
Renyi entropy driven hierarchical graph
clustering
Frédérique Oggier1 and Anwitaman Datta2

1 Division of Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
2 School of Computer Engineering, Nanyang Technological University, Singapore, Singapore

ABSTRACT
This article explores a graph clustering method that is derived from an information
theoretic method that clusters points in Rn relying on Renyi entropy, which involves
computing the usual Euclidean distance between these points. Two view points
are adopted: (1) the graph to be clustered is first embedded into Rd for some
dimension d so as to minimize the distortion of the embedding, then the resulting
points are clustered, and (2) the graph is clustered directly, using as distance the
shortest path distance for undirected graphs, and a variation of the Jaccard distance
for directed graphs. In both cases, a hierarchical approach is adopted, where both the
initial clustering and the agglomeration steps are computed using Renyi entropy
derived evaluation functions. Numerical examples are provided to support the study,
showing the consistency of both approaches (evaluated in terms of F-scores).

Subjects Data Science, Network Science and Online Social Networks
Keywords Graph clustering, Renyi entropy

INTRODUCTION
In this article we study the problem of graph clustering from an information theoretic
perspective using within and between cluster Renyi entropy based estimators.

Clustering refers to an unsupervised learning task where, given a number of items,
the goal is to group them in a “meaningful” way. It is unsupervised because one does
not know a priori what makes items similar to each other, so as to justify that they
belong to the same cluster. If we look at clustering from an information theoretic view
point, items may be viewed as realizations of different random variables, and for two items
to belong to the same cluster means that they are realizations instantiated from the same
(or close enough) distributions (Hartigan, 1975), leading to consider distances among
distributions, in particular the notion of mutual information. See for example Sugiyama
et al. (2014), Faivishevsky & Goldberger (2010), Steeg et al. (2014),Wang & Sha (2011) and
Müller, Nowozin & Lampert (2012) for different ways to optimize the mutual information,
yielding different forms of information theoretic clustering algorithms.

The idea of using Renyi entropy for clustering was originally proposed in the context
of image processing (Gokcay & Principe, 2002; Jenssen et al., 2003). The underlying
mechanism for the clustering uses two evaluation functions: one for within cluster
evaluation and one for between cluster evaluation. The former minimizes the distance
among probabilities in a given cluster, the latter maximizes the distance among clusters,
both are motivated by a statistical distance which is derived from Renyi entropy.
We provide the details for this in “Renyi Entropy Based Clustering Evaluation Functions”.

How to cite this article Oggier F, Datta A. 2021. Renyi entropy driven hierarchical graph clustering. PeerJ Comput. Sci. 7:e366
DOI 10.7717/peerj-cs.366

Submitted 3 November 2020
Accepted 31 December 2020
Published 25 February 2021

Corresponding author
Anwitaman Datta,
anwitaman@ntu.edu.sg

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.366

Copyright
2021 Oggier and Datta

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.366
mailto:anwitaman@�ntu.�edu.�sg
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.366
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

The reason for choosing Renyi entropy vs another distance such as the mutual information
is that to actually compute these information theoretic quantities, one would need to
know the distribution of the data, which is unknown. This leads to the problem of finding a
suitable estimator, a difficult problem of its own, while Renyi’s entropy leads to an
estimator which is linked to Gaussian kernels.

The motivation of this study is to explore whether and how that idea can be adapted
in the context of graph clustering. This work is thus exploratory in nature, and focuses
on identifying a new meaningful way to cluster graphs, rather than being driven by
outperforming other graph clustering techniques (a task difficult to quantify in general,
since there are often different valid ways to cluster a graph, giving different insights
into its structure). In the case of image processing, the clustering task looks at grouping
data points in a two-dimensional space, and the corresponding formulation of clustering
using Renyi entropy captures the distance among groups of data points by considering
them as instantiations of random variables, and thus infers differences in the probability
distribution functions from which the points are drawn. Implicit in this model is the
underlying distance metric of a coordinate space, which is used in the windowing process
of the kernel density estimation (discussed in “Renyi Entropy Based Clustering Evaluation
Functions”). Though the original works were intended primarily for images (thus,
2-dimensional spaces), the underlying distance metric has natural extensions to higher
dimensional coordinate spaces, and thus adaptation of the clustering technique to data
points in a higher dimension is also immediate.

In the context of graphs, clustering refers to grouping nodes according to the graph
structure (typically in terms of edges or attributes, see e.g., Schaeffer, 2007 for a survey). In
fact, the family of graphs needs to be further discerned in the subcategories of directed and
undirected graphs. When graphs are directed (meaning that edges have a direction),
existing clustering techniques roughly fit two categories (Malliaros & Vazirgiannis, 2013):
(i) techniques reducing the graph to an undirected graph, where the clustering is typically
based on edge density, such as naive graph transformations (e.g., ignoring the
directionality) or transformations maintaining directionality, and (ii) techniques designed
specifically for directed graphs, typically based on patterns, such as citation-based or flow-
based clusters.

As such, we identify two principal challenges, and addressing them comprise the
contributions of this work, which we describe below.

(i) While undirected graphs have a notion of distance, namely the shortest path
based distance, its role in the Renyi entropy based evaluation functions is not
straightforward. We thus resort to the idea of embedding the N graph vertices to RN .
The term embedding here refers to a mapping f that sends the N graph vertices to N points
in RN , in such a way that the distances between the image by f of the vertices are
(ideally the same as the distances between the vertices themselves. This is typically not
possible, in which case we look for an embedding that makes the distances between the
image of the vertices as close as possible instead of being the same, introducing a distortion
in the embedding. We embed graphs using a semidefinite programing approach that
minimizes the distortion of the embedding, and then carry out clustering with respect to

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 2/19

http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

the standard Euclidean norm to the resulting points in RN using Renyi entropy based
evaluation functions. The initial clusters are hierarchically agglomerated using the same
evaluation functions.

