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ABSTRACT
Gene promoters are the key DNA regulatory elements positioned around the tran-
scription start sites and are responsible for regulating gene transcription process.
Various alignment-based, signal-based and content-based approaches are reported
for the prediction of promoters. However, since all promoter sequences do not show
explicit features, the prediction performance of these techniques is poor. Therefore,
many machine learning and deep learning models have been proposed for promoter
prediction. In this work, we studied methods for vector encoding and promoter
classification using genome sequences of three distinct higher eukaryotes viz. yeast
(Saccharomyces cerevisiae), A. thaliana (plant) and human (Homo sapiens). We
compared one-hot vector encoding method with frequency-based tokenization (FBT)
for data pre-processing on 1-D Convolutional Neural Network (CNN) model. We
found that FBT gives a shorter input dimension reducing the training time without
affecting the sensitivity and specificity of classification. We employed the deep learning
techniques, mainly CNN and recurrent neural network with Long Short TermMemory
(LSTM) and random forest (RF) classifier for promoter classification at k-mer sizes
of 2, 4 and 8. We found CNN to be superior in classification of promoters from
non-promoter sequences (binary classification) as well as species-specific classification
of promoter sequences (multiclass classification). In summary, the contribution of
this work lies in the use of synthetic shuffled negative dataset and frequency-based
tokenization for pre-processing. This study provides a comprehensive and generic
framework for classification tasks in genomic applications and can be extended to
various classification problems.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning
Keywords Promoter Prediction, Deep Learning, Machine Learning, CNN, LSTM, Random
Forest, One-hot Encoding, Frequency-based Tokenization

INTRODUCTION
Accurate transcription of a gene requires RNA polymerase enzyme to recognize the start site
of the gene and the end. One of the key regions involved in the transcriptional regulation
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of RNA present at the start site is called promotor. A fundamental requirement for
establishment of gene expression pattern and regulatory network is enabled by promoters.
The selection of promoter is an important factor for genetic engineering. It is used to
manipulate gene architecture and expression of genes under various conditions (Singla-
Pareek, Reddy & Sopory, 2001). Promoter sequences have a gene-specific architecture which
makes it hard to identify them computationally. A strong TATA box is present in a number
of promoters of highly expressed genes. On the other hand, multiple groups of genes
manifest into the TATA-less promoters. In the last decade, genomes of several organisms
have been sequenced. Though the gene information has been computationally recognized,
the size and functional features of the promoters are still left largely undetermined in newly
sequenced genomes (Umarov & Solovyev, 2017).

Prediction of promoters can be achieved in various ways e.g., simple sequence alignment,
content-based approach, or signal-based approach, etc. Matching gapped fingerprints of
unlabelled sequences with labelled sequences is an example of a sequence alignment
approach (Gordon et al., 2003; Wang et al., 1999). The signal-based approach considers
promoter elements such as TATA box, CCAAT-box, etc. as signals for prediction and
ignores the non-element portion of the sequence resulting in poor prediction performance
(Knudsen, 1999). The content-based approach considers the frequency distribution of
k-mer fragments, for example, considering region with a high frequency of CpG sites
(Ioshikhes & Zhang, 2000; Li, Chen & Wasserman, 2016). CpGProD (Ponger & Mouchiroud,
2002), McPromoter (Ohler, 2000), CONPRO (Liu & David, 2002), Eponine (Down & Tim,
2002), FirstEF (Davuluri, 2003) are some examples of signal-based and content-based
approaches used for eukaryotic promoter prediction. The tuning of sequence alignment
completely relies on the systematic usage of reference sequences. This can degrade the
performance of distantly related set of sequences (Mathur, 2013). Also, sequence alignment
methods are relatively less effective due to their heuristic nature and high memory
requirement for alignment of longer sequences (Chowdhury & Garai, 2017; Gordon et
al., 2003). ConSite (Sandelin, Wasserman & Lenhard, 2004), rVISTA (Loots et al., 2002),
PromH (Solovyev & Shahmuradov, 2003), FootPrinter (Blanchette & Tompa, 2003) are
sequence alignment based promoter prediction applications.

