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ABSTRACT
As DRAM technology continues to evolve towards smaller feature sizes and
increased densities, faults in DRAM subsystem are becoming more severe. Current
servers mostly use CHIPKILL based schemes to tolerate up-to one/two symbol
errors per DRAM beat. Such schemes may not detect multiple symbol errors arising
due to faults in multiple devices and/or data-bus, address bus. In this article, we
introduce Single Symbol Correction Multiple Symbol Detection (SSCMSD)—a novel
error handling scheme to correct single-symbol errors and detect multi-symbol
errors. Our scheme makes use of a hash in combination with Error Correcting Code
(ECC) to avoid silent data corruptions (SDCs).
We develop a novel scheme that deploys 32-bit CRC along with Reed-Solomon code
to implement SSCMSD for a ×4 based DDR4 system. Simulation based experiments
show that our scheme effectively guards against device, data-bus and address-bus
errors only limited by the aliasing probability of the hash. Our novel design enabled
us to achieve this without introducing additional READ latency. We need 19 chips
per rank, 76 data bus-lines and additional hash-logic at the memory controller.

Subjects Algorithms and Analysis of Algorithms, Computer Architecture, Emerging Technologies
Keywords DRAM reliability, Reed solomon code, Chipkill, Hash, Silent data corruption,
Multiple bit errors

INTRODUCTION
Failures in DRAM subsystem are one of the major sources of crashes due to hardware
errors in computing systems (Reliability data sets, 2005). As DRAM technology continues
to evolve towards smaller feature sizes and increased densities, faults in DRAM devices are
predicted to be more severe. For example, field study at Facebook (Meza et al., 2015)
indicates that recent DRAM technologies have higher failure rates, up to 1.8×, when
compared to previous generation.

Small cell dimensions limit the charge that can be stored in them. This results in lower
noise margins. As cell density increases, coupling (or crosstalk) effects come into picture.
In-fact, researchers have recently identified “disturbance error” (Kim et al., 2014) in
newer DRAM devices. This error has a cross-device correlation, hence will lead to multi-bit
errors across different devices in a rank.

Each generation of DDRx family has doubled the transfer rates and reduced I/O
voltages, and therefore, transmission errors in the Memory controller-DIMM interface
are on the rise (Meza et al., 2015; Jacob, Ng & Wang, 2007; Kim et al., 2016). Errors in
data-bus along with growing device failures increase the frequency of multi-bit errors in
the data fetched from DRAM subsystems. Address bits are also prone to transmission
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errors. Errors in address bus during READs lead to Silent Data Corruptions with current
CHIPKILL designs. During WRITEs, errors in address bits lead to unrecoverable data
corruptions. Field study (Sridharan et al., 2015) reports that “Command Address Parity
(JEDEC, 2020a),” is necessary to tolerate the address errors in current servers. In this
work, we also describe how faults in address bus lead to multiple symbol/bit errors. Given
these trends, solely relying on circuit based schemes to protect against these transmission
errors is not power-efficient (Kim et al., 2016).

Field studies from Siddiqua et al. (2013) and Meza et al. (2015) describe their findings
on channel faults. Specifically, Meza et al. (2015) states that channels generate a large
percentage of errors when they fail—they contribute to 21.2% of all errors each month,
but they occur only in a small fraction of failed servers (about 1.10%). It also states that
these channel faults can be either transient—due to misalignment of transmission signals
on the channel or permanent—due to failures in channel transmission logic on the
DIMMs. These channel faults result in multiple bit/symbol errors across cacheline stored
in a rank of DRAM devices in DIMMs.

Most servers use CHIPKILL (Dell, 1997) based reliability schemes, which can tolerate
one or two symbol errors per beat. Multiple bit errors spread across the chip boundaries
of a rank may not be detected by these schemes. Numerous field studies such as Meza
et al. (2015), Sridharan et al. (2015), Siddiqua et al. (2013) and Schroeder, Pinheiro &
Weber (2009) studied large scale data-centers and predict that future exascale systems will
require stronger reliability schemes than CHIPKILL. These studies base their analysis
using limited protection mechanisms/logging capabilities and, therefore, the actual failure
rates might be greater than their assessments.

The industry is also realizing the need to effectively tolerate greater than one symbol
errors. For example, in 2012, IBM introduced RAIM—Redundant array of independent
memory (Meaney et al., 2012) technology to tolerate channel faults along with full DIMM
and DRAM failures for mainframes. Based on the above observations in the research
community and in the industry, in this work, we address the important problem of
multi-bit/symbol errors in DRAM subsystem.

We first describe our error model, which captures the effects of various type of faults
that may occur in DRAM devices, data-bus and address bus. This model complements
recent efforts such as AIECC (Kim et al., 2016), which focus on faults in address, command
and control signals. We then propose a new error handling mechanism—Single Symbol
Correction Multiple Symbol Detection (SSCMSD) (Yeleswarapu & Somani, 2018).
As single symbol errors/beat are more frequent (Sridharan et al., 2015), our mechanism
uses ECC to correct them. In addition, we use a hash function to detect the less frequently
occurring multi-bit (or symbol) errors. A hash function will detect multi-symbol
errors with a high probability. It is the judicious combination of the two, that is, ECC and
hash that makes our scheme effective.

During memory WRITE operation, we use a non-cryptography hash function to
generate a checksum of the cache line’s data and address. We then encode this checksum
along with the cache-line data using Single Symbol Correct (SSC) encoder and store the
encoded data and checksum in the DRAM. During READ, we use the SSC-decoder to
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retrieve data and checksum from the stored codewords. If the decoder detects single
symbol error in a codeword, it accordingly corrects it. The SSC-decoder cannot detect
presence of multi-symbol errors all the time. We therefore recompute hash of the retrieved
data and compare it with retrieved checksum. If these checksums match, with a high
probability there is no corruption in the fetched data. When they do not match, multiple
symbol data errors must have occurred. Our simulations show that SSCMSD provides
protection against DRAM device errors and also acts as a busguard (as it enhances
detection capability against data and address-bus errors).

We believe that SSCMSD is a very effective reliability mechanism for HPC/data-centers.
More frequently occurring single symbol errors are corrected to achieve low recovery
time. On the other hand, relatively infrequent, multi-symbol errors are detected by
SSCMSD.

Our mechanism supports Selective Error Protection (SEP) (Mehrara & Austin, 2008) as
the OS can selectively enable/disable the enhanced detection capability for different
memory pages. It also supports retirement mechanisms such as Redundant bit steering
(RBS) (Blackmon et al., 2003). With RBS, if one chip/bus has a permanent fault, the OS
can scale back the reliability from SSCMSD to CHIPKILL by disabling the hash and use
the redundant chip intended for the hash as a replacement for the faulty chip/bus.

The article is organized as follows. “DDRx Memory Organization” introduces DDRx
subsystem. “Prior Work” describes prior work in the area of memory reliability. In
“Preliminary Motivational Experiments”, we describe our preliminary experiments to
understand the performance of Single Symbol Correcting Reed Solomon (SSC-RS) code in
the presence of multi-symbol errors. Our error model is described in “Error Model”.
“SSCMSD—A Novel Architectural Solution For Multi-bit/Multiple Symbol Errors” details
the SSCMSD scheme. In “Evaluation”, we evaluate our scheme for its capabilities. In “Hash
Selection”, we compare the properties of different hash functions suitable for SSCMSD
design. “Tradeoff Analysis With Baseline Scheme” compares the costs/tradeoffs of
SSCMSD scheme with the baseline. In “Conclusion”, we summarize our conclusions.

DDRX MEMORY ORGANIZATION
A DDRx (Jacob, 2009; Kotra et al., 2017) based memory is organized into hierarchical
groups to enable designers to trade bandwidth, power, cost and latency while designing
memory subsystems. At the topmost level, the subsystem comprises one or more channels.
Each channel is made up of one or more DDRx DIMMs, a shared Data-bus, Clock,
Control and Command/Address (CCCA) bus signals. Each DIMM includes multiple
DRAM chips which are grouped into multiple “ranks”. Typically, each DIMM has one,
two, four or eight ranks. Furthermore, each chip has multiple independent banks. Each
bank is composed of multiple sub-arrays (Kim et al., 2012) and a global sense amplifier.
Each sub-array is further organized into a matrix of rows and columns with a sense
amplifier. Figure 1 shows the organization of a channel which is composed of two ×4
(transfer width—4 bits) based DIMMs.

The data bus is organized into sixteen groups or “lanes”, each lane is composed of 4 bit-
lines and is shared by devices (or chips) across a channel. The CCCA signals drive all the
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devices in the channel and hence operate at lower (typically, half of data) frequencies for
meeting timing and reliability requirements. DDR4 (JEDEC, 2020a) has a 28 bit (22-
Address/Command, 4 Control, 1 Clock) wide CCCA bus.

The memory controller (MC) handles memory requests from processor/cache/IO
devices. As shown in Fig. 1, the MC communicates address, commands, and data to the
DRAM ranks over the channels. Typically, read/write cache miss require 64-byte data to be
transferred between MC and DRAM memory subsystem. In this article, we refer this
64-byte data (plus additional redundancy if any) as a cache-line. This is communicated
in eight “beats” (8-half bus cycles). For a DRAM subsystem composed of DDR4, ×4
devices, each beat activates an entire rank (Tang et al., 2016) (16 devices) and MC
fetches/sends 64 bits of data per beat. The bits (4 for ×4 devices) contributed by each device
per beat are commonly referred as a word.

DRAM devices are currently available in ×4, ×8 and ×16 variants. A total of ×4 DDRx
DRAMs are used widely in servers as they provide higher channel capacity at the cost of
more energy. In this work, we present a robust ECC mechanism for ×4 based DRAM
subsystem. Therefore, our solution will be suitable for servers where reliability is an
important requirement.

