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Due to the expeditious inclination of online services usage, the incidents of ransomware
proliferation being reported are on the rise. Ransomware is a more hazardous threat than
other malware as the victim of ransomware cannot regain access to the hijacked device
until some form of compensation is paid. In the literature, several dynamic analysis
techniques have been employed for detection of malware including ransomware; however,
to the best of our knowledge, hardware execution profile for ransomware analysis has not
been used, as of today. In this study, we present that the hardware execution profile can
be exploited for the identification of ransomware applications. We show that the true
execution picture obtained via a hardware execution profile, is beneficial to identify the
obfuscated ransomware too. We evaluate the features obtained from hardware
performance counters to classify malicious applications into ransomware and non-
ransomware categories using several machine learning algorithms such as Random Forest,
Decision Tree, Gradient Boosting, and Extreme Gradient Boosting. The employed data set
comprises 80 ransomware and 80 non-ransomware applications, which are collected using
the VirusShare platform. The results revealed that extracted hardware features play a
substantial part in the identification and detection of ransomware with an accuracy of
0.97.
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23 Abstract

24 Due to the expeditious inclination of online services usage, the incidents of ransomware 

25 proliferation being reported are on the rise. Ransomware is a more hazardous threat than other 

26 malware as the victim of ransomware cannot regain access to the hijacked device until some 

27 form of compensation is paid. In the literature, several dynamic analysis techniques have been 

28 employed for detection of malware including ransomware; however, to the best of our 

29 knowledge, hardware execution profile for ransomware analysis has not been used, as of today. 

30 In this study, we present that the hardware execution profile can be exploited for the 

31 identification of ransomware applications. We show that the true execution picture obtained via a 

32 hardware execution profile, is beneficial to identify the obfuscated ransomware too. We evaluate 

33 the features obtained from hardware performance counters to classify malicious applications into 

34 ransomware and non-ransomware categories using several machine learning algorithms such as 

35 Random Forest, Decision Tree, Gradient Boosting, and Extreme Gradient Boosting. The 

36 employed data set comprises 80 ransomware and 80 non-ransomware applications, which are 

37 collected using the VirusShare platform. The results revealed that extracted hardware features 

38 play a substantial part in the identification and detection of ransomware with an accuracy of 

39 0.97.
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42

43 Introduction

44 Over the past half a decade, an exponential increase has been reported in ransomware attacks.  

45 Ransomware is the sub-class of malware that hijacks a device and blocks the victim to access the 

46 data until a compensation of some form is made. Typically, this compensation is in the form of 

47 money to concede access back to the victim. Ransomware contains abilities to harmfully affect 

48 various kinds of devices such as personal computers, servers, smartphones, tablets, etc. For 

49 instance, multiple new variants of ransomware including WannaCry ransomware, JAFF, Petya 

50 have been reported in 2017 (Hampton, et al., 2018). On May 12, 2017, within the span of a few 

51 hours, the WannaCry ransomware (Maurya, et al., 2018) infected more than 70,000 desktop 

52 devices in over 150 countries across the globe (Grant & Parkinson, 2018) as shown in Figure 1 

53 (Krebsonsecurity, 2017).

54

55 The economic effects of ransomware can be quite devastating. For instance, CryptoWall_v3 

56 ransomware (Cyber Threat Alliance, 2016; Sgandurra, et al., 2016) caused the loss of an 

57 estimated $325 million in the US from November 2015 to June 2016. Another ransomware 

58 attack, triggered by CryptoWall_v4 ransomware resulted in a loss of $7.1 million worldwide 

59 (Cyber Threat Alliance, 2016). Another recently reported ransomware attack, NotPetya costs $10 

60 billion and WannaCry estimated to have cost $8 billion (Davies, et al. 2020). These attacks 

61 wreaked havoc in systems of various world organizations by halting and damaging their daily 

62 operations.

63

64 Typically, a ransomware displays a ransom note to the victim after encrypting her data. The 

65 majority of the ransomware also specify the instructions regarding compensation payment to 

66 regain access to the device. A ransomware employs different hijacking strategies such as 

67 behaving like an adware resulting in unwanted advertisements or by being hidden using rootkits 

68 to bypass Anti-Viruses (AV) (Demme, et al. 2013). A rootkit is a malware which alters the 

69 operating system (OS) and resides in the system for a prolonged period (Aurangzeb, et al., 2017).

70

71 Although, malware is deemed as a great threat over the years, yet ransomware is even more 

72 daunting threat compared to other malware due to its attacking and demanding nature (i.e., 

73 expecting a ransom in return). Before analyzing the ransomware, one of the mandatory steps is 

74 the accurate identification of a particular type of ransomware and differentiating it from other 

75 typical malware. Broadly, malware analysis techniques are categorized as: 1) static and 2) 

76 dynamic analysis (Chen, et al., 2017). Besides, various researchers have employed the 

77 combinations of the static and dynamic techniques in the form of hybrid analysis techniques. The 

78 procedure of scrutinizing a potential malware without executing the program is referred to as 

79 static analysis, whereas, the analysis performed via observing the execution behavior of a 
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80 malware is known as dynamic analysis. Most contemporary state-of-the-art dynamic analysis 

81 techniques detect and classify ransomware that hide themselves using various obfuscation 

82 techniques such as packed programs, compressed, or data transformation, indirect addressing, 

83 etc. (Behera & Bhaskari, 2015). Today, various anti-viruses tackle malware to dampen their 

84 caused and expected damages. However, the techniques employed by the anti-viruses are often 

85 limited to the prior knowledge (e.g., signatures, etc.) and lack a comprehensive dynamic analysis 

86 that could detect ransomware, employing the obfuscation techniques (Demme, et al., 2013).