In principle, the embedding is needed, since the kernel density estimation is based on a
coordinate space assumption. We experimentally study the quality of embedded graph
clusters, and observe that meaningful clusters (e.g., in terms of F-score, where groundtruth
is known) are obtained despite the distortion introduced by the embedding process.
However, beside inducing distortion, the embedding process is moreover computationally
expensive. We thus then dispense the embedding, and investigate the clusters that are
obtained when the graph’s native (shortest path) distance metric is directly used which
(does not induce any distortion but) is discordant with the coordinate space
assumption of the kernel density estimator. Figure 1 depicts these two ideas. We compare
experimentally the results against the clusters obtained with embedding and demonstrate
that the quality of graph clustering is satisfactory for practical purposes even when
we replace the Euclidean distance with a graph distance, and in the process avoid the
computation intensive embedding process.

The practical algorithms for using Renyi entropy to create initial clusters and then
carry out hierarchical agglomeration and accompanying experiment design and results
to validate the efficacy of the two alternate approaches to reason about the use of the
graph’s native (shortest path) distance measure with the kernel density estimator are all
reported in “Renyi Entropy Based Clustering of Undirected Graphs”. We provide three
types of experiments: (1) Comparison with ground truth in terms of F-score is provided for
the dolphin network (Lusseau et al., 2003), (2) clustering of a subgraph of the Bitcoin
network serves as an illustration of how the clustering performs on a larger network
(it contains ∼4,500 nodes), (3) clustering of a synthetically generated benchmark graph

x

y

z
1

2

3

4

5 6

1

2

3

4

5

6
1

2

3

4

5

6

A B C
Figure 1 In (B), we show a graph that we would like to cluster. On (A), the graph vertices are first
embedded into R3, trying to preserve their graph distances (for example, the square Euclidean distance
between node 1 and node 3 is 1 on the left, which equals the shortest path distance between node 1 and 3
in the middle and on the right), but likely introducing certain distortions (the square Euclidean distance
between node 4 and node 6 is 1 on the left, but there is no shortest path of length 1 in the middle and right
graphs). Then the vertices now seen as points in R3 are clustered based on their ‘new’ distances in the
coordinate space. On (C), the clustering is applied on the graph itself using the native graph distance
measure (shortest path). Note that, the semidefinite programming approach we actually use would
embed the 6 points in R6. But for the exposition of the principles of embedding and distortion, we show
an embedding to R3. Full-size DOI: 10.7717/peerj-cs.366/fig-1

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 3/19

http://dx.doi.org/10.7717/peerj-cs.366/fig-1
http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

with planted communities (Lancichinetti, Fortunato & Radicchi, 2008), where the
communities are known by design.

(ii) The notion of distance in a directed graph is more subtle, and in particular, the
standard concept of shortest path length between two nodes in an undirected graph
does not satisfy the axioms of a metric. As such, our second challenge was to identify a
proper metric, which is furthermore semantically meaningful from a graph clustering
point of view. We consider being in/out-neighbors of the same nodes as a way to infer
similarity among nodes (this aligns semantically with the existing accepted norm of
(co-)citation based clustering of directed graphs), and demonstrate that a variation of
the Jaccard similarity coefficient endows directed graphs with a distance metric.
The previously designed clustering algorithms seamlessly work with this metric.
We conduct experiments to evaluate the performance of clustering of directed graphs
using it. We report these in “Renyi Entropy Based Directed Graph Clustering”.
Experiments are provided on synthetically created networks and the Montreal gang
network (Countinho, 2016).

The above two contributions contrast with our preliminary work which first
investigated the use of Renyi entropy for graph clustering (Oggier, Phetsouvanh &
Datta, 2018), which was experiment centric, relied on simulated annealing (instead of
hierarchical clustering, or the idea of embedding to establish the extent and effects of
distortion in order to reason about the use of the graph’s native distance metric in the
kernel evaluation function), and did not consider directed graphs.

The article’s organization is modular—the ideas and concepts are presented in
individual self-contained sections, which also include the associated algorithmic details to
implement the ideas and discussion of experiments and results validating those ideas.
This narrative fits the exploratory nature of this work.

Remark. All the graph algorithms were implemented using Python and NetworkX
(Schult & Swart, 2008). The semidefinite programs were solved using cvxopt (Andersen,
Dahl & Vandenberghe, 2013) and cvxpy (Diamond & Boyd, 2016).

RENYI ENTROPY BASED CLUSTERING EVALUATION
FUNCTIONS
Kernel density estimation
We start by recalling a well-known method to approximate a probability density
function p(x) given N of its samples. Let P ¼ RR pðxÞdx be the probability that a vector
with pdf p(x) falls in a regionR of Rd . IfR is small enough that p(x) varies little within it,
P can be approximated by

P � pðxÞ
Z
R

dx (1)

where
R
R dx is the volume of R. Now given N samples x1,…, xN which are independently

drawn according to p(x), say there are k out of the N samples falling within R, then

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 4/19

http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

P ¼ k
N

(2)

Combining (1) and (2) gives p̂ðxÞ ¼ k=NR
R
dx
as an immediate estimate for p(x). If now R is a

hypercube in Rd with edge length h centered at x, then
R
R dx ¼ hd , and the following

window function W indicates whether xi is inside R:

Whðxi � xÞ ¼ 1 if jxj�xijj
h � 1

2; j ¼ 1; . . . ; d
0 else

�

The total number k of samples falling in R is thus given by k ¼PN
i¼1 Whðx � xiÞ and the

Parzen window estimator (Parzen, 1962) is given by p̂ðxÞ ¼ 1
N

PN
i¼1

1
hd Whðx � xiÞ. More

generally, the window function Wh can be replaced by a symmetric multivariate

probability density function, called kernel function, giving rise to a class of kernel density

estimators. A typical choice for the window or kernel functionWh is the Gaussian function

given by Wrðx � xiÞ ¼ 1ffiffiffiffiffiffiffiffi
2pd

p exp � 1
2r2

jjx � xijj2
� �

, where h = σ is a scale parameter.