PRIOR WORK
This section summarizes schemes currently used by the industry and recent academic
efforts to improve the reliability of DRAM subsystem. SECDED (Jacob, Ng &Wang, 2007)

Figure 1 Memory channel—Memory controller is connected to DRAM modules (DIMMs) through
shared bus. Full-size DOI: 10.7717/peerj-cs.359/fig-1

Yeleswarapu and Somani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.359 4/36

http://dx.doi.org/10.7717/peerj-cs.359/fig-1
http://dx.doi.org/10.7717/peerj-cs.359
https://peerj.com/computer-science/


and CHIPKILL (Dell, 1997) mechanisms were developed to address DRAM device errors.
JEDEC introduced four schemes in DDR4 [5], to partially address signal integrity errors.
MEMGUARD (Chen & Zhang, 2014), Bamboo-ECC (Kim, Sullivan & Erez, 2015) and
AIECC (Kim et al., 2016) are recent academic efforts which are closely related to our work.

SECDED
In 1990s, memory modules in servers were protected by using SECDED Codes.
These codes make use of redundant (or check) bits to correct single-bit or detect
double bit errors in a beat. For a typical beat size of 64 bits, SECDED code (Jacob, Ng &
Wang, 2007) makes use of eight redundant bits. SECDED design can correct 1-bit error
or detect 2-bit errors in 64 bits (per beat) with 12.5% redundancy and 8 additional bus
lines/channel. In practice, it can detect/mis-correct some multi-bit errors (Kim, Sullivan &
Erez, 2015) as well.

CHIPKILL correct
As the demand for larger, high-density memory modules increased in the server industry,
there was a need to protect against a single device failure. IBM introduced the “CHIPKILL
Correct” error model to tolerate the failure of a single DRAM device in a rank.

CHIPKILL implementations make use of Reed Solomon (RS) Codes. RS codes use
Galois “symbol” (set of bits) based arithmetic (Geisel, 1990) and like SECDED use
additional logic to generate codewords (set of data and check symbols) using data symbols.
The circuit complexity of RS code increases with the symbol size. Therefore, small symbol
sized RS codes such as 4-bit and 8-bit are more commonly used. There are two popular
versions of chipkill.

4 check symbol based SSCDSD (Single symbol correct, double symbol
detect) CHIPKILL
AMD’s 2007 design (AMD Inc, 2007) and Sun UltraSPARC (Sun Microsystems, 2008)
provide SSCDSD capability for ×4 DRAM devices by using 4-bit symbol RS code with four
check symbols. To maintain redundancy at 12.5%, this design uses 32 data symbols
(128 bits), 4 check symbols (16 bits) per beat with 144-bit data bus and 36 devices per
rank. The scheme by design “over fetches”, that is, two cache lines are accessed during a
memory transaction (8 beats * 32 data devices/rank * 4 bits = 128 Bytes) and uses 144 bit
data bus. Therefore, it may result in increased energy consumption.

SSC (Single symbol correction) CHIPKILL
To reduce access granularity to one cache-line, in 2013, AMD developed a Single
Symbol Correction based 8-bit symbol RS code (AMD Inc, 2013) for ×4 DRAM devices.
Similar to organization for SECDED, this scheme also uses 72 bit data bus and 18 devices
(16 data and two for storing check symbols) per rank.

During a WRITE operation, the MC divides the 64-byte cache line into four data blocks
of size 128 bits each (16-data symbols). Each data block is encoded with RS-SSC to
generate 16 check bits (2 check symbols). Each codeword therefore has 16 data symbols
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and 2 check symbols with a redundancy of 12.5%. As shown in Fig. 2A, each symbol of the
codeword is split into two blocks. For example, symbol 17 in CW 0 is split into two
4-bit blocks assigned to 17th block in Beat 0 and Beat 1 respectively in the figure. The 17th
block of “Beat 0” has all odd bits of the symbol and the 17 block of “Beat 1” has all the even
bits of symbol 17. In this way, each beat is composed of 16 data blocks (shown in blue)
meant to be stored in 16 devices, and 2 blocks (shown in red) from check symbols of
the encoded codeword, meant to stored in the two redundant devices. The remaining 3
datablocks are also encoded and transferred via 6 beats. So, each cache-line makes use of
four codewords and 8 beats.

During READ operation, bits from two successive beats are interleaved at the MC
to form one codeword. By employing RS-SSC decoder, the MC provides “Chipkill”
functionality as each symbol now contains bits from same ×4 device in the rank. In this
way, all the four codewords are decoded at the MC. If any device fails or bits stored in
the device are corrupted, at-least one symbol corresponding to the device gets corrupted
and can be recovered by using SSC-RS decoding.

This design is used as our baseline for comparison. When there are more than one
symbol with errors per codeword (mostly due to multiple chip failures), AMD uses history
based hardware-software approach to cover these scenarios.

Figure 2 (A) AMD’s SSC Design. Each Codeword is formed by interleaving 2 successive beats. Each
codeword has two check symbols (Red) and 16 data symbols (blue). (B) QPC-Bamboo. Each symbol is
composed of 8 bits transferred by a single pin. QPC-Bamboo uses one codeword composed of 72 such
symbols for the entire cache-line. Each beat comprises of 72 bits (64 from data chips and 8 from
ECC/redundant chips), one from each symbol. Full-size DOI: 10.7717/peerj-cs.359/fig-2
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Three check symbol based SSCDSD (Single symbol correct, double symbol
detect) CHIPKILL

Single Symbol Correct, Double Symbol Detect can also be implemented with three check
symbols. For example, Lin & Costello (1984) describes an extended Reed Solomon code
(n + 3,n,8) with three check symbols. For current ×4 DDR4 systems, it is possible to
employ a RS (19,16,8) code with 19 devices devices per rank (64 data + 12 redundant
bits/beat) and 76 bit data bus. Similar to AMD’s SSC CHIKPILL, this scheme can also
combine two successive beats to form one codeword. Each cache request (64 bytes) can
make use of four codewords to provide SSCDSD capability. We compare the tradeoffs
between this scheme and our solution in the “Evaluation”.

DDR4 bus reliability mechanisms
WRITECRC
In DDR4, WRITECRC is designed to detect transmission errors in data during WRITE
operation. In this design, the memory controller generates an 8-bit CRC checksum for
the entire write data burst (8 beats) to each chip/data-lane (JEDEC, 2020a), of the rank.
These 8 bits are sent over two additional beats after the data is sent to the individual chips.
Each DRAM chip includes logic to re-compute the CRC checksum and compare it with
checksum received from the controller. Such a design allows the chips to detect errors
before storing them and provides an option to retry the transmission of the data. However,
transmission errors during READs (not covered by WRITECRC) may also lead to SDCs
with the baseline scheme.

CA (Command/Address) parity
Command/Address parity uses an additional pin (or bus-line) to transfer even parity of the
CMD/ADD signals to every DRAM chip. It cannot detect an even number of bit-errors on
the CMD/ADD signals.

Data bus inversion
Data Bus Inversion is designed to protect against Simultaneously Switching Noise (SSO)
(Mentor Graphics, 2015), during data transmission for ×8, ×16 DDR4 chips. With 8 Data
bits/pins and an additional 9th pin per each data-lane, DBI (Data Bus Inversion) ensures
that at least 5 out of 9 pins are “1”s. This avoids the situation where all bits switch from 0 to
1 or vice-versa to improve the signal integrity of data bus.

Gear down mode
Gear-down mode allows the MC to lower transmission rate of command/address and
control signals to trade-off latency and command bandwidth for signal quality while
maintaining high data rates.

Memguard Chen & Zhang (2014)
Memguard is a reliability scheme designed to detect multi-bit errors in DRAMs without
using redundant storage. It makes use of two registers (READHASH, WRITEHASH) and
custom logic at the memory controller (MC). Whenever there is a memory transaction
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between the last level cache and the DRAM, the logic at MC computes a hash value for this
transaction and READHASH/WRITEHASH registers are updated. This scheme does
not store the hash values in the memory and uses an incremental multi-set hashing
technique (Clarke et al., 2003). By periodically synchronizing the two hash registers at
the MC, Memguard detects any error that occurred during that period and relies on
OS-checkpointing for error recovery.

Although this scheme can detect multi-bit (or multi-symbol) errors, on its own it is
not suitable for HPC/datacenters due to the high recovery time associated with
checkpointing and synchronization. Also, Memguard is effective only against soft
errors. Although, we do use a hash function in our scheme, our purpose is completely
different. We do not use incremental multi-set hashing technique and we store hash along
with data and ECC bits in the DRAM for redundancy. Thus, we employ ECC and hash to
provide error detection and correction for each cache-line read and write, and do not
require any synchronization over time. This ensures faster recovery, effectiveness against
both permanent and soft errors, and is therefore suitable for HPC data centers and servers.

QPC bamboo ECC (Kim, Sullivan & Erez, 2015)
SECDED and CHIPKILL designs described earlier orient the symbols parallel to the beats.
This will reduce the latency overhead associated with decoding as the memory controller
can perform the decoding on the received codeword while waiting for the remaining
codewords. This work argues for aligning the ECC symbols orthogonal to the beats to
provide improved reliability at the cost of increased latency.

QPC Bamboo provides CHIPKILL capability (four/quadruple pin correction capability)
with 12.5% redundancy for ×4 based memory systems. As shown in Fig. 2B, this
scheme makes use of 8 bits of the 64-byte cacheline transferred through a pin of an ×4
device as one symbol. With two additional devices per rank (12.5% overhead), there will
be a total of 72 symbols per cache-line. They use one codeword (size—72 symbols) of
RS-Single Symbol Correction Code for the entire cache-line. Of these, 64 (16 × 4) are data
symbols from 16 devices and 8 (2 × 4) are check symbols from two additional devices.
This RS-SSC code can correct up-to 4 (8/2) erroneous symbols. Based on their error model,
they show that QPC-Bamboo provides stronger correction and safer detection capabilities
than AMD’s CHIPKILL (SSC (Single Symbol Correction) CHIPKILL). Hence, we also
evaluate QPC Bamboo in our comparative studies.

