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ABSTRACT
Chest X-ray (CXR) imaging is one of the most feasible diagnosis modalities for early
detection of the infection of COVID-19 viruses, which is classified as a pandemic
according to the World Health Organization (WHO) report in December 2019.
COVID-19 is a rapid natural mutual virus that belongs to the coronavirus family.
CXR scans are one of the vital tools to early detect COVID-19 to monitor further
and control its virus spread. Classification of COVID-19 aims to detect whether a
subject is infected or not. In this article, a model is proposed for analyzing and
evaluating grayscale CXR images called Chest X-Ray COVID Network (CXRVN)
based on three different COVID-19 X-Ray datasets. The proposed CXRVN
model is a lightweight architecture that depends on a single fully connected layer
representing the essential features and thus reducing the total memory usage and
processing time verse pre-trained models and others. The CXRVN adopts two
optimizers: mini-batch gradient descent and Adam optimizer, and the model has
almost the same performance. Besides, CXRVN accepts CXR images in grayscale
that are a perfect image representation for CXR and consume less memory
storage and processing time. Hence, CXRVN can analyze the CXR image with high
accuracy in a few milliseconds. The consequences of the learning process focus on
decision making using a scoring function called SoftMax that leads to high rate
true-positive classification. The CXRVN model is trained using three different
datasets and compared to the pre-trained models: GoogleNet, ResNet and
AlexNet, using the fine-tuning and transfer learning technologies for the evaluation
process. To verify the effectiveness of the CXRVNmodel, it was evaluated in terms of
the well-known performance measures such as precision, sensitivity, F1-score
and accuracy. The evaluation results based on sensitivity, precision, recall, accuracy,
and F1 score demonstrated that, after GAN augmentation, the accuracy reached
96.7% in experiment 2 (Dataset-2) for two classes and 93.07% in experiment-3
(Dataset-3) for three classes, while the average accuracy of the proposed CXRVN
model is 94.5%.
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INTRODUCTION
On 31 December 2019, pneumonia of unknown cause found in Wuhan, China, was first
confirmed to China’s WHO Country Office, and the disease was named COVID-19 by
WHO (World Health Organization, 2020). The WHO declared the Chinese outbreak of
COVID-19 on 30 January 2020 to be a public health emergency of international
concern posing a high risk to countries with weak healthcare systems. The emergency
committee reported that COVID-19 could be stopped by early detection, isolation, timely
care, and the implementation of a reliable communication monitoring system (World
Health Organization, 2020; Sohrabi et al., 2020). An essential step in combating COVID-19
is the successful monitoring of infected patients, enabling those infected to seek prompt
diagnosis and care, as well as being isolated to reduce the spread of the virus. Reverse
transcriptase-polymerase chain reaction (RT-PCR) is the principal screening tool used to
identify COVID19 cases (Wang, Ng & Brook, 2020).

Smart healthcare systems can assist in improving healthcare worldwide via employing
artificial intelligence (AI) and machine learning techniques in different ways, for example,
detection, identification, and monitoring of the disease. AI allows doctors to diagnose,
discover, and monitor diseases in early stages. In turn, it becomes easier to overcome
obstacles and issues in traditional methods such as time consumption and extra
effort wasting. From cancer screening and disease tracking to tailored treatment,
recommendations are a wide variety of topics and applications in healthcare. These
applications depend on different and various sources of today-radiological imaging data
(X-ray, CT and MRI scans), pathology imaging, and, more recently, genomic sequences
for being used during service(s) implementation (Li et al., 2020; Razzak, Naz & Zaib, 2018;
Xu et al., 2014) .

Due to the recent pandemic, the opportunity of smart healthcare expansion is
exponentially increasing and attracting many researchers to find a cure or medication
to benefit billions of people around the world. Therefore, COVID-19 detection and
classification is a critical application in smart healthcare systems (Ting et al., 2020; Ienca &
Vayena, 2020; Wang et al., 2020).

In this article, we are motivated to propose an approach that is based on deep learning
(DL) technology as a potential tool to assist healthcare workers to be timely to detect the
presence of COVID-19 from CXR images.

The main contributions of this article are as follows:

� CXRVN: A novel Chest, X-ray COVID-19 Network architecture, is designed,
implemented, trained, optimized, and evaluated to detect infected cases easily,
accurately, and rapidly.

� We crawled a novel dataset from different resources, which include COVID-19,
Pneumonia, and Normal cases.

� Fine-tuned and transferred learning pre-trained models for feature extraction and image
classification.
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� Augmentation of the COVID-19 dataset is performed using a designed GANs
architecture.

In the rest of this article, we recall the recent scientific researches in literature in “Related
Work”. “Materials and Methods” discusses the design principles, learning criteria, and
optimization algorithms for our CXRVN model. Validation and verification of the
CXRVN model are illustrated using different experimental studies in “Evaluation of
Experimental Results”. “Discussion” discusses the results and insights of the experimental
studies and compares the performance of CXRVN with recent literature. Finally,
“Conclusions” concludes the proposed method and research impacts and highlights
additional research questions in the hotspot research point.

RELATED WORK
COVID-19 has been affecting more than 190 countries and regions since a few months
ago. Recently, many attempts by researchers in the field of computer science were
introduced and proposed to identify, classify, and diagnose cases, relying on the presence
of a limited number of particular databases (Oh, Park & Ye, 2020; Khan, Shah & Bhat,
2020).

Prediction models used to address the pandemic COVID-19 are affected by many
different sources, such as the demographics, and issues of vulnerability that can be
associated with lung or heart disease, settings/hospital capacity, and the rate of testing,
social and spacing, and income in exchange for goods (Santosh, 2020a).

Truncated Inception Network is presented by Das, Santosh & Pal (2020) in order to
classify positive CXR images from normal cases, further, they used six different datasets
with resulting 99.96% accuracy. The major limitation of this work is there is non-
clinical implications performed. They just designed the network to check whether the
Truncated Inception Net could be used in detecting COVID-19 positive cases using CXRs.
Therefore, recent approaches attempts to use clinical implications for example, nine
pregnant women with chest CT-images as limited laboratory-confirmed COVID-19
pneumonia scans were retrospectively reviewed by Chen et al. (2020). Further, The efforts
to diagnose and classify each patient and determine whether they had SARS-Co-V-2
infection or not depending upon RT-PCR was presented by Struyf et al. (2020). One more,
the study of COVID-19 pneumonia in Wuhan, China, consists of 81 patients who
were presented by Shi et al. (2020) depends up on classifying the COVID-19 cases from
normal cases.

Different approaches were proposed to address the problem of COVID-19, as well as
the variability and concurrent permanent update of corona cases in the databases.

Given the potential future epidemics of COVID-19, AI scientists do not always wait
to train complete data sets. Therefore the decision-making process depending not only one
data type, but also many data types are used (multimodal data) to ensure the reliability of
the AI model to detect the variability of COVID-19 pandemic Santosh (2020b).