We thus get

p̂ðxÞ ¼ 1
N

XN
i¼1

1
rd

Whðx � xiÞ ¼ 1
N

XN
i¼1

1

sd
ffiffiffiffiffiffiffiffi
2pd

p exp � 1
2s2

jjx � xijj2
� �

(3)

A Renyi entropy sample-based estimator
The quadratic Renyi entropy of a vector x ∈ Rd is defined by

H2ðpÞ ¼ � ln
Z

p2ðxÞdx (4)

where p(x) is the pdf of x. When the pdf p(x) is unknown, but samples are available, p(x)
can be replaced by a sample-based estimator in (4), to obtain an estimator of H2(p). Let us
use the estimator (3):

Ĥ2ðpÞ ¼ � ln
Z

1
N2

XN
i;j¼1

1

rd
ffiffiffiffiffiffiffi
2pd

p exp � jjx � xijj2
2r2

� �
1

rd
ffiffiffiffiffiffiffi
2pd

p exp � jjx � xjjj2
2r2

 !

The product of two such Gaussian distributions is Petersen & Pedersen (2012), 8.1.8

1

rd
ffiffiffiffiffiffiffi
2pd

p exp �jjx � xijj2
2r2

� �
1

rd
ffiffiffiffiffiffiffi
2pd

p exp �jjx � xjjj2
2r2

 !

¼ 1ffi
ð2r2Þdð2pÞd

q exp �jjxi � xjjj2
4r2

 !
Nx

1
2
ðxi þ xjÞ; r

2

2
Id

� �

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 5/19

http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

where Nxð12ðxi þ xjÞ; r22 IdÞ denotes a multivariate Gaussian distribution with mean
1
2ðxi þ xjÞ and covariance matrix r2

2 Id. Thus

Ĥ2ðpÞ ¼ Ĥ2;s2ðpÞ ¼ � ln
1
N2

XN
i;j¼1

1

ð2sÞd
ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd

q exp �jjxi � xjjj2
4s2

 !
(5)

Within-cluster and between-cluster evaluation functions
It is known (Hartigan, 1975) that one possible information theoretic formulation for the
clustering problem is to suppose that each cluster corresponds to samples from a given
probability distribution. Then separating the clusters becomes maximizing the distance1

among distributions, while points within the same cluster should be close to each other,
that is, the distance among points within the same cluster should be minimized.

The quantity Ĥ2ðpÞ in (5) was proposed in Gokcay & Principe (2002) and Jenssen et al.
(2003) as a way to evaluate the distance within and between clusters: Ĥ2ðpÞ is interpreted as
a within-cluster evaluation function (Jenssen et al., 2003), since if we consider a single
cluster (with N points), associated to a single pdf p(x), Ĥ2ðpÞ computes an estimate of its
entropy.

However, if we use (5) but by summing over two different clusters (there is a probability
distribution p1(x), p2(x) associated to each cluster), then as proposed in Gokcay & Principe
(2002), Jenssen et al. (2003), we get a between-cluster evaluation function

Dr2ðp̂1; p̂2Þ ¼ � ln
1

N1N2

XN1

i¼1

XN2

j¼1

1

ð2sÞd
ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd

q exp �jjxi � xjjj2
4s2

 !

as a cluster evaluation function that estimates the distance between two clusters, since
the between-cluster entropy estimates the distance between sample-based estimation
of their distributions. This also gives an estimator of the “cross Renyi entropy”—ln∫p1(x)
p2(x)dx.

In the case of C clusters with respective pdfs p1,…,pC, we obtain the generalized
between-cluster evaluation function

Dr2ðp̂1; . . . ; p̂CÞ ¼ � ln
1
N2

XN
i;j¼1

dij

ð2sÞd
ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd

q exp �jjxi � xjjj2
4s2

 !
(6)

where δij = 0 if both xi and xj belong to the same cluster, and 1 otherwise. This function
thus tries to globally separate the C clusters from each other.

RENYI ENTROPY BASED CLUSTERING OF UNDIRECTED
GRAPHS
Consider now the problem of graph clustering. An undirected graph G = (V, E) is defined
by the set V of its vertices, and the set E of its edges. We assume that the graph is connected
(otherwise, we consider the connected components of the graph separately). The graph

1 The term distance is used loosely here,
namely we do not necessarily mean a
mathematical distance satisfying the 4
axioms of non-negativity, identity of
indiscernibles, symmetry and triangle
inequality.

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 6/19

http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

G = (V, E) forms a metric space together with the function r : V � V ! R�0 which
associates to two vertices u, v ∈ V the length of a shortest path between u and v.

Indeed, ρ satisfies the axioms of a distance: the length of a shortest path is always greater
or equal to 0 (non-negativity), the shortest path of a point to itself has length 0 (identity of
indiscernibles), the shortest path from u to v has the same length as that from v to u
(symmetry), and the length of a shortest path satisfies the triangle inequality (going from u
to v via w is not shorter than going directly from u to v).

In the “Within-Cluster and Between-Cluster Evaluation Functions”, we saw how to

define an evaluation function for clustering points in Rd . The space Rd is equipped

with zthe usual norm l2, given by jjxjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i¼1 x
2
i

q
, and the corresponding distance

||x − y|| between x and y.
Given these two metric spaces (V, ρ) and (Rd,l2), a function f : V ! Rd is called a

D-embedding if for all u, v ∈ V,

rrðu; vÞ � jjf ðuÞ � f ðvÞjj � Drrðu; vÞ
where r > 0 is a scaling factor, D indicates the distortion introduced by the embedding
process. If D = 1, then we have an isometric embedding, and the problem of clustering G
with respect to ρ is equivalent to clustering f(V) in Rd with respect to the l2 norm.
However graphs which have a 1-embedding into Rd for some d are rare. A universal result
that gives a sense of the best that can be done for arbitrary graphs is found in the seminal
work by Bourgain (1985) (the original work (Bourgain, 1985) used the l1 norm), who
proved that every N-point metric space (X,ρ) (and thus in particular a graph with N
vertices) can be embedded into a Euclidean space with norm l2 with a distortion of
O(log N). This distortion is known to be tight, since some expander graphs are reaching it.
There have been many works done later on around this topic, in particular to refine
the embeddings (they are typically of probabilistic nature) and find the lowest dimension
of the Euclidean space in which to embed (X,ρ) (see e.g., the book by Matousek (2002);
Chapter 15) for a probabilistic embedding into a c log2 N-dimensional Euclidean space
equipped with the l2 norm). A computational embedding can be obtained using
semidefinite programing (Pataki, 2000), for d = N, that is graph with N vertices is
embedded into RN .

