as follows: materials and methods are explained in section 2. 

123 In section 3 the results and discussion are presented. Finally, the conclusions and future works are 

124 given in section 4.

125 2. Materials and Methods
126

127 A formal statement of the problem, from an example-based learning problem or supervised 

128 learning problem, is the following one:

129 In this work a Softmax function is used, therefore, the equation

𝑎𝑙 = 𝜎(𝑧𝑙) (1)

130 could be rewritten as

𝜎(𝑧𝑙) =
𝑒𝑧𝑙𝐾∑𝑗= 1

𝑒𝑧𝑗 (2)

131 being a probability distribution that will center around the positions of the values, applying Σ𝑧𝑙
132 it to the largest entries [35].

133 Let X and Y be two metric spaces: X (skin image), Y (corresponding class label) and a (target) 

134 function y: X →Y, specified only in the finite aggregate of points: y(  ) ,…, y( ) , i.e. the labels 𝑋1 𝑋8

135 of objects ,…,  are known[36]. Where X is split to classes according to the skin disease 𝑋1 𝑋8
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136 ['AK','BCC','BKL','DF','MEL','NV','SCC','VASC']; after one-hot encoding was applied the skin 

137 disease classes could be noted as ,…, , where𝐻1  𝐻8

 = { | y(x) = i} at  {1,….,8}: 𝐻𝑖 𝑥 ∈ 𝑋 𝑖 ∈ 𝑋=⋃8𝑖= 1
𝐻𝑖 (3)

138 The target function y: X →Y, that discriminates well among the different class labels, is 

139 describes as the working process of a neural network in

𝑎𝑙𝑗 = 𝜎(∑𝑘= 1

𝑤 𝑙𝑗𝑘𝑎𝑙 ‒ 1𝑘 + 𝑏𝑙𝑗)
(4)

140 with these notations; the vector activation´s components    are represented as the sum over all 𝑎𝑙𝑗
141 neurons  in the  layer in a matrix form, where the weight from each layer  defines as  𝑘 (𝑙 ‒ 1) 𝑙 𝑤𝑙
142 with  and   are the representation of row and columns, respectively. The components of the bias 𝑗 𝑘
143 vector are just the values . Equation also can be rewritten in a compact vectorized𝑏𝑙𝑗

𝑎𝑙 = 𝜎(∑𝑚 𝑤𝑙𝑎𝑙 ‒ 1
+ 𝑏𝑙) (5)

144 also written in terms of the weighted input, as [37]

𝑎𝑙 = 𝜎(𝑧𝑙) (6)

145 In order to quantifies the error between predicted values  and expected values  a cost function  𝑦 𝑦
146   is applied. 𝐽( 𝑦,𝑦)

𝐽( 𝑦,𝑦) =‒ 𝑀∑𝑗= 0

𝑁∑𝑖= 0

(𝑦𝑖𝑗 ∗ log (𝑦𝑖𝑗)) (7)

147 where the output of the function is given by𝐽( 𝑦,𝑦) = {1, 𝑦 ≠ 𝑦  or  0,𝑦= 𝑦} (8)

148 The way to decrease an objective function    parameterized by the parameters of a𝐽(𝜃)
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{𝜃= (𝑦,𝑦)|𝜃 ∈  ℝ𝑑 } (9)

149 through the gradient descent model by updating the parameters in the opposite direction of the 

150 gradient of the objective function  with respect to the parameters. The learning rate  ∇𝜃𝐽(𝜃) 𝜂
151 determines the size of the steps we take to reach a (local) minimum. Depending on the amount of 

152 data, we trade off the accuracy of the parameter update and the time it takes to perform an update. 