Machine learning (ML) and deep learning (DL) techniques play an important role in
this area as compared to regular statistical methods mentioned above. ML techniques
have been used in a variety of applications of genomics such as identification of splice
site (Larrañaga et al., 2006; Nguyen et al., 2016), promoters regions (Anwar et al., 2008;
Lai et al., 2019; Rahman et al., 2019), classification of diseased related genes (Díaz-Uriarte,
2008; Thi et al., 2008), identification of transcription start site (TSS) (Libbrecht & Noble,
2015), identification of protein binding sites (Pan & Yan, 2017), recognition of genomic
signals such as polyadenylation sites and translation initiation sites (Kalkatawi et al., 2019),
disease diagnosis (Manogaran et al., 2018), transcriptomics analysis (Karthik & Sudha,
2018), drug discovery and repurposing (Cheng et al., 2019), identification of biomarkers
(Tabl et al., 2019), etc. Though the applications of ML and DL techniques in the field of
genomics are growing, accurate prediction of promoters is still one of the most challenging
tasks in genomics (Anwar et al., 2008; Oubounyt et al., 2019; Umarov & Solovyev, 2017).
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Various attempts of application of ML and DL algorithms have been made in promoter
prediction. E. coli promoters provide a simple model system to study the promoter
prediction. Specifically, σ70 promoters from E. coli were subjected to intense investigation
in the following studies. In one of the studies, 669 promoter sequences, each with length
of 80 nucleotides were analysed using a synthetic background and a feedforward neural
network with three layers resulting in 96% precision (Rani, Bhavani & Bapi, 2007). In
another study, an ensemble of Support Vector Machine, Linear Discriminant Analysis and
Logistic regression was utilized which resulted in a classification accuracy of 86.32% for
promoter sequences (Rahman et al., 2019). One of the studies has used 106 records of σ70
promoter and non-promoter sequences to train the model using CNN. For vectorization
of input sequences, they applied one hot encoding with the k-mer size of 3 nucleotides.
This study came up with an accuracy of 99% (Nguyen et al., 2016). However, the smaller
size of the dataset for deep learning remains a concern. A promoter predictive model
based on CNN(PPCNN) achieved much better sensitivity and specificity on E. coli σ70,
Arabidopsis and human promoters (Umarov & Solovyev, 2017). However, the sample
size of the promoter and non-promoter sequences was variable for these organisms (81
base pairs for E. coli σ70 promoter whereas 251 base pairs for other organisms). Another
approach employed SVM to discriminate promoters and non-promoters of five different
organisms (plants (various species), Drosophila, Homo sapiens, Mus musculus, Rattus
norvegicus) using k-mer size 4 (Anwar et al., 2008). With the test set of 100 sequences (50
promoter and 50 non-promoter sequences) for each species, an average accuracy of 88%,
sensitivity of 86% and specificity of 87.6% was achieved.

Considering the previous work in the area of sequence classification into promoter
and non- promoter categories using ML and DL methods, there is scope for further
improvements in terms of prediction performance. Factors such as sequence length, k-mer
size, selection of negative dataset, feature encoding technique will help to achieve the
accurate prediction of promoter sequences. Also, the highly imbalanced positive and
negative sample dataset is one of the major problems in promoter recognition as it leads
to model overfitting and makes the model less generic. Additionally, randomly selecting
a non-promoter region from the same genome as negative datasets has its own limitation
as the training model tends to find very simple features. Several studies have used one-hot
encoding for the sequence encoding process (Giosue & Di Gangi, 2017; Lai et al., 2019;
Nguyen et al., 2016; Oubounyt et al., 2019; Rahman et al., 2019).

The objective of this study is to overcome the limitations listed above and to make
a classifier more robust and generic. We collected the promoter and non-promoter
sequences of three distinct organisms: Yeast, A. thaliana, Human and developed an
effective and powerful promoter classifier using deep convolutional neural network. We
have also used the frequency-based tokenization approach instead of one-hot encoding
for feature vectorization for various k-mer sizes (2-mer, 4-mer, 8-mer). The classifier
successfully distinguished promoter from non-promoter sequences with very high
sensitivity, specificity, and accuracy. The same CNN model was used for the cross-species
evaluation and multi-species classification of promoter sequences. CNN showed high
efficiency in promoter prediction when compared with the LSTM and RF classifier.
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This technique can be extended automatically for the recognition of complex functional
elements in sequence data from biological molecules.

