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Currently, the new coronavirus disease (COVID-19) is one of the biggest health crises
threatening the world. Automatic detection from computed tomography (CT) scans is a
classic method to detect lung infection, but it faces problems such as high variations in
intensity, indistinct edges near lung infected region and noise due to data acquisition
process.Therefore, this paper proposes a new COVID-19 pulmonary infection segmentation
depth network referred as the ADID-UNET (Attention Gate-Dense Network- Improved
Dilation Convolution-UNET). The dense network replaces convolution and maximum
pooling function to enhance feature propagation and solves gradient disappearance
problem. An improved dilation convolution is used to increase the receptive field of the
encoder output to further obtain more edge features from the small infected regions. The
integration of attention gate into the model suppresses the background and improves
prediction accuracy. The experimental results show that the ADID-UNET model can
accurately segment COVID-19 lung infected areas, with performance measures greater
than 80% for metrics like Accuracy, Specificity and Dice Coefficient (DC). Further when
compared to other state-of-the-art architectures, the proposed model showed excellent
segmentation effects with a high DC and F1 score of 0.8031 and 0.82 respectively.
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ABSTRACT16

Currently, the new coronavirus disease (COVID-19) is one of the biggest health crises threatening the

world. Automatic detection from computed tomography (CT) scans is a classic method to detect lung

infection, but it faces problems such as high variations in intensity, indistinct edges near lung infected

region and noise due to data acquisition process.Therefore, this paper proposes a new COVID-19

pulmonary infection segmentation depth network referred as the ADID-UNET (Attention Gate-Dense

Network- Improved Dilation Convolution-UNET). The dense network replaces convolution and maximum

pooling function to enhance feature propagation and solves gradient disappearance problem. An

improved dilation convolution is used to increase the receptive field of the encoder output to further

obtain more edge features from the small infected regions. The integration of attention gate into the

model suppresses the background and improves prediction accuracy. The experimental results show

that the ADID-UNET model can accurately segment COVID-19 lung infected areas, with performance

measures greater than 80% for metrics like accuracy, specificity and Dice Coefficient (DC). Further when

compared to other state-of-the-art architectures, the proposed model showed excellent segmentation

effects with a high DC and F1 score of 0.8031 and 0.82 respectively.
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1 INTRODUCTION32

COVID-19 has caused a worldwide health crisis. The World Health Organization (WHO) announced33

COVID-19 as a pandemic on March 11, 2020. The clinical manifestations of COVID-19 range from34

influenza-like symptoms to respiratory failure (i.e. diffuse alveolar injury) and its treatment requires35

advanced respiratory assistance and artificial ventilation. According to the global case statistics from the36

Center for Systems Science and Engineering (CSSE) of Johns Hopkins University (JHU) (Wang et al.,37

2020) (updated August 30, 2020), 24,824,247 confirmed COVID-19 cases, including 836,615 deaths,38

have been reported so far with pronounced effect in more than 180 countries. COVID-19 can be detected39

and screened by Reverse Transcription Polymerase Chain Reaction (RT-PCR). However, the shortage of40

equipment and the strict requirements on the detection environment limit the rapid and accurate screening41

of suspected cases. Moreover, the sensitivity of RT-PCR is not high enough, resulting in a large number of42

false-negatives (Ai et al., 2020), which presents early detection and treatment of patients with presumed43

COVID-19 (Fang et al., 2020). As an important supplement to RT-PCR, CT scans clearly describe the44

characteristic lung manifestations related to COVID-19 (Chung et al., 2020), the early Ground Glass45

Opacity (GGO), and late lung consolidation are shown in Figure 1. Nevertheless, CT scans also show46
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Figure 1. (A1) and (A2) represent the CT images and (B1) and (B2) correspond to the COVID-19

infected areas in CT axial section. Here the blue and yellow masks represent the Ground Glass Opacity

(GGO) and the late lung consolidation segments respectively. The images were obtained from (Medseg.ai,

2020).

imaging features that are similar to other types of pneumonia, making it difficult to differentiate them.47

Moreover, the manual depiction of lung infection is a tedious and time-consuming job, which is often48

influenced by personal bias and clinical experience.49

50

In recent years, deep learning has been gaining popularity in the field of medical imaging due to it’s51

intelligent and efficient feature extraction ability (Kong et al., 2019; Ye et al., 2019), and has achieved52

great success. An earliest classic example is the application of deep learning to children’s chest X-rays53

to detect and distinguish bacterial and viral pneumonia (Kermany DS, 2018; Rajaraman et al., 2018).54