We recall that a generic semidefinite program has the following form:

min trðCXÞ
s:t:tr ðAiXÞ � bi; i ¼ 1; . . . ;m

X�0

where X,C,Ai, i = 1,…,m are all symmetric N × N matrices and X�0 means that X is
positive semidefinite (that is, satisfies that aTX a ≥ 0 for any column vector a). We will
show next how to choose X,C,Ai, i = 1,…,m so as to model a graph embedding problem.
Consider the N × N matrix F whose columns are the embeddings f(v1),…,f(vN) of the

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 7/19

http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

graph vertices. Then the matrix X = FTF contains as coefficients xij =〈f(vi),f(vj)〉and is
positive semidefinite. In order to have a D-embedding into RN , we need for all vi,vj ∈ V:

rðvi; vjÞ2 � jjf ðviÞ � f ðvjÞjj2 � D2rðvi; vjÞ2

, rðvi; vjÞ2 � xii þ xjj � 2xij � D2rðvi; vjÞ2

Therefore, for d a vector of norm D, that is such that〈d, d〉= D2, we can formulate the
problem of finding a D-embedding into RN which minimizes D as the following
semidefinite program:

min hd; di
s:t: rðvi; vjÞ2 � xii þ xjj � 2xij � D2rðvi; vjÞ2; 8i; j
We note that this program optimizes D given the dimension N (therefore a higher
dimensional embedding could give a smaller distortion).

Given an undirected graph G = (V,E) to be clustered with respect to the shortest path
length ρ, one could in principle compute the embedding that gives the smallest distortion
D, and then compute the clustering of f(V) ∈ RN , which then becomes the problem of
solving a noisy version of the original graph clustering problem, or vice-versa, the original
graph clustering problem may be seen as a noisy version of the clustering in RN . If the
noise is not too large, we may thus use the within and between-cluster evaluation functions
with a distance ρ, the shortest distance between two nodes. If we wanted to embed an
arbitrary graph with an arbitrarily large number of vertices, then the computational
approach is not feasible, and we would have to rely on the theoretical bounds à la
Bourgain to tell us what kind of distortion to expect. However our current approach is of
hierarchical nature, and therefore we only need to invoke local graph embeddings to justify
the initial clustering.

In the initial clustering of G described by Algorithm 1, nodes that will serve as centers
of their respective clusters are chosen uniformly at random, after which, neighbors are
added around them, so as to keep the within-cluster evaluation function minimized.
The search is performed locally, starting from the center and expanding in the
neighborhood. We can thus take the center u of the cluster, and consider the subgraph
built by considering only nodes that are at given distance δ from it, that is, consider a ball
B (u, δ) around u of radius δ with respect to ρ. For every cluster center ui, we attach a
ball B (ui, δ) such that the union [C

i¼1Bðui; dÞ covers V, and in fact, the balls may
have overlapping boundaries, so that the search algorithm can handle points at the
boundaries. Each ball B of size jBj may then be embedded in RjBj which allows us to
compute the distortion of the embedding. The actual clustering will not need the
embedding computation anymore: considering local graph embeddings justify the use
of the within-cluster evaluation function, by arguing that the distances involved are
suitably approximated by distances in RN , with a demonstrably small distortion. We next

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 8/19

http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

explore these ideas and the performance of the proposed graph clustering technique with
experiments.

Experiments
Exploration of embedding and distortion with a Bitcoin transaction subgraph

Consider the graph shown on Fig. 2, which comprises 209 vertices. It is a subgraph
representing connections induced by Bitcoin transactions among some wallet addresses.
The graph data is found at Oggier & Datta (2020). We repeatedly generated C = 50
random cluster centers u1,…,uC, and computedB(ui,2) for each i. For each iteration of the
process, we thus got graph embeddings of B(ui,2), 50 of them, whose statistics are
summarized below:

Figure 2 Output of the initial clustering of a Bitcoin subgraph with 209 nodes: (A) initial clustering
of the embedded graph, (B) initial clustering of the graph as is.

Full-size DOI: 10.7717/peerj-cs.366/fig-2

Algorithm 1 Initial Clustering.

1: procedure INITIALCLUSTER G = (V, E), s2
1, C a number of initial clusters)

2: Compute a shortest path between any u, v ∈ V.

3: Choose C nodes uniformly at random, assign one label to each.

⊳ Each node is a starting point for a cluster.

4: while some nodes are still unlabeled do

5: for every cluster do

6: Find neighbors of nodes in the given cluster.

7: if there are unlabeled neighbors or labeled neighbors with a worse distance to another

cluster then

⊳ Keep only the first condition for a fast run.

8: Add the neighbor whose addition minimizes the within-cluster evaluation function Ĥs2
I
.

distortion D size of local graphs

max D2 2.75603 max |B| 71

average D2 1.8 average |B| 23

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 9/19

http://dx.doi.org/10.7717/peerj-cs.366/fig-2
http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

The distortion remains low over all graph instances, the maximum distortion
encountered was D ≈ 1.66, and the average D ≈ 1.34. The subgraph sizes varied up to
71 nodes, with an average size of 23 nodes. Note that to a point, the distortion depends
more on the configuration of the vertices than on the size of the graph. Here in particular,
the highest distortion happened for subgraphs of size 55, while the largest subgraphs had a
distortion of � ffiffiffiffiffiffiffiffiffi

2:65
p � 1:62. 1 means an embedding with no distortion.