87

88 On the other hand, Hardware Performance Counters (HPCs) have been typically used by the 

89 programmers to analyze and measure the performance of applications and to identify the 

90 execution bottlenecks of a program with the purpose of improving it on a target platform 

91 (Beneventi, et al. 2017). Initially, HPCs were employed for investigating the static and dynamic 

92 analysis of programs in order to detect any malicious amendments as mentioned in (Alam, et 

93 al.,2020) and (Malone, et al., 2011). In the study (Zhou, et al., 2018), the authors surveyed to 

94 identify whether HPCs are useful in differentiating the malware from benign applications. 

95 However, the study did not consider malware as ransomware; rather it considers revoking access 

96 to network activities. In this paper, we present a framework based on dynamic analysis that 

97 mainly focuses on the classification of ransomware from non-ransomware. Moreover, the 

98 classification of ransomware from traditional malware is essential because of their higher 

99 damaging impact in terms of informative data and financial loss. Compare to typical malware, it 

100 is more challenging to identify and kill ransomware even when it is discovered, and the damage 

101 can be potentially irreparable even after its deletion (Al-remy, et al., 2018) and (Zhang, et al., 

102 2019). Hence, we require proactive and aggressive techniques to handle ransomware. Moreover, 

103 it is very challenging to recognize and isolate the malware from ransomware due to the similarity 

104 in nature. A ransomware is more menacing than malware, as it not only damages the system and 

105 results in loss of control from the system, but also demands a compensation in return. Therefore, 

106 there is a need to have proper distinction of ransomware from other malware (Aurangzeb et al, 

107 2017; Kok et al., 2019 and Zhang, et al., 2019) in order to save billions of illegal transactions 

108 (Davies, et al 2020) in the name of ransom.

109

110 Several studies (Das et al., 2019; Demme, et al., 2013; Singh, et al., 2017; and Wang, et al., 

111 2016) discuss potential implications of using Hardware Performance Counters (HPC) for 

112 application analysis, and the majority of them suggest that hardware execution profile can 

113 effectuate the detection of malware (Demme, et al., 2013; Singh, et al., 2017; and Wang, et al., 

114 2016). Another study (Xu, et al., 2017) has utilized the hardware execution profiles to detect 

115 malware using machine learning algorithms, as malware changes data structures and control 

116 flow, leaving fingerprints on accesses to program memory. In this respect, they proposed a 

117 framework for detecting malware from benign applications that use machine learning to classify 

118 malicious behavior of malware based on access patterns of virtual memory. Hence, it is still an 

119 open research question whether to utilize HPC or not for detection of malware. However, 
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120 utilizing the hardware performance measurements and the profile of the low-level execution 

121 behavior has not been previously studied for the analysis and detection of ransomware 

122 applications. We argue that ransomware reveals itself by exhibiting peculiar HPCs (e.g., through 

123 clock cycles, cache misses and hits, branch instructions and misses, retired instructions, etc.). 

124 This paper contemplates HPCs to detect Microsoft Windows-based ransomware by analyzing the 

125 execution behavior of ransomware. We primarily focus to determine the potential use of HPCs in 

126 analyzing and proactively detecting ransomware. Moreover, the classification of ransomware 

127 from malware is imperative because the damages caused by ransomware drastically ensure the 

128 data and monetary loss. To address this concern, we propose a mechanism which utilizes the 

129 application execution profile for the classification and detection of ransomware from non-

130 ransomware. For classification, the application’s hardware related performance features are 

131 extracted from the data set of 160 malware (consisting of 80 ransomware and 80 non-

132 ransomware). Afterward, these features are fed to some well-known machine learning 

133 classification models such as Decision Tree (Kohavi, 1996), Random Forest (Liaw, et al., 2002), 

134 Gradient Boosting (Friedman, 1999), and Extreme Gradient Boosting (Chen, et al., 2015). These 

135 four classifiers are generally used for classification tasks of various applications including spam 

136 detection, face recognition, and financial predictions (Jordan and Mitchell, 2015), etc. We 

137 employ these four classifiers as part of the proposed methodology to analyze their performance 

138 for ransomware detection. These models perform binary classification of malicious software into 

139 ransomware or non-ransomware classes. In summary, the main contributions of this paper are as 

140 follows:

141

142  In-depth analysis of the current state-of-the-art to identify the merits and demerits of several 

143 existing approaches;

144  A novel mechanism for the classification and detection of malicious applications into 

145 ransomware and non-ransomware; and

146  Empirical investigation of the HPCs against state-of-the-art dynamic techniques using 

147 machine learning classifiers;

148

149 The outcomes revealed that the random forest classifier has outperformed decision tree, gradient 

150 boosting, and extreme gradient boosting by attaining accuracy of 0.97 for classification. 

