
On the classification of Microsoft-Windows
ransomware using hardware profile
Sana Aurangzeb1,*, Rao Naveed Bin Rais2,*, Muhammad Aleem3,
Muhammad Arshad Islam3 and Muhammad Azhar Iqbal4

1 Department of Computer Science, National University of Modern Languages, Islamabad,
Islamabad, ICT, Pakistan

2 College of Engineering and Information Technology, Ajman University, Ajman,
United Arab Emirates

3 Department of Computer Science, National University of Computer and Emerging Sciences,
Islamabad, Islamabad, ICT, Pakistan

4 School of Information Science and Technology (SIST), Southwest Jiaotong University, Chengdu,
China

* These authors contributed equally to this work.

ABSTRACT
Due to the expeditious inclination of online services usage, the incidents of
ransomware proliferation being reported are on the rise. Ransomware is a more
hazardous threat than other malware as the victim of ransomware cannot regain
access to the hijacked device until some form of compensation is paid. In the
literature, several dynamic analysis techniques have been employed for the detection
of malware including ransomware; however, to the best of our knowledge, hardware
execution profile for ransomware analysis has not been investigated for this
purpose, as of today. In this study, we show that the true execution picture obtained
via a hardware execution profile is beneficial to identify the obfuscated ransomware
too. We evaluate the features obtained from hardware performance counters to
classify malicious applications into ransomware and non-ransomware categories
using several machine learning algorithms such as Random Forest, Decision
Tree, Gradient Boosting, and Extreme Gradient Boosting. The employed data set
comprises 80 ransomware and 80 non-ransomware applications, which are collected
using the VirusShare platform. The results revealed that extracted hardware features
play a substantial part in the identification and detection of ransomware with
F-measure score of 0.97 achieved by Random Forest and Extreme Gradient Boosting.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Scientific Computing and
Simulation, Security and Privacy, Operating Systems
Keywords Malware, Ransomware, Performance counters, Classification, Machine learning

INTRODUCTION
Over the past several years, an exponential increase has been reported in ransomware
attacks. Ransomware is the sub-class of malware that hijacks a device and blocks the victim
to access the data until a compensation of some form is made. Typically, this compensation
is in the form of money to concede access back to the victim. Ransomware has the
ability to harmfully affect various kinds of devices such as personal computers, servers,
smartphones, tablets, etc. For instance, multiple new variants of ransomware including
WannaCry, JAFF, Petya have been reported in 2017 (Hampton, Baig & Zeadall, 2018).

How to cite this article Aurangzeb S, Rais RNB, Aleem M, Islam MA, Iqbal MA. 2021. On the classification of Microsoft-Windows
ransomware using hardware profile. PeerJ Comput. Sci. 7:e361 DOI 10.7717/peerj-cs.361

Submitted 21 September 2020
Accepted 28 December 2020
Published 2 February 2021

Corresponding author
Rao Naveed Bin Rais,
r.rais@ajman.ac.ae

Academic editor
Yu-Dong Zhang

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.361

Copyright
2021 Aurangzeb et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.361
mailto:r.�rais@�ajman.�ac.�ae
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.361
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

On 12 May 2017, within the span of a few hours, the WannaCry ransomware (Maurya
et al., 2018) infected more than 70,000 desktop devices in over 150 countries across the
globe (Grant & Parkinson, 2018).

The financial loss incurred due to ransomware can be quite devastating. For instance,
CryptoWall_v3 ransomware (Ali, 2017; Sgandurra et al., 2016) caused the loss of an
estimated $325 million in the US from November 2015 to June 2016.). In 2018, it was
reported that 45% of the companies paid a ransom to recover the data stored on infected
machines, which increased to 58% in the year 2019 (Ramesh & Menen, 2020). Another
ransomware attack, triggered by CryptoWall_v4 ransomware resulted in a loss of $7.1
million worldwide (Ali, 2017). Recently reported ransomware attacks involving
NotPetya and WannaCry are estimated to inflict the costs around $18 billion (Davies,
Macfarlane & Buchanan, 2020). These attacks wreaked havoc in systems of various world
organizations by halting and damaging their daily operations. It seems that losses caused
by ransomware will probably exceed $20 billion by the end of the year 2021 (shown
in Fig. 1) as reported by the Global ransomware-protection report (Ramesh & Menen,
2020; Chung, 2019).

Although, malware is deemed a great threat over the years, yet ransomware is an even
more daunting threat compared to other malware due to its attacking and demanding
nature (i.e., expecting a ransom in return). The classification of ransomware from
traditional malware is essential because of their higher damaging impact in terms of
informative data and financial loss. Compared to typical malware, it is challenging to
identify and kill ransomware even when it is discovered, and the damage can be potentially
irreparable even after its deletion Al-rimy, Maarof & Shaid (2018) and Zhang et al. (2019).
Hence, we require proactive and aggressive techniques to handle ransomware.

Figure 1 Estimation and projection of losses (in Billions USD) caused by different ransomware
between 2015 and 2021 (Ramesh & Menen, 2020; Chung, 2019).

Full-size DOI: 10.7717/peerj-cs.361/fig-1

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 2/24

http://dx.doi.org/10.7717/peerj-cs.361/fig-1
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

Moreover, it is very challenging to recognize and isolate the malware from ransomware
due to the similarity in nature. A ransomware is more menacing than malware, as it
not only damages the system and results in loss of control from the system but also
demands compensation in return. Therefore, there is a need to have the proper distinction
of ransomware from other malware (Aurangzeb et al., 2017; Kok et al., 2019; Zhang
et al., 2019) to save billions of dollars in financial losses (Davies, Macfarlane & Buchanan,
2020).

Before analyzing the ransomware, one of the mandatory steps is the accurate
identification of a particular type of ransomware and differentiating it from other
typical malware. Broadly, malware analysis techniques are categorized as (1) static and
(2) dynamic analysis (Chen et al., 2017). Besides, various researchers have employed the
combinations of static and dynamic techniques in the form of hybrid analysis techniques.
The procedure of scrutinizing a potential malware without executing the program is
referred to as static analysis, whereas, the analysis performed via observing the execution
behavior of a malware is known as dynamic analysis. Most contemporary state-of-the-
art dynamic analysis techniques detect and classify ransomware that hides itself
using various obfuscation techniques such as packed programs, compressed, or data
transformation, indirect addressing, etc. (Behera & Bhaskari, 2015). A ransomware
employs different hijacking strategies such as behaving like an adware resulting in
unwanted advertisements or hiding itself using rootkits to bypass Anti-Viruses (AV)
(Demme et al., 2013). A rootkit is a malware that alters the operating system (OS) and
resides in the system for a prolonged period (Aurangzeb et al., 2017). Today, various
anti-viruses tackle malware to dampen their caused and expected damages. However,
the techniques employed by the anti-viruses are often limited to the prior knowledge
(e.g., signatures, etc.) and there is a need to have more comprehensive dynamic analysis
that could detect ransomware, employing the obfuscation techniques (Demme et al., 2013),
utilizing hardware performance counters.

Hardware Performance Counters (HPCs) have been typically used by the programmers
to analyze and measure the performance of applications and to identify the execution
bottlenecks of a program (Beneventi et al., 2017; Kuruvila, Kundu & Basu, 2020). Initially,
HPCs have been employed for investigating the static and dynamic analysis of programs
to detect any malicious amendments as mentioned in Alam et al. (2020) and Malone,
Zahran & Karri (2011). Several studies (Das et al., 2019; Demme et al., 2013; Singh et al.,
2017; Wang et al., 2016) discuss potential implications of using HPC for application
analysis, and the majority of them suggest that hardware execution profile can effectuate
the detection of malware (Demme et al., 2013; Singh et al., 2017; Wang et al., 2016;
Kuruvila, Kundu & Basu, 2020). Another study (Xu et al., 2017) has utilized the hardware
execution profiles to detect malware using machine learning algorithms, as malware
changes data structures and control flow, leaving fingerprints on accesses to program
memory. In this respect, they proposed a framework for detecting malware from benign
applications that uses machine learning to classify malicious behavior of malware based
on access patterns of virtual memory. Zhou et al. (2018) investigated whether HPCs

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 3/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

are useful in differentiating the malware from benign applications. However, the study
did not consider malware as ransomware. However, utilizing the hardware performance
measurements and the profile of the low-level execution behavior has not been
previously studied for the analysis and detection of ransomware applications. We argue
that ransomware reveals itself by exhibiting peculiar patterns in HPCs (e.g., through
clock cycles, cache misses and hits, branch instructions and misses, retired
instructions, etc.).