Our goal in this article is to consider more realistic error model based on the nature of
faults and develop an appropriate scheme to protect against them.

AIECC-all inclusive ECC (Kim et al., 2016)
AIECC is a suite of mechanisms designed to protect against clock, control, command,
and address (CCCA) faults without additional redundant storage or new signals.

Our work is orthogonal to AIECC scheme. We focus on improving detection capability
against device, data and address errors while AIECC focuses on CCCA errors with limited
protection against address errors. The reliability of future memory systems can be
improved by incorporating our solution along with AIECC.
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PRELIMINARY MOTIVATIONAL EXPERIMENTS
In the presence of an error, a generic reliability scheme reports it as either a Correctable
Error (CE) or a Detectable but Uncorrectable Error (DUE). When an error is outside
of the coverage of the scheme, it can result in a Detectable but Miss-corrected Error (DME)
or an Undetectable Error (UE). DMEs and UEs are collectively called as Silent Data
Corruptions (SDCs) as they do not raise an alarm.

The baseline scheme uses RS (18, 16, 8) systematic SSC code. A RS (n, k, m) codeword
has k data symbols and n-k check symbols with m bits per symbol. The minimum
hamming distance between any two codewords is n − k + 1 (3 in this case). It can correct :
⌊(n − k)/2⌋ (1 for baseline scheme) symbol errors. When there is an error across multiple
symbols of a codeword, the RS decoder can either identify it to be uncorrectable error
(DUE) or “miss-correct” it to another codeword thinking it to be a single symbol error of
another codeword (DME) or fail to detect presence of the error (UE). As a result, multiple
symbol errors can result in Silent Data Corruptions (collective term for DMEs and UEs) in
the baseline scheme. We experimented to assess the level of Silent Data corruptions in the
baseline scheme in the presence of multi-symbol errors.

We developed an in-house simulator to perform our experiments. We used open source
software (Minsky, 2013; Rockliff, 1991; Eruchalu, 2014) to develop Galios (symbol-based)
arithmetic, RS encoder and decoder. We use generator polynomial—G(x) = (x − a1)(x −

a2)…(x − aN) (whereN—number of ECC symbols/CW) to construct RS code. Our decoder
uses Berlekamp Massey algorithm for correcting/detecting errors.

For each iteration of the experiment, we generated random 16 byte dataword and
used RS encoder to generate 18-symbol codeword. We stored this codeword in an array.
With the help of 18-symbol error mask, we inserted errors into the stored codeword.
We then, decoded the stored codeword (with errors) using the RS-decoder. The decoder
flagged whether each codeword had “No Errors” or “Detectable but Uncorrectable Errors”
or “Correctable Errors”. If the decoder detected a correctable error in a codeword, it
corrected the corresponding stored-codeword. Next, we retrieved the stored data word
processed by RS-decoder and compared it with the original data word to identify silent
data corruptions.

We executed three experiments—introducing random 2, 3 and 4 symbol errors per
codeword. Each of these experiments was run for ten iterations with 1 billion random
datawords in each iteration. Table 1 lists the mean % across 10 iterations for the number
of miscorrections (DMEs), detected but uncorrectable errors (DUEs) and undetected
errors (UEs) with Berlekamp Massey algorithm based RS decoder. The standard deviation

Table 1 Results of Random multi-symbol data errors for RS (18,16,8).

Experiments Miscorrected
(DMEs) (%)

Detected but
Uncorrected (DUEs) (%)

Undetected
(UEs) (%)

2 Symbol Errors/CW 6.3 93.7 0% (0)

3 Symbol Errors/CW 6.9 93.1 −> 0% (∼10,000)
4 Symbol Errors/CW 7.0 93.0 −> 0% (∼10,000)
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for each of the experiments (except for UEs with random 2 symbol errors) was up to
13,000. In the table, we provide the mean of UEs (in parenthesis) along with mean %
of UEs.

Due to simplicity of hardware design, most of the hardware implementations use
either algorithm based on Euclidean approach or Berlekamp Massey, to implement RS
decoder. We therefore, performed these simulations with Euclidean based RS decoder as
well. The results were similar to what we observed in Table 1 with the BM algorithm.
The mean percentages of DMEs and DUEs for Euclidean decoder for all the three
experiments were less than 0.5 percent away from what we observed with Berlekamp
Massey (Table 1). The mean percentage of UEs for all the experiments were identical to the
results shown in Table 1.

Theoretical analysis
We can explain the results of our experiments described in the “Preliminary Motivational
Experiments” with the help of an analytical method (Sofair, 2000). Figure 3A depicts
the codespace of the baseline RS (18, 16, 8) code. In the figure, stars represent valid
codewords and diamonds represent non-codewords. Due to errors, a particular codeword
(say CW1) gets corrupted and may be detected by RS decoder as a non-codeword
(diamond) or as other codeword in the space (Kim, Sullivan & Erez, 2015). The dotted
hypersphere which is HD = 1 away from codeword represents the correction range of
the SSC. All the words on this sphere will be corrected to the codeword on the center of
the sphere (in this case CW1). Words on HD = 2 hypersphere (solid line in green) are
either detected as errors or miscorrected to the adjacent codeword. Words on the dashed

Figure 3 (A) N tuple space representation of Reed Solomon SSC code. Stars are codewords which are
at least 3 Hamming Distance apart. (B) CWs A and B are two codewords at HD = e. In the depiction,
e errors in CW A may place it at HD = 1 from CW B. Full-size DOI: 10.7717/peerj-cs.359/fig-3
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sphere (HD = 3) are either correctly detected as errors or undetected (falsely detected as
adjacent codeword) or miscorrected as another codeword.

For a generic RS (n, k, m) code, the total n-tuple space available is 2n * m. Out of
this space, the number of codewords are 2k * m. Assuming that the space is uniformly
distributed among the codewords, we can say that the space around (or owned by) each
codeword is 2n * m/2k * m.

If we introduce “e” symbol errors from a given codeword (say CW1), all such words
lie on a hypersphere at HD = e from the codeword. If “e” is greater than minimum HD of
“n − k + 1”, this sphere may also contain other codewords. For example, as shown in
Fig. 3A, the RS code has two codewords (CW1 and CW2) which are HD = 3 apart.
If we introduce 4 symbol errors from CW1, the hypersphere centered on CW1 with radius
4 also contains CW2. On an average, the number of such codewords Ce on or inside a
hypersphere HD = e away is approximately given by dividing the total number of words
inside the sphere by number of words "owned" by each codeword is as follows.

Ce ¼
Pe

a¼1 nCa 2m�1ð Þa

2mð Þn�k � 1 (1)

The RS decoder “mis-corrects” such an “e” (where e > ðn� kþ 1Þ) symbol error from
a given codeword when the e-symbol error also: (1) falls on HD = 1 sphere of another
CW which is HD = e away OR (2) falls on HD = 1 sphere of another CW which is HD = e,
− 1 away OR (3) falls on HD = 1 sphere of another CW which is HD = e + 1 away.
For example, Fig. 3A shows a hypersphere at HD = 4 away from CW1. This sphere
represents all the 4-symbol errors from CW1. Few words on this sphere get mis-corrected
to CW3, which is at HD = 4 away from CW1. Due to presence of CW2 at HD = 3
away from CW1, few other words on sphere HD = 4 also fall on HD = 1 sphere of
CW2 and therefore get mis-corrected. Similarly, few other words on this HD = 4
sphere also fall on HD = 1 sphere of CW4 which is at HD = 5 away from CW1.

Using Eq. (1), the number of CWs at HD = e from a given codeword is given by
Ce � Ce�1 which is equal to

nCe 2m�1ð Þe

2mð Þn�k (2)

Now, due to the presence of one CW at HD = e from a given CW A, more than one “e”
symbol errors are miscorrected. Figure 3B shows two codewords CW A and CW B
which are HD = e away. There will be exactly eCe�1� 2m�2ð Þ number of “e” symbol errors from
CW A which are HD = 1 away from CW B and hence will be miscorrected to CW B.
Combining this with Eq. (2) we get the expression for total number of “e” symbol errors
from a given codeword CW A that will be miscorrected due to presence of codewords at
HD = e from CW A as follows.

me ¼ nCe � 2m � 1ð Þe � eCe�1 � 2m � 2ð Þ
2mð Þn�k

(3)
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Similarly, we can calculate number of “e” symbol errors that will be miscorrected due to
presence of codewords at HD = e − 1, HD = e + 1 given by Eqs. (4) and (5), respectively.

me�1 ¼
nCe�1 � 2m � 1ð Þe�1 � n� eþ 1ð ÞC1

� 2m � 2ð Þ
2mð Þn�k

(4)

meþ1 ¼
nCeþ1 � 2m � 1ð Þeþ1 � eþ 1ð ÞCe

2mð Þn�k (5)

The total number of “e” symbol errors from a CW is given by nCe� 2m�1ð Þe. Therefore, the
fraction of miscorrections in the set of “e” symbol errors from a CW is given by mtotal.

mtotal ¼ 1
nCe� 2m�1ð Þe

� me þme�1 þmeþ1ð Þ (6)

Using Eq. (6), we calculate the fraction of miscorrections. For the first experiment
(Random 2 Symbol errors) as RS (Tang et al., 2016; Kotra et al., 2017; Siddiqua et al., 2013)
code has a minimum HD of 3, there are no codewords at, as the code-space is sparsely
populated, 93.7% of random errors on HD = 2 sphere do not fall on HD = 1 spheres of
other codewords. Also, as expected, we do not observe any undetected errors in this
experiment as there are no codewords at HD = 2. Similarly, we calculate the fraction
of miscorrections for the second and third experiments and find that these also corroborate
with the experimental results in Table 1. The total information space available for single
symbol correcting RS (18,16,8) is 218�8(2k�m). Out of this, 216�8(2k�m) are to be used
as codewords. As the fraction of codewords over the total space is only 2−16(216�8/218�8),
as the code-space is sparsely populated, 93.7% of random errors on HD = 2 sphere do not
fall on HD = 1 spheres of other codewords. Also, as expected, we do not observe any
undetected errors in this experiment as there are no codewords at HD = 2. Similarly,
we calculate the fraction of miscorrections for the second and third experiments and find
that these also corroborate with the experimental results in Table 1.