153 Thus, updated is perform stochastic gradient descent (SGD) for every example  and label  𝑥(𝑖)  𝑦(𝑖)  

154 for every mini batch of  training examples𝑛
𝜃= 𝜃 ‒  𝜂 · ∇𝜃𝐽(𝜃; 𝑥(𝑖:𝑖+ 𝑛)

 ; 𝑦(𝑖:𝑖+ 𝑛)
  ) 𝑓𝑜𝑟 𝑛= 30 [38] (10)

155 In other words, the parameters updated was made by feeding the model with mini batches of 45 

156 images—this amount of batches prevent an overload on the GPU memory. It take for the computer 

157 975 steps to update all the parameters, this process was repeated until the error stop to decrease. 

158 The mini-batches method is chosen because reduce the variance of parameter updates, which can 

159 lead to more stable convergence;  it can make use of highly optimized matrix optimizations 

160 common to the state-of-the-art deep learning libraries that make computing the gradient with 

161 respect to a very efficient mini-batch; and reduce the stored examples on the computer´s RAM. 

162 Adaptive Moment Estimation (ADAM) was applied to calculate the learning rate η and store 

163 an exponentially decreasing average of the past gradients𝑚𝑡 = 𝛽1𝑚𝑡 ‒ 1 + (1 ‒ 𝛽1)𝑔𝑡 (11)

164 and the past square gradients

𝑣𝑡 = 𝛽2𝑣𝑡 ‒ 1 + (1 ‒ 𝛽2)𝑔2𝑡 (12)

165 [39] those are estimates of the first momentum (the mean) and the second moment (the 

166 uncentered variance), respectively. The  is where the past normalized gradient is recorded, 𝑚𝑡
167 called the first moment, and  refers to the adaptive gradient decrease displayed in the RMSprop 𝑣𝑡
168 [39], which in turn is called the second moment. As the authors of Adam explain,  and  refer 𝛽1 𝛽2

169 to the decomposition rate, which are small due to the initial time steps, this causes them to be 
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170 biased towards zero[40]. Where   denotes the gradient at time step .  is then the partial 𝑔𝑡 𝑡 𝑔𝑡,𝑖
171 derivative of the objective function w.r.t. to the parameter  at time step𝜃𝑖

: 𝑡 𝑔𝑡,𝑖 = 𝜃∇𝐽(𝜃𝑡,𝑖) (13)

172

173 ADAM performance akin to other optimizers as RMSprop, Adadelta in similar circumstances. 

174 In [40] shows Adam to slightly outperform RMSprop due to bias correction when optimization is 

175 ending and as gradients become more scattered. In the measure, Adam might be the best overall 

176 choice.

177

178 2.1. Workflow of the proposed systems.

179 To complete this project is used the methodology summarized in the following Figure 1:

180

181

182 Figure 1. Flow chart of the proposed systems.

183 2.2. Dataset

184

185 The dataset used for this project comes from the ISIC Training Challenge 2019 [41]–[43]. This 

186 dataset consists in 25,331 JPEG images of skin lesions, divided in Actinic Keratosis (AK), 

187 Squamous cell carcinoma (BCC), Benign keratosis (solar lentigo / seborrheic keratosis / lichen 

188 planus-like keratosis) (BKL), Dermatofibroma (DF), Melanoma (MEL), Melanocytic nevus (NV), 

189 Squamous cell carcinoma (SCC) and Vascular lesion (VASC).

190

191 2.3. Hair Removal

192

193 As part of the process of image pre-processing is imperative to remove the hair that appears in 

194 skin lesions images. The algorithms for hair removal on skin images have been widely studied, the 

195 most simple and efficient one is then carried out by [44] called DullRazor. This algorithm identifies 

196 the dark hair location through generalized grayscale morphological closing operation, after the hair 
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197 pixels shape is checked, they are replaced using bilinear interpolation and smooth by an adaptive 

198 median filter.

199 The complete process is depicting in the Figure 2 on the hair removal section.

200

201 Figure2. Hair removal process applied in one of the images from ISIC dataset.

202

203 2.4. Data Augmentation

204

205 Due to the class imbalance  Data Augmentation is applied. This technique is used to increase 

206 the amount of data available in the classes. The proper use of this technique increases the 

207 generalization of the model. It also prevents overfitting, since increasing the number of variations 

208 in the data brings it closer to reality. With this additional data the model can learn, during training, 

209 properties such as contrast invariance, location invariance, rotational invariance, and the like.

