
On the Classification of Microsoft-Windows ransomware using
hardware profile
Sana Aurangzeb Equal first author, 1 , Muhammad Aleem 2 , Rao Naveed Bin Rais Corresp., Equal first author, 3 , Muhammad Arshad Islam 1 ,
Muhammad Azhar Iqbal 4

1 Department of Computer Science, National University of Modern Languages, Islamabad, Islamabad, ICT, Pakistan
2 Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Islamabad, ICT, Pakistan
3 College of Engineering and Information Technology, Ajman University, Ajman, Ajman, United Arab Emirates
4 School of Information Science and Technology (SIST), Southwest Jiaotong University, Chengdu, China

Corresponding Author: Rao Naveed Bin Rais
Email address: r.rais@ajman.ac.ae

Due to the expeditious inclination of online services usage, the incidents of ransomware
proliferation being reported are on the rise. Ransomware is a more hazardous threat than
other malware as the victim of ransomware cannot regain access to the hijacked device
until some form of compensation is paid. In the literature, several dynamic analysis
techniques have been employed for detection of malware including ransomware; however,
to the best of our knowledge, hardware execution profile for ransomware analysis has not
been used, as of today. In this study, we present that the hardware execution profile can
be exploited for the identification of ransomware applications. We show that the true
execution picture obtained via a hardware execution profile, is beneficial to identify the
obfuscated ransomware too. We evaluate the features obtained from hardware
performance counters to classify malicious applications into ransomware and non-
ransomware categories using several machine learning algorithms such as Random Forest,
Decision Tree, Gradient Boosting, and Extreme Gradient Boosting. The employed data set
comprises 80 ransomware and 80 non-ransomware applications, which are collected using
the VirusShare platform. The results revealed that extracted hardware features play a
substantial part in the identification and detection of ransomware with an accuracy of
0.97.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

1

2 On the Classification of Microsoft-Windows

3 Ransomware Using Hardware Profile
4

5

6 Sana Aurangzeb 1, Muhammad Aleem2, Rao Naveed Bin Rais3, Muhammad Arshad Islam2,

7 Muhammad Azhar Iqbal4

8

9 1 Department of Computer Science, National University of Modern Languages, Islamabad

10 44000, Pakistan

11 2 Department of Computer Science, National University of Computer and Emerging Sciences,

12 Islamabad 44000, Pakistan

13 3 College of Engineering and Information Technology, Ajman University, Ajman, UAE

14 4 School of Information Science and Technology (SIST), Southwest Jiaotong University,

15 Chengdu 611756, P. R. China

16

17 Corresponding Author:

18 Rao Naveed Bin Rais3

19 College of Engineering and Information Technology, Ajman University, UAE

20 Email address: r.rais@ajman.ac.ae

21

22

23 Abstract

24 Due to the expeditious inclination of online services usage, the incidents of ransomware

25 proliferation being reported are on the rise. Ransomware is a more hazardous threat than other

26 malware as the victim of ransomware cannot regain access to the hijacked device until some

27 form of compensation is paid. In the literature, several dynamic analysis techniques have been

28 employed for detection of malware including ransomware; however, to the best of our

29 knowledge, hardware execution profile for ransomware analysis has not been used, as of today.

30 In this study, we present that the hardware execution profile can be exploited for the

31 identification of ransomware applications. We show that the true execution picture obtained via a

32 hardware execution profile, is beneficial to identify the obfuscated ransomware too. We evaluate

33 the features obtained from hardware performance counters to classify malicious applications into

34 ransomware and non-ransomware categories using several machine learning algorithms such as

35 Random Forest, Decision Tree, Gradient Boosting, and Extreme Gradient Boosting. The

36 employed data set comprises 80 ransomware and 80 non-ransomware applications, which are

37 collected using the VirusShare platform. The results revealed that extracted hardware features

38 play a substantial part in the identification and detection of ransomware with an accuracy of

39 0.97.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

40

41 Keywords: malware; ransomware; performance counters; classification; machine learning

42

43 Introduction

44 Over the past half a decade, an exponential increase has been reported in ransomware attacks.

45 Ransomware is the sub-class of malware that hijacks a device and blocks the victim to access the

46 data until a compensation of some form is made. Typically, this compensation is in the form of

47 money to concede access back to the victim. Ransomware contains abilities to harmfully affect

48 various kinds of devices such as personal computers, servers, smartphones, tablets, etc. For

49 instance, multiple new variants of ransomware including WannaCry ransomware, JAFF, Petya

50 have been reported in 2017 (Hampton, et al., 2018). On May 12, 2017, within the span of a few

51 hours, the WannaCry ransomware (Maurya, et al., 2018) infected more than 70,000 desktop

52 devices in over 150 countries across the globe (Grant & Parkinson, 2018) as shown in Figure 1

53 (Krebsonsecurity, 2017).

54

55 The economic effects of ransomware can be quite devastating. For instance, CryptoWall_v3

56 ransomware (Cyber Threat Alliance, 2016; Sgandurra, et al., 2016) caused the loss of an

57 estimated $325 million in the US from November 2015 to June 2016. Another ransomware

58 attack, triggered by CryptoWall_v4 ransomware resulted in a loss of $7.1 million worldwide

59 (Cyber Threat Alliance, 2016). Another recently reported ransomware attack, NotPetya costs $10

60 billion and WannaCry estimated to have cost $8 billion (Davies, et al. 2020). These attacks

61 wreaked havoc in systems of various world organizations by halting and damaging their daily

62 operations.

63

64 Typically, a ransomware displays a ransom note to the victim after encrypting her data. The

65 majority of the ransomware also specify the instructions regarding compensation payment to

66 regain access to the device. A ransomware employs different hijacking strategies such as

67 behaving like an adware resulting in unwanted advertisements or by being hidden using rootkits

68 to bypass Anti-Viruses (AV) (Demme, et al. 2013). A rootkit is a malware which alters the

69 operating system (OS) and resides in the system for a prolonged period (Aurangzeb, et al., 2017).

70

71 Although, malware is deemed as a great threat over the years, yet ransomware is even more

72 daunting threat compared to other malware due to its attacking and demanding nature (i.e.,

73 expecting a ransom in return). Before analyzing the ransomware, one of the mandatory steps is

74 the accurate identification of a particular type of ransomware and differentiating it from other

75 typical malware. Broadly, malware analysis techniques are categorized as: 1) static and 2)

76 dynamic analysis (Chen, et al., 2017). Besides, various researchers have employed the

77 combinations of the static and dynamic techniques in the form of hybrid analysis techniques. The

78 procedure of scrutinizing a potential malware without executing the program is referred to as

79 static analysis, whereas, the analysis performed via observing the execution behavior of a

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

80 malware is known as dynamic analysis. Most contemporary state-of-the-art dynamic analysis

81 techniques detect and classify ransomware that hide themselves using various obfuscation

82 techniques such as packed programs, compressed, or data transformation, indirect addressing,

83 etc. (Behera & Bhaskari, 2015). Today, various anti-viruses tackle malware to dampen their

84 caused and expected damages. However, the techniques employed by the anti-viruses are often

85 limited to the prior knowledge (e.g., signatures, etc.) and lack a comprehensive dynamic analysis

86 that could detect ransomware, employing the obfuscation techniques (Demme, et al., 2013).