In this article, we present a framework based on dynamic analysis that mainly focuses
on the classification of ransomware from non-ransomware. This article contemplates
HPCs to detect Microsoft Windows-based ransomware by analyzing the execution
behavior of ransomware. We primarily focus to determine the potential use of HPCs in
analyzing and proactively detecting ransomware. Moreover, the classification of
ransomware from malware is imperative because the damages caused by ransomware
drastically ensure the data and monetary loss. To address this concern, we propose a
mechanism that utilizes the application execution profile for the classification and
detection of ransomware from non-ransomware. For classification, the application’s
hardware related performance features are extracted from the data set of 160 malware
(consisting of 80 ransomware and 80 non-ransomware). Afterward, these features are
fed to some well-known machine learning classification models such as Decision Tree
(Kohavi, 1996), Random Forest (Liaw & Wiener, 2002), Gradient Boosting (Friedman,
1999) and Extreme Gradient Boosting (XGBoost) (Chen & Tong, 2021). These four
classifiers are generally used for classification tasks of various applications including spam
detection, face recognition and financial predictions (Jordan & Mitchell, 2015; Kuruvila,
Kundu & Basu, 2020), etc. We employ these four classifiers as part of the proposed
methodology to analyze their performance for ransomware detection. These models
perform binary classification of malicious software into ransomware or non-ransomware
classes. In summary, the main contributions of this article are as follows:

� In-depth analysis of the current state-of-the-art to identify the merits and demerits of
several existing approaches;

� A novel mechanism for the classification and detection of malicious applications into
ransomware and non-ransomware; and

� An empirical investigation of the HPCs against state-of-the-art dynamic techniques
using machine learning classifiers;

The outcomes revealed that both the random forest and extreme gradient boosting
classifier has outperformed decision tree and gradient boosting by attaining accuracy of
0.97 for classification.

The rest of the article is organized as follows. “Related Work” describes the related
work. “Motivation and Methodology” presents the proposed methodology, dataset and
feature extraction mechanism. In “Results and Discussion”, the experimental setup details,
results and related discussions are presented and “Conclusions” concludes the article.

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 4/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

RELATED WORK
For dynamic analysis, it is necessary to collect key ransomware features at runtime. Most
of the dynamic analysis-based research studies exploit the renowned malware databases
(www.virusshare.com) for the acquisition of malicious software and use quarantine
environments (such as Cuckoo’s sandbox (Kaur, Dhir & Singh, 2017)) to execute the
applications.

In Zavarsky & Lindskog (2016), the authors presented an experimental analysis of
Microsoft Windows and Android-based ransomware. This analysis demonstrates that
ransomware detection could be performed by monitoring the abnormalities in the file
system and registry activities. It is shown that a significant number of ransomware families
exhibit very similar characteristics. Moreover, the authors concluded that changes in a
particular set of registry keys are important aspects to be analyzed for ransomware
detection. The authors discovered that Microsoft Windows 10 is reasonably effective
against ransomware attacks. Moreover, this study also revealed that for the Android
platform, the Android Manifest file and the permissions (required by an app) should also
be considered for ransomware detection. There is a lot of work (Alzahrani & Alghazzawi,
2019; Victoriano, 2019) related to Android malware detection using machine learning
approaches to classify malware families. Authors in Scalas et al. (2019) focus on
ransomware classification and proposed a learning-based detection strategy. The proposed
scheme relies on system’s API information such as packages, classes, and methods related
traces. The proposed scheme is capable to differentiate and classify generic malware,
ransomware, and goodware. The experimental results highlight the significance and
effectiveness of using system API information for Android ransomware classification.

Several researchers utilized the hash information (i.e., comparing hash values) to
detect the CryptoLocker ransomware (Song, Kim & Lee, 2016). The affected systems
are recovered by the following ways: (1) process CryptoLocker, (2) comparing hash
information with the encrypted data files (3) validating the key using the key-index
information stored therein and (4) proceeding to decode. Generally, this type of process
consumes a lot of time for ransomware detection with a potential risk that another
ransomware appears until a security company comes up with decryption keys of the
old ransomware. Moreover, additional analysis is needed to detect new patterns of
ransomware as the hackers persistently come up with new variants of ransomware. On the
Android platform, another technique is proposed (Song, Kim & Lee, 2016) to prevent
ransomware intrusion. The technique requires intense monitoring of the execution
processes and analysis of the particular file directories using the statistical techniques,
such as Next-generation Intrusion Detection Expert System (NIDES) (Anderson, Thane &
Alfonso, 1995) using the processor,memory usage and I/O rates, to uncover the applications
exhibiting abnormal behavior (Song, Kim & Lee, 2016).

Several other research studies have harnessed the machine learning-based approaches
and dynamic or runtime features of executing applications to detect ransomware.
Recently, HPCs-based events and their features are being used widely in research to detect
side-channel attacks and ransomware (Or-Meir et al., 2019). Alam et al. (2020) have used

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 5/24

http://www.virusshare.com
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

HPCs features to detect malware from benign applications. The authors proposed an
anomaly detection technique to identify malicious ransomware in a few seconds with
very few false positives using Recurrent Neural networks (RNN). However, only five
hardware performance measures that is, instruction, cache-references, cache-misses,
branches and branch-misses are investigated, whereas the authors investigation is with
one type of ransomware only, which was WannaCry. In Kadiyala et al. (2020), only four
hardware performance aspects were considered. Maiorca et al. (2017) proposed a
supervised machine learning-based procedure, R-PackDroid, to detect Android
ransomware, which is a light-weight technique and does not require prior knowledge of
ransomware’s encryption mechanisms. However, the R-PackDroid technique uses fully
encrypted code-files and is unable to analyze the applications that load the code at
run-time. The R-PackDroid can be incorporated with the other dynamic analysismethods,
such as the approach proposed by Kimberly et al. (2015). Moreover, R-PackDroid based
application analysis strongly depends on the parsing capabilities of the ApkTool
framework.

Narudin et al. (2016) has presented a machine learning-based malware analysis
approach based on the anomaly detection mechanism. The results indicated that Bayes
network and Random Forest classifiers produce accurate results by attaining 99.97%
True-Positive Rate (TPR) as compared to the multi-layer perceptron technique with only
93.03% TPR using theMalGenome data set. However, the accuracy of this scheme dropped
to 85% for the latest malware experiments.

Desktop ransomware can easily bypass any counter-measures and thus results in the
seizure of personal data. Authors (Al-rimy, Maarof & Shaid, 2018) presented an effective
mechanism for early diagnosis and avoidance of the crypto-ransomware, which is based on
machine learning techniques (One-Class SVM and n-gram technique (Zhang, Xu &
Wang, 2015)) and comprises three modules: (1) pre-processing, (2) features engineering
and (3) detection module. The authors employed an adaptive anomaly detection
mechanism that handles the dynamic characteristics of systems and frequently updates the
normal profile built from the feature extraction (Al-rimy, Maarof & Shaid, 2017) to
improve the accuracy of detection.