151

152 The rest of the paper is organized as follows. Section 2 describes the related work. Section 3 

153 presents the proposed methodology, dataset, and feature extraction mechanism. In Section 4, the 

154 experimental setup details, results, and related discussions are presented and Section 5 concludes 

155 the paper.

156

157 Related Work
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158 For dynamic analysis, it is necessary to collect key ransomware features at runtime. Most of the 

159 dynamic analysis-based research studies exploit the renowned malware databases1 for the 

160 acquisition of malicious software and use quarantine environments (such as Cuckoo’s sandbox 

161 (Kaur, Dhif and Singh 2017)) to execute the applications.

162

163 In (Zavarsky and Lindskog 2016), the authors presented an experimental analysis of Microsoft 

164 Windows and Android-based ransomware. This analysis demonstrates that ransomware detection 

165 could be performed by monitoring the abnormalities in the file system and registry activities. It 

166 was shown that a significant number of ransomware families exhibit very similar characteristics. 

167 Moreover, the authors concluded that changes in a particular set of registry keys are important 

168 aspects to be analyzed for ransomware detection. The authors discovered that Microsoft 

169 Windows 10 is reasonably effective against ransomware attacks. Moreover, this study also 

170 revealed that for the Android platform, the Android Manifest file and the permissions (required 

171 by an app) should also be considered for ransomware detection.

172

173 Several researchers utilized the hash information (i.e., comparing hash values) to detect the 

174 CryptoLocker ransomware (Song, Kim, and Lee 2016). The affected systems are recovered by 

175 the following ways: 1) process CryptoLocker, 2) comparing hash information with the encrypted 

176 data files 3) validating the key using the key-index information stored therein, and 4) proceeding 

177 to decode. Generally, this type of process consumes a lot of time for ransomware detection with 

178 a potential risk that another ransomware appears until a security company comes up with 

179 decryption keys of the old ransomware. Moreover, additional analysis is needed to detect new 

180 patterns of ransomware as the hackers persistently come up with new variants of ransomware. 

181 On the Android platform, another technique is proposed (Song, Kim, and Lee 2016) to prevent 

182 the ransomware intrusion. The technique requires intense monitoring of the executing processes 

183 and analysis of the particular file directories using the statistical techniques, such as Next-

184 generation Intrusion Detection Expert System (NIDES) (Anderson et al, 1995) using processor, 

185 memory usage, and I/O rates, to uncover the applications exhibiting abnormal behavior (Song, 

186 Kim and Lee 2016).

187

188 Several other research studies have harnessed the machine learning-based approaches and 

189 dynamic or runtime features of executing applications to detect ransomware. Recently, HPC 

190 events and their features are being used widely in research to detect side-channel attacks and 

191 ransomware. Another research (Alam et al. 2020) uses HPC features to detect malware from 

192 benign applications. The study used machine learning techniques Recurrent Neural Networks 

193 (RNN) to examine HPC data. The authors proposed an anomaly detection technique to identify 

194 the malicious ransomware in few seconds with very few false positives. Maiorca et al., (Maiorca 

195 et al. 2017) proposed a supervised machine learning-based procedure, R-PackDroid, to detect 

1 www.virusshare.com
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196 Android ransomware, which is a light-weight technique and does not require prior knowledge of 

197 ransomware’s encryption mechanisms. However, the R-PackDroid technique uses fully 

198 encrypted code-files and is unable to analyze the applications that load the code at run-time. The 

199 R-PackDroid can be incorporated with the other dynamic analysis methods, such as the approach 

200 proposed by (Kimberly et al., 2015). Moreover, R-PackDroid based application analysis strongly 

201 depends on parsing capabilities of the ApkTool framework.

202

203 In the study (Narudin, et al. 2016), a machine learning-based malware analysis approach based 

204 on the anomaly detection mechanism is presented. The results indicated that Bayes network and 

205 Random Forest classifiers produce accurate results by attaining 99.97% True-Positive Rate 

206 (TPR) as compared to the multi-layer perceptron technique with only 93.03% TPR using the 

207 MalGenome data set. However, the accuracy of this scheme dropped to 85% for the latest 

208 malware experiments.

209

210 Desktop ransomware can easily bypass any counter-measures and thus results in the seizure of 

211 personal data. Authors (Al-rimy, Maarof, and Shaid 2017) presented an effective mechanism for 

212 early diagnosis and avoidance of the crypto-ransomware, which is based on machine learning 

213 techniques (One-Class SVM and n-gram technique (Zhang, et al., 2015)) and comprises three 

214 modules: 1) pre-processing, 2) features engineering and 3) detection module. The authors 

215 employed an adaptive anomaly detection mechanism that handles the dynamic characteristics of 

216 systems and frequently updates the normal profile built from the feature extraction (Al-rimy, et 

217 al., 2017) in order to improve the accuracy of detection.

218

219 The study (Kharraz, Roberstson, et al. 2015) presented the analysis of ransomware families (the 

220 year 2006—2014) and concluded that the suspicious activity of file system should be observed 

221 for ransomware detection. For instance, the changes in the types of I/O Request Packets (IRP) or 

222 the Master File Table (MFT) are usually formed to access the file system. The study concluded 

223 that a considerable number of ransomware families share related features as a core part of the 

224 attacks; however, there still lacks a reliable destructive function to successfully infect files of 

225 victims. In Table 1, we recapitulate several other prominent ransomware detections (Yang, et al. 