METHODS
Selection of dataset
We selected yeast, A. thaliana and human genomes for our analysis. The genomes were
selected using UCSC genome browser (Haeussler et al., 2019). We collected the datasets of
approximately 41,671 sequences of A. thaliana (UCSC version araTha1), 61,546 sequences
of humans (UCSC version hg38) each, and 6125 sequences of yeast (UCSC version sacCer3).
However, after pre-processing and data cleaning, we randomly selected 35,000, 35,000 and
6000 sequences for A. thaliana, human and yeast respectively for experimentation. One
thousand basepairs (bp) long putative promoter regions (−700 to +300 bp around TSS)
were extracted in two steps as follows: As a first step, 700 bases upstream of the TSS were
selected in the Table Browser using RefSeq Genes as an input to create a custom track.
As a second step, 300 bases downstream were selected using custom track as an input to
extract a 1,000 bases promoter sequence in a FASTA format. Equal number of background
sequences were generated using a synthetic method of shuffling of promoter sequences for
each organism (Caballero et al., 2014). The ratio of positive and negative sequences for each
organism was 1:1. Each of these datasets were processed for the development of distinct
models. The number of samples were divided into training and testing sets with the split of
90% and 10%, respectively. Out of 90% of training samples 10% of data was considered for
validation and parameter tuning. We have utilised stratified random sampling for splitting
of data, and therefore equal percentage of samples of each target class were used for training
and testing of models. These datasets were further subjected to feature extraction, feature
encoding and classification purpose (Fig. 1). Number of learning epochs used were 10 and
the batch size was 128. Binary cross-entropy and sparce categorical cross-entropy were
used as loss function for binary and multiclass classification, respectively. Adam optimizer
was utilized with default learning rate. Early stopping callbacks was monitored through
loss on the validation dataset. The efficiency of the models was also tested using human
sequence data. 1,000 nucleotides long sequences were extracted from the human genome
(hg38) using fasta-subsample script of MEME Suite (v 5.0.5) (Bailey et al., 2009). These
sequences were used as negative dataset to test the efficiency of the model.

Data pre-processing
DNA sequences are 1D-channel of four nucleotides, adenine (A), thymine (T), guanine (G)
and cytosine (C). Feature extraction process is used to generate input for ML/DL models
from raw data of nucleotide sequences. For feature extractionwe used k-merization process.
In this process, a short sequence segment of k consecutive nucleotides (k-mers) with the
stride of 1 were generated from parent sequences (Chor et al., 2009). We specifically studied
the effect of feature-extraction parameter k-mer size on the prediction performance of
the models. We used four different k-mer sizes for experimentation: 1-mer, 2-mer, 4-mer
and 8-mer. Further, k-merized sequences were given as input to the feature encoding
techniques.
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Figure 1 Steps for classification of DNA sequence: feature extraction, feature encoding and classi-
fication. The first step is to input Raw sequences for feature extraction and feature encoding using K-
merization and frequency-based tokenization techniques, respectively. Then the tokenized sequence fed to
ML or DL model for further analysis. For deep learning, CNN and LSTM are used, whereas for machine
learning RF is used.

Full-size DOI: 10.7717/peerjcs.365/fig-1

Feature encoding
We used two different approaches for feature encoding viz. frequency-based tokenization
and one-hot encoding. In frequency-based tokenization, each k-mer in the sequence is
encoded into tokens based on its frequency and mapped to a unique index starting from
1. Zero is a reserved index not assigned to any k-mer. This helps transform each sequence
of k-mers to a sequence of integers. Feature encoding was achieved using in-house script
written in Python (version 3) with system specification as: 64bit operating system, x64 based
processor, 8GB RAM, intel CORE i7 processor. We used a text tokenization utility class
of Keras pre-processing and data augmentation module for feature encoding. Whereas for
one-hot encoding each k-mer is represented by a new binary variable. For this we utilized
the OneHotEncoder class of Scikit-learn preprocessing utility. The output of Frequency
based tokenization and one-hot encoding were subjected to CNN based analysis. The
output of frequency-based tokenization was also subjected to other ML and DL analyses
viz. random forest and LSTM RNN.