As we are able to corroborate the experiment results with our analytical model,
we have confidence that our experimental framework is able to accurately simulate Reed
Solomon decoder and random error injection. Also, these results further motivated us to
develop a solution to tackle SDCs in current and future DRAM subsystems.

ERROR MODEL
To represent the possible fault modes that may occur in current/future DRAM systems,
we first describe our error model. This model covers various type of faults that arise in
DRAM devices, data-bus and address-bus.

Faults in DRAM subsystems are caused due to a variety of sources such as cosmic rays
(Baumann, 2005), circuit failure, signal integrity etc. These faults can be broadly
categorized as transient or permanent. Transient phenomena corrupt memory locations
temporarily, once rewritten these locations are free from errors. Permanent faults cause the
memory locations to consistently return erroneous values.
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Field (Meza et al., 2015; Sridharan et al., 2015; Schroeder, Pinheiro & Weber, 2009;
Hwang, Stefanovici & Schroeder, 2012) help us in understanding the trends of errors in
DRAM subsystem up to a certain extent. We use this information along with nature of
faults in DRAM subsystem to develop our error model (Table 2). Here, we describe the
sources of these faults and the corresponding errors perceived per cache-line due to a
particular fault type. Single bit errors are due to failures in DRAM cells or due to faulty
column. Due to failure in a sub-array or one DQ pin (one bus line in a bus-lane), bits
transferred over a single DQ pin are corrupted. Failures in circuitry inside chips such as
sense amplifiers, address decoders etc. cause particular rows/columns/banks/chips to
malfunction. For example, if a local row buffer (sense-amplifier) in a bank of a chip is stuck
at 1, then all the bits fetched from the chip of particular READ request are read as “1”.
Therefore, each word (bits provided by a chip in one beat) fetched from this chip will have
all 1’s for this particular READ.

Bus faults are another source of errors. According to 1st order analysis, bus lines act as a
low pass filter. Since digital signals are composed of numerous frequencies, distinct
components of these signals experience attenuation to a different degree giving rise to
signal degradation. Reflection is another first order effect which results in signal
degradation.

Table 3 describes other sources of transmission faults (Jacob, Ng & Wang, 2007) and
their impact on signal integrity of the data bus. As most of the errors associated with
bus faults are data-dependent or random, we expect random errors in different beats of a
faulty data-bus. To simulate this behavior for a single data-bus fault, we use a random
number to identify the erroneous beat positions among eight beats. We then inject random
errors in these positions. We also consider correlated data-bus fault due to presence of
external noise or coupling between two bus lanes. In this fault-mode, we expect two
neighboring data-bus lanes to be faulty. Similar to single bus fault, we first identify
erroneous beat positions and inject random errors for these two neighboring data-bus
lanes.

Table 2 Different faults and the corresponding Error Model.

Fault mode Source Error pattern per cacheline

1 bit/Column Particle strike/cell or column failure 1 bit error

1 pin/Sub-array fault Fault in 1DQ of a buslane, or subarray 1 pin stuck at 0 or 1 for all beats

Row/Chip/Bank fault Failure of sub-array row driver/address decoding circuit 1 word related to faulty chip stuck in all beats

Bus fault Fault in 1 bus lane errors in random beats of a bus

Correlated Bus fault External noise or Cross -coupling Consecutive Bus-lane faults

1 bit/pin + other faults Both 1 bit/pin + pin/row/chip/bus faults lead to 2 symbol errors

Chip + Chip 2 faulty chips OR byzantine address faults 2 specific words in all beats stuck at 1 or 0 or random pattern

3 fault mode byzantine address faults OR combine 3 of above faults Random errors in 3 words/beat

multi-symbol fault mode byzantine address faults in >3 devices/rank Random errors in >3 words/beat

Address fault Fault in MC-DIMM address bus Memory Data corruptions during WRITE fetch data from
unintended address during READ
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We also combine single bit/pin faults (as they occur with higher frequency (Sridharan &
Liberty, 2012) with other fault types to model 2-symbol/chip errors per codeword.
Note that 1bit/pin fault + other faults lead to either 1 or 2 symbol errors per codeword.
Based on our preliminary experiments, we are interested in scenarios which lead to
2-symbol errors per codeword (1 symbol errors are anyways handled by existing chipkill
mechanisms), therefore, in our experiments for 1-bit/pin + other faults, we insert errors in
2 different symbols for the codewords. This results in 2 symbol errors/CW.

Address-bus is also prone to faults. These faults can be primarily categorized into two
types. In one fault mode, all the DRAM devices of the rank receive the same (erroneous)
address. This happens when there is a fault in the address bus in-between the MC and
DIMM (shown in Fig. 4). We also consider another type of byzantine fault, where few
of the devices in the rank receive erroneous addresses. As the address bus inside the DIMM
drives all the devices of the rank, it is prone to byzantine faults—where due to unstable bus
lines, different devices sense the address sent on the address-bus differently. Note that
DIMM manufacturers use different type of bus topologies such as fly-by (JEDEC, 2020a),
tree, hybrid tree, but we do not show them in the figure.

When devices in the rank receive erroneous address during WRITE operation, there
is memory data corruption (Kim et al., 2016). When only one of the devices receives
erroneous address (due to byzantine fault) during WRITE, one symbol/CW is corrupted
and therefore ECC deployed by baseline can recover it. If >1 device receive erroneous
address, it will lead to >1 symbol error/CW, hence it could result in detected but
uncorrectable error (DUE) or detected but miscorrected error (DME) or undetected
error (UE).

As shown in Fig. 5, due to address fault in-between the MC and DIMM, during
WRITE operation (WRITE address A), all the DRAMs of rank register this as a WRITE
operation to location B. As a result, the contents of location B are corrupted (with A′)
and location A has stale data (A instead of A′). Therefore, untill these locations are written

Table 3 Summary of Data Transmission faults.

Transmission Fault Description/Cause Impact on Signal Integrity

Dielectric Loss Signals attenuate as a function of trace length and
frequency

All data bits are affected, results
in signal attenuation

Skin effect Resistance of conductor varies non-uniformly
with frequency

All data bits are affected, results
in signal attenuation

Electromagnetic
interference

Electromagnetic/capacitive coupling of closely
packed lines

few bus lines/lanes are affected
at one point of time

Skew Path length variations result in timing variations Random

Jitter Fluctuations in voltage, temperature and crosstalk
between successive cycles of a given signal
impact the propagation time of the signal

Difficult to model/characterize

Inter symbol
interference

Past signals on a line have residual effects on
subsequent signals of the same line

Random, Data dependent

Simultaneously
switching output

When many signals in a bus-lane switch, they
induce coupling on other signals

Data dependent.
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back again without errors, READs to both locations A and B will lead to Silent Data
Corruptions (Undetectable Errors). In the figure, a subsequent READ request (without
error) to location A, yields the stale data (A, not A′). This is because, the baseline
CHIPKILL scheme does not keep track of address associated with the data, it will decode
the codewords and inadvertently pass the data from address location to entity (I/O or
processor) which initiated this READ request.

To prevent such memory data corruptions, JEDEC has introduced CAP-Command
Address Parity (JEDEC, 2020a), in DDR4, so that errors are detected before writing into
the DRAM. Another recent work, AIEC (Kim et al., 2016) proposed a stronger protection
mechanism called eWRITECRC to address this concern.

With weaker CAP (can detect only odd-bit errors), errors in address bus during
READs can result in Silent Data Corruption. Similar to WRITE operation, if >1 device
receives erroneous address, it could result in DUE or DME or UE. But if only one of the
devices receives erroneous address (byzantine fault), the ECC deployed by baseline can
recover it as only one symbol/CW gets corrupted. As shown in Fig. 6, due to fault in
MC-DIMM address-bus during READ operation (READ address A), all the DRAMs
of rank register this as a READ operation to location B. Therefore, the MC receives
codewords from an incorrect address (address B). To provide stronger protection for up-to
32 address bits, eDECC was introduced in Kim et al. (2016).

Figure 4 DDRx Address bus. We can have MC-DIMM address bus faults and byzantine faults.
Bus topology inside the DIMM/rank is not shown in the figure.

Full-size DOI: 10.7717/peerj-cs.359/fig-4
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Figure 5 Memory Data corruption (for all the DRAM devices) due to MC-DIMM address fault
during WRITE operation with the baseline. Full-size DOI: 10.7717/peerj-cs.359/fig-5

Figure 6 Silent Data corruption (for all the DRAM devices) during READ operation with baseline.
Full-size DOI: 10.7717/peerj-cs.359/fig-6
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As address faults in the MC-DIMM interface leads to SDCs, we include them in our
error model. Byzantine address faults lead to multiple (2, 3 or more) symbol errors/CW.
There is also possibility for other faults to occur simultaneously across three different
chips/data-bus lanes. To consider such multi-symbol error scenarios, we include 3-fault
mode and multi-symbol fault mode in our error model.