226 2015; Andronio, Zanero and Maggi 2015; Kharraz, Arshad, et al. 2016) and prevention 

227 (Ahmadian, Shahriari and Ghaffarian 2015; Kim, Soh and Kim 2015; Lee, Moon and Park 2016; 

228 Brewer 2016) techniques.

229

230 Besides, the performance counters exhibit the true application execution behavior and are being 

231 employed by the researchers to analyze application performance (Mucci, et al., 1999) (Bahador, 

232 et al., 2014) (Demme, et al., 2013). However, none of the existing dynamic analysis techniques 

233 utilizes the important dynamic feature of HPCs to detect malicious applications. Malware can 

234 employ obfuscation techniques to deceive static analysis based anti-viruses. Furthermore, 

235 runtime behavior cannot be obfuscated and can be detected using dynamic analysis. We believe 

236 this fact should essentially be exploited and the hardware execution profile should be utilized to 
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237 execute applications for ransomware detection. Based on these aspects, we argue that HPCs are 

238 useful features that could be utilized for the detection and classification of ransomware. In this 

239 study, we employ various machine learning classifiers such as Decision Tree, Random Forest, 

240 Gradient Boosting, and Extreme Gradient Boosting along with the HPCs to address the following 

241 questions:

242

243 (1) How different are ransomware from malware at runtime considering machine learning 

244 techniques?

245 (2) Which of the hardware performance counters (HPC) play vital role in ransomware 

246 detection?

247

248 Motivation and Methodology

249 The dynamic analysis holds adequate potential to accurately detect the threat of ransomware 

250 because an executable program cannot hide its true characteristic. Therefore, most of the anti-

251 virus vendors rely on automated dynamic analysis mechanisms to detect new variants of 

252 ransomware. Most of the antivirus applies the heuristics combined with the behavior analysis to 

253 deduce whether an executable is benign or malware (Sgandurra et al. 2016).

254

255 A wide range of CPU performance counters i.e., clock cycles, cache hits, cache misses, branch 

256 instructions, branch misses, retired instructions, etc. are used to observe the behavior of an 

257 executing application (Chiappetta, Savas and Yilmaz 2016). Usually, the symmetric encryption 

258 marks the cache-based events while the asymmetric encryptions does have an impact on the 

259 instruction and branching events as explained in (Alam, et al., 2020). The performance counters 

260 have been harnessed by many application developers to identify the computation and memory 

261 bottlenecks to improve the performance and reliability of the executing applications (Chiappetta 

262 et al. 2016). In this study, we utilize 11 performance counters for the classification of 

263 ransomware. For classification, we train the employed machine learning classifiers to analyze the 

264 dynamic behavior of ransomware and non-ransomware malicious programs. Moreover, the 

265 classification of Ransomware from Traditional Malware is essential due to the intensity of the 

266 damage caused in terms of informative data and financial loss. Unlike traditional malware, it is 

267 more troublesome to identify and kill ransomware even when it is discovered, and the damage is 

268 irreparable even after its removal (Al-remy, et al., 2018) and (Zhang, et al., 2019). Hence, it is 

269 very important to recognize and isolate the malware from ransomware due to the similarity in 

270 nature. Therefore, it is required to devise a formal classification mechanism to discriminate 

271 ransomware from other non-ransomware (Zhang, et al., 2019), (Aurangzeb et al, 2017) and (Kok 

272 et al., 2019) to avoid billions of transactions in the name of ransom.

273

274 DATASET COLLECTION

275 For the experimentation, we have investigated randomly selected 160 Windows-based malware 

276 from VirusShare. Afterward, each malware is labeled as a non-ransomware or ransomware based 
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277 on the information provided by renowned anti-viruses such as VirusShare. These labeled tags are 

278 then further validated with the tags available from VirusShare for the sake of confirmation. In 

279 this study, benign binary files are not considered because the main aim of the study is to classify 

280 between the ransomware and other malicious applications. Therefore, we consider the malicious 

281 applications category Trojan (as a non-ransomware sample) due to their similarity in activities 

282 with the ransomware (Gazet 2010). The employed classifiers are trained using the behavioral 

283 features for ransomware and non-ransomware with explicit labeling (i.e., Ransomware/Non-

284 Ransomware). Furthermore, a disjoint data set is used for training and testing purposes.

285 FEATURE EXTRACTION

286 All malware in the data set are executed in a quarantine environment and their data related to 

287 hardware performance counters are collected using perf (an instrumentation and performance 

288 analysis tool (Weaver, 2013) (Alam et al., 2020)). To ensure the reliability and accuracy of the 

289 results, mean values of three rounds of experiments are reported.

290

291 For binary classification, we employ hardware performance counters as features, i.e., 1) task 

292 clock, 2) context switching, 3) CPU utilized, 4) CPU migrations, 5) page faults, 6) CPU cycles, 

293 7) cache-misses, 8) instructions retired, 9) branches taken, 10) branch-misses, and 11) execution 

294 time, (illustrated in Table 2) to train the machine learning classifier.  Feature selection plays a 

295 significant role in achieving precise training of the employed machine learning models; thereby 

296 attaining accurate results with efficient performance and low overhead (Li, et al., 2017). 