In Pereira et al. (2020) proposed a classification scheme based on a multi-class
classification and a hierarchical classification where pneumonia can be structured as a
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hierarchy. Besides, they used resampling algorithms to solve the data imbalance problem
during feature extraction by texture descriptors and a pre-trained CNN model from
CXR images. They fused the features of two methods to improve the power of several
texture descriptors and base classifiers at once. Their hierarchical classifier was tested in
RYDLS-20 achieved an F1-Score of 0.65 using a multi-class approach and an F1-Score of
0.89 for the COVID-19 identification.

Ozturk et al. (2020) presented a new architecture for rapid recognition of COVID-19
using CXR images to provide reliable diagnostic tests for binary classifications (COVID vs.
No-Findings) and multi-class classifications (COVID vs. No-Findings vs. Pneumonia).
Their model achieved a classification accuracy of 98.08% and 87.02% for binary and
multi-class, respectively.

In Ucar & Korkmaz (2020), a new model for the rapid diagnosis of COVID-19 based on
deep Bayes-Squeeze Net to overcome the public database imbalance problem, a multi-scale
offline increase was performed, and finally an easy-to-install deep learning network for
embedded and mobile systems that could assist health experts in establishing a stable
system for COVID -19 diagnosis. Their model achieved 98.3% and 100% for multi-class
and binary classification, respectively.

Another approach based on deep learning was developed for COVID-19 using the CXR
dataset consisting of three classes, namely: normal, COVID-19, and pneumonia was
presented by Toğaçar, Ergen & Cömert (2020). Their model starts with a preprocessing
step, including restructuring images using the fuzzy color technique. In the next step, the
stacked dataset was trained with deep learning models (MobileNetV2 and SqueezeNet),
and the feature sets obtained by the models were processed using the Social Mimic
optimization method. They trained an SVM using significant features and achieved 99.27%
for multi-class classification.

Furthermore, in Apostolopoulos, Aznaouridis & Tzani (2020), MobileNet v2 was used
and trained from scratch to investigate the importance of the extracted features of
COVID-19. They have been trained CNNs from scratch and improved the other transition
learning methods, especially in separating the X-rays using a large-scale dataset of 3905
X-ray images, related to 6 diseases. Their classification model achieved 87.66%, 99.18%,
97.36% and 99.42% for precision, accuracy, sensitivity, and specificity, respectively.

Using statistical analysis of texture feature extraction, Haralick features proposed by
Perumal, Narayanan & Rajasekar (2020) are applied to emphasis the region of interest for
detecting COVID-19 cases. They used three modalities bacterial pneumonia, viral
pneumonia, and normal lung diseases based on transfer learning using VGG16, Resnet50
and Inception V3 and the resulting accuracies are 93.8%, 89.2% and 82.4% respectively.

Fractional-order and marine predators algorithm (FO-MPA) with inception CNN
presented by Sahlol et al. (2020) are used to extract the features and classify the COVID-19
chest X-ray (CXR) images respectively. The results obtained are 98.7%, 98.2% and 99.6%,
99% of classification accuracy and F-Score for the applied Dataset-1 and Dataset-2, from
Kaggle website respectively.
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Abdulmunem, Abutiheen & Aleqabie (2021) presents a methodology to recognize
COVID-19 cases using Resnet-50 with 5 and 10 folds cross validation and the resulting
accuracy reached to 97.28%.

Ismael & Şengür (2021) proposes a pre-trained CNN model to extract and classify
CXR images to detect COVID-19 cases further, they used Resnet-50 and SVM with
linear kernel function and they obtain a satisfied accuracy reached to 94.7%. They used
limited number of CXR images and therefore a suggestion of performing augmentation
based on limited nimber of imbalanced data is required.

A new self-contained dataset for COVID-19 classification is presented by Misztal et al.
(2020) by which they used number of CT and radiograph images from a diverse set of
classes. Dense-Net is applied to CT with radiograph and the resulting accuracies are 87%
and 92% for multiclass and data stock binary, respectively. They suggested to use 3D CT
images with radiograph to analysis and learn other patients on clinical.

Santosh (2021), summarizes artificial intelligence for COVID-19 issues ranging from
forecasting to decision making to support healthcare in human life. Moreover, in Joshi,
Dey & Santosh (2020) presented intelligent systems and methods to combat Covid-19.

We could conclude from the literature as mentioned earlier, the following points

� The importance of the deep learning models and the pre-trained-models for the early
diagnoses of COVID-19.

� Regards to the limited available resources and COVID-19 X-ray images, we have
employed the role of the data augmentation methods effectively in generating a lot of
required images.

� Different types of clinical data (balanced and imbalanced) with different features range
and values should be used to test any proposed model related to COVID-19 to assure
reliability and validity of the system.

MATERIALS AND METHODS
Deep learning
Generally, deep neural network (DNN) inspired by the human brain consists of neurons,
synapses, and much more, the formulation of DNN seems like hierarchical neural
networks to improve the process of classifying supervised patterns (Hinton &
Salakhutdinov, 2006; Ciregan, Meier & Schmidhuber, 2012). DL is a methodology of
stacking multi-hidden layers that can significantly learn objects. DL can classify, extract the
features, and make a decision ineffective and precise fashion after an efficient training
process. The training process includes “fine-tuning” where DNN slightly adjusts the
weights found in pre-training during backpropagation (Hinton et al., 2012; Yosinski et al.,
2014). Hence, we need optimizers during parameters update and cost minimization.
Mini-batch gradient decent (MBGD) and Adam optimizers are the most common
optimizers to speed up the learning process and further enhance the value of the objective
function. However, recently transfer learning plays a useful and powerful tool to enable
the training of large-scale datasets without overfitting problem results from the target
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dataset that is much smaller than the raw dataset (Lu et al., 2015; Ahmed, Jones & Marks,
2015).

MBGD and adam optimizers
The presence of redundancy of data is beneficial to use the MBGD as an optimizer
algorithm. Since the learning rate changes from relatively large to the relatively small that is
called schedule. Therefore, it is requiring to estimate the parameters to be convergence
by futzing the parameters, ultimately (Le et al., 2011). The stochastic gradient
descent (SGD) is used to minimize the objective function for extensive training sets.
The traditional gradient descent becomes a costly procedure (Ruder, 2016). Assume that
the hypothesis hu xð Þ for x input features is given by Eq. (1) (Dean et al., 2012; Maas,
Hannun & Ng, 2013).

hu xð Þ ¼
Xn
j¼0

ujxj; (1)

where u is the current initial case for the input x for the n training set, then the training set
of hypothesis h called Jtrain uð Þ is given by half number of the m training examples
multiplied by the average square error, as given in Eq. (2).