SSCMSD—A NOVEL ARCHITECTURAL SOLUTION FOR
MULTI-BIT/MULTIPLE SYMBOL ERRORS
We first carried out a set of experiments detailed in our error model to study the
behavior of the baseline (SSC-RS (Tang et al., 2016; Kotra et al., 2017; Siddiqua et al.,
2013)) scheme. The results are shown in the column labeled Baseline RS(18,16,8) in
Table 5 in “Evaluation”. As described earlier, as the code-space is sparsely populated, this
scheme can detect many multi-symbol errors as well. However, as shown in this table,
the baseline is still prone to SDCs with multiple device, data-bus and address-bus faults.
Inspired by this observation, we chose to further decrease this SDC rate by improving the
ECC scheme at the memory controller with minimal increase in redundancy, that is,
1 more redundant chip and corresponding bus lane.

As described in “3 Check Symbol Based SSCDSD (Single Symbol Correct, Double
Symbol Detect) CHIPKILL”, one can use another redundant chip to have a total of three
check symbols per codeword (baseline uses two check symbols per codeword) to provide
SSCDSD capability. The column labeled RS-SSCDSD shows the performance of this
extended scheme with our error model. As expected, all the double symbol errors are
detected by this scheme, but it is still prone to SDCs with greater than 2 symbol errors and
address protection can be improved.

An interesting point to note from these results is that the SDC rate is dependent on the
type of error pattern a fault generates rather than on the number of bits/symbols being
corrupted. For example, 1 bit + Chip fault corrupts 9 bits per CW and has 6% SDC
rate while 1-bit fault + 1-pin fault corrupts 3 bits of a particular CW and has a SDC
rate of 7.6% for the baseline scheme. Although we do not show the breakdown of SDCs
into UEs and DMEs for the baseline in Table 5, our evaluation shows that for all the
experiments of baseline and Extended-baseline schemes, SDCs occur mostly (99%)
due to miss-corrections (DMEs) from the SSC-RS decoder. Therefore, the stored
information is subjected to errors from faults and due to errors induced by the decoder.
These observations warrant inclusion of additional mechanisms to be developed and
included in the memory systems. Our solution is to use a hash function, as the hash
value allows us to identify such arbitrary corruption. We use a non-cryptographic hash
function to compute a signature of the data, address. We use this signature to detect
multi-bit errors and address errors with high probability. By combining hash and
CHIPKILL, we develop our new error handling scheme, called Single Symbol Correct,
Multiple Symbol Detect (SSCMSD) CHIPKILL.

We describe the design of our scheme below. For the sake of clarity, we discuss the
design space of using hash of only the data and then include the address.
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As shown in Fig. 7, during WRITE operation, we can combine the hash and baseline
CHIPKILL scheme in three possible ways :

Scheme A: Compute the hash of data and then use SSC encoder to encode data and
hash.

Scheme B: Encode the data and then compute the hash of encoded data.
Scheme C: Encode the data and compute the hash of data in parallel.
As shown in Table 5 the baseline and extended baseline provide CHIPKILL (SSC)

correction capability, but with multiple symbol errors, they result up-to 8% SDC rate.
The purpose of using the hash is to further reduce this SDC rate without impacting
the existing reliability provided by SSC code. Therefore, while retrieving the data from the
DRAM (READ operation), we use a simple, straight forward design to build upon the
existing SCC capabilities. First, we perform the SSC decoding, in this process the decoder
will tag each retrieved codeword to have NO Error OR Correctable Error OR Un-
correctable Error. We then use the hash to validate the findings of the decoder.

On analyzing Scheme B and Scheme C with this simple retrieval mechanism we find
that there is a possibility of a false positive that is, report data which was correctly
handled by SSC decoder to be erroneous. This happens when the hash gets corrupted
(erroneous). In this scenario, when there is a single symbol error or no error in the
data/ECC symbols of a codeword, the decoder corrects it or reports that the retrieved
data is free from errors, respectively. But, as the hash is corrupted in this scenario, the
second step of the retrieval process reports that the data is erroneous. With Scheme A there

Figure 7 Possible hash and SSC combinations. Different means to combine SSC & Hash during
WRITE operation: (A) Compute the hash of data and then use SSC encoder to encode data and hash.
(B) encode the data and then compute the hash of encoded data. (C) encode the data and compute the
hash of data in parallel During READ, (D) shows the Simple approach to employ the SSC decoder and
then employ the hash for validation. Full-size DOI: 10.7717/peerj-cs.359/fig-7
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is no scope for such false positives as hash is also correctable by SSC decoder. At the
minimum, Scheme A guarantees to provide the reliability already offered by baseline
(SSC decoder). In addition, it also provides capability to detect miscorrections OR
undetected errors missed by the SSC decoder. Hence, we choose to pursue Scheme A
further and find it to be most suitable for our purpose.

Under Scheme A, we first generate the hash of the data before encoding it with the
RS-SSC encoder. This encoded data, hash pair (codeword) is stored in the memory
during WRITE. When this stored codeword is retrieved from the memory during
READ, we first employ the RS-SSC decoder to correct/detect errors. The RS-SSC decoder
corrects up to one symbol error in each codeword to retrieve data, hash pair. As noted
earlier, there is a possibility of silent data corruption in the retrieved data, hash pair if there
are multiple symbol errors in the codeword. To detect this scenario, we recompute the
hash of data retrieved from the SSC-RS decoder and compare it with the retrieved hash.
If the hashes match, then with a high probability, we can conclude that there are no
SDCs in the retrieved data. When the two hash values do not match, this indicates
the presence of multiple symbol errors. Thus, we can effectively avoid silent data
corruptions.

When there is up to one symbol error per codeword, this combined scheme (Scheme A,
SCC decoding + Hash validation) corrects the codeword (similar to the baseline scheme)
and pass on the requested 64-byte cache-line to the processor. Hence, applications
waiting for this cache-line can resume their execution almost immediately on the
processor. But if there is a multi-symbol error in any of the codeword, our scheme would
detect that with high probability and prevent silent data corruption. This is a significant
improvement over the baseline scheme.

WRITE operation
As shown in Fig. 8, during a WRITE operation, we use a hash function to generate 32 bit
output (4 symbols) from the entire cacheline (64 Bytes). Similar to the baseline SSC-RS
scheme, the 64 Byte data is divided into 4 blocks (Block0 : amp : minus;Block3), each block
is composed of 16 symbols. We distribute the 4-symbol hash output across the 4 data
blocks by combining each data block of size 16 data symbols with 1 hash symbol to
obtain a dataword. The size of our “extended” dataword is 17 symbols, as opposed to
16-symbol dataword used in the baseline design. Each dataword is encoded using RS
(Jacob, Ng & Wang, 2007; Kim et al., 2012; Siddiqua et al., 2013) code to obtain a
19-symbol codeword. This 19-symbol codeword is interleaved across 2 beats as in the
baseline design. Therefore, we need a total of three additional chips (storage overhead of
18.75%) per rank. We also need 12 redundant bus-lines in every channel instead of eight to
accommodate the additional chip.

Read operation
Similar to the baseline scheme, during a READ request (or MISS) two consecutive
incoming data beats at the memory controller are combined to obtain a 19-symbol
codeword. As shown in Fig. 9, for DDRx systems, the codewords of this READ request
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are obtained in four consecutive bus cycles. We need to employ SSC decoder on each
codeword to obtain the 64-byte data and then validate this data with the help of hash
function. As this two-step approach introduces additional latency to the READ MISS,
in the following paragraphs, we describe our novel design to minimize this latency.

The SSC-Reed Solomon decoding on the received codewords is typically done in two
phases. In the first phase, syndrome is computed to identify if there are any errors.
Error correction (second phase) is computationally more expensive and therefore is
triggered only when syndrome computation block detects errors. Since errors are relatively
rare, the average delay incurred due to decoding will be close to the error free case
where only the syndrome computation is performed. Study Pontarelli et al. (2015)
mentions that the delay of SSC-RS syndrome calculation is about 0.48 ns with 45 nm VLSI

Figure 8 SSCMSD Design. A total of 32 bit hash is split into four symbols (red). Each hash symbol is
combined with a 16-symbol data block (blue) to form a dataword.

Full-size DOI: 10.7717/peerj-cs.359/fig-8
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design library. For DDR4 (Dell, 1997) with a memory clock frequency of 1,600 Mhz,
syndrome computation can be implemented within one memory cycle.

The detection capability of our scheme depends on hash function properties such as
length, collision resistance, avalanche behavior, distribution etc. (Estébanez et al., 2014).
Also, a non-cryptographic hash (compared to cryptographic one) is sufficient for our
design to limit the computation time and keep the READ latency under control. Studies
Estébanez et al. (2014), Cheng & Yan (2017) show that non-cryptographic hashes—
CityHash, MurmurHash, Lookup3 and SpookyHash have good properties with respect to
avalanche behavior, collision resistance and even distribution. CRC-Hash is also widely
used due to its simple hardware design and due to its linear property. We analyzed the
hardware design of Lookup3, Spookyhash (Nelson et al., 2016; Yeleswarapu & Somani,
2018), CRC-Hash (Mytsko et al., 2016) and found that these can be implemented using
combinational logic. Therefore, these hash functions can be easily implemented within
four memory cycles.

Since we are using systematic SSC-Reed Solomon code, RS syndrome calculation
and hash computation can be done in parallel. As shown in Fig. 9, DDRx provides two
beats of data per memory clock cycle, hence SSC-RS syndrome calculation (shown in
the figure as RS) and hash computation can start at the second cycle. Both these operations

Figure 9 SSCMSD Design. During Read operation, syndrome computation and hash calculation are
done in parallel. If any of the syndromes are non-zero AND if there are no uncorrectable errors, SSC
correction is employed and Hash is computed to detect Silent Data Corruptions.

Full-size DOI: 10.7717/peerj-cs.359/fig-9
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can be completed in five memory cycles. Each codeword received at the memory controller
for decoding has 16 data symbols, one hash symbol and two ECC symbols. We denote
the 64 data symbols and four hash symbols obtained from all the codewords which are not
yet decoded by RS decoder as D′ and H′ respectively. We first compute the hash (H1) of the
64 data symbols (D′) and compare it with H′.