210

211 Figure 3. Data-Augmentation applied in one of the images from ISIC dataset.

212

213 Data Augmentation settings applied to the dataset are described in Table 1 and the effects would 

214 be seen in the Figure 3. These methods are applied through the keras library with the 

215 ImageDataGenerator function. The process is also used to resize images to 224 x 224.

216 Some of the parameters that we pass through are:

217 rotation_range: range of degrees for random rotations

218 width_shift_range: the fraction of the total width that the image can be shifted by

219 height_shift_range: the fraction of the total height that the image can be shifted by    

220 zoom_range=0.1: represents the fraction of the image that can be zoomed in or out

221 horizontal_flip=True: randomly flips the input horizontally

222 vertical_flip=True: randomly flips the input vertically

223 fill_mode='nearest': the specification to fill points outside the input limits.
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224 Table 1. Augmentation details

225

226 2.5. Neural Network Architectures

227

228 The NASNet architecture is a convolutional neural network developed by an IA created by the 

229 Google Team in 2018. Their authors said, “Our model is 1.2% better in top-1 accuracy than the 

230 best human-invented architectures while having 9 billion fewer FLOPS – a reduction of 28% in 

231 computational demand from the previous state-of-the-art model”. Due to the accuracy increase 

232 registered in the state-of-the-art and reduction of the computational demand, this architecture is 

233 applied in this project as a feature extractor..[24]. 

234 This architecture is composed of convolutional cells. The two main functions are Normal Cell 

235 and Reduction Cell, shown in Figure 4. The Reduction Cell returns a feature map height and width 

236 reduced by a factor of two. On the other hand, the Normal Cell returns a feature map with normal 

237 cells with the same input dimensions. The model used for this purpose was NASNet-A (4 @ 1056), 

238 where the number 4 represents the number of cell repeats, and 1056 corresponds to the number of 

239 filters in the penultimate layer of the network.

240

241 Figure 4. The two main functions of NASNet architecture, Normal Cell (A) and Reduction Cell (B). [24]

242 At the end of the last Normal_A_cell, global_max_pooling2d, global_avg_pooling2d, and 

243 flatten layers were fed. The dimensions of the tensors were reduced to Nx1056 in the first two 

244 layers, where the number of images the system is trained is noted as N. When we applied the filters, 

245 we found the largest number in the global_max_pooling2d layer and obtained the arithmetic 

246 average in global_avg_pooling2d. The output of the flatten layers was Nx51774. The outputs of 

247 these three layers were concatenated in the concatenate layer. This layer fed the dropout layer, 

248 which turned off some neurons to prevent overfitting of the network. Finally, it fed the dense layer, 

249 which offered the inference of the model through a  function. These steps are depicted in 𝜎(𝑧𝑙)
250 Figure 5.

251
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252

253 Figure 5. Representation of the steps of the extraction feature map and classification.

254 2.6. Evaluation Metrics

255 Through the confusion matrix we can obtain the productivity of the model during the training 

256 or the development of a classification problem. This shows us in detail how many times the model 

257 is wrong when making predictions. The number of correct and incorrect predictions is obtained by 

258 counting values and separated them from each class. It gives us an idea not only of the mistakes 

259 that the model makes but of the types of mistakes it makes. This matrix allows us to measure 

260 Recall, Precision, Accuracy, and the AUC-ROC curve. This matrix describes the complete 

261 performance of the model. Table 2 shows the data distribution for multiclass classification.