Jtrain uð Þ ¼ 1
2m

Xm
i¼1

huðx ið ÞÞ � y ið Þ
� �2

(2)

where the difference, huðx ið ÞÞ � y ið Þ� �2
, is the square error of the ith training instances such

that the parameters of theta u in the inner loop of the gradient descent are updated
repeatedly as in Eq. (3), and that is commonly called Batch Gradient Descent (BGD).

uj ¼ uj � a
1
m

Xm
i¼1

huðx ið ÞÞ � y ið Þ
� �

xj
ið Þ (3)

where a is the learning rate for j = 0, 1, 2, …, n, the updated theta u is the difference
between the old theta h and the partial derivative @

@u Jtrain uð Þ. The parameters are firstly
initialized, then different iteration of the batch gradient descent will likely result in
local minimum through the data trajectory. For a large scale, data BGD accumulates the
sums, and it will consume much time, and the system complexity will be very high.
Therefore, both SGD and MBGD is more reliable than BGD in large scale optimization
approaches, and with the systems requires different parameters. Moreover, there is no
need, to sum up, all the training sets. Mini-batch Gradient Descent looks at the mini-batch
instances. Also, SGD is more likely to escape from local optima than BGD, not guaranteed
global optima. As the MBGD takes the batch reasonability straight-line trajectory to get
the local minimum. The cost of SGD is given by Eq. (4) such that for random shuffle
dataset the trained Jtrain uð Þ is the sum of the cost function to the number of the
trained examples m, as shown in Eq. (5). Hence, the updated u does not depend on the
accumulated summation, as shown in Eq. (6). During the learning process, it is preferred
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to use the largest number of iterations for optimizing the accuracy of the model. Starting
from the first iteration may take the parameter in the direction and move the parameters
in the direction of the local minima (Abadi et al., 2016; Lee et al., 2011). While BGD
used all m examples in each iteration, and SGD used a single example in each iteration, the
MBGD uses b examples in each iteration such that b is the mini-batch size as shown
in Eq. (7) (Hinton, Srivastava & Swersky, 2012; Goyal et al., 2017; Jain et al., 2017).
Moreover, Adam optimizer presented by Kingma & Ba (2014) depends on optimizing
lower-order moments with a little memory requirement is applied in this work to boost the
cost function as well as to get reliable results after MBGD. A mathematical proof of the
convergence Adam optimizer is stated in Tran (2019).

cost u; ðx ið Þ; y ið ÞÞ
� �

¼ 1
2

huðx ið ÞÞ � y ið Þ
� �2

(4)

Jtrain uð Þ ¼ 1
m

Xm
i¼1

cost u; ðx ið Þ; y ið ÞÞ
� �

(5)

uj ¼ uj � a huðx ið ÞÞ � y ið Þ
� �

xj
ið Þ

� �
(6)

uj ¼ uj � a
1
b

Xb
i¼1

hu xð ið Þ
�
� y ið Þ

� �
xj

ið Þ (7)

Generative adversarial networks (GANs)
Generative Adversarial Networks (GANs) are recently used for the generation of
images, video, and voice. GANs are algorithmic architectures that use two DNN
architectures, to build new simulated instances of data that can be transferred to real data
(Goodfellow et al., 2014). GAN is one of the most common architecture algorithms for
image data augmentation by which the samples can be stacked with random cropping to
further in-rate the data collection (Samangouei, Kabkab & Chellappa, 2018; Frid-Adar
et al., 2018).

InWaheed et al. (2020) the authors presented GAN architecture for a limited number of
COVID-19 CXR dataset that consists of 192 images and their architecture achieved
accuracies 85% and 95% before and after GAN augmentation, respectively. The taxonomy
of image data augmentation that shows the different types recently used in image
augmentation is shown in Fig. 1 (Shorten & Khoshgoftaar, 2019). In image data
augmentation, there are two types; the first type is image manipulation, while the second is
DL approaches. In image manipulation, there are two types in general, which are geometry
transformation and mixing images. In contrast, the DL approaches are classified into
GANs and neural transfer. In this work, we present GAN architecture, which belongs
to DL approaches to produce meta-learning data augmentation of the enrolled CXR
images.
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The proposed CXRVN architecture
In this article, we build a novel architecture to classify the input COVID-19 CXR images
into normal and abnormal categories. The proposed network is called Chest X-Ray
COVID-19 Network (CXRVN) is considered as the first specialized deep neural network
for analyzing chest X-ray images against the pandemic COVID-19. Our network
architecture is summarized in Fig. 2. Generally, CXRVN consists of four convolution
layers, three pooling layers, and one fully connected layer. Next, we describe the main
features of our architecture and their importance for diagnosis COVID19 patients.

Since the saturating nonlinearities are much slower than the non-saturating
nonlinearity during the training time with gradient descent, we use the rectified linear
unit (ReLU) as the activation function. Besides, we concern about preventing overfitting
when using ReLU, so the observed effect is different from the accelerated ability to fit the
training set. Besides, using ReLU during the training procedure leads to relatively rapid
learning of the network.

The ReLU is the activation function used in the hidden layer so that for the input
convoluted feature x, the ReLU allows faster learning, which significantly affects the output

Image Data 

Augmentation 

Image

Manipulation 

Deep learning 

Approaches 

Geometry 

Transformation 

Mixing Images

GAN

Neural 

Transfer

Meta Learning 

Augmentation 

Figure 1 General taxonomy of image data augmentation.
Full-size DOI: 10.7717/peerj-cs.358/fig-1

Figure 2 The proposed CXRVN architecture for COVID-19 classification using fully connected
DCNN. The CXR images were downloaded from Kaggle under a CC0 1.0 license.

Full-size DOI: 10.7717/peerj-cs.358/fig-2
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of large models trained on large datasets, and does not require normalization of inputs to
avoid saturation of the learning.

Although some training examples produce a positive input to a ReLU of a neuron,
causing the learning process to happen in that neuron, we still find the importance of
local normalization scheme in generalization aids. The batch normalization that
determines the mean and variance for the input feature x is determined as in Calik
et al. (2019) by which the mean of the expected value of x is determined. Moreover, the
variance is the expected value the determined as the square of each enrolled features x
subtracted from the mean of the whole features l. Then the normalized value of x is
calculated by Eq. (8) as follows:

_x ¼ xi � mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2p (8)

where 2 is a very small number which protects zero division for batch normalization
via deep learning platform codes.

For the score vectors of an input COVID-19 X-Ray input images that denoted by SVx ,
the probability of the scored values are given as in Eq. (9)

Pi ¼ eS
Vx

Pn
i¼1 eS

Vi
(9)

Typically, we find that models with concurrent pooling are much more challenging to
overfit during the training models. Because of the pooling layers in our CNNs, the
architecture summarizes the outputs in the same kernel map of neighboring groups of
neurons. A pooling layer can, therefore, be viewed as a grid of pooling units spaced
between pixels, each of which summarizes a neighborhood of size z × z centered at the
pooling unit position. The use of overlapping pooling layers decreases error levels
compared to the non-overlapping system, which generates equal dimensional outputs.

In the proposed architecture, we use four convolutional layers. Each layer contains a
batch normalization and ReLU activation function. The batch normalization is applied for
the mini-batch set of the learned parameters of the convoluted features so that it brings the
mini-batch data to zero means and normalizes variance.