We then ran our initial clustering algorithm twice, once on V with distance ρ, and once
on [C

i¼1 f ðBðui; 2ÞÞ with distance l2 computed over each embedding f(B(ui,2)).
To evaluate the performance of a clustering which is not exact, we use the F-score

(Pfitzner, Leibbrandt & Powers, 2009) of a clustering, which is defined as follows: a
clustering is a partitioning of the nodes into subsets (the clusters), so let C = ∪Ci be the
correct partition of the nodes, and C′ = ∪C′j be another clustering. For every Ci ∈ C,
compute the set P2(Ci) of all subsets of two elements of Ci, and similarly the set P2(C′j) of all
subsets of two elements of C′j. Then for P = ∪ P2(Ci) and P′ = ∪ P2(C′j), the F-score of C′ with
respect to C is defined by

2jP \ P0j
2jP \ P0j þ jP � P0j þ jP0 � Pj (7)

An F-score of 1 means a perfect match. Thus, the closer to 1 the F-score, the more
mutually similar the clusterings are.

We computed the F-score between the direct clustering of the graph, and the
clustering of its embedding, and found an average F-score of ≈ 0.92, which shows a
high correlation between clusters obtained using the two approaches. Figure 2 visually
compares the graph clustering with that of its embedding with an F-score of ≈ 0.87. Even
though it is hard to “see” a difference, across the 209 labels, 9 in fact disagree.

The initial clustering algorithm processes until all labels are assigned. It is usually run
with the condition “if there are unlabeled neighbors or labeled neighbors with a worse
distance to another cluster”, but it could also be used with the simplified condition
“there are unlabeled neighbors”. The comparison shown in Fig. 2 between the clustering of
the graph and that of its embedding in fact used the simplified condition. The latter
makes the algorithm terminate fast. However, although more time-consuming, the
condition that compares distances from one node to two clusters prevents one node to be
assigned to a cluster without the possibility to be re-assigned to a better cluster. The
algorithm terminates because at every iteration, either one non-assigned node gets a label,
or an already assigned node changes label. Since the condition for changing label is
determined based on a strict inequality, it is not possible for a node already assigned to
infinitely move from one cluster to another.

Once an initial clustering is done, the next phase consists of an agglomerative clustering,
as described in Algorithm 2. A cluster is drawn uniformly at random, the cluster closest to
it (with respect to the in-between evaluation cluster Dr2A

) is identified and both of them are
merged. Note that in our experiments we computed an averaging distance (one could

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 10/19

http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

choose a maximum or minimum instead, while retaining the rest of the framework).
The process is iterated, yielding a bottom-up hierarchical clustering algorithm.

An illustration is provided in Fig. 3. The parameters chosen were s2
I ¼ 0:01 and s2

A ¼ 1
for every iteration of the agglomeration. There were 10 initial cluster centers, given by
the nodes 38, 79, 75, 89, 149, 31, 185, 110, 190, 6. After the initial clustering, there were
10 clusters. After the first agglomeration, there were 5 clusters, which merged to form
3 clusters after second agglomeration. The clustering results for 5, respectively 3 clusters,
are shown in Fig. 3. There is no ground truth attached to this graph and the result
with 4 clusters shows three clusters around three high degree nodes, and a component on
the right of the graph which has a minimum cut of 1 which forms a cluster of its own.

The dolphin network

While the result from the experiments on the Bitcoin network seem reasonable visually, for
further validation, we tried our clustering algorithm on the dolphin network (Lusseau
et al., 2003) whose ground truth is known, that is, prior studies of this network have
identified and accepted what are the communities. For clustering the dolphin network
which comprises N = 62 nodes, we set r2I ¼ 0:01 � 1=N � 0:0161, and r2A ¼ 1 for
every iteration of agglomeration. We were interested in an overall behavior of the
algorithm, so we ran the algorithm with 10 nodes drawn uniformly at random as cluster
centers. We look at the second round of agglomeration. This is because after the initial
clustering, we have 10 clusters, and we expect roughly half of them, namely between 4 to

Algorithm 2 Agglomeration.

1: procedure AGGLOMERATION(G = (V,E), an initial clustering, s2
A)

2: Compute the between-cluster evaluation function between any two initial clusters.

3: for for every cluster from the initial clustering in a random order do

4: Find the closest initial cluster using the average between-cluster evaluation function Ds2
A
.

5: Merge both clusters.

Figure 3 An illustration of the hierarchical graph clustering algorithm on a 209 Bitcoin subgraph:
(A) five clusters after the first round of agglomeration, (B) three clusters after the 2nd round of
agglomeration. Full-size DOI: 10.7717/peerj-cs.366/fig-3

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 11/19

http://dx.doi.org/10.7717/peerj-cs.366/fig-3
http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

6 clusters after the first round of agglomeration, and thus roughly 2 or 3 clusters after
another round. Note that the F-score metric works even if the number of clusters in the
two clusterings are different. Averaging over 1,000 iterations of the clustering algorithm
results starting with random cluster centers as described above, each compared with the
ground truth clusters, we obtained an average F-score of ≈ 0.7. If we look at the maximum
F-score across these 1,000 experiments, we got an F-score of 1. An example of initial
configuration that provides a perfect clustering is shown in Fig. 4B.

Synthetic benchmark graph
In Fig. 5, clustering results are displayed for an instance of LFR graphs (Lancichinetti,
Fortunato & Radicchi, 2008). This is a synthetic graph whose communities are planted.
We thus know which and how many they are. In our example graph there are four
communities. The left of the figure shows clusters obtained with one round of
agglomeration when 10 initial points were chosen, and we used s2

I ¼ 0:01, giving an
F-score of 0.7693 with respect to the ground truth. On the right, we show result from an
experiment using 20 initial points and two rounds of agglomeration which resulted in an

Figure 4 Clustering of the dolphin network: (A) Groundtruth clustering of the dolphin network,
(B) an example of initial choice of cluster centers (indicated in distinctive color) with which our
algorithm results in a clustering identical to the groundtruth, that is, F-score = 1.