297 Correlation matrix among the employed features is generated to analyze the pattern that leads to 

298 selection of features. Two features are considered negatively correlated if a change of one feature 

299 inversely impacts the value of the other feature. The features correlation analysis is presented in 

300 Figure 1.  If two numerical features are highly correlated, then one of them can be ignored. 

301 Therefore, we employed a sub-set of those features which are not co-related to reduce the 

302 computation overhead during the training process of the machine learning models. For E.g., 

303 Figure 1 shows that the Cache Misses related hardware feature has a low positive correlation 

304 with all the other features showing that the increase in the Cache Misses does not necessarily 

305 cause an increment in other hardware features. On the other hand, the Task Clock feature has a 

306 strong relationship with the Context Switches, Cycles, Instructions, Branches, and Branches 

307 Misses, which indicates that with the increase in Task Clock, the other highly correlated features 

308 also increase. The features having higher rank are deemed as potential features for classification 

309 than low ranked features as shown in Table 3.

310

311 In the training phase, hardware features are extracted by executing known malware and non-

312 malware application in containing environment system units as shown in Figures 2a and 2b. 

313 Depending upon the labels assigned by the VirusShare, each executed malware is labeled as 

314 ransomware or non-ransomware.  The vectors consisting of hardware performance features with 

315 the application category and classification label (ransomware or non-ransomware), are provided 
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316 to the machine learning classifiers. 80% of the employed data set is used for training and 20% is 

317 used for testing. The goal of the supervised machine learning is to find a function that is trained 

318 using the employed features such that the error is minimum for the new or unseen data. In the 

319 training phase, the classification model is trained using the hardware performance features as 

320 shown in Table 2. The testing or validation methodology is performed after the training of the 

321 classifiers.

322

323 CLASSIFICATION MODEL

324 The machine learning classification algorithms namely Decision Tree, Random Forest, Gradient 

325 Boosting, and Extreme Gradient Boosting are used for classification purpose that including 

326 phishing detection, facial recognition, and financial predictions (Jordan and Mitchell, 2015), etc. 

327 We employ these four classifiers as part of the proposed methodology to analyze their 

328 performance for ransomware detection.

329

330 The decision tree is a tree-based classifier, which contains a root, internal nodes, and leaf nodes. 

331 The class label is assigned to each leaf node and the decisions are rendered by the internal nodes 

332 (Tan, et al., 2006). Random Forest (RF) classifier is based on a combination of multiple decision 

333 tree predictors such that each tree depends on the values of a random vector sampled 

334 independently and with the same distribution for all trees in the forest (Tian, et al. 2009). The 

335 Extreme Gradient Boosting and Gradient Boosting follow the same basic principle however, 

336 there are a few differences in their modeling details. Specifically, extreme gradient boosting 

337 utilizes a more regularized model formalization to control over-fitting problem that may occur 

338 due to linear fitting over noisy data to provide better performance (Jbabdi, et al., 2012).

339

340 Results and Discussion

341 For experimentation, we utilize a system with Intel core i7 processor, 8 GBs of memory and 

342 Ubuntu 12.10 OEM as operating system. For classification, a machine learning tool Scikit-learn 

343 (Pedregosa, et al., 2011), is employed. To evaluate the results, standard evaluation measures i.e., 

344 precision, recall, and F-Measure are calculated to determine the accuracy of each classifier. 

345 Equations 1—4 provide the mathematical description of accuracy, precision, recall, and f-

346 measure, respectively. The terms used in Equations 1—4 are explained as follows: True Positive 

347 (TP) rate shows the number of predicted positives that are correct, while the False Positive (FP) 

348 rate refers to the number of predicted positives that are incorrect. Similarly, True Negative (TN) 

349 rate shows the number of predicted negatives that are correct while the False Negative (FN) rate 

350 refers to the number of predicted negatives that are incorrect. The recall is the sensitivity for the 

351 most relevant result. F-measure is the value that estimates the entire system performance by 

352 calculating the harmonic mean of precision and recall. The maximum value of 1.000 for 

353 accuracy precision and recall indicates the best result (Narudin, et al., 2016).

354
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355 Accuracy =       (1)
TP +  TN

TP + TN + FP + FN

356

357 Precision denotes the proportion of Predicted Positive cases that are correctly Real Positives.

358 Precision =   (2)
TP 

TP +  FP

359

360 The recall is the proportion of Real Positive cases that are Predicted Positive

361 Recall =  (3)
TP 

 TP +  FN

362 F-Measure = (4)2𝑥(Precision × Recall)

(Precision + Recall)

363

364 Receiver Operating Characteristic (ROC) curves (Metz, 1978) are extensively being applied in 

365 significant researches to measure the accuracy of the machine learning models that are being 

366 trained to achieve actual performance (Bradley, 1997). Furthermore, ROC curves are applied in 

367 numerous systematic approaches that merge multiple clues, test results, etc., and are plotted and 

368 evaluated to characterize a qualitative feature of the particular. ROC is a plot wherein Y-axis is 

369 reserved for True Positive Rate (TPR) and X-axis is reserved for False Positive Rate (FPR). For 

370 all possible classification such as the output class, the TPR rate depends on the set-up where the 

371 real classification is considered to be as positive and the number of times the classifier has 

372 predicted the result to be as positive. The FPR can be defined as how the classifier incorrectly 

373 labelled positive to those that are actually classified to be as negative. Together the TPR and FPR 

374 values lies in-between 0—1 in a way that 0 label as poor prediction however 1 labelled to be as 

375 highly-accurate prediction. The area under ROC (AUC) is now applied for weighing classifiers 
376 to get their performance updates (Narudin, et al., 2016). 