For the abnormal cases that required the percentage of the existence of the COVID-19
virus inside the image, the proposed system determines the abnormal probability infection
using the SoftMax activation function. The algorithm steps of the proposed CXRVN is
shown in Algorithm 1.

We train our models using MBGD with a mini-batch size b=32 and a weight decay of
0.0003. This small amount of weight decay is essential for practical training as it is not only
a regularization strategy but also it reduces the model’s training error. Furthermore, we
apply Adam optimizer based on the same hyper-parameters to boost and ensure the
system’s reliability in speed computation time and minimum memory.

On the other hand, we adopt GANs to construct artificial instances for further data
augmentation. In Algorithm 2, we summarize the steps of the proposed trained GAN
augmentation model.
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The excellent success of GANs has led to an increased focus on how they can be applied
to the data increment mission. In this article, we take the real images in the dataset, and
the discriminator compares it with the generated images represented by the applied
noise that represents the difference of the enrolled real images to predict the labels.

Algorithm 1 Build a deep learning model using CXRVN-proposed architecture.

Input  Image_COVID-19_Set imds

Output  CXRVN

1. Begin

2. // Preprocessing COVID-19 X-Ray image(s) in imds

3. For i=1: length(imds)

4. img  read(imds,i)

5. cxr  isXGray(img)

6. img  resize(cxr,[128, 128])

7. save(imds,I,img)

8. End for

9. // Build CXRVN Structure

10. NLayers  new Layers{}

11. NLayers.append(new Input layer)

12. NLayers.append(new Convolutional layer)

13. NLayers.append(new Normalization layer)

14. NLayers.append(new Relu layer)

15. NLayers.append(new Pooling layer)

16. NLayers.append(new Convolutional layer)

17. NLayers.append(new Normalization layer)

18. NLayers.append(new Relu layer)

19. NLayers.append(new Pooling layer)

20. NLayers.append(new Convolutional layer)

21. NLayers.append(new Normalization layer)

22. NLayers.append(new Relu layer)

23. NLayers.append(new Pooling layer)

24. NLayers.append(new FeatureConnected layer)

25. NLayers.append(new Softmax layer)

26. NLayers.append(new Classification layer)

27. // Train CXRVN using options

28. Options.set(SolverOptimizer  mini-batch gradient decent with momentum or Adam)

29. Options.set(InitialLearnRate ←1e-3)

30. Options.set(LearnRateSchedule ← Piecewise)

31. Options.set(MiniBatchSize ←32)

32. Options.set(LearnRateDropFactor ←0.2)

33. Options.set(LearnRateDropPeriod ←5)

34. Options.set(Shuffle←Every Epoch)

35. Options.set(ValidationFrequency←2)

36. Options.set(MaxEpochs ←20)

37. CXRVN trainNetwork(NLayers, imds, Options)

38. End
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The generator is applied as input to a given vector of random values (latent inputs), and the
network generates data with the same structure as the training data. Discriminator, given
batches of data containing both the training data and the generated data from the
generator, is trying to classify the observations as “real” or “generated.” Training to
produce data that “fools” the discriminator. Train the discriminator to differentiate
between real and produced data (Wang, Wang & Wang, 2018; Salehinejad et al., 2018).
Due to the limited and variable number of the collected database from different sources, in
this work, we collected a database and made GAN augmentation available on the
Mendeley website (Shams et al., 2020a).

As we present a CXR COVID-19 Network CXRVN that is build from scratch to
identify, recognize and classify chest X-ray images in a simple and very fast manner.
Moreover, the proposed methodology used GAN network to augment the limited number
of imabalanced dataset from different sources and handled it in an efficient and reliable
manner. The comparison of the proposed method compared with the state of the art
approaches stated the reliability of the proposed system in terms of accuracy and loss
function before and after GAN augmentation.

Algorithm 2 Build a deep learning model using CXRVN-proposed architecture.

Input  Image_COVID-19_Set imds, Generator Layers GeLayers, Discriminator Layers DiLayers

Output  Generator GEN, Discriminator DISC

1. Begin

2. // Setting up Training options

3. Options.set(ValidationFrequecy  5)

4. Options.set(InitialLearnRate ←1e-4)

5. Options.set(LearnRateSchedule ← Piecewise)

6. Options.set(MiniBatchSize ←16)

7. Options.set(MaxEpochs ←50)

8. GAN  LGraph2Net(GeLayers)

9. DISC  LGraph2Net(DiLayers)

10. // Training GEN and DISC using imds

11. For i=1: MaxEpochs

12. batchImgs read(imds,BatchSize)

13. Imgs  Shulfe(batchImgs)

14. latentIN  gen(Imgs,GEN)

15. DPred Forward(DISC, latentIN)

16. GPred  Forward(GEN, latentIN)

17. DProb Sigmoid(DPred)

18. GProb Mean(DProb)

19. Loss  CalcLoss(DProb, GProb)

20. GAN  CalcGradients(GAN.Learnables,Loss)

21. DISC CalcGradients(DISC.Learnables,Loss)

22. End for

23. End
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Evaluation of experimental results
This section is dedicated to exploring the effectiveness of the proposed approach. Due to
the variability of the updated standard datasets versions COVID-19 X-ray images, two
different experimental studies are carried out, discussed, and analyzed in detail.

All experiments were carried out using the MATLAB 2019b software package running
on Microsoft machine with Core i7 processor, 16-RAM, and NVIDIA 4G- GT 740m GPU
environment.

Dataset characteristics
There are three datasets we are used in this article; the first one is called Dataset-1 from
(Faizan, 2020) which contains 25 normal cases (negative cases) and 25 COVID-19
(positive cases). Smfai presents 50 images and he claims that COVID-19 cases reached to
100% recognized at a time and 80% for negative cases or normal cases. The second one
named Dataset-2 from (Mooney, 2020; Bachir, 2020). It is noticed that Dataset-2 collected
from two different independent sources, the first one Paul moony (Mooney, 2020)
presented 5,863 chest x-ray images with two class labels pneumonia and normal cases. The
collected chest-x-ray images also known as (posterior-anterior) were selected from
retrospective cohorts of pediatric patients of one to five years old fromGuangzhouWomen
and Children’s Medical Center, Guangzhou. All chest X-ray imaging was performed as
part of patients’ routine clinical care. We used only 234 normal cases selected from 1,341
image with percentage (17.44%) and 148 pneumonia cases out of 3,875 trained cases.
The second one is which has 221 COVID-19 cases selected from 314 images with
percentage (70.38 %). The dataset is collected from 205 male and female patients with ages
in between 120 and 88 years old.

The third dataset called Dataset-3 was uploaded in Menedely (Shams et al., 2020a).
This collected data contains 603 chest-x-ray images with three class labels normal,
COVID-19, and pneumonia cases which are 234, 221 and 148 respectively. We further
augment the dataset using GANs, which produce 6,030 images; 2,340, 2,210, 1,480 for
normal, COVID-19, and pneumonia images, respectively. The details of all datasets are
summarized in Table 1. We used the dataset collected by Toğaçar, Ergen & Cömert (2020)
for comparison study.