87

88 On the other hand, Hardware Performance Counters (HPCs) have been typically used by the

89 programmers to analyze and measure the performance of applications and to identify the

90 execution bottlenecks of a program with the purpose of improving it on a target platform

91 (Beneventi, et al. 2017). Initially, HPCs were employed for investigating the static and dynamic

92 analysis of programs in order to detect any malicious amendments as mentioned in (Alam, et

93 al.,2020) and (Malone, et al., 2011). In the study (Zhou, et al., 2018), the authors surveyed to

94 identify whether HPCs are useful in differentiating the malware from benign applications.

95 However, the study did not consider malware as ransomware; rather it considers revoking access

96 to network activities. In this paper, we present a framework based on dynamic analysis that

97 mainly focuses on the classification of ransomware from non-ransomware. Moreover, the

98 classification of ransomware from traditional malware is essential because of their higher

99 damaging impact in terms of informative data and financial loss. Compare to typical malware, it

100 is more challenging to identify and kill ransomware even when it is discovered, and the damage

101 can be potentially irreparable even after its deletion (Al-remy, et al., 2018) and (Zhang, et al.,

102 2019). Hence, we require proactive and aggressive techniques to handle ransomware. Moreover,

103 it is very challenging to recognize and isolate the malware from ransomware due to the similarity

104 in nature. A ransomware is more menacing than malware, as it not only damages the system and

105 results in loss of control from the system, but also demands a compensation in return. Therefore,

106 there is a need to have proper distinction of ransomware from other malware (Aurangzeb et al,

107 2017; Kok et al., 2019 and Zhang, et al., 2019) in order to save billions of illegal transactions

108 (Davies, et al 2020) in the name of ransom.

109

110 Several studies (Das et al., 2019; Demme, et al., 2013; Singh, et al., 2017; and Wang, et al.,

111 2016) discuss potential implications of using Hardware Performance Counters (HPC) for

112 application analysis, and the majority of them suggest that hardware execution profile can

113 effectuate the detection of malware (Demme, et al., 2013; Singh, et al., 2017; and Wang, et al.,

114 2016). Another study (Xu, et al., 2017) has utilized the hardware execution profiles to detect

115 malware using machine learning algorithms, as malware changes data structures and control

116 flow, leaving fingerprints on accesses to program memory. In this respect, they proposed a

117 framework for detecting malware from benign applications that use machine learning to classify

118 malicious behavior of malware based on access patterns of virtual memory. Hence, it is still an

119 open research question whether to utilize HPC or not for detection of malware. However,

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

120 utilizing the hardware performance measurements and the profile of the low-level execution

121 behavior has not been previously studied for the analysis and detection of ransomware

122 applications. We argue that ransomware reveals itself by exhibiting peculiar HPCs (e.g., through

123 clock cycles, cache misses and hits, branch instructions and misses, retired instructions, etc.).

124 This paper contemplates HPCs to detect Microsoft Windows-based ransomware by analyzing the

125 execution behavior of ransomware. We primarily focus to determine the potential use of HPCs in

126 analyzing and proactively detecting ransomware. Moreover, the classification of ransomware

127 from malware is imperative because the damages caused by ransomware drastically ensure the

128 data and monetary loss. To address this concern, we propose a mechanism which utilizes the

129 application execution profile for the classification and detection of ransomware from non-

130 ransomware. For classification, the application’s hardware related performance features are

131 extracted from the data set of 160 malware (consisting of 80 ransomware and 80 non-

132 ransomware). Afterward, these features are fed to some well-known machine learning

133 classification models such as Decision Tree (Kohavi, 1996), Random Forest (Liaw, et al., 2002),

134 Gradient Boosting (Friedman, 1999), and Extreme Gradient Boosting (Chen, et al., 2015). These

135 four classifiers are generally used for classification tasks of various applications including spam

136 detection, face recognition, and financial predictions (Jordan and Mitchell, 2015), etc. We

137 employ these four classifiers as part of the proposed methodology to analyze their performance

138 for ransomware detection. These models perform binary classification of malicious software into

139 ransomware or non-ransomware classes. In summary, the main contributions of this paper are as

140 follows:

141

142  In-depth analysis of the current state-of-the-art to identify the merits and demerits of several

143 existing approaches;

144  A novel mechanism for the classification and detection of malicious applications into

145 ransomware and non-ransomware; and

146  Empirical investigation of the HPCs against state-of-the-art dynamic techniques using

147 machine learning classifiers;

148

149 The outcomes revealed that the random forest classifier has outperformed decision tree, gradient

150 boosting, and extreme gradient boosting by attaining accuracy of 0.97 for classification.

151

152 The rest of the paper is organized as follows. Section 2 describes the related work. Section 3

153 presents the proposed methodology, dataset, and feature extraction mechanism. In Section 4, the

154 experimental setup details, results, and related discussions are presented and Section 5 concludes

155 the paper.

156

157 Related Work

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

158 For dynamic analysis, it is necessary to collect key ransomware features at runtime. Most of the

159 dynamic analysis-based research studies exploit the renowned malware databases1 for the

160 acquisition of malicious software and use quarantine environments (such as Cuckoo’s sandbox

161 (Kaur, Dhif and Singh 2017)) to execute the applications.

162

163 In (Zavarsky and Lindskog 2016), the authors presented an experimental analysis of Microsoft

164 Windows and Android-based ransomware. This analysis demonstrates that ransomware detection

165 could be performed by monitoring the abnormalities in the file system and registry activities. It

166 was shown that a significant number of ransomware families exhibit very similar characteristics.

167 Moreover, the authors concluded that changes in a particular set of registry keys are important

168 aspects to be analyzed for ransomware detection. The authors discovered that Microsoft

169 Windows 10 is reasonably effective against ransomware attacks. Moreover, this study also

170 revealed that for the Android platform, the Android Manifest file and the permissions (required

171 by an app) should also be considered for ransomware detection.

172

173 Several researchers utilized the hash information (i.e., comparing hash values) to detect the

174 CryptoLocker ransomware (Song, Kim, and Lee 2016). The affected systems are recovered by

175 the following ways: 1) process CryptoLocker, 2) comparing hash information with the encrypted

176 data files 3) validating the key using the key-index information stored therein, and 4) proceeding

177 to decode. Generally, this type of process consumes a lot of time for ransomware detection with

178 a potential risk that another ransomware appears until a security company comes up with

179 decryption keys of the old ransomware. Moreover, additional analysis is needed to detect new

180 patterns of ransomware as the hackers persistently come up with new variants of ransomware.