262 Table2. Data distribution for the multiclass classification confusion matrix

263 This matrix is composed of:

264 True Positive (TP): the observation is positive and was predicted to be positive.

265 True Negative (TN): the observation is negative and was predicted to be negative.

266 False Positive (FP): the observation is negative, but it was forecast as positive.

267 False Negative (FN): the observation is positive, but it was predicted as negative.

268

269 From the confusion matrix we compute the accuracy. It is the ratio of the number of correct 

270 predictions to the total number of input simples.    . It works well only 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+ 𝑇𝑁𝑇𝑃+ 𝑇𝑁+ 𝐹𝑃+ 𝐹𝑁

271 if there are equal numbers of samples belonging to each class.

272 Recall gives us the number of correct positive results divided by the number of all relevant 

273 samples, where all samples should have been identified as positive. 𝑅𝑒𝑐𝑎𝑙𝑙=  
𝑇𝑃𝑇𝑃+ 𝐹𝑁

274 Precision is a measure of exactness. It defines the probabilities of the number of correct positive 

275 results to the number of positive results predicted by the classifier. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃𝑇𝑃+ 𝐹𝑃
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276 We use an F1 Score to know how precise and robust our classifier is. F1 Score is a balance 

277 between precision and recall. The range for the F1 Score is [0, 1]. The greater the F1 Score the 

278 better the performance of our model.

279 𝐹1 𝑆𝑐𝑜𝑟𝑒= 2 ∗  
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖o𝑛𝑅𝑒𝑐𝑎𝑙𝑙+ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

280 To show the performance of the classification model in all the classification thresholds, we use 

281 the curve’s ROC. This curve is plotted with the True Positive Rate against the False 𝑇𝑃𝑅=  
𝑇𝑃𝑇𝑃+ 𝐹𝑁 

282 Positive Rate  , where TPR is on the y-axis and FPR on the x- axis.𝐹𝑃𝑅=  
𝐹𝑃𝐹𝑃+ 𝑇𝑁

283 The area under one of the ROC curves can be used as a measure of accuracy in many 

284 applications and is called the precision of surface-based measurement. Also, the ROC graph 

285 contains all the information contained in the matrix of errors [37].

286 2.7. Computer characteristics used in the classification of images.

287 We use a computer with high computational power for the analysis of large quantities of images. 

288 CUDA cores are used for to obtain better performance with the TensorFlow and Python library. 

289 These cores are owned by NVIDIA brand video cards. Due to this data, an inspection of the models 

290 and specifications of the most current cards was carried out.

291 The selected card is the NVIDIA RTX 2080TI with 11GB of video memory which contains 

292 4352 CUDA cores, incorporates the Turing architecture and brings the Deep Learning Super 

293 Sampling (DLSS) technology which includes the Core Tensor. This is an artificial intelligence 

294 engine of 114 TFLOP power, which makes the card the one indicated for work on the project. In 

295 addition, it has the connection between NVLINK graphics cards that increases the capacity and 

296 speed of analyzing data between 5 to 10 times faster than other graphics cards and has a transfer 

297 power of 100 GB / s. An Intel Core i9-7900X processor with 10 cores at 3.3 GHz, 64 GB of RAM 

298 at 3600 MHz, a 2 TB SSD and a 4 TB HDD. These characteristics are describing below in Table 

299 3.

300

301 Table 3. Computer characteristics used in the classification of images.
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302

303

304 3.  Results 

305 In summary, the proposed algorithm was training, validated, and tested in 25,331 images of 

306 skin lesions divided into eight classes, taken from the ISIC 2019 File. All images were resized to 

307 a size of 224x244 using bi-linear interpolation, normalized and data augmented to manage the 

308 unbalance between classes as in [45].

309 Multi-class skin lesion classification comes with the problem of severe class imbalance and the 

310 small size of those themselves currently available, which represents a challenge for training 

311 purposes, therefore, data-augmentation is applied to avoid any bias and overfitting.