Parameters optimization
In this part, we attempt to optimize the proposed CXRVN architecture using the Bayesian
algorithm to minimize the scalar objective function. We need to update the Gaussian
process model to find a new point that is required for maximizing the acquisition function
by sampling thousands of pints with the variable bounds. Therefore, in this work, we
propose to use MBGD to find the local minima that satisfy constraints. Moreover, the
proposed CXRVN architecture is fitted to overcome the additive noise with minimum loss
after GAN augmentation using both MBGD and Adam optimizers.

All experiments were done based on the following parameters. The hyper-parameter
values of the proposed DCNN architecture, as shown in Table 2.
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Performance measures
To evaluate the performance of the proposed DCNN architecture, the well-known
performance measures for the evaluation are used, in terms of, the sensitivity, specificity,
precision, accuracy and F1score from the confusion matrix based on the following
Equations:

Sensitivity ¼ TP=ðTPþ FNÞ (10)

Specificity ¼ TN=ðTNþ FPÞ (11)

Precision ¼ TP=ðTPþ FPÞ (12)

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ (13)

F1� score ¼ 2TP=ð2TPþ FPþ FNÞ (14)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative,
respectively.

Table 1 The collected datasets of the normal, COVID-19, and pneumonia X-ray images before and
after the augmentation process.

Dataset name # of Instances # of Classes Labels Balance

Dataset-1 50 2 Normal: 25 1.0

COVID-19: 25

Dataset-2 455 2 Normal: 234 0.94

COVID-19: 221

Dataset-3 603 3 Normal: 234 0.8

COVID-19: 221

Pneumonia: 148

Toğaçar, Ergen & Cömert (2020) 458 3 Normal: 295 0.7

COVID-19: 65

Pneumonia: 98

Table 2 Hyper-parameter values of the proposed CXRVN architecture.

Parameter Value

Learning Rate 0.01

Batch Size 32

Momentum 0.8

Weight Decay 0.0003

Max no. of iterations 600
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Evaluation of the proposed CXRVN
The evaluation of the proposed CXRVN was performed to get the final decision of the
trained model. Initially, the datasets, which contain the normal, COVID-19, and
pneumonia cases, are collected and enrolled. Afterward, the datasets are splitted into
training and testing sets. The trained images are then applied to the GAN augmentation
process, which takes the trained sets of the enrolled image and generates the synthesized
image datasets to produce an augmented COVID-19 dataset.

We used the k-fold cross-validation strategy with k = 10 cross validation. Specifically,
we train on k−1 folds and validate on the remaining 1-fold. Then we calculate the
average from n iterations as shown in detail in Fig. 3. We able to control the number of
iteration of the trained COVID-19 chest X-ray images to be compared with tested images
to obtain the final evaluation.

The collected datasets consist of normal cases and COVID-19 ones. These datasets
are splitted into two sets, and they are the training and testing sets. To overcome the
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Figure 3 The steps of getting the final evaluation results of the trained/tested augmented COVID-19
chest X-ray images. The CXR images were downloaded from Kaggle under a CC0 1.0 license.

Full-size DOI: 10.7717/peerj-cs.358/fig-3
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overfitting problem, We split the datasets into 80% for the trained images, and the
remaining 20% is for the testing ones. Subsequently, the training sets are augmented via
the use of GAN. Therefore, the hyper-parameters values of the training sets have learned
and proceeded with the evaluation to produce the validation set. Every iteration of the
shuffled fold is split by generating an independent number of the trained/tested image.

Experiment (I): Dataset-1
The first experiment was conducted using Dataset-1. This experiment is performed
using the same parameters mentioned in Table 2. Subsequently, we used the proposed
architecture shown in Fig. 2 by enrolling all 50 grayscale images to the system. The enrolled
images are with size 128 × 128 × 1. Furthermore, we used the mini-batch gradient
descent optimizer for the trained convoluted input features. Afterward, the maximum
pooling of the convoluted images to produce the fully connected layer that contains 1 × 1 ×
1,024. Finally, the CXRVN classify the results either to normal or COVID-19 case. A
sample of the dataset is shown in Fig. 4. This experiment is considered as an initial
experiment to prove the ability of the proposed architecture to handle and solve the
classification problem based on the small collected dataset. The accuracy and loss
function of the proposed CXRVN architecture for a given hyper-parameter value is shown
in Fig. 5.

In this experiment we used k-fold cross-validation (k = 10) for all stacked 50 X-ray
images. The confusion matrices of the achieved results are shown in Fig. 6, which show

(a) 

(b) 
Figure 4 Samples of Dataset-1 (Faizan, 2020). (A) Normal X-Ray images, (B) infected COVID-19
X-Ray images. The CXR images were downloaded from GitHub under a CC0 1.0 license.

Full-size DOI: 10.7717/peerj-cs.358/fig-4
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that the proposed system accuracy achieved for testing, training, and cross-validation are
90.0%, 92.5% and 88%, respectively. The confusion matrix measurements, including
sensitivity, specificity, accuracy, precision and F1 score in both cross validation, training,
and testing phases are summarized in Table 3. We notice that, the average results of the
proposed CXRVN architecture is 92.85% in the testing phase.

Intuitively, only 50 X-Ray images are not sufficient to prove the reliability and
robustness of the proposed system. Therefore, we have to expand the data of the X-ray
COVID-19 images. Furthermore, enhancement of the augmentation process by applying
GAN augmentation for the input images is urgently required.

Figure 5 Accuracy and loss of the proposed CXRVN architecture for the testing X-ray images in
Dataset-1 (A) Accuracy reaches 88% of the testing images, (B) loss enhancement after 20
iteration. Full-size DOI: 10.7717/peerj-cs.358/fig-5
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Figure 6 A detailed confusion matrix results of the proposed CXRVN system. (A) Testing (20%).
(B) training (80%) (C) 10-fold Cross Validation. Full-size DOI: 10.7717/peerj-cs.358/fig-6
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Experiment (II): Dataset-2
In this experiment, we utilize Dataset-2 based on the same hyper-parameter values
mentioned in Table 2 for normal and COVID-19 X-ray images. Furthermore, for image
data augmentation, GAN is used in the preprocessing stage to ensure the reliability of the
proposed system and to enhance the results in a large-scale standard dataset with the
same hyper-parameter values. The validation is processed every two iterations; also, every
ten cycles, the data is shuffled (10-fold cross validation). In this experiment, afterward,
the data shuffled and using MBGD, the regulator rate is 0.0001 given that the number of
the trained images is 364, and the number of validated images 91, and we used the
evaluation results based on 80% training and the remaining 20% for testing. Figures 7
and 8 show the samples of the dataset used (Mooney, 2020, at https://www.kaggle.com) and
(Bachir, 2020, at https://www.kaggle.com) respectively.