The study (Kharraz et al., 2015) has presented the analysis of ransomware families
(the year 2006–2014) and concludes that the suspicious activity of file systems should
be observed for ransomware detection. For instance, the changes in the types of I/O
Request Packets (IRP) or the Master File Table (MFT) are usually formed to access the
file system. A considerable number of ransomware families share related features as a core
part of the attacks; however, there still lacks a reliable destructive function to successfully
infect files of victims. In Table 1, we recapitulate several other prominent ransomware
detections (Yang et al., 2015; Andronio, Zanero & Maggi, 2015; Kharraz et al., 2016)
and prevention (Ahmadian, Shahriari & Ghaffarian, 2015; Kim, Soh & Kim, 2015; Lee,
Moon & Park, 2016; Brewer, 2016) techniques. Recently, deep neural networks and
convolutional neural networks (CNNs) have shown remarkable performance in the area
of object recognition (Simonyan & Zisserman, 2014). The deep convolutional neural
networks can outperform the other approaches like Natural Language Processing (NLP),

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 6/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

Table 1 Comprehensive Comparison of the state-of-the-art approaches along with their key points, drawbacks and implementation design
approach.

References Methodology Strengths Limitations

Demme et al.
(2013)

� Dynamic approach

� Android Malware detection with
performance counters

� Applied ML algorithms (KNN, Decision
tree)

� Major support is that runtime behavior
can capture using HW performance
counters are essential to detect
malware90% accuracy with 3% FP

� Able to detect some variants whereas
some were not detected

� Malware label data might not accurate

Kharraz et al.
(2015)

� Analyzed 15 ransomware families

� Proposed various mitigation approaches
to decoy resources to detect malicious
file access.

� Provide evolution-based study of RW
attacks from a long-term study 2006-
2014

� Detailed analysis of Bitcoin for
monetization

� Assumed that every file system access to
delete or encrypt decoy resources

� However, they didn’t implement any
concrete solution to detect or defend
against these attacks

Kim, Soh &
Kim (2015)

� Present a quantification model based on
social engineering technique to avoid
and identify any cryptographic
operations in the local drive

� explains the file-based intrusion
detection system and IP traceback
algorithm

� Lack of experimental results

� Suggests guidelines online

Narudin et al.
(2016)

� Machine learning-based study

� Filter TCP packets, extract network
traffic features

� Evaluate Bayes, Random Forest, KNN,
J48, & MLP

� Accurate detection based on ML
classifiers.

� BN and RF produces 99.97% TPR

� Bayes, MLP with ROC 0.995 and RF
with 0.991

� Applicable for Android platform only

Zavarsky &
Lindskog
(2016)

� the life cycle of Windows-based
Ransomware study.

� Implement basic static and basic
dynamic

� MD5 method, Cuckoo Sandbox used.

� For android Analyze AndroidManifest.
xml, administrative privilege

� For Windows analyze Filesystems,
registry activities, and network
operations

� Explained the detailed analysis, working,
and functionality of Ransomware

� Performed analysis on both the
Windows and Android-based RW

� PEiD tool is used for windows
ransomware detection

� Performed only basic static and dynamic
analysis.

� No machine learning-based approach to
detect zero-day ransomware

� Lack of experimental analysis

Song, Kim &
Lee (2016)

� Proposed techniques on three modules:
Configuration, Monitors, and Processes
sing

� the hash information method is used for
detection of CryptoLocker type
ransomware

� The proposed technique monitors the
processes and specific file directories

� monitor file events using statistical
methods on Processor usage, Memory
usage, and I/O rates

� Not applicable for Windows-based
ransomware

� No classifier is used

� Does not install applications and execute
for prevention and detection

� Results are not analyzed quantitatively

Kharraz et al.
(2016)

� dynamic approach

� Monitors file system I/O activity

� Detect screen locking mechanism,

� used Tesseract-OCR

� new ransomware family were detected
that was not detected previously

� The long-term study analyzed 148223
malware samples and correctly detect
and verified 13637 ransomware samples

� 96.3% TP rate and 0 FPs

� Accuracy is not that good. For example,
the system correctly detects 7,572
ransomware whereas only one unknown
was detected

(Continued)

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 7/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

Table 1 (continued)

References Methodology Strengths Limitations

Sgandurra
et al. (2016)

� Dynamically monitor file system activity
on windows platform

� Classify between goodware and
ransomware using ML

� Mutual Information and Regularized
Logistic Regression classifier used.

� Proposed machine learning approach
EldeRan

� effective and entirely automated tool to
analyze new software and enhance the
detection capabilities of AV software

� registry key and API calls are the two
classes with the most relevant features.

� EldeRan achieves ROC curve of 0.995,
detection rate 96.3%

� Despite good results, EldeRan still not be
used as a replacement for AV

� the current settings have no other
applications running in the VM, except
the ones coming with a fresh installation
of Windows,

� initial dataset was larger

� Unable to analyze RW that shows silent
behavior, or wait for the user to do
something

Chen & Robert
(2017)

� Dynamic behavioral analysis of wanna
cry

� Present a method to extract features of
malware from hosts logs

� TF-IDF approach gives better results for
analyzing wanna cry

� Research helps in further manual
analysis of logs from ambient system
logs in forensic efforts.

� Automatically generate behavior
analysis of malware samples from
sandbox log data

� Presentation and experimented results
are outside the scope of the article

� Study not help in analyzing automatic
pattern generation

Al-rimy,
Maarof &
Shaid (2017)

� Machine learning n-gram, EFCM,

� Information Gain,

� Sliding window

� Static + dynamic conf

� SVM for behavioral detection

� Proposed framework inclines to share
the pre-encryption data space as the
main defense step against crypto-
ransomware attacks

� No classification

� No experimental work

� No results evaluation details

Bahador,
Abadi &
Tajoddin
(2019)

� Presents a two-stage heuristic matching
strategy signature-based approach to
hardware-level behavioral malware
detection and classification

� HLMD approach can detect malicious
applications at the beginning of the
execution and can achieve an average
precision, recall, and F-measure of
95.19%, 89.96%, and 92.50%,
respectively

� Their approach is suitable for
independent malicious programs
(worms, Trojans and bots) that can be
run standalone without having to be
attached to a host program

� Not applicable for Ransomware

Dion & Brohi
(2020)

� analyzed the opcodes and measures their
frequencies.

� Compare the performance of supervised
machine learning algorithms for
ransomware classification

� Experimental analysis of Random
Forest, Gradient Boosting Decision Tree
(GBDT), Neural Network using
Multilayer Perceptron and three types of
Support Vector Machine (SVM) were
performed

� Random Forest and GBDT
outperformed

� Authors mentioned that the
experimental platform can be able to
identify only exe or ddl format
ransomware

� Only supervised machine learning
applied

Kadiyala et al.
(2020)

� Malware Analysis using Hardware
Performance Counters

� Proposed a three-step methodology
included i) extracting the HPCs ii)
finding maximum variance through
reducing fine-grained data iii) apply ML
algorithms

� extract the HPCs for each system call
during the runtime of the program using
perf libraries along with CoreSight
Access Libraries that allows to interact
directly through APIs

� detection rate 98.4%

� suitable for linux environment

� Training set is small

� Monitored only four hardware
performance counters

� 3.1% false positive

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 8/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

if the training is performed using large datasets (Liu & Liu, 2014; Zhang, Zhao &
LeCun, 2015). Due to the limited dataset, we have employed supervised machine
learning algorithms. Moreover, the core objective of our proposed scheme is to gauge the
effectiveness of the hardware execution profile (i.e., a truly dynamic environment) for the
classification of ransomware/non-ransomware.