312 The best results with the proposed method were achieved with the following tuning. Firstly, a 

313 weighted Cross-entropy is used as loss function to estimate the parameters of all deep models. In 

314 addition, the Adam optimizer is initializing with a learning rate of 0.0001 and then it is reduced by 

315 20% if the validation lose function does not decrease by 0.0001 every 45 iterations. Finally, early 

316 stopping stops the learning process when the F1-score is not increased by 0.001 through each 45 

317 iterations used to avoid the overfitting that may occur before the convergence of deep models as 

318 well as speed up the learning procedures. Thus, the overfitting is prevented, and the bias is reduced. 

319 The implementation is carrying out with TensorFlow and Keras libraries. The tuning previous 

320 mentioned is also applied to train other CNN architectures. 

321 The dataset is splitting based on 10-fold cross-validation. Usually deep learning workstation 

322 use the library sklearn to split in folds the original dataset and run until the end of the model 

323 training without any human interference. Nevertheless, due to computational limitation of the 

324 equipment used in this project we safe the metrics and restart the running for each fold, making 

325 sure that the data was shuffle for every of them.  

326 The Figure 6 depicts the confusion matrix performed by different CNN architectures after been 

327 tested with 10-fold cross-validation with 44669 images augmented skin images. The predicted 

328 classes are represented as columns while the actual classes are represented as rows. In the diagonal 
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329 principal the number of hits can be seen, and the intensity of colour represents how many hits 

330 matched that box. 

331 Figure 6. Confusion Matrix for every CNN model, NasnetMobile (A), inception v3 (B), InceptionResNetV2 (C), DenseNet201 (D) and Xception 

332 (E)

333 From the data obtained from the confusion matrix and the formulas explained in section 2.6 

334 implemented in the sklearn.metrics library the Table 4 is created. This shows the performance of 

335 every trained CNN model. 

336 Table 1. Classification report for every CNN model

337 The Figure 7 shows the best classification system through the receiver operating characteristics 

338 curve (ROC). By obtaining an area under the curve (AUC), the quality of the classifier is evaluated. 

339 The closer this area is to the value of one, the better the classifier.

340 Figure 7. Curve AUC ROC for every CNN model, NasnetMobile (A), inception v3 (B), InceptionResNetV2 (C), DenseNet201 (D) and Xception 

341 (E)

342 4. Discussion 

343 In order to appraise the performance of a modified version of the Nasnet model for 

344 discriminating among eight different skin lessons, it is compared against 5 state-of-the-art models, 

345 InceptionV3, InceptionResNetV2, DenseNet201, Xception.  The models were applied to the ISIC 

346 2019 dataset. Those models are training using 10-fold cross-validation— a novelty in skin lesion 

347 classification for the ISIC dataset, based on the reviews recapitulated in the introduction. From the 

348 trained models were obtained the confusion matrix (Figure 6) and AUCROC (Figure 7). All these 

349 models differ in terms of computational speed (i.e., run time).

350 On the confusion matrix (Figure 6), in this case, the proposed model presented a pronounced 

351 diagonal principal since most of the predictions were correct. Most of the classes presented few 

352 false positives and false negatives; however, the class Melanoma and Nevus presented more errors 

353 due of the visual similarity that these classes share, which is congruent with current, state-of-the-

354 art.

355 The precision metric points to low performance on the most common type of cancer 

356 (melanoma). The confusion matrix makes it evident that the models often confound melanoma and 

357 Nevus. This confound is also reported by the dermatologist on their diagnostic of skin disease —
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358 leading to the common problem of unnecessary biopsy of a Nevus [46] — which comes from the 

359 visual similarity between nevus and melanoma. In future works the results might be improved by 

360 adding handcrafted [47] features to the training process. 

361 Studying the precision in this work brings up an absence of this metric similar reviewed papers, 

362 therefore should be encouraged to report this metric to enhance this forgot the aspect of skin lesion 

363 classification in further works.The classification report for every trained model is depicted in Table 

364 4. Notably, Nasnet has a similar performance than the best score Xception, with a reduction in the 

365 number of trainable parameters of at least 75 %.For a future work would be necessary re-training 

366 the models on a deep learning workstation and do the comparison after training all the 10-fold at 

367 once in order to get a more robust result. 