We perform this experiment in two scenarios. The first scenario is using Dataset-2
without augmentation, that is, using only 455 images. The second scenario is after GAN
augmentation, which generates 4,550 images based on the hyper-parameter values listed in
Table 2. The results of the two scenarios are summarized in Table 4, which prove the
system reliability. The CXRVN-architecture has critical advantages, including the
reliability and stability of the running process. During changing the datasets, the CXRVN
shows the solidity of architecture against a source of dataset and size. The accuracy and
loss function of the proposed system architecture for phase 1 without data image
augmentation is shown in Fig. 9. In this experiment the final result that represents the
accuracy of the tested 91-X-ray images is 96.70% after 160 iteration. It is very clear that, the
loss function is slightly high after 20–40 iteration and it becomes more stable with
minimum value after 160 iteration. In this experiment we used MBGD optimizer
before augmentation with b = 32. Therefore, we need to enhance the loss and accuracy
at the same time. To boost the results obtained and produce enhancement accuracy with a
minimum loss, Adam optimizer with MBGD is applied in the X-ray image augmentation
based on GAN architecture.

Table 3 Performance measures of the proposed model on Dataset-1.

Dataset-1

CXRVN-architecture Validation Methodology

Cross Validation Holdout

10-fold cross validation (%) Training (80%) Testing (20%)

Sensitivity 76.00 94.74 83.33

Specificity 100.00 90.48 100.00

Precision 100.00 90.00 100.00

Accuracy 88.00 92.50 90.00

F1score 86.36 92.31 90.91

Average 90.07 92.01 92.85
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Scenario 2
In this scenario, we use the same 455 X-ray images that is, Dataset-2 and the data are
enlarged 10 times to generate 4,550 X-ray images using GAN augmentation architecture.
In this experiment, same hyper-parameter values in Table 2 are used but with MBGD
instead of Adam optimizer, and the maximum number of iteration was 220. Figure 10
shows the accuracy and loss function of the proposed CXRVN architecture on the 4,550
X-ray images after GAN augmentation using Adam optimizer.

It is noteworthy that, high accuracy of 97.58% is obtained after GAN augmentation with
a minimum and stable loss after 220 iterations. Further, we prove the ability of the
proposed CXRVN in the presence of big datasets of normal and COVID-19 X-Ray images.
The confusion matrices of the two scenarios with and without data augmentation are
shown in Fig. 11 for 91 and 910 tested X-ray images out of 455 and 4,550, respectively.

Experiment (III): Dataset-3
In this experiment, the proposed CXRVN is evaluated based on three class labels as
mentioned in details in Table 5. The data are collected from Dataset-2 except we
modify 148 pneumonia datasets. The source of our collect dataset is uploaded on
Mendeley website (Shams et al., 2020a). In this experiment the number of trained datasets
are 482 and the remaining 121 are used for testing. The augmentation based on the
proposed GAN architecture is performed to produce 6,030 augmented images 4,820 (80%)

Figure 7 Normal cases out of Dataset-2 from (Mooney, 2020). The CXR images were downloaded
from Kaggle under a CC0 1.0 license. Full-size DOI: 10.7717/peerj-cs.358/fig-7
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for training and 1210 (20%) for testing. The confusion matrixes of the three class labels are
shown in Fig. 12A that shows the accuracy of our model which reaches 91.7% before
augmentation.

Figure 8 Samples of COVID-19 Cases (A–I) out of Dataset-2 from (Bachir (2020). The CXR images
were downloaded from Kaggle under a CC0 1.0 license. Full-size DOI: 10.7717/peerj-cs.358/fig-8

Table 4 The collected datasets of the normal, COVID-19 and pneumonia X-ray images before and
after the augmentation process.

Dataset-2

CXRVN-architecture Scenario 1 without
augmentation (%)

Scenario 2 augmentation
using GAN (%)

Sensitivity 97.83 98.91

Specificity 95.56 96.24

Precision 95.74 96.38

Accuracy 96.70 97.58

F1score 96.77 97.63

Average 96.52 97.35
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Figure 9 The accuracy and loss of the proposed CXRVN architecture for scenario 1 in Dataset-2
without GAN augmentation in testing. (A) The accuracy (96.70%) and (B) loss after 160 iteration.

Full-size DOI: 10.7717/peerj-cs.358/fig-9

Figure 10 The accuracy and loss of the proposed CXRVN architecture for phase 2 After GAN
augmentation in testing phase. (A) The accuracy reached to 97.35% and (B) the loss after 220 itera-
tions. Full-size DOI: 10.7717/peerj-cs.358/fig-10
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On the other hand, the accuracy of the proposed CXRVN based GAN augmentation
achieved improved accuracy of 93.06% on the tested 1210 augmented X-ray images
for three classes as shown in Fig. 12B. It is obvious that, there is slight decrease in accuracy
of the three class labels compared with the two classes. This is because the presence of three
classes that collected from different sources that is, imbalance dataset. On the contrary,
there is an improvement of the loss function as shown in Fig. 13. To improve the loss
and classification accuracy we utilize GAN architecture for augmentation. Figure 12 shows
the evaluation results related to experiment (III) of the three classes; COVID-19, normal,
and pneumonia. It can be noticed that, a great enhancement of results after GAN
augmentation is achieved by using Adam optimizer based on MBGD.

The accuracy and loss of the proposed CXRVN architecture based on GAN X-ray image
augmentation are shown in Fig. 13. We notice that, the final result is 93.06% after 600
iteration based on Adam optimizer with mini-batch size 20. Moreover, enhancement
and stability of the loss function during the experiment reach 600 iterations. We used the
same parameter values listed in Table 2. Table 6 summarizes the recall, precision and
accuracy of the proposed CXRVN architecture before and after GAN augmentation.
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Figure 11 A detailed confusion matrix results of the proposed CXRVN architecture for experiment 2
applied on Dataset-2. (A) A total of 91 tested X-ray out of 455 images before augmentation for two
classes normal, and COVID-19, respectively. (B) A total of 910 tested X-ray out of 4,550 images after
GAN augmentation for two classes normal, and COVID-19, respectively.

Full-size DOI: 10.7717/peerj-cs.358/fig-11

Table 5 The collected dataset class distribution for experiment III on Dataset-3.

No Class label Raw dataset Augmented GAN dataset

Train Test Train Test

1 COVID-19 177 44 1770 440

2 Normal 187 47 1870 470

3 Pneumonia 118 30 1180 300

Total 482 121 4820 1210

603 6030
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Comparative analysis
To compare the proposed CXRVN architecture with the recent approaches, we need a
normalized standard dataset. Moreover, that is not possible because of the variability and
updated standard datasets for COVID-19 X-Ray images. Therefore, the proposed
approach is firstly compared with the state-of-the-art deep learning models. Namely, the

Figure 13 The accuracy and loss of the proposed CXRVN architecture for the three class label
normal, pneumonia, and COVID-19. (A) The accuracy reached to 93.07% and (B) loss after 600
iterations and GAN augmentation. Full-size DOI: 10.7717/peerj-cs.358/fig-13
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Figure 12 A detailed confusion matrices of the proposed CXRVN architecture for experiment 3
applied in Dataset-3. (A) A total of 91 tested X-ray out of 455 images before augmentation for two
classes normal, and COVID-19, respectively. (B) A total of 910 tested X-ray out of 4550 images after
GAN augmentation for two classes normal, and COVID-19, respectively.