Full-size DOI: 10.7717/peerj-cs.366/fig-4

Figure 5 Clustering of a synthetic (Lancichinetti, Fortunato & Radicchi, 2008) benchmark network:
(A) F-score = 0.7693 (10 seed nodes, 1 round of agglomeration), (B) F-score = 0.8782 (20 seed nodes,
two rounds of agglomeration). Full-size DOI: 10.7717/peerj-cs.366/fig-5

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 12/19

http://dx.doi.org/10.7717/peerj-cs.366/fig-4
http://dx.doi.org/10.7717/peerj-cs.366/fig-5
http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

F-score of 0.8782. This clustering was consistent across different values of r2I (e.g., 0.02,
0.01 and 0.005).

Larger scale experiment with a Bitcoin subgraph comprising 4,571 nodes
To apply the algorithm on a relatively larger graph, we illustrate the initial clustering on
a larger Bitcoin subgraph comprising 4,571 nodes. We drew 1,500 cluster centers
uniformly at random, with s2

I ¼ 0:01, it resulted in 67 clusters, as shown in Fig. 6.
There is no ground truth for this network, however, the clustering algorithm visually
agrees with the drawing spring layout algorithm of NetworkX: nodes which are drawn
together tend to be clustered together, with a number of clusters of 67 as a consequence of
the original number of cluster centers (1,500 in this example). This is a meaningful
observation because the mechanism behind the spring layout visualization of NetworkX
is a force-directed algorithm (Fruchterman & Reingold, 1991), which itself can be used as
a graph clustering algorithm (in the sense that the drawing algorithm is designed to
preserve clusters, among other structural graph properties).

RENYI ENTROPY BASED DIRECTED GRAPH CLUSTERING
We now consider the case of a directed graph G = (V, E). A natural extension of the
“Larger Scale Experiment with a Bitcoin Subgraph Comprising 4,571 nodes” would be to
continue to use as a “distance” the length of a shortest path. However, in directed graphs,
paths are directed, and there could be a path from u to v, and yet no path from v to u.
Thus the length of the shortest path is not a distance metric anymore since it violates the
axiom of symmetry. Instead, we are interested in a metric that will capture a (co-)citation
like behavior: citation/co-citation consider two nodes close if they are often in/out-
neighbors of the same nodes. In particular, we would like a metric that considers two
nodes as close if both nodes are having many out-neighbors in common. For u,v two nodes
in V, denote by Nout(u) and Nout(v) the set of out-neighbors of u and v respectively.
Then, assuming that Nout(u) ∪ Nout(v) is non-empty, the quantity

Figure 6 Sixty-seven clusters of a Bitcoin subnetwork of 4,571 nodes.
Full-size DOI: 10.7717/peerj-cs.366/fig-6

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 13/19

http://dx.doi.org/10.7717/peerj-cs.366/fig-6
http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

jNoutðuÞ \NoutðvÞj
jNoutðuÞ [NoutðvÞj
gives the fraction of common out-neighbors among all the out-neighbors. It varies from 0
to 1, and 1 happens exactly when all out-neighbors are common. This is known as the
Jaccard similarity coefficient (attributed to Jaccard (1912)). The Jaccard distance

dJðNoutðuÞ;NoutðvÞÞ ¼ 1� jNoutðuÞ \NoutðvÞj
jNoutðuÞ [N outðvÞj

is a measure of dissimilarity, and it becomes 1 when no out-neighbors are common.
We note that dJ(u,v) does not exactly provide the measure we need, because two distinct
nodes u ≠ v with the same set of neighbors would be at distance 0. Therefore we slightly
modify the Jaccard distance for our purpose, and propose

rðu; vÞ ¼ 1
2
ðdJðNoutðuÞ;NoutðvÞÞ þ dJðNoutðuÞ [fug;NoutðvÞ [fvgÞÞ

Lemma 1 The modified Jaccard distance ρ satisfies the distance axioms.

Proof. Identity of indiscernibles: We have ρ(u, v) ≥ 0 with equality if and only if
dJ(Nout(u), Nout(v)) = dJ(Nout(u) ∪ {u}, Nout(v) ∪ {v}) = 0. It follows that dJ(Nout(u),
Nout(v)) = 05Nout(u) =Nout(v) and therefore dJ(Nout(u) ∪ {u},Nout(v) ∪ {v}) = 05
u = v.
Symmetry From the definition, we immediately have ρ(u,v) = ρ(v,u).
Triangle inequality: We have

rðu; vÞ þ rðv;wÞ

¼ 1
2
ðdJðNoutðuÞ;NoutðvÞÞ þ dJðNoutðvÞ;NoutðwÞÞ þ

dJðNoutðuÞ [fug;NoutðvÞ [fvgÞ þ dJðNoutðvÞ [fvg;NoutðwÞ [fwgÞÞ

� 1
2
ðdJðNoutðuÞ;NoutðwÞÞ þ dJðNoutðuÞ [fug; blackNoutðwÞ [fwgÞÞ ¼ rðu;wÞ

□
The normalization by 1/2 in the definition of ρ just ensures that this quantity varies

from 0 to 1. If now we have u an out-leaf, that is a leaf such thatNout(u) is empty, and v is
another node withNout(v) not empty, then there is no problem and ρ(u, v) = 1. However
ρ(u, u) cannot be computed and is set to 0. If both u, v are out-leaves, we again cannot
compute ρ(u, v), and set the distance to be 1, the reason being that 1 is the largest distance,
which is attributed to all pairs of nodes that do not have neighbors in common.

Equipped with this new distance metric in lieu of the shortest path length, we can apply
the above algorithms for directed graphs. For Algorithm 1 the stop condition needs a
minor adjustment for the condition “if some nodes are still unlabeled”: indeed, it could
now be possible to just have reached a stage where all clusters have no out-neighbor, in
which case the algorithm should stop, and the algorithm is modified so that neighbors
mean either out- or in-neighbors.

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 14/19

http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

The discussion of the “Larger Scale Experiment with a Bitcoin Subgraph Comprising
4,571 Nodes” on graph embedding actually still holds here. The embedding of directed
graphs is usually complicated, because directed graphs are asymmetric by nature. If one
wanted to preserve the shortest path length say, it not being a distance (since the
directed shortest path between u and v has no reason to be the same as that between v
and u), there would be no embedding with respect to the l2 norm, though of course
relaxations of distances could be considered (see e.g., Linial, London & Rabinovich (1994)
for an isometric embedding using a “directed norm”). However, in our approach we
actually consider a metric, namely ρ, and therefore an embedding with respect to ρ is
meaningful.