377

378 The results based on the decision tree classifier can be clearly seen in Figure 3. The ROC curve 

379 for both classes (i.e., ransomware as class “1” and non-ransomware as class “0”) is the same 

380 having value 0.94 which signifies the excellent prediction. However, the precision-recall curve 

381 area of class 0 i.e., for Non-Ransomware it is 0.89 or 89% whereas for class 1 i.e., ransomware 

382 the AUC value is 0.93. The F-measure score of the Decision Tree is 0.94 as shown in Table 4.

383

384 The results obtained using the Random Forest classifier for two classes (i.e., ransomware and 

385 non-ransomware) are shown in Figure 4. The higher accuracy results are evident from the 

386 similar ROC curve value i.e., 0.99 for both the ransomware and non-ransomware classes. The 

387 Random Forest-based classification model outperformed decision tree-based classification by 

388 attaining the accuracy of 0.94, as shown in Table 8).  However, the value of F-measure for both 

389 the classes is 0.97 (as shown in Table 8).

390
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391 The gradient boosting classification-based results are shown in Figure 5. The results revealed 

392 that the ROC curve values for both the classes (i.e., ransomware and non-ransomware) are the 

393 same (i.e., 1.0) and the precision-recall curve of both classes is 1.0. The F-measure score of the 

394 gradient boosting classifier is 0.93 for ransomware and 0.94 for non-ransomware (as shown in 

395 Table 6).

396

397 The extreme gradient boosting classification model-based results are shown in Figure 6 and 

398 Table 7. The ROC curve and Precision-Recall Curve of both classes (i.e., ransomware and non-

399 ransomware) are the same (i.e., 1.0). The extreme gradient boosting based model’s F-measure 

400 score is 0.97, which is similar to the gradient boosting and random forest-based classification as 

401 shown in Table 8. The model has attained an improvement of 3% than the decision tree-based 

402 classification. The model shows similar results of 0.97 as observed for random forest and 

403 gradient boosting.

404

405 This study has demonstrated the possibility of exploiting HPCs as the potential features for 

406 ransomware detection. After analyzing the sets of ransomware and non-ransomware, the features 

407 obtained from HPCs have been analyzed to classify malicious applications into ransomware and 

408 non-ransomware categories using several machine learning algorithms such as Decision Tree, 

409 Random Forest, Gradient Boosting, and Extreme Gradient Boosting. The results of detailed 

410 experiments as stated earlier in the section have revealed that extracted hardware features play a 

411 significant role in the detection and identification of ransomware. Among all the employed 

412 machine learning classifiers, the random forest-based model has outperformed by yielding an 

413 accuracy of 0.97 followed by a decision tree with an accuracy of 0.94. Moreover, the features 

414 cache misses, task clock, and branches obtained through HPCs could be deemed as potential 

415 parameters in classifying ransomware from non-ransomware.

416

417 Conclusions

418 The origination of new variants of ransomware and expeditious increase in its families has 

419 adhered to the software developers to efficiently detect and deal with such applications. In the 

420 literature, numerous studies have been performed to address different applications of 

421 ransomware. However, these schemes contain some deficiencies that allow cybercriminals to 

422 bypass security measures. The addition of hardware support and hardware performance analysis 

423 could be deemed as potential measures to deal against ransomware to new grounds. The 

424 hardware-based analysis and diagnosing the potential threat at the early stages could beneficiate 

425 the process of ransomware detection before its malicious activity. In this paper, the analysis of 

426 HPCs has been presented for Windows ransomware classification. The results have revealed that 

427 the HPCs hold the considerable potential to expose hidden indicators of the executing 

428 applications such as malicious codes and ransomware. Performance counters, i.e., cache misses, 

429 task clock, and branches have played a pivotal role in classifying ransomware in a way that if 

430 there are a high number of cache misses or a high number of branch mispredictions (where 
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431 control flow becomes detectably anomalous) are good indicators that help in indicating a 

432 potential attack (Foreman, 2018). The proposed technique holds adequate potential to provide 

433 sufficient detection accuracy by attaining the F-measure score of 0.97. This study demonstrated 

434 the possibility of exploiting HPCs as the potential feature for the detection of ransomware. 

435 However, this topic needs further investigation. In the future, we intend to scrutinize other 

436 dynamic features with the combination of call graphs to detect and classify ransomware. 

437 Moreover, the application of machine learning algorithms has shown very promising results in 

438 ransomware detection. In the future, we will expand this study to perform in-depth static analysis 

439 as well as dynamic analysis with the combination of HPCs in the detection of that ransomware 

440 that usually hides by implementing various obfuscation techniques (like packed or compressed 

441 programs, or indirect addressing (Behera & Bhaskari, 2015)). One major challenge and 

442 limitation of this research is in ransomware detection of false positives and false negatives.  