Full-size DOI: 10.7717/peerj-cs.358/fig-12
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GoogLeNet, VGG-16, Resnet-18 and AlexNet. Although, these models are basically
proposed for computer vision tasks, we made some modifications to be adaptive with the
enrolled classes as a transfer learning models. The accuracy of the proposed method
against these models on Datasets 2 and 3 are given in Table 7. This comparison is
performed based on the same hyper-parameter values listed in Table 2 for databset-2.
Moreover, we also perform a comparison on Dataset-3 that consists of three classes
which are normal, COVID-19, and pneumonia. The comparison is performed based
on the same hyper-parameter values in Table 2 except we used 40 epochs and the
maximum number of iteration was 600. Table 7 summarizes the comparison evaluation in
the testing phase for Dataset-3 based on three classes.

We further compare our method the dataset collected by Toğaçar, Ergen & Cömert
(2020) which consists of 458 chest X-ray images for three class labels; normal (65),
COVID-19 (295) and pneumonia (98) shown in Table 8. For fair comparison with
(Toğaçar, Ergen & Cömert, 2020), we used 70% and 30% for training and testing,
respectively, as reported by the authors. The confusion matrix of our proposed CXRVN on

Table 6 Recall, precision, and accuracy of the two phases in experiment 3 (Dataset-3).

No Class label Before augmentation After GAN augmentation

Recall Precision Accuracy Recall Precision Accuracy

1 COVID-19 100 100.00 91.7 100 100 93.07

2 Normal 89.58 91.49 93.57 95.96

3 Pneumonia 100 96.00 98.,00 89.42

Table 7 Accuracy comparisons of proposed CXRVN architecture against Google net, VGG-16,
Resnet-18, and Alex net on Dataset-2 and Dataset-3.

Method name Class label Google net VGG-16 Res net-18 Alex net Proposed CXRVN

Dataset-2
2-Classes

Normal
COVID-19

92.20 90.75 93.20 91.10 97.85

Dataset-3
3-Classes

Normal
COVID-19
pneumonia

91.01 89.35 91.65 92.21 93.06

Table 8 The collected dataset by Toğaçar, Ergen & Cömert (2020) class distribution.

No Class label Raw dataset

Train Test

1 COVID-19 207 88

2 Normal 46 19

3 Pneumonia 69 29

Total 322 136

458
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(Toğaçar, Ergen & Cömert, 2020) dataset is shown in Fig. 14. Table 9 investigate the
detailed comparison between (Toğaçar, Ergen & Cömert, 2020) and our CXRVN
architecture.

In addition to comparisons with shared computer vision deep models, we also roughly
compare our proposed CXRVN architecture with the state-of-the-art methods of
COVID-19 detection and classification, as illustrated in Fig. 15 and Table 10. In this
comparison, we show the class label, modality used, that is, X-ray and CT, number of cases,
and the methodology used. Further, in Table 11 the running time for each scenario and
dataset used are determined.

DISCUSSION
The proposed approach is evaluated based two types of datasets, the first is Dataset-1
which is a balanced dataset, while the second is Dataset-2 which is an imbalanced one. For
Dataset-1, we used only 50 cases; 50% normal and 50% are COVID-19 infected cases X-ray
images. The results indicated that the accuracy of the proposed CXRVN is 92.85%.
Furthermore, due to the variability and updated version of COVID-19 datasets, we collect
a large-scale dataset from two sources for both normal and COVID-19. The GANs are
used for image data augmentation to enlarge the collected datasets, and the experiment is
performed in two phases.

Furthermore, two scenarios are presented, in the first one, which is done without
augmentation, the accuracy reached to 96.70%, while the second one is based on the GANs
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Figure 14 The confusion matrix of the dataset (Toğaçar, Ergen & Cömert, 2020) using CXRVN
architecture. Full-size DOI: 10.7717/peerj-cs.358/fig-14

Table 9 The comparison between (Toğaçar, Ergen & Cömert, 2020) and our proposed CXRVN
architecture.

Class label Methodology Accuracy (%)

COVID-19
Normal
Pneumonia

SqueezeNet [18] 97.81

MobileNetV2 [18] 98.54

Proposed CXRVN 99.30
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augmentation, the accuracy reached to 97.58%. We not only used two class labels to
validate the proposed method, but also we used three classes, including normal,
COVID-19, and pneumonia. In experiment three applied in the collected Dataset-3
(Shams et al., 2020a), the accuracies are 91.07, and 93.06 before and after GAN
augmentation, respectively. The comparisons between the proposed CXRVN and the most
recent deep learning models are performed on our collected dataset, and the results
indicate the superiority of our architecture. Moreover, we compare our method on the
dataset collected by Toğaçar, Ergen & Cömert (2020) with the same parameter settings, and
the results attain better performance, especially after GAN augmentation. Finally, rough
comparisons between CXRVN and the state-of-the-art deep learning methods are
performed and investigated in Table 10.

In Fig. 15 the statistical average values of the accuracy of the compared approaches with
the proposed CXRVN average value. We clearly found that the average accuracy of the
proposed approaches is not the top value that is because we used different imbalanced
dataset than others. Moreover, we augmented the CXR images using GAN which increase
the stability and accuracy of the proposed system (Shams et al., 2020b).

The technical motivation of the proposed CXRVN architecture can be summarized as
follows:

� CXRVN classification architecture using the presence of chest X-ray images available
allows diagnosis patients.

� The elapsed time to diagnosis the patients are decreased, and it will take a few seconds to
classify the patient’s cases.

� The adaptability of the proposed CXRVN architecture in classification multi-class not
only binary classes.

� In the proposed work, the model capable of handling large scale datasets by using GAN
for augmentation.

Figure 15 Statistical analysis of the average accuracy of the proposed approaches compared to the
state-of-the-art methods. Full-size DOI: 10.7717/peerj-cs.358/fig-15
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� Mini-batch gradient descent and Adam optimizers are applied for GAN optimization.

� The available balanced and imbalanced of chest X-ray images are used as the input
datasets.

We present a novel architecture that is trained from scratch with some modifications
and improvements as follows:

� The network architecture is adaptive in its procedure parameter for the enrolled X-ray
chest images.

� The architecture uses two optimizers for the augmented images, which are MBGD and
Adam.

� The architecture can classify noisy X-ray images and produce promising layers as five
convoluted layers with batch, and RelU activation functions are applied.

� The architecture deals with balanced, imbalanced, and augmented GAN datasets.

� The architecture can classify three classes normal, COVID, and pneumonia.