181 On the Android platform, another technique is proposed (Song, Kim, and Lee 2016) to prevent

182 the ransomware intrusion. The technique requires intense monitoring of the executing processes

183 and analysis of the particular file directories using the statistical techniques, such as Next-

184 generation Intrusion Detection Expert System (NIDES) (Anderson et al, 1995) using processor,

185 memory usage, and I/O rates, to uncover the applications exhibiting abnormal behavior (Song,

186 Kim and Lee 2016).

187

188 Several other research studies have harnessed the machine learning-based approaches and

189 dynamic or runtime features of executing applications to detect ransomware. Recently, HPC

190 events and their features are being used widely in research to detect side-channel attacks and

191 ransomware. Another research (Alam et al. 2020) uses HPC features to detect malware from

192 benign applications. The study used machine learning techniques Recurrent Neural Networks

193 (RNN) to examine HPC data. The authors proposed an anomaly detection technique to identify

194 the malicious ransomware in few seconds with very few false positives. Maiorca et al., (Maiorca

195 et al. 2017) proposed a supervised machine learning-based procedure, R-PackDroid, to detect

1 www.virusshare.com

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

196 Android ransomware, which is a light-weight technique and does not require prior knowledge of

197 ransomware’s encryption mechanisms. However, the R-PackDroid technique uses fully

198 encrypted code-files and is unable to analyze the applications that load the code at run-time. The

199 R-PackDroid can be incorporated with the other dynamic analysis methods, such as the approach

200 proposed by (Kimberly et al., 2015). Moreover, R-PackDroid based application analysis strongly

201 depends on parsing capabilities of the ApkTool framework.

202

203 In the study (Narudin, et al. 2016), a machine learning-based malware analysis approach based

204 on the anomaly detection mechanism is presented. The results indicated that Bayes network and

205 Random Forest classifiers produce accurate results by attaining 99.97% True-Positive Rate

206 (TPR) as compared to the multi-layer perceptron technique with only 93.03% TPR using the

207 MalGenome data set. However, the accuracy of this scheme dropped to 85% for the latest

208 malware experiments.

209

210 Desktop ransomware can easily bypass any counter-measures and thus results in the seizure of

211 personal data. Authors (Al-rimy, Maarof, and Shaid 2017) presented an effective mechanism for

212 early diagnosis and avoidance of the crypto-ransomware, which is based on machine learning

213 techniques (One-Class SVM and n-gram technique (Zhang, et al., 2015)) and comprises three

214 modules: 1) pre-processing, 2) features engineering and 3) detection module. The authors

215 employed an adaptive anomaly detection mechanism that handles the dynamic characteristics of

216 systems and frequently updates the normal profile built from the feature extraction (Al-rimy, et

217 al., 2017) in order to improve the accuracy of detection.

218

219 The study (Kharraz, Roberstson, et al. 2015) presented the analysis of ransomware families (the

220 year 2006—2014) and concluded that the suspicious activity of file system should be observed

221 for ransomware detection. For instance, the changes in the types of I/O Request Packets (IRP) or

222 the Master File Table (MFT) are usually formed to access the file system. The study concluded

223 that a considerable number of ransomware families share related features as a core part of the

224 attacks; however, there still lacks a reliable destructive function to successfully infect files of

225 victims. In Table 1, we recapitulate several other prominent ransomware detections (Yang, et al.

226 2015; Andronio, Zanero and Maggi 2015; Kharraz, Arshad, et al. 2016) and prevention

227 (Ahmadian, Shahriari and Ghaffarian 2015; Kim, Soh and Kim 2015; Lee, Moon and Park 2016;

228 Brewer 2016) techniques.

229

230 Besides, the performance counters exhibit the true application execution behavior and are being

231 employed by the researchers to analyze application performance (Mucci, et al., 1999) (Bahador,

232 et al., 2014) (Demme, et al., 2013). However, none of the existing dynamic analysis techniques

233 utilizes the important dynamic feature of HPCs to detect malicious applications. Malware can

234 employ obfuscation techniques to deceive static analysis based anti-viruses. Furthermore,

235 runtime behavior cannot be obfuscated and can be detected using dynamic analysis. We believe

236 this fact should essentially be exploited and the hardware execution profile should be utilized to

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

237 execute applications for ransomware detection. Based on these aspects, we argue that HPCs are

238 useful features that could be utilized for the detection and classification of ransomware. In this

239 study, we employ various machine learning classifiers such as Decision Tree, Random Forest,

240 Gradient Boosting, and Extreme Gradient Boosting along with the HPCs to address the following

241 questions:

242

243 (1) How different are ransomware from malware at runtime considering machine learning

244 techniques?

245 (2) Which of the hardware performance counters (HPC) play vital role in ransomware

246 detection?

247

248 Motivation and Methodology

249 The dynamic analysis holds adequate potential to accurately detect the threat of ransomware

250 because an executable program cannot hide its true characteristic. Therefore, most of the anti-

251 virus vendors rely on automated dynamic analysis mechanisms to detect new variants of

252 ransomware. Most of the antivirus applies the heuristics combined with the behavior analysis to

253 deduce whether an executable is benign or malware (Sgandurra et al. 2016).

254

255 A wide range of CPU performance counters i.e., clock cycles, cache hits, cache misses, branch

256 instructions, branch misses, retired instructions, etc. are used to observe the behavior of an

257 executing application (Chiappetta, Savas and Yilmaz 2016). Usually, the symmetric encryption

258 marks the cache-based events while the asymmetric encryptions does have an impact on the

259 instruction and branching events as explained in (Alam, et al., 2020). The performance counters

260 have been harnessed by many application developers to identify the computation and memory

261 bottlenecks to improve the performance and reliability of the executing applications (Chiappetta

262 et al. 2016). In this study, we utilize 11 performance counters for the classification of

263 ransomware. For classification, we train the employed machine learning classifiers to analyze the

264 dynamic behavior of ransomware and non-ransomware malicious programs. Moreover, the

265 classification of Ransomware from Traditional Malware is essential due to the intensity of the

266 damage caused in terms of informative data and financial loss. Unlike traditional malware, it is

267 more troublesome to identify and kill ransomware even when it is discovered, and the damage is

268 irreparable even after its removal (Al-remy, et al., 2018) and (Zhang, et al., 2019). Hence, it is

269 very important to recognize and isolate the malware from ransomware due to the similarity in

270 nature. Therefore, it is required to devise a formal classification mechanism to discriminate

271 ransomware from other non-ransomware (Zhang, et al., 2019), (Aurangzeb et al, 2017) and (Kok

272 et al., 2019) to avoid billions of transactions in the name of ransom.