Random forest classifier
Random forest is an ensemble of decision trees constructed using a different sample from
the original data (Breiman, 2001). First, each tree is built from a random bootstrapped
sample of the training data. Second, at each split of the tree, RF model considers only
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a small subset of features for training. This helps to improve generalization by reducing
variance. The final classification is obtained by combining results from the decision
trees passed by votes. The bagging strategy of RF can effectively decrease the risk of
overfitting when applied to large dimension data. Therefore, RF can handle a large data
set with high dimensionality. Random forest has been widely used in the prediction of
DNA-binding proteins (Wang, Yang & Jack, 2009), microarray data analysis (Yang et al.,
2010), regulatory elements prediction (Li et al., 2017), etc. The encoded data are given as
input to the Random Forest Classifier of scikit-learn ensemble module for classification of
promoters and non-promoter sequences (Pedregosa et al., 2011). The value of n_estimator
(number of trees in the forest) was 300, minimum number of samples required to split an
internal node was 2 and bootstrap value was false.

LSTM-recurrent neural network
For sequential data, the flow of gradients for long durations can help in learning long-term
dependencies. This can be achieved using Long Short-Term Memory (LSTM) RNN
(Hochreiter & Schmidhuber, 1997). We fed the pre-processed encoded input to the LSTM
layer. The output of the LSTM layer with 128 units was fed to a Dense layer and the
output of the Dense layer with 64 units was fed to the Drop-out layer and used Relu
activation. In the Drop-out layer half the units were dropped. The final state was mapped
through a fully connected layer with Sigmoid activation. We used LSTM, Activation,
Dense, Dropout and Embedding methods from layer module of Keras (version: 2.2.4) to
develop this architecture. Performance evaluation parameters are further used to evaluate
the performance of the LSTM model.

Convolutional neural network
Encoding helps to represent 1-D channel of DNA sequence in the form of a sequence of
numerical values. This form of representation can be used as input to convolutional neural
networks (Collobert & Weston, 2008; LeCun et al., 1998). To build CNN architecture,
we utilized three 1D convolution layers, each followed by a max-pooling layer. Each
convolutional layer uses filter of size 5. The pool size of the max-pooling layer was 4 with
stride 1. The output of the max-pooling layer was then fed to three fully connected dense
layers, consisting of 1,025, 512, 128 units and used the ReLu activation function with a
20% dropout. The final one is the classification layer and uses the sigmoid activation. We
utilized Conv1D and MaxPooling1D methods from the layer module of Keras (version:
2.2.4) for experimentation. Performance evaluation parameters are further used to evaluate
the performance of the CNN model.

Performance evaluation parameters
After the application of the prediction model on the dataset, we obtained true positive
(TP) and true negative (TN) numbers of truly identified promoter and non-promoter
sequences. We also obtained false positive (FP) and false-negative (FN) numbers of falsely
identified promoter and non-promoter sequences. In order to evaluate the performance of
classification models we computed accuracy (Acc), sensitivity (Sn), specificity (Sp) (Skaik,
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2008) and Matthews correlation coefficient (MCC) (Matthews, 1975) using following
equations:

Accuracy =
TP+TN

TP+TN +FP+FN

Sensitivity =
TP

TP+FN

Specificity =
TN

TN +FP

MCC =
((TP ∗TN )−(FP ∗FN ))

√
((TP+FP)∗(TP+FN )∗(TN +FP)∗(TN +FN ))

.

RESULTS
Selection of genomic datasets
We selected three eukaryotic genomes viz. yeast, A. thaliana, and humans, for classification
of sequences into the promoter and non-promoter groups. Yeast being the smallest
genome, resulted in a small dataset of∼6,000 promoters. Large genomes of A. thaliana and
humans generated datasets of ∼35,000 promoters each. Negative datasets were generated
by reshuffling the promoter sequences. The data were divided into train and test sets with
a split of 90% and 10%, respectively. The 10% of training data was used for validation and
parameter tuning. The resulting datasets were used for comparison of feature encoding
techniques and trainingML/DLmodels. In order to evaluate the performance of theML/DL
models, a dataset of 600 random sequences from human genome was used.

Comparison of feature encoding techniques
We tested efficiency and computational requirement of one-hot encoding and frequency-
based tokenization (FBT) techniques. For this purpose, we used yeast dataset and tested the
feature encoding methods on k-mer sizes 1 and 2 (Table 1). We found that at both k-mer
sizes the training time was higher for one-hot encoding without significant improvement
in sensitivity and specificity. For one-hot encoding, the testing accuracy of CNN model
was 95% for 1-mer and 96% for 2-mer whereas for FBT accuracy achieved was 97% for
1-mer and 96% for 2-mer. We also trained higher k-mer sizes (more than 2-mer) however
the training time required was very high at the described configuration. Based on these
results and the fact that we wanted to use k-mer sizes 2, 4 and 8; we decided to use FBT for
further work.