The retrieved hash H′and the computed hash H1 match if:
Case A1: There is no error in H′ and D′, OR
Case A2: D′ != D (the original 64-byte data stored/written in the memory) due to some

error and H’ = H (the original hash stored/written in the memory), but due to hash aliasing
H′ = H1, OR

Case A3: H′ != H due to some error and D′ != D due to error, but H1 (function of
D′ = H′).

The retrieved hash H′ does not match H1 when there is error in hash OR 64-byte data
OR in both.

In parallel, the RS decoder calculates the syndrome Si for each codeword CWi:Si can be
equal to 0 when:

Case B1: There is no error in CWi OR
Case B2: There is an undetected error in CWi.
Similarly, the syndrome is non zero when there is an error in the codeword.
Based on comparison of H1 520 and H′ and four values of Si for i = 1 to 4, we come

up with a decision table (Table 4). In the scenario where both the hashes match and
syndrome is zero for all the four codewords (Scenario 1), we declare the cache-line to
be free from errors. Theoretically, there is scope for silent data corruption here as it could
be because of case A2 “OR” A3 “AND” case B2 for all the four codewords. From our
preliminary experiments in “SSCMSD—A Novel Architectural Solution For Multi-Bit/
Multiple Symbol Errors”, we notice that the probability of undetected errors (B2) very
small (0.001%) for each codeword. The probability reduces further when considering the
scenario of undetected errors over all the four codewords “AND” occurrence of hash
aliasing (case A2) “OR” case A3. Therefore, we declare this scenario to be free from errors.
For Scenarios 2 and 4 where at-least one of the syndromes Si is not zero, we can try to
correct with the help of SSC-RS and verify again with the hash. In the scenario 3, where the
hashes do not match and all Si are 0s, we declare the cache-line to have an undetectable
error due to error in data OR in both data and hash.

As the error free scenario is more common when compared to erroneous scenarios, we
design our READ operation in a way that minimizes latency in the error free scenario.
Therefore, as shown in Fig. 9, we check for Scenario 1 at the end of five cycles and declare
the cache-line to be free of errors if Scenario 1 is found to be true. Otherwise, there are two
possibilities, either at-least one of Si = 0 to determine if each such codeword has a
“correctable error” (CE) or “detectable-uncorrectable error” (DUE). If any one of them
is an uncorrectable codeword, we declare the entire cache-line to be uncorrectable.
Otherwise we correct all such codewords to obtain the corrected 64-byte data (D″) and
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32-bit hash (H″). In this case, there is a scope for Silent Data Corruptions (SDCs),
therefore, we compute the hash H2 from D″ and compare H2, H″. If these hashes match,
then with a high probability there is no silent data corruption. If the hashes do not match,
then we can conclude that SDC occurred.

Thus, we are able to reduce SDCs with our novel approach. We show later in “Tradeoff
Analysis With Baseline Scheme” that on an average, the additional latency introduced

Table 5 Comparison of SSC-RS, Bamboo-ECC and SSCMSD.

Comparison Baseline
RS (18,16,8)

Bamboo-ECC
RS (72,64,8)

RS-SSCDSD
(19,16,8)

Extended Bamboo
RS (76,64,8)

SSCMSD
RS (19,17,8) &
32-bit hash

Stats

v1 v2

Storage Overhead (%) 12.5 12.5 18.75 18.75 18.75

ECC Symbols/CW 2 8 3 12 2 + 1

CWs/Cacheline 4 1 4 1 4

Up to 1-Chip/Bus Fault 100 100 100 100 100 100 CF

Correlated Bus fault 2.0 11.4 0 12.3 0 0 SDC

98.0 88.6 100 87.7 100 100 CF

1 bit fault + 1 bus fault 4.0 11.1 0 0 0 0 SDC

96.0 88.9 100 100 100 100 CF

1 bit fault + (row/bank/chip) 6.0 11.0 0 0 0 0 SDC

94.0 89.0 100 100 100 100 CF

1 bit fault + 1 pin fault 7.6 0 0 0 0 0 SDC

92.4 100 100 100 100 100 CF

1 pin fault + 1 pin fault 3.5 0 0 0 0 0 SDC

96.5 100 100 100 100 100 CF

Chip fault + Chip fault <0.1 11.0 0 12.0 0 0 SDC

>99.9 89.0 100 88.0 100 100 CF

3 fault mode <0.1 11.0 <0.1 12.0 ~10 0 SDC

>99.9 89.0 >99.9 88.0 ~90 100 CF

multi-symbol (>3) fault mode <0.1 11.0 <0.1 12.0 ~10 0 SDC

>99.9 89.0 >99.9 88.0 ~90 100 CF

MC-DIMM Address fault

Detection during

WRITE Odd bit Odd bit Odd bit Odd bit Odd bit

READ Odd bit Odd bit Odd bit Odd bit Random

Latency overhead (READ) +1 +4 +1 +4 +1

Table 4 Possible scenarios after Hash computation and Syndrome calculation.

Hash check Syndrome calculation Decision

H1 = H′ Si = 0 for i = 1 to 4 Declare Error Free

H1 = H′ at least one of Si != 0 Error, Try to correct it with SSC-RS and check back with hash

H1 != H′ Si = 0 for i = 1 to 4 Declare Error

H1 != H′ at least one of Si ! = 0 Error, Try to correct it with SSC-RS and check back with hash
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per each READ miss is one memory clock cycle. Note, that this is exactly equal to latency
overhead in the baseline (SSC-RS) scheme.

There is scope for false negatives (report no error although SSC decoder fails in presence
of multiple symbol errors) due to hash collisions. The probability of false negative is
estimated by using the upper bound on SDC rate for the SSC RS-decoder (8.0%) and
aliasing probability for a N-bit hash ð2�NÞ. The upper bound on false negatives for our
scheme is given by:

Upper bound on Pðfalse negativeÞ ¼ 0:08 � 2�32 (7)

Address protection
As described in “Error Model”, the byzantine address faults and MC-DIMM address faults
lead to Memory data corruptions during WRITE and Silent data corruptions during
READs.

The 32-bit hash we used in SSCMSD design can also be used to detect multi-bit errors
in the address bus. We cannot detect errors during WRITEs as we the hash logic is
available on the MC and can be employed for verification only during the READ
operation. Address errors during WRITES can be tackled only by the help of logic on the
DRAM device (like CAP, eWRITECRC).

This improves the reliability by preventing SDCs due to MC-DIMM address-errors
during READs. As shown in Fig. 10A, we can hash all the address bits (8 bytes) along with
the data. This hash (H), which is stored (during WRITE operation shown in Fig. 8) in

Figure 10 (A) Hash is now a function of both data and address. (B) Detection of MC-DIMMAddress
Errors during READ operation with SSCMSD. Full-size DOI: 10.7717/peerj-cs.359/fig-10
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the form of 4 symbols in the DRAM memory will protect against both, data and
MC-DIMM address (during READs) corruption. During the READ operation, as the
memory controller (MC) generates the address, it already has the correct address
(address A). So, the hashes H1, H2 described in “Read Operation” will now be a
function of both Data (D′/D″) and the correct address. As shown in Fig. 10B, when a
transmission fault results in corruption of address (address A) bits during a particular
READ request, all the DRAM devices inadvertently process it as READ request for
location B. Therefore, the DRAM devices send the codewords stored at location B to the
MC. At location B, we have the data “B”, hash (HB) of “data B and address B” and ecc of
“data B and HB”, so the RS-decoder at MC, will not be able to detect any error. But,
the hash H1 (hash of “address A and data B”) will not match with hash H′ (HB) and hence
Silent data corruption is prevented.

When there is no address corruption during the prior WRITE operation (WRITE A),
this design detects SDCs as expected. But, if corruption in address, during prior
WRITE operation for this location/address, similar to baseline, with SSCMSD, the MC
will receive stale data, hash pair (A, HA (hash of data A, address A)). The hash computed
by MC will be H′ (hash of data A (stale data), address A), therefore both hashes will
match, and our scheme cannot prevent Silent Data corruption. If one writes data to an
unintended location due to address corruption, there is no way to detect such errors unless
address is also stored along with data in DRAM. CAP (JEDEC, 2020a) and eWRITECRC
(Kim et al., 2016) can take care of address corruption during WRITEs.

Therefore by including address in the hash, our scheme improves the reliability by also
preventing SDCs due to MC-DIMM address-errors during READs provided there was no
address corruption during the prior WRITE operation.

EVALUATION
We evaluate our scheme and compare it with the existing schemes and their extensions
with the same overhead as our scheme. Baseline (RS-SSC(18,16,8)) and Bamboo-ECC
(QPC Bamboo ECC (Kim, Sullivan & Erez, 2015)) use 18 chips per rank and provide
CHIPKILL capability. SSCMSD uses 19 chips per rank. Therefore, we extend both the
baseline and Bamboo-ECC suitably with additional redundancy to create equal overhead
conditions. As described in “3 Check Symbol Based SSCDSD (Single Symbol Correct,
Double Symbol Detect) CHIPKILL”, Extended Reed Solomon based (19,16,8) code uses
3 ECC symbols and provides SSCDSD (Single Symbol Correcting and Double
Symbol Detecting) capability. We use this code as the extended version of the baseline.
Bamboo-ECC can also be extended by using 4 more ECC symbols. This 12-ECC
symbol extended version of Bamboo-ECC can be implemented in two versions. If we
use all the ECC symbols for correction, then we can correct up-to 6 error-symbols.
We implemented and performed simulations for this version (v1). One can also construct
8 symbol detecting and 4 symbol correcting code (v2). We did not implement and
run simulations for this version, instead we provided the predicted behavior in our
comparison, shown in Table 5.
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The goal of our experiments is to compare the number of Silent Data corruptions across
all the schemes for our error model. As described in “Error Model”, our error model
covers various type of faults that arise in DRAM devices, data-bus and address bus.
We classify fault modes to be causing up to one OR two OR three symbols/CW to be
erroneous for the baseline, extended baseline and SSCMSD schemes. As Bamboo and
extended Bamboo use vertically aligned codeword, our error model effectively translates to
cause 2–12 symbols to be erroneous. For the rest of the discussion, we use the terminology
of error model relative to the baseline scheme.