273

274 DATASET COLLECTION

275 For the experimentation, we have investigated randomly selected 160 Windows-based malware

276 from VirusShare. Afterward, each malware is labeled as a non-ransomware or ransomware based

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

277 on the information provided by renowned anti-viruses such as VirusShare. These labeled tags are

278 then further validated with the tags available from VirusShare for the sake of confirmation. In

279 this study, benign binary files are not considered because the main aim of the study is to classify

280 between the ransomware and other malicious applications. Therefore, we consider the malicious

281 applications category Trojan (as a non-ransomware sample) due to their similarity in activities

282 with the ransomware (Gazet 2010). The employed classifiers are trained using the behavioral

283 features for ransomware and non-ransomware with explicit labeling (i.e., Ransomware/Non-

284 Ransomware). Furthermore, a disjoint data set is used for training and testing purposes.

285 FEATURE EXTRACTION

286 All malware in the data set are executed in a quarantine environment and their data related to

287 hardware performance counters are collected using perf (an instrumentation and performance

288 analysis tool (Weaver, 2013) (Alam et al., 2020)). To ensure the reliability and accuracy of the

289 results, mean values of three rounds of experiments are reported.

290

291 For binary classification, we employ hardware performance counters as features, i.e., 1) task

292 clock, 2) context switching, 3) CPU utilized, 4) CPU migrations, 5) page faults, 6) CPU cycles,

293 7) cache-misses, 8) instructions retired, 9) branches taken, 10) branch-misses, and 11) execution

294 time, (illustrated in Table 2) to train the machine learning classifier. Feature selection plays a

295 significant role in achieving precise training of the employed machine learning models; thereby

296 attaining accurate results with efficient performance and low overhead (Li, et al., 2017).

297 Correlation matrix among the employed features is generated to analyze the pattern that leads to

298 selection of features. Two features are considered negatively correlated if a change of one feature

299 inversely impacts the value of the other feature. The features correlation analysis is presented in

300 Figure 1. If two numerical features are highly correlated, then one of them can be ignored.

301 Therefore, we employed a sub-set of those features which are not co-related to reduce the

302 computation overhead during the training process of the machine learning models. For E.g.,

303 Figure 1 shows that the Cache Misses related hardware feature has a low positive correlation

304 with all the other features showing that the increase in the Cache Misses does not necessarily

305 cause an increment in other hardware features. On the other hand, the Task Clock feature has a

306 strong relationship with the Context Switches, Cycles, Instructions, Branches, and Branches

307 Misses, which indicates that with the increase in Task Clock, the other highly correlated features

308 also increase. The features having higher rank are deemed as potential features for classification

309 than low ranked features as shown in Table 3.

310

311 In the training phase, hardware features are extracted by executing known malware and non-

312 malware application in containing environment system units as shown in Figures 2a and 2b.

313 Depending upon the labels assigned by the VirusShare, each executed malware is labeled as

314 ransomware or non-ransomware. The vectors consisting of hardware performance features with

315 the application category and classification label (ransomware or non-ransomware), are provided

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

316 to the machine learning classifiers. 80% of the employed data set is used for training and 20% is

317 used for testing. The goal of the supervised machine learning is to find a function that is trained

318 using the employed features such that the error is minimum for the new or unseen data. In the

319 training phase, the classification model is trained using the hardware performance features as

320 shown in Table 2. The testing or validation methodology is performed after the training of the

321 classifiers.

322

323 CLASSIFICATION MODEL

324 The machine learning classification algorithms namely Decision Tree, Random Forest, Gradient

325 Boosting, and Extreme Gradient Boosting are used for classification purpose that including

326 phishing detection, facial recognition, and financial predictions (Jordan and Mitchell, 2015), etc.

327 We employ these four classifiers as part of the proposed methodology to analyze their

328 performance for ransomware detection.

329

330 The decision tree is a tree-based classifier, which contains a root, internal nodes, and leaf nodes.

331 The class label is assigned to each leaf node and the decisions are rendered by the internal nodes

332 (Tan, et al., 2006). Random Forest (RF) classifier is based on a combination of multiple decision

333 tree predictors such that each tree depends on the values of a random vector sampled

334 independently and with the same distribution for all trees in the forest (Tian, et al. 2009). The

335 Extreme Gradient Boosting and Gradient Boosting follow the same basic principle however,

336 there are a few differences in their modeling details. Specifically, extreme gradient boosting

337 utilizes a more regularized model formalization to control over-fitting problem that may occur

338 due to linear fitting over noisy data to provide better performance (Jbabdi, et al., 2012).

339

340 Results and Discussion

341 For experimentation, we utilize a system with Intel core i7 processor, 8 GBs of memory and

342 Ubuntu 12.10 OEM as operating system. For classification, a machine learning tool Scikit-learn

343 (Pedregosa, et al., 2011), is employed. To evaluate the results, standard evaluation measures i.e.,

344 precision, recall, and F-Measure are calculated to determine the accuracy of each classifier.

345 Equations 1—4 provide the mathematical description of accuracy, precision, recall, and f-

346 measure, respectively. The terms used in Equations 1—4 are explained as follows: True Positive

347 (TP) rate shows the number of predicted positives that are correct, while the False Positive (FP)

348 rate refers to the number of predicted positives that are incorrect. Similarly, True Negative (TN)

349 rate shows the number of predicted negatives that are correct while the False Negative (FN) rate

350 refers to the number of predicted negatives that are incorrect. The recall is the sensitivity for the

351 most relevant result. F-measure is the value that estimates the entire system performance by

352 calculating the harmonic mean of precision and recall. The maximum value of 1.000 for

353 accuracy precision and recall indicates the best result (Narudin, et al., 2016).

354

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

355 Accuracy = (1)
TP + TN

TP + TN + FP + FN

356

357 Precision denotes the proportion of Predicted Positive cases that are correctly Real Positives.

358 Precision = (2)
TP

TP + FP

359

360 The recall is the proportion of Real Positive cases that are Predicted Positive

361 Recall = (3)
TP

 TP + FN

362 F-Measure = (4)2𝑥(Precision × Recall)

(Precision + Recall)

363

364 Receiver Operating Characteristic (ROC) curves (Metz, 1978) are extensively being applied in

365 significant researches to measure the accuracy of the machine learning models that are being

366 trained to achieve actual performance (Bradley, 1997). Furthermore, ROC curves are applied in

367 numerous systematic approaches that merge multiple clues, test results, etc., and are plotted and

368 evaluated to characterize a qualitative feature of the particular. ROC is a plot wherein Y-axis is

369 reserved for True Positive Rate (TPR) and X-axis is reserved for False Positive Rate (FPR). For

370 all possible classification such as the output class, the TPR rate depends on the set-up where the

371 real classification is considered to be as positive and the number of times the classifier has

372 predicted the result to be as positive. The FPR can be defined as how the classifier incorrectly

373 labelled positive to those that are actually classified to be as negative. Together the TPR and FPR

374 values lies in-between 0—1 in a way that 0 label as poor prediction however 1 labelled to be as

375 highly-accurate prediction. The area under ROC (AUC) is now applied for weighing classifiers
376 to get their performance updates (Narudin, et al., 2016).

377

378 The results based on the decision tree classifier can be clearly seen in Figure 3. The ROC curve

379 for both classes (i.e., ransomware as class “1” and non-ransomware as class “0”) is the same

380 having value 0.94 which signifies the excellent prediction. However, the precision-recall curve

381 area of class 0 i.e., for Non-Ransomware it is 0.89 or 89% whereas for class 1 i.e., ransomware

382 the AUC value is 0.93. The F-measure score of the Decision Tree is 0.94 as shown in Table 4.