Besides, the performance counters exhibit the true application execution behavior and
are being employed by the researchers to analyze application performance (Mucci et al.,
1999; Bahador, Abadi & Tajoddin, 2014; Demme et al., 2013). In Basu et al. (2019) authors
have used hardware performance counters to detect Android malware, and in another
similar work (Bahador, Abadi & Tajoddin, 2019) authors have presented a heuristic
(using signature-based features and hardware performance counters) to detect and classify
malware. Their approach is only suitable for malware detection that are invoked as
standalone applications and are not dependent on other host applications. In summary,
none of the existing dynamic analysis techniques utilizes the important dynamic feature
such as HPCs to detect Windows platform based malicious applications. Although,
there are few approaches available that classify a benign application from ransomware,
however, to the best of our knowledge no other approach (utilizing hardware performance
counters) classified malware into the subclass of ransomware/non-ransomware on the
Windows platform. Malware can employ obfuscation techniques to deceive static analysis
based anti-viruses. Furthermore, runtime behavior cannot be obfuscated and can be
detected using dynamic analysis. We believe this aspect should essentially be exploited
and the hardware execution profile should be utilized to execute applications for
ransomware detection. Based on these facts, we argue that HPCs are useful features that
could be utilized for the detection and classification of ransomware. In this study,

Table 1 (continued)

References Methodology Strengths Limitations

Alam et al.
(2020)

� Dynamic Analysis

� Implement Artificial
Neural Network and Fast Fourier
Transformation

� Disk encryption detection module
process used

� Two-step detection framework named
as RAPPER

� an accurate, fast, and reliable solution to
detect ransomware.

� Used minimal tracepoints

� Provide a comprehensive solution to
tackle standard benchmark,

� disk encryption and regular high

� computational processes

� HPCs were used to analyze files using
perf tool

� Observe 5 events of HPCs only i.e.,
instruction, cache-references, cache-
misses, branches, and branch-misses

� Analyze and present all the case studies
by giving a comparison with WannaCry
only

� Lack of detailed experimental results
and accuracies.

Our Approach � Dynamic Analysis of Hardware
Performance counters

� Performed classification techniques on
Windows-based executable files

� Apply ML algorithm such as RF,
Decision Tree, Gradient Boosting,
Extreme Gradient Boosting

� Attained F-measure score of 0.97

� Random Forest and Extreme Gradient
boosting outperformed

� Dataset was initially large but after
preprocessing remain small dataset

� Only supervised machine learning
techniques applied

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 9/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

we employ various machine learning classifiers such as Decision Tree, Random Forest,
Gradient Boosting and Extreme Gradient Boosting along with the HPCs to address the
following questions:

1. How different are ransomware from malware at runtime considering machine learning
techniques?

2. Which of the hardware performance counters (HPCs) play a vital role in ransomware
detection?

MOTIVATION AND METHODOLOGY
The dynamic analysis holds adequate potential to accurately detect the threat of
ransomware because an executable program cannot hide its true characteristic. Therefore,
most of the anti-virus vendors rely on automated dynamic analysis mechanisms to detect
new variants of ransomware. Most of the antiviruses apply the heuristics combined
with the behavior analysis to deduce whether an executable is benign or malware
(Sgandurra et al., 2016).

A wide range of HPCs that is, clock cycles, cache hits, cache misses, branch instructions,
branch misses, retired instructions, etc. are used to observe the behavior of an executing
application (Chiappetta, Savas & Yilmaz, 2016). Usually, the symmetric encryption marks
the cache-based events while the asymmetric encryptions do have an impact on the
instruction and branching events as explained in Alam et al. (2020). HPCs have been
harnessed by many application developers to identify the computation and memory
bottlenecks to improve the performance and reliability of the executing applications
(Chiappetta, Savas & Yilmaz, 2016). In this study, we utilize 11 performance counters
for the classification of ransomware. For classification, we train the employed machine
learning classifiers to analyze the dynamic behavior of ransomware and non-ransomware
malicious programs. Moreover, the classification of Ransomware from Traditional
Malware is essential due to the intensity of the damage caused in terms of financial
loss. Unlike traditional malware, it is more troublesome to identify and kill ransomware
even when it is discovered, and the damage is irreparable even after its removal
Al-rimy, Maarof & Shaid (2018) and Zhang et al. (2019). Hence, it is very important to
recognize and isolate the malware from ransomware due to the similarity in nature.
Therefore, it is required to devise a formal classification mechanism to discriminate
ransomware from other non-ransomware Zhang et al. (2019) Aurangzeb et al. (2017) and
Kok et al. (2019) to avoid billions of transactions in the name of ransom.

Dataset collection
For the experimentation, we have obtained randomly selected 160 Windows-based
malware from VirusShare. VirusShare repository provides the dataset related to
ransomware and many other types of malicious applications of the Windows platform
(in addition to the other platforms such as Android, Linux, etc.). It is frequently updated
and at presently contains the latest malicious applications contributed by the community
(Kouliaridis & Kambourakis 2020). Due to the diversity, the VirusShare platform is

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 10/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

very popular in the research community. We collected the dataset from VirusShare
related to Windows-based malicious applications. After static analysis of the downloaded
applications, obfuscated applications are eliminated. Afterward, each malware is labeled
as a non-ransomware or ransomware based on the analysis data provided by many
renowned anti-viruses available via VirusShare. These labels are further validated with the
tags available from VirusShare for the sake of confirmation. In this study, benign binary
files are not considered because the main aim of the study is to classify between
ransomware and other malicious applications. Therefore, we consider the malicious
applications category Trojan (as a non-ransomware sample) due to their similarity in
activities with the ransomware (Gazet, 2010). The employed classifiers are trained
using the behavioral features for ransomware and non-ransomware with explicit labeling
(i.e., Ransomware/Non-Ransomware). Furthermore, a disjoint data set is used for training
and testing purposes.

Feature extraction
All malware in the data set are executed in a quarantine environment and their data related
to hardware performance counters are collected using perf (an instrumentation and
performance analysis tool (De Melo, 2010;Weaver, 2013; Alam et al., 2020)). To ensure the
reliability and accuracy of the results, the mean values of three rounds of experiments are
reported. We executed each application three times in a virtual machine (i.e.,
VMWorkstation 12 Pro 12.1.1 build 3770994) for no longer than 240 s with different input
parameters to emulate a real interactive environment. After the execution of each
malicious application, the virtual machine is reset to its original state using the snapshot
feature (to ensure the performance counter trace collected during the previous execution
do not intermingle with the current execution).

For binary classification problem discussed above, we employ hardware performance
counters as features, that is, (1) task clock, (2) context switching, (3) CPU utilized, (4) CPU
migrations, (5) page faults, (6) CPU cycles, (7) cache-misses, (8) instructions retired,
(9) branches taken, (10) branch-misses and (11) execution time, (illustrated in Table 2)
to train the machine learning classifier. We have executed ransomware applications on a
PC within a virtual machine and recorded the features (i.e., hardware performance
counters, etc.) using perf. The perf library provides the hardware performance counters
related values representing the involvement of the several important hardware features of
the processor during execution. Feature selection plays a significant role in achieving
precise training of the employed machine learning models; thereby attaining accurate
results with efficient performance and low overhead (Li et al., 2017). A correlation matrix
among the employed features is generated to analyze the pattern that leads to the selection
of features. Two features are considered negatively correlated if a change of one feature
inversely impacts the value of the other feature. The features correlation analysis is
presented in Fig. 2. If two numerical features are highly correlated, then one of them can be
ignored. Therefore, we employed a sub-set of those features which are not co-related to
reduce the computation overhead during the training process of the machine learning
models. Figure 2 shows that the Cache Misses related hardware feature have a low positive

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 11/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

Table 2 Features set used in this work for performance evaluation (HPCs).

S.no Hardware features Description

1 Task-clock The task-clock shows the amount of time spent on the task (Kuznetsova et al., 2017)

2 CPU utilization CPU-clock is based on the total time spent on the CPU

3 Context switching explains how many times the software switched off the CPU from one process/thread to another (Kuznetsova et al.,
2017)

4 CPU migration CPU migration describes equality in a workload distribution across all cores. (Kuznetsova et al., 2017)

5 Page faults Page-faults occur when a program’s virtual content has to be copied to the physical memory (Kuznetsova et al., 2017)

6 Instructions per cycle The average number of instructions executed for each clock cycle

7 Branch A branch is an instruction in a computer program that can cause a computer to begin executing a different instruction
sequence and thus deviate from its default behavior of executing instructions in order

8 Branch misses Branch misprediction occurs when a processor mispredicts the next instruction to process in branch prediction, which
is aimed at speeding up execution.