The following mechanisms are used to introduce errors in the encoded cacheline stored
in DRAM subsystem:

1. Single bit fault: Flip a random bit in the cacheline.

2. Single pin fault: As two beats are interleaved in the baseline scheme to form one
codeword, each 8-bit symbol is composed of four 2-bit pairs. As each chip has 4 data
pins, each 2-bit pair of this symbol is transferred via one pin. We therefore choose a DQ
pin randomly and flip two corresponding consecutive bits of a symbol.

3. Single memory chip fault/failure: Choose a chip randomly and replace the data in the
chip with a random pattern OR with all 0s OR all 1s.

4. Single bus fault: Choose a bus lane randomly and use an 8-bit random number to
identify the erroneous beat positions among eight beats. As each bus-lane transfers eight
beats, we then inject random errors in these positions. We ensure that at-least one word
of this faulty bus lane is corrupted.

A total of 1-bit, 1-pin, Row/Chip/Bank, Column, Bus faults cause errors within 1
Chip or Bus lane. Correlated bus fault affects two consecutive bus lanes. As discussed in the
error model, we evaluate the following 2-chip/symbol fault modes: 1 bit fault + 1 bus fault,
1 bit fault + 1 row/bank/chip fault, 1 bit fault + 1 pin fault, 1 pin fault + 1 pin fault,
and chip+chip fault. As discussed in the error model, 3 fault, multi-symbol fault (we inject
4, 5 random symbol errors) modes are also included in our evaluation.

Simulation methodology
As shown in Fig. 11 for each run, we generate a 64-byte random data (representing a
cache-line). The cache-line is now encoded with the specific scheme and appropriate errors
are injected as per the fault mode. The corrupted encoded cacheline is fed to the
corresponding decoder logic. As described earlier, Baseline, Extended-baseline and
SSCMSD use four codewords per each cache-line whereas Bamboo, Extended-Bamboo use
only one codeword. Accordingly, the baseline and Extended-baseline decoder logic use
four RS decoders. Bamboo and extended bamboo employ only one RS decoder in their
decoder logic. For SSCMSD, we use the decoder logic described in “Read Operation”
and we use random 72 bytes, each time to include 8 bytes of random address along with the
cache-line. The decoder-logic will then determine whether this cache-line has Detectable
Uncorrectable Error(s) (DUE) or Detectable Correctable Error(s) (DCE) or no error(s).
If the logic flagged any one of the codewords of the cache-line to be a DUE, we do not
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suspect the decoder to be wrong as our error model has multiple symbol errors (2, 3)
beyond the SSC-RS correction range. In this case, the entire cacheline has to be a DUE as
this cacheline cannot be consumed and we report the whole cacheline to be a correctly
flagged (CF) by the decoder. For the remaining non-DUE cachelines, we compare the
original (non-corrupted) 64-byte cacheline with the cumulative output of the decoder-
logic. If they do not match, we report it to be a Silent Data Corruption (SDC). Otherwise
we report that the scheme (decoder) correctly flagged (CF) the cacheline.

We generate one billion runs for every iteration and execute each simulation
(or experiment) for 10 iterations. Table 5 lists the mean % for these statistics across
10 iterations. The standard deviation for each of the experiments (except for SSCMSD) was
up to 10,000 (for 1 billion cachelines).

Experiments for MC-DIMM address protection
We executed simulations to verify the effectiveness of SSCMSD in the presence of address
errors in MC-DIMM interface during READs. As noted in “Address Protection”, SSCMSD
can provide protection against address errors during READs. So, in these simulations,
for each run, we generated random 72 bytes (representing the 64-byte cacheline data
and 8 byte address) and computed the hash (HA) of this “data, address” pair. Then, we
used a 8-byte error mask to introduce random errors in the address bits. Next, we
computed the hash (HB) of this “data, corrupted address” pair and compared HA and
HB. If they differed, we declare that our scheme detected the errors (correctly flagged),
otherwise we declare that there was silent data corruption. We executed this simulation

Figure 11 Simulation methodology. Full-size DOI: 10.7717/peerj-cs.359/fig-11

Yeleswarapu and Somani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.359 27/36

http://dx.doi.org/10.7717/peerj-cs.359/fig-11
http://dx.doi.org/10.7717/peerj-cs.359
https://peerj.com/computer-science/


for 10 iterations. Each iteration comprised of 100 billion runs. Across these 10 iterations
the mean of SDCs (with CRC-32(castagnoli) as hash) was 24.5 runs with a standard
deviation of 4.3. The remaining were correctly flagged (detected as errors) by our scheme.

Comparison of SSCMSD with baseline and bamboo and their suitable
extensions
As 1-bit, 1-pin, Row/Chip/Bank, Column, Bus faults result in errors confined within 1
symbol, they are corrected by all the schemes. Faults which lead to 2 or 3 symbol errors in
at least one of the codeword lead to SDCs rates ranging from 0 to 7.6% in Baseline.
As extended baseline uses RS (19,16,8) SSCDSD code, it can detect all 2 symbol
errors. But with 3 symbol errors and multi-symbol (4,5) errors, based on our specific
implementation, we observed less than 0.1 % SDCs. Both these schemes can be protected
against only odd-bit errors in the MC-DIMM address bus using Command Address Parity
(CAP JEDEC, 2020a). Also, as described in the “Read Operation”, the latency overhead
during READ for both these schemes is 1 memory cycle.

A total of 1-bit + 1-pin fault and 1-pin + 1-pin fault modes result in two symbol
errors for Bamboo-ECC and extended Bamboo-ECC (both v1 and v2), hence they are
corrected by them. As extended Bamboo-ECC (v1) can correct up-to six symbol errors it
can provide 100% correction with 1-bit fault + (row/chip/bank) fault and 1-bit + 1-bus
fault modes. So, in the above mentioned scenarios, these schemes are better than SSCMSD
(which can only detect). But with chip+chip fault and greater than 2 symbol/chip failures
they have SDCs due to mis-corrections. Extended Bamboo-ECC (v2) can detect upto 8
symbol errors, therefore all 2-symbol errors will be detected. When the number of
symbol errors are greater than correction capability with Bamboo and extended Bamboo
(v1), the percentage of SDCs was about 11–12%. Therefore, we expect SDCs due to
miscorrections to be around 10% for v2 as well. Bamboo-ECC based schemes can also be
protected against odd-bit errors in the MC-DIMM address bus using Command Address
Parity (CAP JEDEC, 2020a). The latency overhead (READ) for Bamboo-ECC based
schemes is 4 memory cycles as the RS decoding can be done only after four memory cycles.

On the other hand, SSCMSD is able to avoid SDCs in all of the device/data fault modes.
If the RS-decoder does any miscorrections, with the help of the hash we can detect and
avoid SDCs. Although Bamboo-ECC, extended Bamboo-ECC (v1) can provide better
correction capabilities in certain faults, with 3 and multi-symbol faults (or greater),
they are prone to SDCs. The hash also provides enhanced protection in MC-DIMM
address bus during READs as it can detect random errors. We are able to achieve this with
a latency overhead of 1 memory cycle (same as baseline).

HASH SELECTION
As described earlier, we consider non-cryptographic hash functions—SpookyHash
(Spookyhash-short (Jenkins, 2012)) as our key size with data, address is 72 bytes, Lookup3
(hashlittle (Jenkins, 2006)), and CRC-32 to be employed in our SSCMSD scheme.

Minimum hamming distance (HD) and parity are important parameters useful for
deciding the generating polynomial for CRC-32. For keysize of 72 bytes, CRC-32
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polynomials such as Castagnoli (1,31), koopman32k (1,3,28), koopman32k2 (1,1,30)
provide minimum HD of 6 (Koopman, 2002). Therefore, errors up-to 5 (= 6 − 1) random
bit flips are guaranteed to be detected by these polynomials. Also, the above mentioned
HD = 6 polynomials have even parity, hence they guarantee detection of all odd bit errors.
IEEE 802.3 (32) polynomial provides a minimum HD of 5 for our keysize and has odd
parity.

In Table 6, we compare the properties and performance (SDC detection capability) of
SpookyHash-short, Lookup3, CRC-32-Castagnoli (as a representative of HD = 6,
even parity polynomials) and CRC-32-IEEE 802.3 (as a representative of odd parity
polynomial) hash functions. The goal of our experiments is to identify the one which is
most suited to be with SSCMSD.

We executed all the data fault simulations described in Table 5 for 10 iterations with
1 billion runs per iteration and 10 billion runs per iteration for these hash functions.
We also executed random address fault simulations described in “Experiments for
MC-DIMM Address Protection” for 10 iterations with 10 billion runs per iteration and
100 billion runs per iteration. Note that we executed address fault experiments with
100 billion runs/iteration as error detection in this case is exclusively dependent on the
hash function (whereas for data errors, both the RS decoding and hash work together to
avoid SDCs) and as experiments did not involve RS encoding and decoding, we were
able to run for a larger number (compared to 1 billion, 10 billion runs for data faults) of
runs in a reasonable amount of time.

For all the data fault experiments (both 1 billion and 10 billion runs/iteration) and
address fault experiments with 10 billion runs/iteration, we did not observe any SDCs
for all the four hashes (these results are therefore not included in Table 6). We do not
observe any SDCs due to hash collisions in these simulations due to the nature of SSCMSD
(or baseline) design. As described in Fig. 9, SSCMSD uses four codewords and the
hash is employed only when all of four codewords are corrected (none of them are DUEs)
by the RS-SSC (19,17,8) decoder. Due to the sparsity of RS (19,17,8) SSC space, the
probability of anyone of the four codewords to be a DUE is around 90 percent and
therefore, only 10 percent of the time the hash is employed. For the address fault
experiments with 100 billion runs/iteration, we observed upto 30 SDCs per iteration as
listed.