383

384 The results obtained using the Random Forest classifier for two classes (i.e., ransomware and

385 non-ransomware) are shown in Figure 4. The higher accuracy results are evident from the

386 similar ROC curve value i.e., 0.99 for both the ransomware and non-ransomware classes. The

387 Random Forest-based classification model outperformed decision tree-based classification by

388 attaining the accuracy of 0.94, as shown in Table 8). However, the value of F-measure for both

389 the classes is 0.97 (as shown in Table 8).

390

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

391 The gradient boosting classification-based results are shown in Figure 5. The results revealed

392 that the ROC curve values for both the classes (i.e., ransomware and non-ransomware) are the

393 same (i.e., 1.0) and the precision-recall curve of both classes is 1.0. The F-measure score of the

394 gradient boosting classifier is 0.93 for ransomware and 0.94 for non-ransomware (as shown in

395 Table 6).

396

397 The extreme gradient boosting classification model-based results are shown in Figure 6 and

398 Table 7. The ROC curve and Precision-Recall Curve of both classes (i.e., ransomware and non-

399 ransomware) are the same (i.e., 1.0). The extreme gradient boosting based model’s F-measure

400 score is 0.97, which is similar to the gradient boosting and random forest-based classification as

401 shown in Table 8. The model has attained an improvement of 3% than the decision tree-based

402 classification. The model shows similar results of 0.97 as observed for random forest and

403 gradient boosting.

404

405 This study has demonstrated the possibility of exploiting HPCs as the potential features for

406 ransomware detection. After analyzing the sets of ransomware and non-ransomware, the features

407 obtained from HPCs have been analyzed to classify malicious applications into ransomware and

408 non-ransomware categories using several machine learning algorithms such as Decision Tree,

409 Random Forest, Gradient Boosting, and Extreme Gradient Boosting. The results of detailed

410 experiments as stated earlier in the section have revealed that extracted hardware features play a

411 significant role in the detection and identification of ransomware. Among all the employed

412 machine learning classifiers, the random forest-based model has outperformed by yielding an

413 accuracy of 0.97 followed by a decision tree with an accuracy of 0.94. Moreover, the features

414 cache misses, task clock, and branches obtained through HPCs could be deemed as potential

415 parameters in classifying ransomware from non-ransomware.

416

417 Conclusions

418 The origination of new variants of ransomware and expeditious increase in its families has

419 adhered to the software developers to efficiently detect and deal with such applications. In the

420 literature, numerous studies have been performed to address different applications of

421 ransomware. However, these schemes contain some deficiencies that allow cybercriminals to

422 bypass security measures. The addition of hardware support and hardware performance analysis

423 could be deemed as potential measures to deal against ransomware to new grounds. The

424 hardware-based analysis and diagnosing the potential threat at the early stages could beneficiate

425 the process of ransomware detection before its malicious activity. In this paper, the analysis of

426 HPCs has been presented for Windows ransomware classification. The results have revealed that

427 the HPCs hold the considerable potential to expose hidden indicators of the executing

428 applications such as malicious codes and ransomware. Performance counters, i.e., cache misses,

429 task clock, and branches have played a pivotal role in classifying ransomware in a way that if

430 there are a high number of cache misses or a high number of branch mispredictions (where

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

431 control flow becomes detectably anomalous) are good indicators that help in indicating a

432 potential attack (Foreman, 2018). The proposed technique holds adequate potential to provide

433 sufficient detection accuracy by attaining the F-measure score of 0.97. This study demonstrated

434 the possibility of exploiting HPCs as the potential feature for the detection of ransomware.

435 However, this topic needs further investigation. In the future, we intend to scrutinize other

436 dynamic features with the combination of call graphs to detect and classify ransomware.

437 Moreover, the application of machine learning algorithms has shown very promising results in

438 ransomware detection. In the future, we will expand this study to perform in-depth static analysis

439 as well as dynamic analysis with the combination of HPCs in the detection of that ransomware

440 that usually hides by implementing various obfuscation techniques (like packed or compressed

441 programs, or indirect addressing (Behera & Bhaskari, 2015)). One major challenge and

442 limitation of this research is in ransomware detection of false positives and false negatives.

443 Consider the case of Qwerty ransomware, which uses a benign GPG executable to perform

444 encryption. Perhaps the proposed solution would correctly detect the GPG binary when used in

445 this way, but we suspect it would also detect it in a benign case. Since in this work we did not

446 evaluate benign executables, it is not clear how the system performs with software that performs

447 encryption and/or compression tasks which is the limitation of this research that will be

448 investigated in our future work.

449

450 References

451 Ahmadian, M. M., Shahriari, H. R. & Ghaffarian, S. M., 2015. Connection-monitor &

452 connection-breaker: A novel approach for prevention and detection of high survivable

453 ransomwares. s.l., IEEE, pp. 79-84.

454 Alam, M., Sinha, S., Bhattacharya, S., Dutta, S., Mukhopadhyay, D. and

455 Chattopadhyay, A., 2020. RAPPER: Ransomware prevention via performance

456 counters. arXiv preprint arXiv:2004.01712.

457 Al-rimy, B. A. S., Maarof, M. A. & Shaid, S. Z. M., 2017. A 0-Day Aware Crypto-Ransomware

458 Early Behavioral Detection Framework. s.l., Springer,Cham, pp. 758-766.

459 Al-rimy, B.A.S., Maarof, M.A. and Shaid, S.Z.M., 2018. Ransomware threat success factors,

460 taxonomy, and countermeasures: A survey and research directions. Computers &

461 Security, 74, pp.144-166.

462 Ammons, G., Ball, T. & Larus, J. R., 1997. Exploiting hardware performance counters with flow

463 and context sensitive profiling. ACM Sigplan Notices, 32(5), pp. 85-96.

464 Anderson, D., Thane, F. & Alfonso, V., 1995. Next-generation intrusion detection expert system

465 (NIDES): A summary.

466 Andronio, N., Zanero, S. & Maggi, F., 2015. Heldroid: Dissecting and detecting mobile

467 ransomware. s.l., Springer International Publishing, pp. 382-404.

468 Aurangzeb, S., Aleem, M., Iqbal, M. A. & Islam, M. A., 2017. Ransomware: A Survey and

469 Trends. Journal of Information Assurance and Security, Volume 12, pp. 048-058.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

470 Bahador, M. B., Abadi, M. & Tajoddin, A., 2014. Hpcmalhunter: Behavioral malware detection

471 using hardware performance counters and singular value decomposition." ,. s.l., IEEE,

472 pp. 703-708.