443 Consider the case of Qwerty ransomware, which uses a benign GPG executable to perform 

444 encryption.  Perhaps the proposed solution would correctly detect the GPG binary when used in 

445 this way, but we suspect it would also detect it in a benign case.  Since in this work we did not 

446 evaluate benign executables, it is not clear how the system performs with software that performs 

447 encryption and/or compression tasks which is the limitation of this research that will be 

448 investigated in our future work.

449
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1

2 Table 1. Summary of literature review along with their key points, drawbacks and 

3 implementation design approach.

Reference Methodology Strengths Limitations

Narudin et al., 

(2016)
 Machine learning-based 

study

 Filter TCP packets, extract 

network traffic features

 Evaluate Bayes, Random 

Forest, KNN, J48, & MLP  

 Accurate detection based on 

ML classifiers.

 BN and RF produces 99.97% 

TPR

 Bayes, MLP with ROC 0.995 

and RF with 0.991

 Applicable for Android 

platform only

Zavarsky and

Lindskog

(2016)

 the life cycle of Windows-

based Ransomware study.

 Implement basic static and 

basic dynamic

 MD5 method, Cuckoo 

Sandbox used.

 For android Analyze 

AndroidManifest.xml, 

administrative privilege

 For Windows analyze 

Filesystems, registry 

activities, and network 

operations

 Explained the detailed analysis, 

working, and functionality of 

Ransomware

 Performed analysis on both the 

Windows and Android-based 

RW

 PEiD tool is used for windows 

ransomware detection

 Performed only basic 

static and dynamic 

analysis.

 No machine learning-

based approach to detect 

zero-day ransomware

 Lack of experimental 

analysis

Song, et al., 

(2016)
 Proposed techniques on 

three modules: 

Configuration, Monitors, 

and Processes sing 

 the hash information 

method is used for 

detection of CryptoLocker 

type ransomware

 The proposed technique 

monitors the processes and 

specific file directories

 monitor file events using 

statistical methods on Processor 

usage, Memory usage, and I/O 

rates

 Not applicable for 

Windows-based 

ransomware

 No classifier is used

 Does not install 

applications and execute 

for prevention and 

detection

 Results are not analyzed 

quantitatively

Al-rimy et al.,

(2017)
 Machine learning n-gram, 

EFCM,

 Information Gain,

 Sliding window

 Static + dynamic conf

 SVM for behavioral 

detection

 Proposed framework inclines to 

share the pre-encryption data 

space as the main defense step 

against crypto-ransomware 

attacks

 No classification

 No experimental work

 No results evaluation 

details

Kharraz et al., 

(2015)
 Analyzed 15 ransomware 

families

 Proposed various 

mitigation approaches to 

decoy resources to detect 

malicious file access.

 Provide evolution-based study 

of RW attacks from a long-term 

study 2006-2014

 Detailed analysis of Bitcoin for 

monetization

 Assumed that every file 

system access to delete 

or encrypt decoy 

resources

 However, they didn’t 

implement any concrete 

solution to detect or 

defend against these 

attacks
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Chen and 

Robert, (2017)
 Dynamic behavioral 

analysis of wanna cry

 Present a method to 

extract features of 

malware from hosts logs

 TF-IDF approach gives 

better results for analyzing 

wanna cry

 Research helps in further 

manual analysis of logs from 

ambient system logs in forensic 

efforts.

 Automatically generate 

behavior analysis of malware 

samples from sandbox log data

 Presentation and 

experimented results are 

outside the scope of the 

paper

 Study not help in 

analyzing automatic 

pattern generation

Kharraz et al.,

(2016)
 dynamic approach

 Monitors file system I/O 

activity

 Detect screen locking 

mechanism,

 used Tesseract-OCR

 new ransomware family were 

detected that was not detected 

previously

 The long-term study analyzed 

148223 malware samples and 

correctly detect and verified 

13637 ransomware samples

 96.3% TP rate and 0 FPs

 Accuracy is not that 

good. For example, the 

system correctly detects 

7,572 ransomware 

whereas only one 

unknown was detected

Sgandurra et 

al., (2016)
 Dynamically monitor file 

system activity on 

windows platform

 Classify between 

goodware and 

ransomware using ML

 Mutual Information and 

Regularized Logistic 

Regression classifier used.

 Proposed machine 

learning approach 

EldeRan

 e฀ective and entirely 

automated tool to analyze new 

software and enhance the 

detection capabilities of AV 

software

 registry key and API calls are 

the two classes with the most 

relevant features.

 EldeRan achieves ROC curve 

of 0.995, detection rate 96.3%

 Despite good results, 

EldeRan still not be used 

as a replacement for AV

 the current settings have 

no other applications 

running in the VM, 

except the ones coming 

with a fresh installation 

of Windows,

 initial dataset was larger

 Unable to analyze RW 

that shows silent 

behavior, or wait for the 

user to do something

Kim and Kim

(2015)
 present a quantification 

model based on social 

engineering technique to 

avoid and identify any 

cryptographic operations 

in the local drive

 explains the file-based intrusion 

detection system and IP 

traceback algorithm

 Lack of experimental 

results

 Suggests guidelines 

online

Demme et al.,

(2013)
 Dynamic approach

 Android Malware 

detection with 

performance counters

 Applied ML algorithms 

(KNN, Decision tree)

 Major support is that runtime 

behavior can capture using HW 

performance counters are 

essential to detect malware

 90% accuracy with 3% FP

 Able to detect some 

variants whereas some 

were not detected

 Malware label data 

might not accurate

Alam et al. 