Since we did not observe any significant differences among the different 32-bit hash
functions we considered, we can employ any one of HD = 6 CRC-32 polynomials

Table 6 Performance of different Hash functions with SSCMSD design.

Hash used with SSCMSD SDCs in presence of address
faults (100 billion runs)

Linear property Other properties

Spookyhash short (32-bit) up to 25 No –

Lookup3 (hashlittle) up to 27 No –

CRC-32 (castagnoli) up to 27 Yes HD = 6, even parity

CRC-32 (IEEE 802.3) up to 30 Yes HD = 5, odd parity

Yeleswarapu and Somani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.359 29/36

http://dx.doi.org/10.7717/peerj-cs.359
https://peerj.com/computer-science/


(Castagnoli, or koopman32k, or koopman32k2) with our SSCMSD design as they are
simple, provide minimum HD = 6 codewords with even parity and enable us to compute
the hash in parts (due to linear property) during the READ operation.

TRADEOFF ANALYSIS WITH BASELINE SCHEME
In this section, we compare the tradeoffs/costs of SSCMSD’s design with the baseline
(AMD’s SSC-CHIPKILL) scheme. Table 7 compares reliability, redundancy, area/logic,
latency and power of both the schemes. As described earlier, the baseline makes use of
SSC-RS codes and requires two additional devices per DRAM rank (storage overhead
of 12.5%). SSCMSD judiciously combines hash (CRC-32 of data and address) with SSC-RS
codes and requires three redundant devices per DRAM rank (storage overhead of
18.75%). As the number of data bus-lanes/lines per channel increase in proportion to the
number of devices on each rank, baseline uses a total of 72 bus-lines (two additional
bus-lanes) and SSCMSD needs 76 bus-lines (three additional bus-lanes). SSCMSD does
not introduce any additional command/address lines.

Both baseline and SSCMSD guarantee correction up to one symbol error/CW in the
data. As shown in our evaluation, baseline incurs upto 7.6% SDCs with multiple symbol
errors in data whereas SSCMSD detects them with a very high probability (upper
bound on false negative probability is 0.08 ∗ 2−32). SSCMSD detects random MC-DIMM
address errors during READs with a high probability (false negative probability is 2−32)
without introducing additional address pins. On the other hand, using Command
Address Parity (CAP JEDEC, 2020a), only odd-bit errors are detected in the baseline
during READs. During WRITEs, both schemes make use of CAP to provide limited
detection capability, hence can only detect odd-bit errors.

The power consumed by a DRAM device is dependent on the mode/state of operation
of the device (Micron Inc., 2017). Memory system power (sum total of power consumed by
all devices and associated bus-lines) in a cluster/HPC is also dependent on system

Table 7 Tradeoffs analysis with baseline scheme.

Criteria Baseline SSCMSD

Storage Overhead 12.5% (2/16) 18.75% (3/16)

Data bus width 72 76

Single symbol data error 100% correction 100% correction

Multiple symbol data errors SDCs up to 7.6% no SDCs, false prob 0:08 � 2�32

Address errors Detects Detects

READs odd # errors random errors

WRITEs odd # errors odd # errors

Fraction of memory power (fmp) 25–46% 26–47.3%

Latency during

READs +1 mem cycle +1 mem cycle

WRITEs +1 mem cycle +2 mem cycles

MC Logic RS logic RS + CRC-logic
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configuration such as capacity, number of channels per socket, number of DIMMS per
channel, number of ranks per DIMMs, frequency of operation etc (Gough, Steiner &
Saunders, 2015).

As SSCMSD/AMD-CHIPKILL schemes are typically employed in cluster/HPC
environment, we are interested in the fraction of memory power to the overall system
power (fmp). Note that system power of a server/cluster comprises of contributions from
compute, memory (DRAM), I/O, Interconnect chips, Storage, Cooling (Bose, 2012).
The total system power can be broken into two components: memory system power
(Msys) and contribution from the remaining components (Rsys). Therefore, fmp can be
expressed as:

fmp ¼ Msys
Msysþ Rsys

(8)

With 18 devices per rank, the fmp for cluster/system using baseline scheme is given by
Eq. (8). As SSCMSD uses 19 devices per rank (and 19 bus-lanes), if we assume that the
other factors remain the same (Rsys remains unchanged), the memory system power
(Msys) of a similar system with SSCMSD will be 19/18 times the original value and the fmp
for such a system is given by Eq. (9).

fmp� SSCMSD ¼ ð19=18Þ �Msys
ð19=18Þ �Msysþ Rsys

(9)

To get a sense of the power overhead, we use the information presented in recent studies
(Ghose et al., 2018; Bose, 2012;Malladi et al., 2012) which show that fmp is about 25–46%.
We assign this fmp for a system using baseline scheme, from Eqs. (8) and (9), the
corresponding fmp of system using SSCMSD (fmp-SSCMSD) turns out to be between
26 and 47.3%.

As described earlier, the baseline makes use of RS (18,16,8) block (RS encoder,
syndrome and correction logic) at the memory controller. The study Pontarelli et al. (2015)
designed this particular RS-block (referred in (Pontarelli et al., 2015) as SEC-RS(18,16,8))
with 45 nm technology (FreePDK45 (Stine et al., 2007) library), and provided the area,
delay information. We use this information to compare the designs employed by baseline
and SSCMSD at the memory controller.

The study Pontarelli et al. (2015) mentions that the delay of encoder and syndrome of
this RS-block is 0.47 ns and 0.48 ns respectively with FreePDK45 (Stine et al., 2007).
Their design allowed the RS-block to operate at the maximum clock frequency, given by
the inverse of syndrome delay (2,083 Mhz = 1/0.48). Hence, this block can be easily
executed with memory clock frequency of 1600 Mhz (highest I/O frequency of DDR4
(Dell, 1997)) at the memory controller (MC). To summarize, this RS block would require
1 memory cycle for encoding and 1 memory cycle for syndrome computation at the MC.
As described in “Read Operation”, the average delay incurred during READs will be
approximately equal to delay associated with syndrome computation. Therefore, the
baseline scheme will have +1 memory clock penalty during READs (due to syndrome
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computation) and +1 memory clock penalty (due to RS encoding) during WRITE
operation.

SSCMSD needs CRC logic along with the RS block at the memory controller. We have
synthesized a fully parallel and combinational CRC-32 (CRC-Castagnoli (1,31)) logic
using RTL code based on (Stavinov, 2010) and FreePDK45 (Stine et al., 2007) (the same
library used by Pontarelli et al. (2015)). This block has a delay of 0.52 ns and we were able
to synthesize it easily with the clock constrained to run at 1,600 Mhz. Therefore, as
expected, CRC-computation will be completed in 1 memory clock-cycle.

As described in “SSCMSD—A Novel Architectural Solution for Multi-Bit/Multiple
Symbol Errors”, SSCMSD computes CRC and syndrome in parallel during the READ
operation, and performs CRC-computation before RS encoding during the WRITE
operation. Therefore, SSCMSD would incur +1 memory cycle penalty during READs and
+2 (+1 for CRC computation and +1 RS encoding) memory cycles penalty during
WRITEs. Overall, the impact of SSCMSD on application performance will be negligible as
WRITEs are not on the critical path and as there is no additional overhead in the latency
during READs.

The total area (encoder, syndrome and correction logic) of RS block, reported by
Pontarelli et al. (2015) is 24,793 square micrometers. On the other hand, the CRC block we
synthesized has an area of 5,970 square micrometers. Therefore, the impact of our scheme
on area at the memory controller (MC) is also negligible.

FUTURE WORK
One major criticism of our work could be that we add an extra part in the memory
subsystem design. This chip level overhead can be traded by storing more bits in the chips
and by increasing the burst length per cacheline to retrieve/transfer these additional
bits. We believe that the hash can also be employed without increasing the number of
devices per rank. To provide SSCMSD to a ×4/×8 based DDR4 system using storage
overhead of 12.5% (same as in SSC-CHIPKILL), we can make use of additional beats
to store the hash in the same chips (with more bits in each rank). Currently DDR4
supports 8 beats per each cacheline. The hash can be transferred on an additional beat
(9th beat) and can be stored across all the 18 devices or 9 devices (as in LOT-ECC (Udipi
et al., 2012)) for ×4/×8 respectively.

For DDR5 JEDEC, 2020b, the data bus-width per channel is 32 bits. To store 64 bytes,
16 beats are required per each cacheline. To provide CHIPKILL capability, two more
devices (for ×4 DDR5) are added per channel. Here too, one can employ the hash
along with ECC to provide SSCMSD. The hash can be transferred on an additional beat
(17th beat) and can be stored across all the 10 (8 + 2 ECC) devices.

These schemes need to be investigated further to evaluate the performance, reliability
and other impacts to make the right design choices.

CONCLUSION
We motivate the need for addressing multiple symbol errors in CHIKPILL based DRAM
subsystems given the trend of increase in failures in these systems. Based on the nature of
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these failures, we analyzed possible errors and then developed a new error-handling
scheme called Single Symbol Correction, Multi Symbol Detection (SSCMSD). SSCMSD
effectively guards the data in the memory subsystem from memory device, data and
address bus errors.

We implemented SSCMSD using CRC-32 and Single symbol correcting reed solomon
(SSC-RS) code. By leveraging the usage of systematic SSC-RS code and simple CRC-32
hash, our novel design’s impact on the READ latency is negligible. Our simulations
compare SSCMSD scheme with baseline (SSC-RS) and Bamboo-ECC. The results clearly
demonstrate that SSCMSD is effective in avoiding Silent Data Corruptions (SDCs) in the
presence of multiple symbol errors in both data and address.
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