Comparison of ML/DL algorithms in binary classification
The first set of experiments was conducted to perform binary classification of sequences
into the promoter and non-promoter groups. The performance of CNN, LSTM and RF are
shown in Table 2 for the yeast, A. thaliana, and human datasets. The average performance
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Table 1 Input dimensions and training time for corresponding encoding techniques and k-mer sizes.

Techniques Training time
(min)

Input vector
size

Acc Sn Sp MCC

1-mer
One Hot Encoding 28 4 X 1000 0.95 0.98 0.90 0.90
Frequency Based Tokenization 14 1 X 1000 0.97 0.98 0.99 0.97

2-mer
One Hot Encoding 240 16 X 999 0.96 0.97 0.95 0.93
Frequency Based Tokenization 14.3 1 x 999 0.96 0.98 0.93 0.89

Table 2 Performance of CNN, LSTM and RFmodels for binary classification using different statistical measures.

Methods Yeast Arabidopsis thaliana Human

Acc Sn Sp MCC Acc Sn Sp MCC Acc Sn Sp MCC

2-mer
CNN 0.96 0.98 0.93 0.89 0.98 0.97 0.99 0.95 0.99 0.99 0.99 0.99
LSTM 0.64 0.56 0.71 0.27 0.50 0.50 0.50 0.01 0.70 0.69 0.74 0.49
RF 0.87 0.84 0.90 0.74 0.73 0.76 0.70 0.46 0.72 0.76 0.68 0.45

4-mer
CNN 0.97 0.99 0.95 0.91 0.99 1.00 0.99 0.98 0.99 1.00 0.99 0.99
LSTM 0.86 0.91 0.82 0.73 0.88 0.88 0.90 0.78 0.93 0.94 0.95 0.89
RF 0.81 0.74 0.88 0.62 0.79 0.80 0.79 0.59 0.79 0.80 0.80 0.54

8-mer
CNN 0.95 0.95 0.96 0.91 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.98
LSTM 0.79 0.82 0.77 0.58 0.98 0.97 0.98 0.97 0.99 0.99 0.99 0.98
RF 0.73 0.66 0.81 0.47 0.85 0.82 0.88 0.69 0.84 0.81 0.87 0.69

of the CNN model on the test set of sequences was: Sn-95.33%, Sp-97.5%, Acc-96%,
Mcc-92.5%. It was found that the computed CNNmodel performed better than the LSTM
and RF for all k-mer sizes. For k-mer size 2, RF performed better than LSTM. However,
LSTM tends to work significantly better for k-mer sizes 4 and 8 (Figs. 2A–2C). Then we
analysed the efficiency of these models on each of the three organisms. In all three species,
CNN outperformed LSTM and RF in all evaluation metrics (Figs. 2D–2F). Both CNN
and RF do not show any pattern in change in the accuracy with k-mer size. Accuracy of
CNN remains high throughout for all k-mer sizes. Accuracy of LSTM on the other hand
improves with increase in k-mer size. However, we have observed that the computational
requirement for LSTM increases with increase in k-mer size.

Cross species evaluation using ML/DL models
We also performed a cross-species evaluation using CNN and RF. The purpose of the
cross-species evaluation was to test whether sequence structures that underlie promoter
regions are conserved across species (Lai et al., 2019). In cross-species evaluation, we
trained the CNN and RF models using one organism’s data and evaluated on the rest of the
organisms for all k-mer sizes considered. We can see that the average accuracy performance
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Figure 2 Performance analysis of CNN, LSTM, and RF for binary classification. Three distinct organ-
isms (yeast, Arabidopsis thaliana, human) were used. (A), (B) and (C): The accuracy performance of CNN,
LSTM, and RF for various k-mer sizes. A significant difference in the performance of DL and ML tech-
niques for each k-mer size was observed. (D), (E) and (F): The accuracy performance of CNN, LSTM, and
RF on each species. A significant difference in the performance of DL and ML techniques for each organ-
ism was observed. (* statistically significant, ** statistically more significant, n.s. non-significant).

Full-size DOI: 10.7717/peerjcs.365/fig-2

of CNN dropped to 72.77% and that of RF dropped to 55.66%. This result suggests that
there is a large variation in sequence structures of promoters across species (Fig. 3).