473 Batcheller, A. et al., 2017. Building on the Success of Building Security. IEEE Security &

474 Privacy, 15(4), pp. 85-87.

475 Behera, C. K. & Bhaskari, D. L., 2015. Different obfuscation techniques for code protection..

476 Procedia Computer Science, Volume 70, pp. 757-763.

477 Beneventi, F., Bartolini, A., Cavazzoni, C. & Benini, . L., 2017. Continuous learning of HPC

478 infrastructure models using big data analytics and in-memory processing tools. s.l.,

479 IEEE, pp. 1038-1043.

480 Bradley, A., 1997. The use of the area under the ROC curve in the evaluation of machine

481 learning algorithms.. Pattern Recognit, 30(7), pp. 1145-1159.

482 Brewer, R., 2016. Ransomware attacks: detection, prevention and cure. Network Security,

483 2016(9), pp. 5-9.

484 Chen, Q. & Robert, A. B., 2017. Automated Behavioral Analysis of Malware A Case Study of

485 WannaCry Ransomware.. Volume arXiv preprint arXiv:1709.08753.

486 Chen, T., Tong, H. & Michael, B., 2015. Xgboost: extreme gradient boosting. R package, 0.4(2),

487 pp. 1-4.

488 Chen, W. et al., 2016. More Semantics More Robust: Improving Android Malware Classifiers.

489 s.l., ACM, pp. 147-158.

490 Chen, Z., Kang, H., Yin, S. & Kim, S., 2017. Automatic Ransomware Detection and Analysis

491 Based on Dynamic API Calls Flow Graph.. s.l., s.n., pp. 196-201.

492 Chiappetta, M., Savas, E. & Yilmaz, C., 2016. Real time detection of cache-based side-channel

493 attacks using hardware performance counters. Applied Soft Computing, Volume 49, pp.

494 1162-1174.

495 Choi, K. S., Scott, T. M. & LeClair, D. P., 2016. Ransomware Against Police: Diagnosis of Risk

496 Factors via Application of Cyber-Routine Activities Theory. International Journal of

497 Forensic Science & Pathology, IV(7), pp. 253-258.

498 Das, S., Werner, J., Antonakakis, M., Polychronakis, M. and Monrose, F., 2019, May. SoK: The

499 challenges, pitfalls, and perils of using hardware performance counters for security.

500 In 2019 IEEE Symposium on Security and Privacy (SP) (pp. 20-38). IEEE.

501 Demme, J. et al., 2013. On the feasibility of online malware detection with performance

502 counters. ACM SIGARCH Computer Architecture News, June, 41(3), pp. 559-570.

503 Davies, S.R., Macfarlane, R. and Buchanan, W.J., 2020. Evaluation of live forensic techniques in

504 ransomware attack mitigation. Forensic Science International: Digital Investigation, 33,

505 p.300979.

506 Egele, M., Scholte, T., Kirda, E. & Kruegel, C., 2012. A survey on automated dynamic malware-

507 analysis techniques and tools. ACM computing surveys (CSUR), 44(2), p. 6.

508 Foreman, J.C., 2018. A Survey of Cyber Security Countermeasures Using Hardware

509 Performance Counters. arXiv preprint arXiv:1807.10868.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

510 Friedman, J. H., 1999. Reitz Lecture. 29(2001), pp. 1189-1232.

511 Gazet, A., 2010. Comparative analysis of various ransomware virii. Journal in computer

512 virology, 6(1), pp. 77-90.

513 Grant, L. & Parkinson, S., 2018. Identifying File Interaction Patterns in Ransomware Behaviour.

514 In: Guide to Vulnerability Analysis for Computer Networks and Systems. s.l.:Springer, pp.

515 317-335.

516 Hampton, N., Baig, Z. & Zeadall, S., 2018. Ransomware Behavioural Analysis on Windows

517 Platform. Journal of Information Security and Applications, Volume 40, pp. 44-51.

518 Jordan, M. I. & Mitchell, T. M., 2015. Machine learning: Trends, perspectives, and prospects.

519 Science, 349(6245), pp. 255-260.

520 Jbabdi, S., Sotiropoulos, S.N., Savio, A.M., Graña, M. and Behrens, T.E., 2012. Model‐based

521 analysis of multishell diffusion MR data for tractography: how to get over fitting

522 problems. Magnetic resonance in medicine, 68(6), pp.1846-1855.

523 Kaur, G., Dhir, R. & Singh, M., 2017. Anatomy of ransomware malware: detection, analysis and

524 reporting. International Journal of Security and Networks, 12(3), pp. 188-197.

525 Kharraz, A., Arshad, S., Mulliner, C. & Robertson, W. K., 2016. UNVEIL: A Large-Scale,

526 Automated Approach to Detecting Ransomware. USENIX Security Symposium, pp. 757-

527 772.

528 Kharraz, A. et al., 2015. Cutting the gordian knot: A look under the hood of ransomware

529 attacks.. s.l., Springer, Cham, 2015., pp. 3-24.

530 Kimberly, T., Salahuddin J, K., Aristide, F. & Lorenzo, C., 2015. CopperDroid: Automatic

531 Reconstruction of Android Malware Behaviors. NDSS.

532 Kim, D., Soh, W. & Kim, S., 2015. Design of quantification model for prevent of cryptolocker.

533 Indian Journal of Science and Technology, 8(19).

534 Kohavi, R., 1996. Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid.. In

535 KDD, 96(Citeseer), p. In KDD.

536 Kok, S., Abdullah, A., Jhanjhi, N. and Supramaniam, M., 2019. Ransomware, threat and

537 detection techniques: A review. Int. J. Computer Science and Network Security, 19(2),

538 p.136.

539 Krebsonsecurity. 2017. Microsoft Issues WanaCrypt Patch for Windows 8, XP. Available at

540 https://krebsonsecurity.com/2017/05/microsoft-issues-wanacrypt-patch-for-windows-8-

541 xp/

542 Labs, M., 2017. Threat Predictions Ransomware Infographic”, s.l.: McAfee Labs Threat

543 Predictions report 2017.

544 Lee, J. K., Moon, S. Y. & Park, J. H., 2016. CloudRPS: a cloud analysis based enhanced

545 ransomware prevention system. The Journal of Supercomputing, 73(7), pp. 3065-3084.

546 Liaw, A. & Wiener, M., 2002. Classification and regression by randomForest. R news, 2(3), pp.

547 18-22.

548 Li, J. et al., 2017. Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6),

549 p. 94.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

550 Maiorca, D. et al., 2017. R-PackDroid: API package-based characterization and detection of

551 mobile ransomware. s.l., ACM, pp. 1718-1723.

552 Malone, C., Zahran, M. and Karri, R., 2011, October. Are hardware performance counters a cost

553 effective way for integrity checking of programs. In Proceedings of the sixth ACM

554 workshop on Scalable trusted computing (pp. 71-76).

555 Martinelli, F., Mercaldo, F. & Saracino, A., 2017. Bridemaid: An hybrid tool for accurate

556 detection of android malware. .. s.l., In Proceedings of the 2017 ACM on Asia

557 Conference on Computer and Communications Security ACM, pp. 899-901.

558 Maurya, A., Kumar, N., Agrawal, A. & Khan, R., 2018. Ransomware: Evolution, Target and

559 Safety Measures. International Journal of Computer Sciences and Engineering, 6(1).

560 Metz, C. E., 1978. Basic principles of ROC analysis. Seminars in nuclear medicine, 8(4).

561 Micro, T., 2016. Ransomware, s.l.: Trend Micro Incorporated Labs report, 2016.

562 Milletary, J., 2012. Citadel trojan malware analysis. Luettavissa: http://botnetlegalnotice.

563 com/citadel/files/Patel_Decl_Ex20. pdf. Luettu.