9 Cycles Perf-CPU-cycles is a count of CPU cycles that traces to a hardware counter (Flater, 2014)

10 Cache misses Cache misses is a state of not getting data that is being processed by a component or application that is not found in the
cache.

11 Total time elapsed It is the total execution time in seconds

Figure 2 Feature set correlation analysis. Full-size DOI: 10.7717/peerj-cs.361/fig-2

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 12/24

http://dx.doi.org/10.7717/peerj-cs.361/fig-2
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

correlation with all the other features. On the other hand, the Task Clock feature has a
strong relationship with the Context Switches, Cycles, Instructions, Branches, and Branches
Misses. The features having higher rank are deemed as potential features for classification
than low ranked features as shown in Table 3.

In the training phase, hardware features are extracted by executing known malware and
non-malware application in containing environment system units as shown in Figs. 3A
and 3B. A total of 80% of the employed data set is used for training and 20% is used
for testing. We have used K-fold (k = 10) cross-validation mechanism and compare the
ransomware detection accuracy of different classifiers to make sure that the dataset is used
uniformly without any biasness. This results in un-biased training and testing cycles

Table 3 Features rank list.

Rank Score Feature

1 0.20145 Cache misses

2 0.181887 TaskClock

3 0.153562 Branches

4 0.10867 SecondsTimeElapsed

5 0.086973 Instructions

6 0.085666 BranchMisses

7 0.044272 ContextSwitches

8 0.042727 PageFaults

9 0.040087 CPU migration

10 0.028564 Cycles

11 0.026142 CPUsUtilized

Figure 3 Feature extraction workflow for training and testing phases: (A) Workflow of the training
process, (B) workflow of the testing phase. Full-size DOI: 10.7717/peerj-cs.361/fig-3

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 13/24

http://dx.doi.org/10.7717/peerj-cs.361/fig-3
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

producing the results on which we could conclude with confidence. For each cycle of the
training/testing, a 20% testing and 80% training partition was employed. The goal of
supervised machine learning techniques is to find a function that is trained using the
employed features such that the error is minimum for the new or unseen data. In the
training phase, the classification model is trained using the HPCs as shown in Table 2.
The testing or validation methodology is performed after the training of the classifiers.

Classification model
The machine learning classification algorithms namely Decision Tree, Random Forest,
Gradient Boosting and Extreme Gradient Boosting are used for classification purposes such
as phishing detection, facial recognition and financial predictions (Jordan &Mitchell, 2015),
etc. We employ these four classifiers as part of the proposed methodology to analyze
their performance for ransomware detection.

The decision tree is a tree-based classifier, which contains a root, internal nodes, and
leaf nodes. The class label is assigned to each leaf node and the decisions are rendered
by the internal nodes (Tan, Steinbach & Kumar, 2006). Random Forest (RF) classifier
is based on a combination of multiple decision tree predictors such that each tree
depends on the values of a random vector sampled independently and with the same
distribution for all trees in the forest (Xuan et al., 2018). The Extreme Gradient Boosting
XGBoost and Gradient Boosting follow the same basic principle however, there are a
few differences in their modeling details. Specifically, extreme gradient boosting utilizes a
more regularized model formalization to control the over-fitting problem that may occur
due to linear fitting over noisy data to provide better performance (Jbabdi et al., 2012).
For the Decision Tree and Random Forest, the maximum tree depth is set as 2 to
ensure that under-fitting issues are avoided. To achieve a smoother curve, the bagging
technique is applied to the Random forest mechanism where each of the trees executes
in a parallel way thus making a forest. As each tree is independent, therefore, the
whole forest result is taken for the analysis (resulting in a smoother curve) To avoidover-
fitting issues, we have evaluated our proposed technique using K-fold (k = 10) cross-
validation. The first fold is evaluated with the other folds and the second time it executes,
it takes the first and second fold to be compared with the rest, this goes on until 80% of
training data is compared against 20% of the test data.

RESULTS AND DISCUSSION
For experimentation, we utilize a system with Intel core i7 processor, 8 GBs of memory,
and Ubuntu 12.10 OEM as an operating system. For classification, a machine learning
tool Scikit-learn (Pedregosa et al., 2011; Black et al., 2020), is employed. To evaluate
the results, standard evaluation measures that is, precision, recall, and F-Measure are
calculated to determine the accuracy of each classifier. Equations (1)–(4) provide the
mathematical description of accuracy, precision, recall, and f-measure, respectively.
The terms used in Eqs. (1)–(4) are explained as follows: True Positive (TP) rate shows the
number of predicted positives that are correct, while the False Positive (FP) rate refers to
the number of predicted positives that are incorrect. Similarly, True Negative (TN) rate

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 14/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

shows the number of predicted negatives that are correct while the False Negative (FN) rate
refers to the number of predicted negatives that are incorrect. The recall is the sensitivity
for the most relevant result. F-measure is the value that estimates the entire system
performance by calculating the harmonic mean of precision and recall. The maximum
value of 1.000 for accuracy precision and recall indicates the best result (Narudin et al.,
2016).

Accuracy ¼ TP þ TN
TPþ TNþ FPþ FN

(1)

Precision denotes the proportion of Predicted Positive cases that are correctly Real
Positives.

Precision ¼ TP
TP þ FP

(2)

The recall is the proportion of Real Positive cases that are Predicted Positive

Recall ¼ TP
TP þ FN

(3)

F‐Measure ¼ 2 � ðPrecision � RecallÞ
ðPrecisionþ RecallÞ (4)

Receiver Operating Characteristic (ROC) curves (Metz, 1978; Dion & Brohi, 2020) are
extensively being applied in significant researches to measure the accuracy of the machine
learning models that are being trained to achieve actual performance (Bradley, 1997).
Furthermore, ROC curves are applied in numerous systematic approaches that merge
multiple clues, test results, etc., and are plotted and evaluated to characterize a
qualitative feature of the particular. ROC is a plot wherein Y-axis is reserved for True
Positive Rate (TPR) and X-axis is reserved for False Positive Rate (FPR). For all possible
classifications such as the output class, the TPR rate depends on the set-up where the real
classification is considered to be as positive and the number of times the classifier has
predicted the result to be as positive. The FPR can be defined as how the classifier
incorrectly labeled positive to those that are classified to be negative. Together the TPR and
FPR values lie in-between 0 and 1 (1 indicating an accurate prediction).

The results based on the decision tree classifier can be seen in Fig. 4. The ROC curve
for both classes (i.e., ransomware as class “1” and non-ransomware as class “0”) is the
same having value of 0.94 which signifies the excellent prediction. However, the
precision-recall curve for class 0 that is, for Non-Ransomware shows accuracy of 0.89 or
89% whereas for class 1 that is, ransomware the accuracy is 0.93. The F-measure score of
the Decision Tree is 0.94 as shown in Table 4.

The results obtained using the Random Forest classifier for two classes (i.e., ransomware
and non-ransomware) are shown in Fig. 5 and F-measure score is illustrated in Table 5.
The higher accuracy results are evident from the similar ROC curve value that is, 0.99
for both the ransomware and non-ransomware classes.

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 15/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

Figure 4 Decision-tree performance metrics behavior, (A) ROC curves for the classes 0 and 1,
(B) Precision-Recall curve for the classes 0 and 1. Full-size DOI: 10.7717/peerj-cs.361/fig-4

Table 4 Decision tree precision, recall and F-measure score for malware classes (0, 1).

Malware class Precision Recall F-measure

Ransomware (class label 1) 1.0 0.88 0.93

Non-Ransomware (class label 0) 0.89 1.0 0.94

Figure 5 Random forest performance metrics behavior, (A) ROC curves for the classes 0 and 1,
(B) Precision-Recall curves for the classes 0 and 1. Full-size DOI: 10.7717/peerj-cs.361/fig-5

Table 5 Random forest precision recall and F-measure score against classes 0 and 1.