Testing of ML/DL model with random genome sequences
Finally, in order to evaluate the performance of these ML/DL models, we also used
random sequences from human genome as negative data with testing data. The prediction
performance of CNNmodel was better than LSTM and RF. The average accuracy achieved
by CNNmodel is 91%, along with 88% sensitivity, 99% specificity and 85%Mcc (Table 3).

Comparison of ML/DL algorithms in multiclass-classification
From cross-species evaluation we found that promoters from the different species have
different sequence structures. Therefore, we performed the multispecies classification of
sequences to a promoter category. We created a sample dataset of ∼66,000 promoter
sequences from yeast, Arabidopsis thaliana, and human. Multiclass classification
performance of CNN, LSTM, and RF models for various k-mer sizes are shown in
Table 4. The average prediction accuracy score of the CNN model is 98% whereas the
average prediction accuracy score for LSTM is 96% and RF is 80%. CNN achieved the
highest sensitivity and specificity among all techniques. The CNN and LSTM architectures
outperformed the RF classifier for all k-mer sizes (CNN model: Sn-97%, Sp-99% MCC-
97%; LSTM model: Sn-92%, Sp-97%, MCC-94%; RF: Sn-58%, Sp-87%, MCC-65%).
For multiclass classification of sequences into promoter groups, the performance of RF
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Figure 3 Performance analysis of CNN and RF for cross-species evaluation. (A & D) Trained on hu-
man data and tested on yeast and Arabidopsis thaliana. (B & E) Trained on Arabidopsis thaliana and tested
on yeast and human. (C & F) Trained on yeast and tested on human and Arabidopsis thaliana. A signifi-
cant difference in the performance of DL and ML techniques was observed.

Full-size DOI: 10.7717/peerjcs.365/fig-3

Table 3 Performance of CNN, LSTM and RFmodels for binary classification when random sequences
from human genome are used as negative class data with test data.

Methods Human

Acc Se Sp MCC

2-mer
CNN 0.9 0.85 0.96 0.84
LSTM 0.56 0.09 0.96 0.01
RF 0.75 0.77 0.72 0.49

4-mer
CNN 0.91 0.88 0.99 0.85
LSTM 0.89 0.82 0.96 0.79
RF 0.79 0.77 0.81 0.58

8-mer
CNN 0.91 0.85 0.98 0.83
LSTM 0.91 0.84 0.99 0.84
RF 0.82 0.77 0.86 0.64

in terms of accuracy and sensitivity has decreased with an increase in k-mer size. LSTM
achieved the highest sensitivity and specificity at k-mer 4. The deep learning techniques
CNN and LSTM outperformed RF (Fig. 4A), whereas change in the k-mer size does not
show a significant difference in the prediction performance (Fig. 4B).
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Table 4 Performance of CNN, LSTM and RFmodels for multi-species classification using different
statistical measures.

Methods Acc Sn Sp MCC

2-mer
CNN 0.98 0.97 0.99 0.97
LSTM 0.96 0.93 0.94 0.93
RF 0.84 0.61 0.89 0.73

4-mer
CNN 0.99 0.98 0.99 0.98
LSTM 0.98 0.96 0.99 0.96
RF 0.83 0.60 0.89 0.70

8-mer
CNN 0.98 0.96 0.99 0.97
LSTM 0.95 0.86 0.97 0.92
RF 0.74 0.54 0.83 0.52

Figure 4 Performance analysis of CNN, LSTM, and RF for multi-species promoter sequence classifica-
tion.

Full-size DOI: 10.7717/peerjcs.365/fig-4

DISCUSSION
A common practice in DNA sequence analysis is to use a set of ‘background’ sequences as
negative controls for evaluation of the false-positive rates of gene recognition techniques
for the detection of cis-regulatory elements. Generally, in the computational analysis of
gene sequences, a set of non-target sequences extracted from the same genome is used as
a background for evaluation purposes (Rani, Bhavani & Bapi, 2007). However, randomly
selecting a non-promoter region from the same genome as a negative dataset may have its
own limitations. Such a model can easily find basic features to separate two classes but not
the less obvious ones. Another approach to create a background dataset is shuffling of the
nucleotide sequences of a fraction of positive dataset sequences. In our analysis, we found
that such a synthetic background dataset of shuffled sequences resulted in models with
high sensitivity and specificity of classification.