564 Mucci, P. J., Browne, S., Deane, C. & Ho, G., 1999. PAPI: A portable interface to hardware

565 performance counters. s.l., Proceedings of the department of defense HPCMP users

566 group conference.

567 Narudin, F. A., Feizollah, A., Anuar, N. B. & Gani, A., 2016. Evaluation of machine learning

568 classifiers for mobile malware detection. Soft Computing, 20(1), pp. 343-357.

569 Pedregosa, F. et al., 2011. Pedregosa, Fabian, et al. Scikit-learn: Machine learning in Python..

570 Journal of machine learning research , pp. 2825-2830.

571 Perf , L., 2016. Linux profiling with performance counters.

572 Powers & David, M., 2011. Evaluation: from precision, recall and F-measure to ROC,

573 informedness, markedness and correlation..

574 Sgandurra, D., Muñoz-González, . L., Mohsen, . R. & Lupu, E. C., 2016. Automated Dynamic

575 Analysis of Ransomware: Benefits, Limitations and use for Detection. arXiv preprint

576 arXiv:1609.03020.

577 Singh, B. et al., 2017. On the detection of kernel-level rootkits using hardware performance

578 counters.. In Proceedings of the 17th Asia Conference on Computer and Communications

579 Security (AsiaCCS). ACM, pp. 483-493.

580 Song, S., Kim, B. & Lee, S., 2016. The effective ransomware prevention technique using process

581 monitoring on android platform.

582 Tan, P.-N., Steinbach, . M. & Kumar, V., 2006. Classification: basic concepts, decision trees,

583 and model evaluation.. Introduction to data mining, Volume 1, pp. 145-205.

584 Term, R. C., 2000. R language definition. Vienna, Austria: R foundation for statistical

585 computing.

586 Tian, R., Batten, L., Islam, R. & Versteeg, S., 2009. An Automated Classification System Based

587 on the Strings of Trojan and Virus. s.l., IEEE, pp. 23-30.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

588 Wang, X. et al., 2016. Hardware performance counter-based malware identiication and detection

589 with adaptive compressive sensing. Transactions on Architecture and Code Optimization

590 (TACO).

591 Weaver, V. M., 2013. Linux perf_event features and overhead.. The 2nd International Workshop

592 on Performance Analysis of Workload Optimized Systems, FastPath., Volume 13.

593 Xu, Z., Ray, S., Subramanyan, P. & Malik, S., 2017. Malware detection using machine learning

594 based analysis of virtual memory access patterns.. In Proceedings of the Conference on

595 Design, Automation & Test in Europe European Design , pp. 169-174.

596 Yang, . T., Yang, Y., Qian, K. & Tao, L., 2015. Automated detection and analysis for android

597 ransomware. s.l., IEEE, pp. 1338-1343.

598 Zavarsky, P. & Lindskog, D., 2016. Experimental Analysis of Ransomware on Windows and

599 Android Platforms: Evolution and Characterization. Procedia Computer Science,

600 94(2016), pp. 465-472.

601 Zhang, M., Xu, B. & Wang, D., 2015. An anomaly detection model for network intrusions using

602 one-class SVM and scaling strategy. Cham, Springer, pp. 267-278.

603 Zhang, H., Xiao, X., Mercaldo, F., Ni, S., Martinelli, F. and Sangaiah, A.K., 2019. Classification

604 of ransomware families with machine learning based on N-gram of opcodes. Future

605 Generation Computer Systems, 90, pp.211-221.

606 Zhao, M., Zhang, T., Ge, F. & Yuan, Z., 2012. RobotDroid: A Lightweight Malware Detection

607 Framework On Smartphones. JNW, 7(4), pp. 715-722.

608 Zhou, B. et al., 2018. Hardware Performance Counters Can Detect Malware: Myth or Fact?.. In

609 Proceedings of the 2018 on Asia Conference on Computer and Communications Security.

610 ACM., pp. 457-468.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Table 1(on next page)

Summary of literature review along with their key points, drawbacks and
implementation design approach

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

1

2 Table 1. Summary of literature review along with their key points, drawbacks and

3 implementation design approach.

Reference Methodology Strengths Limitations

Narudin et al.,

(2016)
 Machine learning-based

study

 Filter TCP packets, extract

network traffic features

 Evaluate Bayes, Random

Forest, KNN, J48, & MLP

 Accurate detection based on

ML classifiers.

 BN and RF produces 99.97%

TPR

 Bayes, MLP with ROC 0.995

and RF with 0.991

 Applicable for Android

platform only

Zavarsky and

Lindskog

(2016)

 the life cycle of Windows-

based Ransomware study.

 Implement basic static and

basic dynamic

 MD5 method, Cuckoo

Sandbox used.

 For android Analyze

AndroidManifest.xml,

administrative privilege

 For Windows analyze

Filesystems, registry

activities, and network

operations

 Explained the detailed analysis,

working, and functionality of

Ransomware

 Performed analysis on both the

Windows and Android-based

RW

 PEiD tool is used for windows

ransomware detection

 Performed only basic

static and dynamic

analysis.

 No machine learning-

based approach to detect

zero-day ransomware

 Lack of experimental

analysis

Song, et al.,

(2016)
 Proposed techniques on

three modules:

Configuration, Monitors,

and Processes sing

 the hash information

method is used for

detection of CryptoLocker

type ransomware

 The proposed technique

monitors the processes and

specific file directories

 monitor file events using

statistical methods on Processor

usage, Memory usage, and I/O

rates

 Not applicable for

Windows-based

ransomware

 No classifier is used

 Does not install

applications and execute

for prevention and

detection

 Results are not analyzed

quantitatively

Al-rimy et al.,

(2017)
 Machine learning n-gram,

EFCM,

 Information Gain,

 Sliding window

 Static + dynamic conf

 SVM for behavioral

detection

 Proposed framework inclines to

share the pre-encryption data

space as the main defense step

against crypto-ransomware

attacks

 No classification

 No experimental work

 No results evaluation

details

Kharraz et al.,

(2015)
 Analyzed 15 ransomware

families

 Proposed various

mitigation approaches to

decoy resources to detect

malicious file access.

 Provide evolution-based study

of RW attacks from a long-term

study 2006-2014

 Detailed analysis of Bitcoin for

monetization

 Assumed that every file

system access to delete

or encrypt decoy

resources

 However, they didn’t

implement any concrete

solution to detect or

defend against these

attacks

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Chen and

Robert, (2017)
 Dynamic behavioral

analysis of wanna cry

 Present a method to

extract features of

malware from hosts logs

 TF-IDF approach gives

better results for analyzing

wanna cry

 Research helps in further

manual analysis of logs from

ambient system logs in forensic

efforts.