Malware class Precision Recall F-measure

Ransomware (class label 1) 1.0 0.94 0.97

Non-Ransomware (class label 0) 0.94 1.0 0.97

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 16/24

http://dx.doi.org/10.7717/peerj-cs.361/fig-4
http://dx.doi.org/10.7717/peerj-cs.361/fig-5
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

The results depicting the performance of gradient boosting, shown in Fig. 6, reveal that
the ROC curve values for both the classes (i.e., ransomware and non-ransomware) as well
as (i.e., 1.0) the precision-recall curves of both classes follow similar pattern of high
accuracy. The F-measure score of the gradient boosting classifier is 0.93 for ransomware
and 0.94 for non-ransomware (as shown in Table 6).

The extreme gradient boosting classification model-based results are shown in Fig. 7
and Table 7. The ROC curve and Precision-Recall Curve of both classes (i.e., ransomware
and non-ransomware) are the same (i.e., 1.0). The extreme gradient boosting based
model’s F-measure score is 0.97, which is similar to the gradient boosting and random

Figure 6 Gradient boosting performance metrics behavior: (A) ROC curves for the classes 0 and 1.
(B) Precision-Recall curves for the classes 0 and 1. Full-size DOI: 10.7717/peerj-cs.361/fig-6

Table 6 Gradient boosting precision, recall and F-measure score for malware classes.

Malware class Precision Recall F-measure

Ransomware (class label 1) 1.0 0.88 0.93

Non-Ransomware (class label 0) 0.89 1.0 0.94

Figure 7 Extreme gradient boosting performance metrics behavior: (A) ROC curves for the classes 0 and
1. (B) Precision-Recall curves for the classes 0 and 1. Full-size DOI: 10.7717/peerj-cs.361/fig-7

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 17/24

http://dx.doi.org/10.7717/peerj-cs.361/fig-6
http://dx.doi.org/10.7717/peerj-cs.361/fig-7
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

forest-based classification as shown in Table 8. The Random Forest-based classification
model outperformed decision tree-based classification by attaining the accuracy of 0.94, as
shown in Table 8. However, the value of the F-measure for both the classes is 0.97
(as shown in Table 8). The model has attained an improvement of 3% than the decision
tree-based classification. The model shows similar F-measure results of 0.97 as observed
for random forest and extreme gradient boosting.

This study has demonstrated the possibility of exploiting HPCs as the potential
features for ransomware detection. After analyzing the sets of ransomware and non-
ransomware, the features obtained from HPCs have been analyzed to classify malicious
applications into ransomware and non-ransomware categories using several machine
learning algorithms such as Decision Tree, Random Forest, Gradient Boosting and Extreme
Gradient Boosting. The results of detailed experiments as stated earlier in the section have
revealed that extracted hardware features play a significant role in the detection and
identification of ransomware. Among all the employed machine learning classifiers, the
random forest-based model and extreme gradient boosting have outperformed by yielding
F-measure score of 0.97 followed by a decision tree that achieved 0.94 F-measure.
Moreover, the features cache misses, task clock, and branches obtained through HPCs
could be deemed as potential parameters in classifying ransomware from non-
ransomware.

CONCLUSIONS
In this article, the analysis of HPCs has been presented for Windows ransomware
classification. The results have revealed that the HPCs hold the considerable potential to
expose hidden indicators of the executing applications such as malicious codes and
ransomware. Performance counters, that is, cache misses, task clock and branches have
played a pivotal role in classifying ransomware in a way that if there are a high number of
cache misses or a high number of branch mispredictions (where control flow becomes
detectably anomalous) are good indicators that help in indicating a potential attack
(Foreman, 2018). The proposed technique holds adequate potential to provide sufficient

Table 7 Extreme gradient boosting precision, recall and F-measure score for malware.

Malware class Precision Recall F-measure

Ransomware (class label 1) 1.0 0.94 0.97

Non-Ransomware (class label 0) 0.94 1.0 0.97

Table 8 Four classifiers result and their comparison F-measure score.

Classifier F-measure

Decision Tree 0.94

Random Forest 0.97

Gradient Boosting 0.94

Extreme Gradient Boosting 0.97

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 18/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

detection accuracy by attaining the F-measure score of 0.97. This study demonstrated the
possibility of exploiting HPCs as the potential feature for the detection of ransomware.
However, this topic needs further investigation. In the future, we intend to scrutinize
other dynamic features with the combination of call graphs to detect and classify
ransomware. Moreover, the application of machine learning algorithms has shown very
promising results in ransomware detection. In the future, we will expand this study to
perform in-depth static analysis as well as dynamic analysis with the combination of
HPCs in the detection of that ransomware that usually hides by implementing various
obfuscation techniques (like packed or compressed programs, or indirect addressing
(Behera & Bhaskari, 2015)). One major challenge and limitation of this research is in
ransomware detection of false positives and false negatives. Consider the case of Qwerty
ransomware, which uses a benign GPG executable to perform encryption. Perhaps the
proposed solution would correctly detect the GPG binary when used in this way, but
we suspect it would also detect it in a benign case. Since in this work we did not evaluate
benign executables, it is not clear how the system performs with software that performs
encryption and/or compression tasks which is the limitation of this research that will
be investigated in our future work. Moreover, the collected features are related to
hardware-specific environments, so if the system having the same architecture then the
trained classification models are applicable as it is. However, in case the hardware
environment is different (i.e., different architecture) then we have to retrain our
machine learning models for that specific hardware environment. This is one of the
limitations of our proposed work that the machine learning models trained on specific
architecture are not portable across other machine architectures. Moreover, due to the
modest dataset deep learning mechanism at present are not applicable. However, in the
future, we intend to extend our dataset to implement more robust Auto Denoising
Encoders, which comprises of multiple layers of neural networks and are best-known for
providing good accuracy.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The work was partially funded by Deanship of Graduate Studies and Research (DGSR),
Ajman University, UAE. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Deanship of Graduate Studies and Research (DGSR).

Competing Interests
Muhammad Aleem is an Academic Editor for PeerJ.

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 19/24

http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

Author Contributions
� Sana Aurangzeb conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Rao Naveed Bin Rais conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

� Muhammad Aleem conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, authored or reviewed
drafts of the paper, and approved the final draft.

� Muhammad Arshad Islam conceived and designed the experiments, authored or
reviewed drafts of the paper, and approved the final draft.

� Muhammad Azhar Iqbal conceived and designed the experiments, authored or reviewed
drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw data and sample python script are available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.361#supplemental-information.

REFERENCES
Ahmadian MM, Shahriari HR, Ghaffarian SM. 2015. Connection-monitor & connection-breaker:

a novel approach for prevention and detection of high survivable ransomwares. New York: IEEE,
79–84.

Al-rimy BAS, Maarof MA, Shaid SZM. 2017. A 0-Day Aware Crypto-Ransomware Early
Behavioral Detection Framework. Cham: Springer, 758–766.

Al-rimy BAS, Maarof MA, Shaid SZM. 2018. Ransomware threat success factors, taxonomy, and
countermeasures: a survey and research directions. Computers & Security 74:144–166
DOI 10.1016/j.cose.2018.01.001.

Alam M, Sinha S, Bhattacharya S, Dutta S, Mukhopadhyay D, Chattopadhyay A. 2020.
RAPPER: ransomware prevention via performance counters. ArXiv Available at http://arxiv.org/
abs/2004.01712.

Ali A. 2017. Ransomware: A research and a personal case study of dealing with this nasty malware.
Issues in Informing Science and Information Technology 14:87–99 DOI 10.28945/3707.

Alzahrani N, Alghazzawi D. 2019. A review on android ransomware detection using deep learning
techniques. In: Proceedings of the 11th International Conference on Management of Digital
EcoSystems. 330–335.

Anderson D, Thane F, Alfonso V. 1995. Next-generation intrusion detection expert system
(NIDES): a summary. Computer Science Laboratory SRI-CSL-95-07. Available at
http://www.csl.sri.com/papers/4sri/4sri.pdf.