368

369 5.  Conclusions

370

371 This work presents a complete report on the comparation of  five different state-of -the-art CNN 

372 architectures on the classification task of eight skin lesions (NASNET, InceptionV3, 

373 InceptionResNetV2, DenseNet201, Xception). This comparation is establish from the F1-score, 

374 Precision, Recall, accuracy and trainable parameters—commonly unreported by similar studies.   

375 The  architectures are trained with ISIC 2019 dataset , using 10-fold cross-validation 

376 The obtained results could further be increased using segmentation. 

377 All the models get a significant training accuracy based on a dermatologist one who reaches 

378 75% to 84%. The best performance based on the training accuracy is obtained from Xception with 

379 85%. Nevertheless, it was the heaviest to train with at least five days of continuing running on the 

380 computer. In contrast, the NASNET got the second-best performance with 83% but with a 

381 considerably reduction of 75% on the training parameters, also decreasing the running on the 

382 computer to just 12 hours. The other trained models shows a lower perform than NASNET and 

383 Xception. 
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384 With the future expansion of ISIC Dataset and another open dataset with dermoscopic pattern 

385 annotations become available, future work may consider improve system performance including 

386 the use of additional situational contexts, such as patient metadata, history, comparison with other 

387 lesions on the patient and evolution through time. In addition, other approaches such as meta-

388 learning, ResNets for semantic segmentation, and complex shape descriptors for classifying 

389 diseases might provide additional performance gains. With superior equipment these results may 

390 have been more robust and is therefore an area of promising future research.
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Table 1(on next page)

Table 1. Augmentation details

Data Augmentation settings applied to the dataset are described in Table 1 and the effects
would be seen in the Figure 3. These methods are applied through the keras library with the
ImageDataGenerator function. The process is also used to resize images to 224 x 224.
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1 Table 1. Augmentation details

Augmentation
percentage or 

ratio range

rotation_range 180

width_shift_range 0.1

height_shift_range 0.1

zoom_range 0.1

horizontal_flip true

vertical_flip true

fill_mode nearest

2
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Table 2(on next page)

Table 2. Data distribution for the multiclass classification confusion matrix.

Through the confusion matrix we can obtain the productivity of the model during the training
or the development of a classification problem. This shows us in detail how many times the
model is wrong when making predictions. The number of correct and incorrect predictions is
obtained by counting values and separated them from each class. It gives us an idea not only
of the mistakes that the model makes but of the types of mistakes it makes. This matrix
allows us to measure Recall, Precision, Accuracy, and the AUC-ROC curve. This matrix
describes the complete performance of the model. Table 2 shows the data distribution for
multiclass classification.
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1 Table2. Data distribution for the multiclass classification confusion matrix

Known Class    0 1 2 … j

0 TP FN FN FN FN

1 FP TN FN FN FN

2 FP FN TN FN FN

… FP FN FN TN FN

j FP FN FN FN TN

2
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Table 3(on next page)

Computer characteristics used in the classification of images.

An Intel Core i9-7900X processor with 10 cores at 3.3 GHz, 64 GB of RAM at 3600 MHz, a 2 TB
SSD and a 4 TB HDD. These characteristics are describing below in Table 3.
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1 Table 3. Computer characteristics used in the classification of images.

Component Description

Power Supply Cooler Master Watt Maker 1500 – 1500 W

Mother board Asus ROG STRIX X299-E GAMING – LGA2066

Chip Intel Core i9-7900X a 3.3Ghz (Skylake-X)

RAM 64 GB 3600 Mhz

GPU GeForce RTX 2080 Ti GDDR6 (x2) NVLINK 11 

GB RAM

SSD 2 TB

HDD 4 TB

2
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Table 4(on next page)

Table 4. Computer characteristics used in the classification of images.