 Automatically generate

behavior analysis of malware

samples from sandbox log data

 Presentation and

experimented results are

outside the scope of the

paper

 Study not help in

analyzing automatic

pattern generation

Kharraz et al.,

(2016)
 dynamic approach

 Monitors file system I/O

activity

 Detect screen locking

mechanism,

 used Tesseract-OCR

 new ransomware family were

detected that was not detected

previously

 The long-term study analyzed

148223 malware samples and

correctly detect and verified

13637 ransomware samples

 96.3% TP rate and 0 FPs

 Accuracy is not that

good. For example, the

system correctly detects

7,572 ransomware

whereas only one

unknown was detected

Sgandurra et

al., (2016)
 Dynamically monitor file

system activity on

windows platform

 Classify between

goodware and

ransomware using ML

 Mutual Information and

Regularized Logistic

Regression classifier used.

 Proposed machine

learning approach

EldeRan

 e฀ective and entirely

automated tool to analyze new

software and enhance the

detection capabilities of AV

software

 registry key and API calls are

the two classes with the most

relevant features.

 EldeRan achieves ROC curve

of 0.995, detection rate 96.3%

 Despite good results,

EldeRan still not be used

as a replacement for AV

 the current settings have

no other applications

running in the VM,

except the ones coming

with a fresh installation

of Windows,

 initial dataset was larger

 Unable to analyze RW

that shows silent

behavior, or wait for the

user to do something

Kim and Kim

(2015)
 present a quantification

model based on social

engineering technique to

avoid and identify any

cryptographic operations

in the local drive

 explains the file-based intrusion

detection system and IP

traceback algorithm

 Lack of experimental

results

 Suggests guidelines

online

Demme et al.,

(2013)
 Dynamic approach

 Android Malware

detection with

performance counters

 Applied ML algorithms

(KNN, Decision tree)

 Major support is that runtime

behavior can capture using HW

performance counters are

essential to detect malware

 90% accuracy with 3% FP

 Able to detect some

variants whereas some

were not detected

 Malware label data

might not accurate

Alam et al.

2020

 Dynamic Analysis

 Implement Artificial

Neural Network and Fast

Fourier Transformation

 Disk encryption detection

module process used

 Two-step detection framework

named as RAPPER

 an accurate, fast, and reliable

solution to detect ransomware.

 Used minimal tracepoints

 Provide a comprehensive

solution

 to tackle standard benchmark,

 disk encryption and regular high

 computational processes

 HPCs were used to analyze files

using perf tool

 Observe 5 events of

HPCs only i.e., instruction,

cache-references, cache-

misses, branches, and

branch-misses

 Analyze and present all

the case studies by giving a

comparison with

WannaCry only

 Lack of detailed

experimental results and

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

accuracies.

4

5

6

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Table 2(on next page)

Features Set used in this work for performance evaluation (HPCs)

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

1

2

3

4 Table 2. Features Set used in this work for performance evaluation (HPCs).

S.no Hardware Features Description

1 Task-clock

The task-clock explans the amount of time spent on the task (Kuznetsova

et al. 2017)

2 CPU utilization CPU-clock is based on the total time spent on the CPU.

3 Context Switching

explains the number of times the software switched off the CPU from one

process/thread to another (Kuznetsova et al. 2017)

4 CPU Migration

CPU migration refer to equality in a workload distribution across all

cores. (Kuznetsova et al. 2017)

5 Page Faults

Page-faults occur when a program’s virtual content has to be copied to the

physical memory (Kuznetsova et al. 2017)

6 Instructions per cycle The average number of instructions executed for each clock cycle

7 Branch

A branch is an instruction in a computer program that can cause a

computer to begin executing a different instruction sequence and thus

deviate from its default behavior of executing instructions in order

8 Branch Misses

Branch misprediction occurs when a processor mispredicts the next

instruction to process in branch prediction, which is aimed at speeding up

execution.

9 Cycles

Perf-CPU-cycles is a count of CPU cycles that traces to a hardware

counter (Flater & Flater, 2014)

10 Cache Misses

Cache misses is a state of not getting data that is being processed by a

component or application that is not found in the cache.

11 Total Time elapsed It’s the total execution time in seconds

5

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Table 3(on next page)

Features Rank List

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

1

2

3 Table 3. Features rank list.

Rank Score Feature

1 0.20145 cache misses

2 0.181887 taskClock

3 0.153562 Branches

4 0.10867 secondsTimeElapsed

5 0.086973 Instructions

6 0.085666 branchMisses

7 0.044272 contextSwitches

8 0.042727 pageFaults

9 0.040087 CPU migration

10 0.028564 Cycles

11 0.026142 CPUsUtilized

4

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Table 4(on next page)

Decision Tree precision, recall and F-measure score for malware classes (0,1)

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

1

2 Table 4. Decision Tree precision, recall and F-measure score for malware classes (0,1).

Malware Class Precision Recall F- Measure

Ransomware (class label 1) 1.0 0.88 0.93

Non- Ransomware (class label 0) 0.89 1.0 0.94

3

4

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Table 5(on next page)

Random Forest Precision Recall and F-Measure Score against classes 0 and 1

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

1

2 Table 5 Random Forest Precision Recall and F-Measure Score against classes 0 and 1.

Malware Class Precision Recall F- Measure

Ransomware (class label 1) 1.0 0.94 0.97

Non- Ransomware (class label 0) 0.94 1.0 0.97

3

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Table 6(on next page)

Gradient Boosting precision, recall and F-measure score for malware classes

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

1 Table 6 Gradient Boosting precision, recall and F-measure score for malware classes (0,1)

Malware Class Precision Recall F- Measure

Ransomware (class label 1) 1.0 0.88 0.93

Non- Ransomware (class label 0) 0.89 1.0 0.94

2

3

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Table 7(on next page)

Extreme Gradient Boosting precision, recall and F-measure score for malware

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

1 Table 7 Extreme Gradient Boosting precision, recall and F-measure score for malware classes

2 (0,1).

Malware Class Precision Recall F- Measure

Ransomware (class label 1) 1.0 0.94 0.97

Non- Ransomware (class label 0) 0.94 1.0 0.97

3

4

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Table 8(on next page)

Four classifiers result and their comparison F-measure score

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

1 Table 8 Four classifiers result and their comparison F-measure score

Classifier F- Measure

Decision Tree 0.94

Random Forest 0.97

Gradient Boosting 0.94

Extreme Gradient Boosting 0.97

2

3

4

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Figure 1
A map tracking the global spread of Wanna.Cry ransomware (malwaretech.com)

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Figure 2
Feature Set correlation analysis

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Figure 3
Workflow of training and testing phases

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Figure 4
Decision Tree performance metrics

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Figure 5
Random Forest performance metrics

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Figure 6
Gradient Boosting performance metrics

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

Figure 7
Extreme Gradient Boosting performance metrics

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science