Experiments
Exploration with scale-free graphs
To validate our idea, we compute a local embedding using 4 balls of radius 0.7 according
to ρ on a random directed scale-free graph of 50 nodes. In Fig. 7 we show the two clustering
instances (using the graph, and its embedding), which yield comparable clusters with
F-score of ≈0.83. The overall statistics for this graph instance, by choosing C = 4, are:

We note that having an average subgraph size of 17 when sampling 4 subgraphs is
telling that we should indeed be covering the graph by our local embeddings. The quality of
the distortion indicates that our local embeddings are close to being (numerically)
isometric though the computation of F-scores gives an average of F-score of ≈ 0.76.
The highest distortion is achieved by graphs of different sizes, such as 20, 26 or 31. It is
possible to get a distortion of 0 when doing the local graph embedding if this graph
comprises only one node, which obviously reduces the average.

Figure 7 Clustering of a 50 node directed scale-free graph and of its embedding: (A) Clustering of
the embedded graph, (B) clustering of the graph directly.

Full-size DOI: 10.7717/peerj-cs.366/fig-7

distortion D size of local graphs

max D2 1.14 max |B| 31

average D2 1.015 average |B| 17

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 15/19

http://dx.doi.org/10.7717/peerj-cs.366/fig-7
http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

Finally we focus on applying the clustering algorithm directly (without the intermediate
of the graph embedding) to directed graphs. We apply our initial directed clustering
algorithm on a toy example first, a random directed scale-free graph with 10 nodes.
This allows us to explain the intuition behind the algorithm. On Fig. 8, nodes 9 and 4 are
pointed at node 3, they form a cluster. Similarly nodes 6 and 1 are both pointed at node 2,
so they form a cluster, together with node 2 which only points at node 1.

Montreal gang network
We next apply our hierarchical clustering on the Montreal gang network (Countinho,
2016). The cluster centers are 5 points chosen uniformly at random. One instance
outputs 5 clusters as shown in Fig. 9A. This is happening simply because the algorithm
stopped after finding only clusters with no out-neighbor. Agglomerating these clusters
gives the configuration showed on Fig. 9B. We notice three clusters, each comprising a
few nodes which act as hubs, namely 16 and 8 in one group, 1, 5 and 22 in another, and 28
and 12 in the other one.

Figure 8 Interpretation of the directed clustering: (A) A clustering of a random graph using 3
original cluster centers, 4, 6 and 8, as starting points, (B) a clustering of a random graph using 2
original cluster centers, 6 and 4, as starting points. Full-size DOI: 10.7717/peerj-cs.366/fig-8

Figure 9 Clustering of the Montreal Gang Network: (A) Five clusters after the initial clustering,
cluster centers were 11, 21, 18, 7, 10, (B) three clusters after one round of agglomeration.

Full-size DOI: 10.7717/peerj-cs.366/fig-9

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 16/19

http://dx.doi.org/10.7717/peerj-cs.366/fig-8
http://dx.doi.org/10.7717/peerj-cs.366/fig-9
http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

CONCLUSION
We proposed an exploratory study of the use of Renyi entropy based evaluation
functions for the purpose of clustering both directed and undirected graphs, using two
approaches: via graph embedding and via direct clustering on the graph data. The study
serves as a proof of concept that with suitably defined distance metrics Renyi entropy based
graph clustering is achievable for both directed and undirected graphs. Few graph
clustering algorithms in the literature can deal with both undirected and directed graphs,
while preserving the semantics of directionality for the latter. Our approach provides a
unifying framework to do so, by creating an abstraction of node distance which is used in
the kernel density estimator, while instantiating the actual distances using a suitable
manner depending on the nature of the graph being directed or not. The abstraction of
graph embedding and exploration of the impact of distortion from such embedding, and
comparison of the resulting clusters with and without embedding helps demonstrate that
even though the Renyi entropy based clustering approach we apply uses in principle a
kernel density estimator which assumes an underlying coordinate space, replacing it with a
graph based distance metric nevertheless yield meaningful (quantified using F-score
measure) clusters in a computationally efficient manner since the computationally
intensive semidefinite programing based embedding (studied to justify the approach)
can be avoided in practice. To summarize, the exploration of these ideas help reason about
and ground the practical graph clustering heuristics proposed in this paper within a
mathematically robust conceptual framework. We validate these ideas with experiments
using a wide range of real as well as synthetically generated graphs, with/out known
groundtruth information about the community structures in these graphs. Table 1
provides a summary of our experiments and results. An extension of the proposed
methods for the clustering of weighted graphs is an interesting future direction of research,
which, if successful, would enhance the universality of the approach.

Table 1 Summary of experiments and results.

anti-flashwhiteGraph (un)directed #nodes embedded direct ground truth F-score Figure

Bitcoin undirected 209 ✓ × no ≈0.87 2

× ✓ no

Bitcoin undirected 209 × ✓ no × 3

Bitcoin undirected 209 × ✓ no × 3

Dolphin undirected 62 × × yes 1 4

× ✓ yes

LFR undirected 100 × ✓ yes ≈0.7693 5

LFR undirected 100 × ✓ yes ≈0.8782 5

Bitcoin undirected 4,571 × ✓ no × 6

Scale-free directed 50 ✓ × no ≈0.91 7

× ✓ no

Scale-free directed 10 × ✓ no × 8

Montreal directed 36 × ✓ no × 9

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 17/19

http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

ACKNOWLEDGEMENTS
The authors will like to thank Silivanxay Phetsouvanh for discussions on using Renyi
entropy for graph clustering. The authors accordingly co-authored Oggier, Phetsouvanh &
Datta (2018) with him, in which a very different approach than this paper, namely
simulated annealing, is used.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Anwitaman Datta is an Academic Editor for PeerJ.