We used frequency-based tokenization of k-mers instead of one-hot encoding (Giosue
& Di Gangi, 2017; Nguyen et al., 2016; Umarov & Solovyev, 2017) for feature encoding. In
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one-hot encoding each input sequence is thought as a matrix of 0’s and 1’s with the size
4k × L, where k is the length of k-mer and L is the length of the sequence. This input
to embedding layer is highly sparse. The input dimension increases with an increase in
k-mer which will automatically results in high computational processing time. Also, the
one-hot encoded matrix representation of a sequence cannot capture the significance
of the number of times the subsequence or motifs is going to occur. The advantage
of frequency-based tokenization over one-hot encoding is that it gives a shorter input
dimension to the AI model and can save training time significantly as compared to the
one-hot encoding. Therefore, one-hot encoding may produce comparable results in terms
of accuracy, however computational configuration required for implementation of one hot
encoding for higher k-mer sizes may go beyond the computational support available with
most of the researchers.

Optimization of parameters is crucial for sequence predictor construction. During the
classification of sequences into a promoter and non-promoter categories, an empirically
identified tuneable parameter was k-mer size along with the configuration of network
architecture. With the change in k-mer size, the resulting feature vectors size also changed,
affecting predictive performance of the models. We studied the effect of 2-mer, 4-mer
and 8-mer on the prediction performance of CNN, LSTM and RF on distinct organisms.
As mentioned earlier, the performance of the LSTM model improved with an increase
in k-mer size. We also tried k-mer sizes of 12 and 16 for each of the models. However,
this increased the number of training parameters exponentially resulting in a ‘‘resource
exhaustion problem’’ due to the consumption of large amounts of memory. Further, study
on the combination of feature-extraction, feature encoding and the model architecture
parameters is needed which can yield improvements in the prediction performance and
help to reduce the execution time of the program.

We used four performance evaluation parameters Accuracy, Sensitivity (recall),
Specificity and MCC. Accuracy is an average prediction performance on sample datasets.
Still, accuracy alone cannot be an accurate measure to evaluate an ML model. Therefore,
sensitivity and specificity are used for measuring the fraction of true positives and true
negatives that are correctly predicted. With CNN and LSTM, deep learning models we
have achieved both high sensitivity and specificity in all organisms.

The results show that the performance of CNN is better than LSTMandRF for all distinct
organisms. The CNN models have reduced the number of false-positive and false-negative
predictions and achieved high accuracy in both binary and multiclass classification. It
demonstrates the ability of CNN to identify and extract abstract complex functional
features with least pre-processing. In the case of cross-species evaluation, the performance
of CNN is better than RF. However, the performance of both models is low, as promoters
from the different species have different sequence structures, composition, and regulatory
mechanisms. However, considering the differences in the type of data and data size, the
differences observed in accuracy, sensitivity, specificity and MCC may not necessarily
reflect on the model developed.
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CONCLUSIONS
The primary aim of this work is to efficiently discriminate sequences into a promoter and
non-promoter sequences with a high true positive rate and true negative rate along with
higher accuracy. We have proposed and demonstrated three specific improvements to the
traditional methods for developing the generic and robust framework for classification
tasks in the genomic domain. For our analysis, instead of using randomly selected non-
promoter region we have utilized shuffled synthetic promoter sequences as a negative
dataset to achieve necessary heterogeneity and robustness. A set of random sequences from
human genome were used to test the efficiency of the models. For pre-processing of data,
we have used k-mer based subsampling and frequency-based tokenization of sequences
for feature extraction and vector representation respectively ensuring the reduction in
training time. The deep learning techniques, namely, CNN and LSTM are employed for the
classification of sequences into promoters and non-promoter categories which is important
to interpret the underlying working of gene regulation. These methods are independent of
the identification of any elements such as TATA-box, GC-box, CpG islands and sequence
alignment methods for promoter prediction which are traditionally employed for this
task. Using CNN, we achieved both high sensitivity and specificity while achieving higher
accuracy on such a huge dataset. Results show a superiority of the CNN architecture over
LSTM and RF in the binary and multispecies sequence classification. The effect of k-mer
size on the model, both in terms of performance and training time is also extensively
demonstrated. The proposed improvements and the CNN based approach are extremely
generic and can be utilised to identify other elements of gene sequences and to meet the
requirements of molecular biologists.
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