From the results mentioned above, it could be concluded the following points;

� Deep learning plays an essential role in detecting COVID-19 cases, smoothly.

� The role of GANs to produce different numbers of images helped to improve the overall
accuracy of the proposed approach.

� The proposed approach would be used as transfer learning.

Threads and limitations
Although the proposed method achieved superior performance to the state-of-the-art
methods, it still has some limitations. The first one is that radiologists tested the accuracy
of the proposed approach for clinical usage. The second limitation is the limited
COVID-19 dataset, which is considered one of the most critical issues for training deep
models. Using a big X-ray dataset for the training phase can potentially improve the
performance of the proposed method. More extracted features of the X-ray images are
required in order to test the X-ray images for more details that may be helpful for the
updated cases in COVID-19 patients. Since CT scanners are not always available, usually
have a high cost, and come after long acquisition time, X-ray remains the standard imaging
modality for chest, particularly in isolated areas and developing countries.

Future directions and Open challenge
There are different challenges related to the medical sector. They could be summarized in
the following points. During the COVID-19 pandemic. Lots of challenges are faced

Dataset
Medical datasets are very limited, which is more difficult for any researcher to reach to
these data. In the face of the epidemic Covid-19, the lack of images of the chest of various
kinds. Researchers can use methods to enlarge the number of images, which contributes to
a fair test of the different methods presented by researchers and research centers
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Table 10 Comparison study of the proposed CXRVN model and the state-of-the-art methodologies.

Author Class label Modality type of
images

Number of cases Methodology Accuracy
(%)

Das, Santosh & Pal (2020) COVID-19
Pneumonia
TB (China) TB
(USA)

Chest X-Ray 162
4280
342
58

Truncated Inception
Network

99.96

Ozturk et al. (2020) COVID-19
Pneumonia
No-finding

Chest X-Ray 125 COVID-19
500 Pneumonia
500 No-finding

DarkCovidNet 87.02

Ucar & Korkmaz (2020) COVID-19
Pneumonia
Normal

Chest X-Ray 76 COVID-19
4290 Pneumonia
1583 Normal

deep Bayes-SqueezeNet 97.93

Apostolopoulos, Aznaouridis &
Tzani (2020)

COVID-19
Pneumonia
Normal

Chest X-Ray 224 COVID-19
714 Pneumonia
504 Normal

MobileNet
VGG-19

94.72
93.84

Waheed et al. (2020) COVID-19
Normal

Chest X-Ray 72 COVID-19
120Normal

Before GAN
After GAN

85.00
95.00

Ismael & Şengür (2021) COVID-19
Normal

Chest X-Ray 95 End-to-end Training Resnet-50 94.7

Abdulmunem, Abutiheen &
Aleqabie (2021)

COVID-19
Normal

Chest X-Ray 25 COVID-19
25 Normal

Resnet-50 95.99

Li et al. (2020) COVID-19
CAP
Non- Pneumonia

Chest CT 1296 COVID-19
1735 Pneumonia
1325 Normal

Detection neural network
(COVNet)

96.00
95.00
98.00

Misztal et al. (2020) CT and
Radiograph

Chest CT Self-contained
Dataset
6000

Dense net for data stock
Dense net for multiclass

92.00
87.00

Perumal, Narayanan & Rajasekar
(2020)

Bacterial
Pneumonia
Viral pneumonia
Normal

Chest X-Ray,
and
CT

Bacterial Pneumonia
2,538
Viral pneumonia 1,345
Normal 1,349

Haralick+
VGG16, Resnet50 and
Inception V3

93.8
89.2
82.4

Sahlol et al. (2020) COVID-19
Normal

Chest X-Ray Datasets 1 and 2
Kaggle.com

FO-MPA+
CNN

98.70
98.20
99.60
99.00

Proposed architecture COVID-19
Normal

Chest X-Ray Dataset-1
25 COVID-19
25 Normal

CXRVN 92.85

Dataset-2
221 COVID-19
234 Normal

CXRVN 96.70

Dataset-2- GAN
augmentation
2210 COVID-19
2340 Normal

CXRVN 97.58

COVID-19
Pneumonia
Normal Chest
X-Ray

Chest X-Ray Dataset-3
221 COVID-19
234 Normal
148 Pneumonia

CXRVN 91.70

Dataset-3- GAN
augmentation
2210 COVID-19
2340 Normal
1480 Pneumonia

CXRVN 93.07
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Software
The diagnosis chest scan suffers the lack of ready programs for detecting the injury cases.
Deep learning will play and still play an essential and vital role in contributing to the
diagnosis of COVID-19 and others.

CONCLUSIONS
Machine learning techniques, especially classification and regression, are considered as
one of the essential tools to fight the spread COVID-19. In this article, a DCNN
architecture to classify the input X-Ray COVID-19 images called CXRVN is proposed.
The architecture can handle the extracted feature from each convoluted layer, and the
results indicate the robustness and superiority of the proposed system compared with
the state-of-the-art methods. We performed many different experiments based on
availability and the applied dataset. The first experiment used a balanced dataset of 50
X-ray images for two classes (Dataset-1), normal and COVID-19, and the accuracy was
92.85% in the testing phase, while the second experiment was performed using an
imbalanced dataset (Dataset-2) that consists of 455 X-ray images for two classes, and
the accuracy was 96.70%. In the third experiment, we used 603 X-ray images for three
class labels; COVID-19, normal, and pneumonia (Dataset-3), and the accuracy reached
91.70% in the testing phase. To prove the ability of the proposed CXRVN architecture on a
large scale, we present image data augmentation based on GANs that leads to a significant
enhancement of the proposed architecture. The evaluation results based on sensitivity,
precision, recall, accuracy, and F1 score demonstrated that, after GAN augmentation, the
accuracy reached 96.7% in experiment 2 (Dataset-2) for two classes and 93.07% in
experiment-3 (Dataset-3) for three classes. Comparisons were performed to prove the

Table 11 The running time for each dataset and scenario of the proposed CXRVN model.

Classes Modality Dataset and scenario Resulting accuracy Running time

2
COVID-19
Normal

Chest X-Ray Dataset-1
25 COVID-19
25 Normal

92.85 2 min 35 s

Dataset-2
221 COVID-19
234 Normal

96.70 20 min and 50 s

Dataset-2- GAN augmentation
2210 COVID-19
2340 Normal

97.58 45 min and 30 s

3
COVID-19
Pneumonia
Normal

Chest X-Ray Dataset-3
221 COVID-19
234 Normal
148 Pneumonia

91.07 80 min and 47 s

Dataset-3- GAN augmentation
2210 COVID-19
2340 Normal
1480 Pneumonia

93.06 135 min and 58 s
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robustness and reliability of the proposed architecture against the contemporary
architectures. For future direction, we plan to use CT-images and study different updated
cases of the COVID-19 X-Ray image. Furthermore, for the promising obtained results,
the proposed architecture can be utilized in other medical images classification and
diagnosis issues.
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