Andronio N, Zanero S, Maggi F. 2015. Heldroid: dissecting and detecting mobile ransomware.
New York: Springer International Publishing, 382–404.

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 20/24

http://dx.doi.org/10.7717/peerj-cs.361#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.361#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.361#supplemental-information
http://dx.doi.org/10.1016/j.cose.2018.01.001
http://arxiv.org/abs/2004.01712
http://arxiv.org/abs/2004.01712
http://dx.doi.org/10.28945/3707
http://www.csl.sri.com/papers/4sri/4sri.pdf
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

Aurangzeb S, Aleem M, Iqbal MA, Islam MA. 2017. Ransomware: a Survey and Trends.
Journal of Information Assurance and Security 12:48–58.

Bahador MB, Abadi M, Tajoddin A. 2014. Hpcmalhunter: behavioral malware detection using
hardware performance counters and singular value decomposition. New York: IEEE, 703–708.

Bahador MB, Abadi M, Tajoddin A. 2019. HLMD: a signature-based approach to hardware-level
behavioral malware detection and classification. Journal of Supercomputing 75(8):5551–5582
DOI 10.1007/s11227-019-02810-z.

Basu K, Krishnamurthy P, Khorrami F, Karri R. 2019. A theoretical study of hardware
performance counters-based malware detection. IEEE Transactions on Information Forensics
and Security 15:512–525 DOI 10.1109/TIFS.2019.2924549.

Behera CK, Bhaskari DL. 2015. Different obfuscation techniques for code protection.
Procedia Computer Science 70:757–763 DOI 10.1016/j.procs.2015.10.114.

Beneventi F, Bartolini A, Cavazzoni C, Benini L. 2017. Continuous learning of HPC
infrastructure models using big data analytics and in-memory processing tools. New York: IEEE,
1038–1043.

Black P, Sohail A, Gondal I, Kamruzzaman J, Vamplew P, Watters P. 2020. API based
discrimination of ransomware and benign cryptographic programs. In: International Conference
on Neural Information Processing. Cham: Springer, 177–188.

Bradley A. 1997. The use of the area under the ROC curve in the evaluation of machine learning
algorithms. Pattern Recognition 30(7):1145–1159 DOI 10.1016/S0031-3203(96)00142-2.

Brewer R. 2016. Ransomware attacks: detection, prevention and cure. Network Security
2016(9):5–9 DOI 10.1016/S1353-4858(16)30086-1.

Chen Z, Kang H, Yin S, Kim S. 2017. Automatic ransomware detection and analysis based on
dynamic API calls flow graph. In: Proceedings of the International Conference on Research in
Adaptive and Convergent Systems, 196–201 DOI 10.1145/3129676.3129704.

Chen Q, Robert AB. 2017. Automated behavioral analysis of malware a case study of wanna cry
ransomware. ArXiv Available at http://arxiv.org/abs/1709.08753.

Chen T, Tong H. 2021. Xgboost: extreme gradient boosting. R package v1.3.2.1, 1–4. Available at
http://cran.fhcrc.org/web/packages/xgboost/vignettes/xgboost.pdf.

Chiappetta M, Savas E, Yilmaz C. 2016. Real time detection of cache-based side-channel attacks
using hardware performance counters. Applied Soft Computing 49:1162–1174
DOI 10.1016/j.asoc.2016.09.014.

Chung M. 2019. Why employees matter in the fight against ransomware. Computer Fraud &
Security 2019(8):8–11 DOI 10.1016/S1361-3723(19)30084-3.

Das S, Werner J, Antonakakis M, Polychronakis M, Monrose F. 2019. SoK: the challenges,
pitfalls, and perils of using hardware performance counters for security. In: 2019 IEEE
Symposium on Security and Privacy. Piscataway: IEEE, 20–38.

Davies SR, Macfarlane R, Buchanan WJ. 2020. Evaluation of live forensic techniques in
ransomware attack mitigation. Forensic Science International: Digital Investigation 33:300979
DOI 10.1016/j.fsidi.2020.300979.

Demme J, Maycock M, Schmitz J, Tang A, Waksman A, Sethumadhavan S, Stolfo S. 2013. On
the feasibility of online malware detection with performance counters. ACM SIGARCH
Computer Architecture News 41(3):559–570 DOI 10.1145/2508148.2485970.

De Melo AC. 2010. The new Linux ‘perf’ tools. In: Slides from Linux Kongress. Vol. 18. Available at
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf.

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 21/24

http://dx.doi.org/10.1007/s11227-019-02810-z
http://dx.doi.org/10.1109/TIFS.2019.2924549
http://dx.doi.org/10.1016/j.procs.2015.10.114
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1016/S1353-4858(16)30086-1
http://dx.doi.org/10.1145/3129676.3129704
http://arxiv.org/abs/1709.08753
http://cran.fhcrc.org/web/packages/xgboost/vignettes/xgboost.pdf
http://dx.doi.org/10.1016/j.asoc.2016.09.014
http://dx.doi.org/10.1016/S1361-3723(19)30084-3
http://dx.doi.org/10.1016/j.fsidi.2020.300979
http://dx.doi.org/10.1145/2508148.2485970
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

Dion Y, Brohi SN. 2020. An experimental study to evaluate the performance of machine learning
alogrithms in ransomware detection. Journal of Engineering Science and Technology
15(2):967–981.

Flater D. 2014. Screening for factors affecting application performance in profiling measurements.
US Department of Commerce, National Institute of Standards and Technology, Report number:
NIST TN 1855 DOI 10.6028/NIST.TN.1855.

Foreman JC. 2018. A survey of cyber security countermeasures using hardware performance
counters. ArXiv Available at http://arxiv.org/abs/1807.10868.

Friedman JH. 1999. Reitz lecture—greedy function approximation: a gradient boosting machine.
Annals of Statistics 29(5):1189–1232.

Gazet A. 2010. Comparative analysis of various ransomware virii. Journal in Computer Virology
6(1):77–90 DOI 10.1007/s11416-008-0092-2.

Grant L, Parkinson S. 2018. Identifying file interaction patterns in ransomware behaviour. In:
Parkinson S, Crampton A, Hill R, eds. Guide to Vulnerability Analysis for Computer Networks
and Systems. Computer Communications and Networks. Cham: Springer, 317–335.

Hampton N, Baig Z, Zeadall S. 2018. Ransomware behavioural analysis on windows platform.
Journal of Information Security and Applications 40:44–51 DOI 10.1016/j.jisa.2018.02.008.

Jbabdi S, Sotiropoulos SN, Savio AM, Graña M, Behrens TE. 2012. Model-based analysis of
multishell diffusion MR data for tractography: how to get over fitting problems.
Magnetic Resonance in Medicine 68(6):1846–1855 DOI 10.1002/mrm.24204.

Jordan MI, Mitchell TM. 2015. Machine learning: trends, perspectives, and prospects. Science
349(6245):255–260 DOI 10.1126/science.aaa8415.

Kadiyala SP, Jadhav P, Lam SK, Srikanthan T. 2020. Hardware performance counter-based
fine-grained malware detection. ACM Transactions on Embedded Computing Systems
19(5):1–17.

Kaur G, Dhir R, Singh M. 2017. Anatomy of ransomware malware: detection, analysis and
reporting. International Journal of Security and Networks 12(3):188–197
DOI 10.1504/IJSN.2017.084399.

Kharraz A, Arshad S, Mulliner C, Robertson WK. 2016. UNVEIL: a large-scale, automated
approach to detecting ransomware. In: USENIX Security Symposium. 757–772.

Kharraz A, Robertson W, Balzarotti D, Bilge L, Kirda E. 2015. Cutting the gordian knot: a look
under the hood of ransomware attacks. In: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Cham: Springer, 3–24.

Kim D, Soh W, Kim S. 2015. Design of quantification model for prevent of cryptolocker.
Indian Journal of Science and Technology 8(19):e80196 DOI 10.17485/ijst/2015/v8i19/80196.