Author Contributions
� Frédérique Oggier conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Anwitaman Datta conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

Data are available at Dataverse:
Oggier, Frederique Elise; Datta, Anwitaman, 2020, “A directed Bitcoin subgraph with

209 nodes”, DOI 10.21979/N9/5CFO3I, DR-NTU (Data), V1.
Code is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.366#supplemental-information.

REFERENCES
Andersen MS, Dahl J, Vandenberghe L. 2013. Cvxopt: a python package for convex optimization.

Available at cvxopt.org.

Bourgain J. 1985. On lipschitz embeddings of finite metric spaces in hilbert space. Israel Journal of
Mathematics 52(1–2):46–52 DOI 10.1007/BF02776078.

Countinho J. 2016. Montreal street gangs. Available at https://sites.google.com/site/ucinetsoftware/
datasets/covert-networks/montrealstreetgangs.

Diamond S, Boyd S. 2016. Cvxpy: a python-embedded modeling language for convex
optimization. Journal of Machine Learning Research 17(83):2909–2913.

Faivishevsky L, Goldberger J. 2010. A nonparametricinformation theoretic clustering
algorithmIn: International Conference on Machine Learning (ICML).

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 18/19

https://dx.doi.org/10.21979/N9/5CFO3I
http://dx.doi.org/10.7717/peerj-cs.366#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.366#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.366#supplemental-information
cvxopt.org
http://dx.doi.org/10.1007/BF02776078
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/montrealstreetgangs
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/montrealstreetgangs
http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

Fruchterman T, Reingold E. 1991. Graph drawing by force-directed placement. Journal of
Software: Practice and Experience 21(11):1129–1164 DOI 10.1002/spe.4380211102.

Gokcay E, Principe J. 2002. Information theoretic clustering. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Hartigan JA. 1975. Clustering algorithms. Hoboken: John Wiley & Sons.

Jaccard P. 1912. The distribution of the flora in the alpine zone. New Phytologist 11(2):37–50
DOI 10.1111/j.1469-8137.1912.tb05611.x.

Jenssen R II, K.E. H, Erdogmus D, Principe J, Eltoft T. 2003. Clustering using renyi’s entropy.
In: Neural Networks Joint Conference.

Lancichinetti A, Fortunato S, Radicchi F. 2008. Benchmark graphs for testing community
detection algorithms. Physics Review E 78(4):66 DOI 10.1103/PhysRevE.78.046110.

Linial N, London E, Rabinovich Y. 1994. The geometry of graphs and some of its algorithmic
applications. Combinatoric 15(2):577–591 DOI 10.1109/SFCS.1994.365733.

Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM. 2003. The bottlenose
dolphin community of doubtful sound features a large proportion of long-lasting associations.
Behavioral Ecology and Sociobiology 54(4):396–405 DOI 10.1007/s00265-003-0651-y.

Malliaros F, Vazirgiannis M. 2013. Clustering and community detection in directed networks: a
survey. Physics Reports 533(4):95–142 DOI 10.1016/j.physrep.2013.08.002.

Matousek J. 2002. Lectures on discrete geometry. Berlin: Springer.

Müller A, Nowozin S, Lampert C. 2012. Information theoretic clustering using minimum spanning
trees. In: Pinz A, Pock T, Bischof H, Leberl F, eds. Pattern Recognition. Berlin: Springer.

Oggier F, Datta A. 2020. A directed bitcoin subgraph with 209 nodes, DR-NTU (Data), V1.
Available at https://doi.org/10.21979/N9/5CFO3I.

Oggier F, Phetsouvanh S, Datta A. 2018. Entropy-based graph clustering—a simulated annealing
approach. In: International Symposium on Information Theory and Its Applications (ISITA).

Parzen E. 1962.On estimation of a probability density function and mode. Annals of Mathematical
Statistics 33(3):1065–1076 DOI 10.1214/aoms/1177704472.

Pataki G. 2000. The geometry of semidefinite programming. In: Wolkowicz H, Saigal R,
Vandenberghe L, eds. Handbook of Semidefinite Programming. Boston: Springer, 29–65.

Petersen K, Pedersen M. 2012. The matrix cookbook. Available at http://matrixcookbook.com.

Pfitzner D, Leibbrandt R, Powers D. 2009. Characterization and evaluation of similarity measures
for pairs of clusterings. Knowledge and Information Systems 19(3):361–394
DOI 10.1007/s10115-008-0150-6.

Schaeffer S. 2007. Graph clustering. Computer Science Review I 1(1):27–64
DOI 10.1016/j.cosrev.2007.05.001.

Schult AAHDA, Swart PJ. 2008. Exploring network structure, dynamics, and function using
networkx. In: Python in Science Conference (SciPy).

Steeg GV, Galstyan A, Sha F, DeDeo S. 2014. Demystifying information-theoretic clustering. In:
Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China,
21–26 June 2014, Volume 32 of JMLRWorkshop and Conference Proceedings, Beijing, China. 19–27.

Sugiyama M, Yamada M, Kimura M, Hachiya H. 2014. Information-maximization clustering
based on squared-loss mutual information. Neural Computation 26(1):84–131
DOI 10.1162/NECO_a_00534.

Wang M, Sha F. 2011. Information theoretical clustering via semidefinite programming.
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
JMLR Workshop and Conference Proceedings 15:761–769.

Oggier and Datta (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.366 19/19

http://dx.doi.org/10.1002/spe.4380211102
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1109/SFCS.1994.365733
http://dx.doi.org/10.1007/s00265-003-0651-y
http://dx.doi.org/10.1016/j.physrep.2013.08.002
https://doi.org/10.21979/N9/5CFO3I
http://dx.doi.org/10.1214/aoms/1177704472
http://matrixcookbook.com
http://dx.doi.org/10.1007/s10115-008-0150-6
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1162/NECO_a_00534
http://dx.doi.org/10.7717/peerj-cs.366
https://peerj.com/computer-science/

	Renyi entropy driven hierarchical graph clustering
	Introduction
	Renyi entropy based clustering evaluation functions
	Renyi entropy based clustering of undirected graphs
	Renyi entropy based directed graph clustering
	Conclusion
	flink6
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