2020

 Dynamic Analysis

 Implement Artificial

Neural Network and Fast 

Fourier Transformation

 Disk encryption detection 

module process used

 Two-step detection framework 

named as RAPPER 

 an accurate, fast, and reliable 

solution to detect ransomware.

 Used minimal tracepoints

 Provide a comprehensive 

solution

 to tackle standard benchmark,

 disk encryption and regular high

 computational processes

 HPCs were used to analyze files 

using perf tool

 Observe 5 events of 

HPCs only i.e., instruction, 

cache-references, cache-

misses, branches, and 

branch-misses

 Analyze and present all 

the case studies by giving a 

comparison with 

WannaCry only

 Lack of detailed 

experimental results and 
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accuracies.

4

5  

6
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Features Set used in this work for performance evaluation (HPCs)
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2

3

4 Table 2. Features Set used in this work for performance evaluation (HPCs).

S.no Hardware Features Description

1 Task-clock

The task-clock explans the amount of time spent on the task (Kuznetsova 

et al. 2017)

2 CPU utilization CPU-clock is based on the total time spent on the CPU.

3 Context Switching

explains the number of times the software switched off the CPU from one 

process/thread to another (Kuznetsova et al. 2017)

4 CPU Migration

CPU migration refer to equality in a workload distribution across all 

cores. (Kuznetsova et al. 2017)

5 Page Faults

Page-faults occur when a program’s virtual content has to be copied to the 

physical memory (Kuznetsova et al. 2017)

6 Instructions per cycle The average number of instructions executed for each clock cycle

7 Branch

A branch is an instruction in a computer program that can cause a 

computer to begin executing a different instruction sequence and thus 

deviate from its default behavior of executing instructions in order

8 Branch Misses

Branch misprediction occurs when a processor mispredicts the next 

instruction to process in branch prediction, which is aimed at speeding up 

execution.

9 Cycles

Perf-CPU-cycles is a count of CPU cycles that traces to a hardware 

counter (Flater & Flater, 2014)

10 Cache Misses

Cache misses is a state of not getting data that is being processed by a 

component or application that is not found in the cache. 

11 Total Time elapsed It’s the total execution time in seconds

5
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Features Rank List

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science



1

2

3 Table 3. Features rank list.

Rank Score Feature

1 0.20145 cache misses

2 0.181887 taskClock

3 0.153562 Branches

4 0.10867 secondsTimeElapsed

5 0.086973 Instructions

6 0.085666 branchMisses

7 0.044272 contextSwitches

8 0.042727 pageFaults

9 0.040087 CPU migration

10 0.028564 Cycles

11 0.026142 CPUsUtilized

4
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Table 4(on next page)

Decision Tree precision, recall and F-measure score for malware classes (0,1)
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1

2 Table 4. Decision Tree precision, recall and F-measure score for malware classes (0,1).

Malware Class Precision Recall F- Measure

Ransomware (class label 1) 1.0 0.88 0.93

Non- Ransomware (class label 0) 0.89 1.0 0.94

3

4
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Table 5(on next page)

Random Forest Precision Recall and F-Measure Score against classes 0 and 1

PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52627:0:1:NEW 19 Sep 2020)

Manuscript to be reviewedComputer Science



1

2 Table 5 Random Forest Precision Recall and F-Measure Score against classes 0 and 1.

Malware Class Precision Recall F- Measure

Ransomware (class label 1) 1.0 0.94 0.97

Non- Ransomware (class label 0) 0.94 1.0 0.97

3
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Table 6(on next page)

Gradient Boosting precision, recall and F-measure score for malware classes
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1 Table 6 Gradient Boosting precision, recall and F-measure score for malware classes (0,1)

Malware Class Precision Recall F- Measure

Ransomware (class label 1) 1.0 0.88 0.93

Non- Ransomware (class label 0) 0.89 1.0 0.94

2

3
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Table 7(on next page)

Extreme Gradient Boosting precision, recall and F-measure score for malware
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1 Table 7 Extreme Gradient Boosting precision, recall and F-measure score for malware classes 

2 (0,1).

Malware Class Precision Recall F- Measure

Ransomware (class label 1) 1.0 0.94 0.97

Non- Ransomware (class label 0) 0.94 1.0 0.97

3

4
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Table 8(on next page)

Four classifiers result and their comparison F-measure score
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1 Table 8 Four classifiers result and their comparison F-measure score

Classifier F- Measure

Decision Tree 0.94

Random Forest 0.97

Gradient Boosting 0.94

Extreme Gradient Boosting 0.97

2  

3

4
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Figure 1
A map tracking the global spread of Wanna.Cry ransomware (malwaretech.com)
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Figure 2
Feature Set correlation analysis
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Figure 3
Workflow of training and testing phases
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Figure 4
Decision Tree performance metrics
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Figure 5
Random Forest performance metrics
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Figure 6
Gradient Boosting performance metrics
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Figure 7
Extreme Gradient Boosting performance metrics
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