Kimberly T, Salahuddin JK, Aristide F, Lorenzo C. 2015. CopperDroid: automatic reconstruction
of android malware behaviors. NDSS Symposium 2015 2015:1–15.

Kohavi R. 1996. Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid. In:
KDD Proceedings. Citeseer, 96.

Kok S, Abdullah A, Jhanjhi N, Supramaniam M. 2019. Ransomware, threat and detection
techniques: a review. International Journal of Computer Science and Network Security 19(2):136.

Kouliaridis V, Kambourakis G. 2020. Feature importance in mobile malware detection.
ArXiv preprint arXiv:2008.05299.

Kuruvila AP, Kundu S, Basu K. 2020. Analyzing the efficiency of machine learning classifiers in
hardware-based malware detectors. In: 2020 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). Piscataway: IEEE, 452–457.

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 22/24

http://dx.doi.org/10.6028/NIST.TN.1855
http://arxiv.org/abs/1807.10868
http://dx.doi.org/10.1007/s11416-008-0092-2
http://dx.doi.org/10.1016/j.jisa.2018.02.008
http://dx.doi.org/10.1002/mrm.24204
http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1504/IJSN.2017.084399
http://dx.doi.org/10.17485/ijst/2015/v8i19/80196
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

Kuznetsova I, Karpievitch YV, Filipovska A, Lugmayr A, Holzinger A. 2017. Review of machine
learning algorithms in differential expression analysis. ArXiv preprint arXiv:1707.09837.

Lee JK, Moon SY, Park JH. 2016. CloudRPS: a cloud analysis based enhanced ransomware
prevention system. Journal of Supercomputing 73(7):3065–3084
DOI 10.1007/s11227-016-1825-5.

Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H. 2017. Feature selection: a data
perspective. ACM Computing Surveys 50(6):1–45.

Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News 2(3):18–22.

Liu X, Liu J. 2014. A two-layered permission-based android malware detection scheme. In: 2014
2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering.
Piscataway: IEEE, 142–148.

Maiorca D, Mercaldo F, Giacinto G, Visaggio CA, Martinelli F. 2017. R-PackDroid: API
package-based characterization and detection of mobile ransomware. In: Proceedings of the
Symposium on Applied Computing. 1718–1723.

Malone C, Zahran M, Karri R. 2011. Are hardware performance counters a cost effective way for
integrity checking of programs. In: Proceedings of the Sixth ACM Workshop on Scalable Trusted
Computing. New York: ACM, 71–76.

Maurya A, Kumar N, Agrawal A, Khan R. 2018. Ransomware: evolution, target and safety
measures. International Journal of Computer Sciences and Engineering 6(1):80–85.

Metz CE. 1978. Basic principles of ROC analysis. Seminars in Nuclear Medicine 8(4):283–298
DOI 10.1016/S0001-2998(78)80014-2.

Mucci PJ, Browne S, Deane C, Ho G. 1999. PAPI: A portable interface to hardware performance
counters. In: Proceedings of Department of Defense HPCMP Users Group Conference.

Narudin FA, Feizollah A, Anuar NB, Gani A. 2016. Evaluation of machine learning classifiers for
mobile malware detection. Soft Computing 20(1):343–357 DOI 10.1007/s00500-014-1511-6.

Or-Meir O, Nissim N, Elovici Y, Rokach L. 2019. Dynamic malware analysis in the modern era—
a state of the art survey. ACM Computing Surveys 52(5):1–48 DOI 10.1145/3329786.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J. 2011. Scikit-learn: machine learning in
Python. Journal of machine Learning research 12:2825–2830.

Ramesh G, Menen A. 2020. Automated dynamic approach for detecting ransomware using
finite-state machine. Decision Support Systems 138:113400 DOI 10.1016/j.dss.2020.113400.

Scalas M, Maiorca D, Mercaldo F, Visaggio CA, Martinelli F, Giacinto G. 2019. On the
effectiveness of system API-related information for Android ransomware detection.
Computers & Security 86:168–182 DOI 10.1016/j.cose.2019.06.004.

Sgandurra D, Muñoz-González L, Mohsen R, Lupu EC. 2016. Automated dynamic analysis of
ransomware: benefits, limitations and use for detection. ArXiv preprint arXiv:1609.03020v1.

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image
recognition. ArXiv preprint arXiv:1409.1556.

Singh B, Evtyushkin D, Elwell J, Riley R, Cervesato I. 2017. On the detection of kernel-level
rootkits using hardware performance counters. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. 483–493.

Song S, Kim B, Lee S. 2016. The effective ransomware prevention technique using process
monitoring on android platform. Advances in Mobile Security Technologies
2016(1):1–9 DOI 10.1155/2016/2946735.

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 23/24

http://dx.doi.org/10.1007/s11227-016-1825-5
http://dx.doi.org/10.1016/S0001-2998(78)80014-2
http://dx.doi.org/10.1007/s00500-014-1511-6
http://dx.doi.org/10.1145/3329786
http://dx.doi.org/10.1016/j.dss.2020.113400
http://dx.doi.org/10.1016/j.cose.2019.06.004
http://dx.doi.org/10.1155/2016/2946735
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

Tan PN, Steinbach M, Kumar V. 2006. Classification: basic concepts, decision trees, and model
evaluation. Introduction to Data Mining 1:145–205.

Victoriano OB. 2019. Exposing android ransomware using machine learning. In: Proceedings of
the 2019 International Conference on Information System and System Management. 32–37.

Wang X, Chai S, Isnardi M, Lim S, Karri R. 2016.Hardware performance counter-based malware
identification and detection with adaptive compressive sensing. ACM Transactions on
Architecture and Code Optimization 13(1):1–23.

Weaver VM. 2013. Linux perf_event features and overhead. In: The 2nd International Workshop
on Performance Analysis of Workload Optimized Systems. Vol. 13. Urbandale: FastPath.

Xu Z, Ray S, Subramanyan P, Malik S. 2017. Malware detection using machine learning based
analysis of virtual memory access patterns. In: Proceedings of the Conference on Design,
Automation & Test in Europe European Design. 169–174.

Xuan S, Liu G, Li Z, Zheng L, Wang S, Jiang C. 2018. Random forest for credit card fraud
detection. In: 2018 IEEE 15th International Conference on Networking, Sensing and Control.
Piscataway: IEEE, 1–6.

Yang T, Yang Y, Qian K, Tao L. 2015. Automated detection and analysis for android ransomware.
New York: IEEE, 1338–1343.

Zavarsky P, Lindskog D. 2016. Experimental analysis of ransomware on windows and android
platforms: evolution and characterization. Procedia Computer Science 94:465–472
DOI 10.1016/j.procs.2016.08.072.

Zhang H, Xiao X, Mercaldo F, Ni S, Martinelli F, Sangaiah AK. 2019. Classification of
ransomware families with machine learning based on N-gram of opcodes. Future Generation
Computer Systems 90:211–221 DOI 10.1016/j.future.2018.07.052.

Zhang M, Xu B, Wang D. 2015. An anomaly detection model for network intrusions using one-class
SVM and scaling strategy. Cham: Springer, 267–278.

Zhang X, Zhao J, LeCun Y. 2015. Character-level convolutional networks for text classification. In:
Advances in Neural Information Processing Systems. 649–657.

Zhou B, Gupta A, Jahanshahi R, Egele M, Joshi A. 2018. Hardware performance counters can
detect malware: Myth or fact? In: Proceedings of the 2018 on Asia Conference on Computer and
Communications Security. 457–468.

Aurangzeb et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.361 24/24

http://dx.doi.org/10.1016/j.procs.2016.08.072
http://dx.doi.org/10.1016/j.future.2018.07.052
http://dx.doi.org/10.7717/peerj-cs.361
https://peerj.com/computer-science/

	On the classification of Microsoft-Windows ransomware using hardware profile
	Introduction
	Related work
	Motivation and methodology
	Results and discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