Through the years several studies have been conducted in this field. A continuation (Table 4)
comparison between previous studies and our proposed method is presented.
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1

2 Table 4. Classification report for every CNN model

3

 NasnetMobile inceptionv3 InceptionResNetV2 DenseNet201

Diseases Precision Recall F1-

score

Precision Recall F1-

score

Precision Recall F1-

score

Precision Recall F1-

score

AK 0.87 0.82 0.85 0.86 0.82 0.84 0.74 0.71 0.72 0.74 0.70 0.72

BCC 0.71 0.80 0.75 0.72 0.72 0.72 0.61 0.63 0.62 0.61 0.61 0.61

BKL 0.72 0.75 0.74 0.63 0.70 0.67 0.57 0.60 0.59 0.59 0.57 0.58

DF 0.99 0.94 0.97 0.95 0.97 0.96 0.91 0.88 0.89 0.90 0.89 0.89

MEL 0.68 0.73 0.70 0.63 0.61 0.62 0.58 0.60 0.59 0.52 0.63 0.57

NV 0.76 0.78 0.77 0.74 0.70 0.72 0.69 0.69 0.69 0.65 0.67 0.66

SCC 0.94 0.84 0.89 0.85 0.89 0.87 0.75 0.75 0.75 0.78 0.74 0.76

VASC 0.99 0.98 0.99 0.99 0.96 0.97 0.95 0.94 0.95 0.94 0.91 0.92

 

Accuracy   0.83   0.79   0.72   0.71

Macro Avg 0.83 0.83 0.83 0.80 0.80 0.80 0.73 0.72 0.72 0.72 0.71 0.71

Weighted Avg 0.84 0.83 0.83 0.79 0.79 0.79 0.72 0.72 0.72 0.72 0.71 0.71

 

Total params                                          

4,700,572.00 

                                       

22,245,160.00 

                                       

54,668,520.00 

                                       

19,105,352.00 

Trainable 

params

                                         

4,663,834.00 

                                       

22,210,728.00 

                                       

54,607,976.00 

                                       

18,876,296.00 

Non-trainable 

params

                                              

36,738.00 

                                              

34,432.00 

                                              

60,544.00 

                                            

229,056.00 
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Figure 1
Figure 1: Methodology

To complete this project is used the methodology summarized in the figure 1.
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Figure 2
Figure2. Hair removal process

Figure2. Hair removal process applied in one of the images from ISIC dataset.
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Figure 3
Figure 3. Data-Augmentation

Figure 3. Data-Augmentation applied in one of the images from ISIC dataset.
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Figure 4
Figure 4. The two main functions of NASNet architecture

This architecture is composed of convolutional cells. The two main functions are Normal Cell
and Reduction Cell, shown in Figure 4. The Reduction Cell returns a feature map height and
width reduced by a factor of two. On the other hand, the Normal Cell returns a feature map
with normal cells with the same input dimensions. The model used for this purpose was
NASNet-A (4 @ 1056), where the number 4 represents the number of cell repeats, and 1056
corresponds to the number of filters in the penultimate layer of the network.
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Figure 5
Figure 5. Representation of the steps of the extraction feature map and classification.

This layer fed the dropout layer, which turned off some neurons to prevent overfitting of the
network. Finally, it fed the dense layer, which offered the inference of the model through a
σ(z^l ) function. These steps are depicted in Figure 5.
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Figure 6
Figure 6. Confusion matrix yielded by the proposed CNN method.

Figure 6. Confusion matrix yielded by the proposed CNN method. Where Actinic keratosis
(AK), Basal cell carcinoma (BCC), Dermatofibroma (DF), Melanoma (ML), Nevus (NV),
Pigmented benign keratosis (PBK), Seborrheic keratosis (SK), Squamous cell carcinoma (SL),
Vascular Lesion (VL).
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Figure 7
Figure 7. Curve AUC ROC.

The Figure 7 shows the best classification system through the receiver operating
characteristics curve (ROC). By obtaining an area under the curve (AUC), the quality of the
classifier is evaluated. The closer this area is to the value of one, the better the classifier.
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