Also using deep learning methods have been applied to detect various imaging features of chest CT55

images (Depeursinge et al., 2015; Anthimopoulos et al., 2016). Recently, researchers proposed to detect56

COVID-19 infections in patients by radiation imaging combined with deep learning technology. Li et al.57

(2020) proposed a simple Cov-Net deep learning network in combination with a deep learning algorithm,58

which was used to distinguish COVID-19 and Community-Acquired Pneumonia (CAP) from chest CT59

scans. Wang and Wong (2020) proposed Covid-Net to detect COVID-19 cases from chest X-ray images,60

with an accuracy rate of 93.3%. The infection probability of COVID-19 Xu et al. (2020) was calculated61

from CT scans by adopting a position-oriented attention model that presented accuracy close to 87%.62

However, the above models rarely involved the segmentation of COVID-19 infection (Chaganti et al.,63

2020; Shan et al., 2020). The challenges involved in segmentation include: a) variations in texture, size,64

and position of the infected areas in CT scans. For example, some infection areas are small, which65

easily lead to a high probability of false negatives in CT scans. b) The boundary of GGO is usually of66

low contrast and fuzzy in appearance, which makes it difficult to distinguish from the healthy regions67

during the segmentation process. c) The noise around the infected area is high, which greatly affects the68

segmentation accuracy and d) finally the cost and time consumed in obtaining high-quality pixel-level69

annotation of lung infection in CT scans is high. Therefore, most of the COVID-19 CT scan datasets are70

focused on diagnosis, and only a few of them provide segmentation labels. However, with the passage of71

time, the annotated datasets for the segmentation of COVID-19 pulmonary infection were released but72

due to a lesser amount of data, the phenomenon of overfitting could cause problems while training thus73

necessitating the need for more segmentation datasets and better algorithms for accurate results.74

Therefore, to address the challenges stated above, we propose a new deep learning network called At-75

tention Gate-Dense Network- Improved Dilation Convolution-UNET (ADID-UNET) for the segmentation76

of COVID-19 from lung infection CT scans. Experimental results on a publicly available dataset illustrate77

that the proposed model presents reliable segmentation results that are comparable to the ground truths78

annotated by experts. Also, in terms of performance, the proposed model surpasses other state-of-the-art79

segmentation models, both qualitatively and quantitatively.80

Our contributions in this paper are as follows:81

1. To address the problem that the gradient disappearance in the deep learning network pose, we employ82

a dense network (Huang et al., 2017) instead of a traditional convolution and max-pooling operations.83

The dense network extracts dense features and enhances feature propagation through the model.84

Moreover, the training parameters of the dense network are less, which reduces the size and the85
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computational cost.86

2. To increase the size of the respective field and to compensate for the problems due to blurry edges, an87

improved dilation convolution (IDC) module is used to connect the encoder and decoder pipelines.88

The IDC model increases the receptive field of the predicted region providing more edge information,89

which enhances the edge recognition ability of the model.90

3. Since the edge contrast of GGO is very low, we use the attention gate (AG) instead of simple cropping91

and copying. This further improves the accuracy of the model to detect the infection areas by learning92

the characteristics of the infected regions.93

4. Due to the limited number of COVID-19 segmented datasets with segmentation labels, which is94

less than the minimum number of samples required for training a complex model, we employ data95

augmentation techniques and expand the dataset on the basis of the collected public datasets.96

The rest of the paper is organized as follows: Section 2 describes the work related to the proposed97

model. Section 3 introduces the basic structure of ADID-UNET. Details of the dataset, experimental98

results and discussion are dealt with in section 4. Finally, section 5 presents the conclusion.99

2 RELATED WORK100

ADID-UNET model proposed in this paper is based on UNET (Ronneberger et al., 2015) architecture and101

therefore, we will discuss the literature related to our work which includes: deep learning and medical102

image segmentation, improvement of medical image segmentation algorithms, CT scan segmentation,103

and application of deep learning in segmentation of COVID-19 lesions from lung CT scans.104

2.1 Deep learning and medical image segmentation105

In recent years, deep learning algorithms have become more mature leading to various artificial intelli-106

gence (AI) systems based on deep learning algorithms being developed. Also, semantic segmentation107

using deep learning algorithms (Oktay et al., 2018) has developed rapidly with applications in both natural108

and medical images. Long et al. (2015) pioneered the use of a fully connected CNN (FCN) to present109

rough segmentation outputs that were of the input resolution through fractionally strided convolution110

process also referred as the upsampling or deconvolution. The model was tested on PASCAL VOC,111

NYUDv2, and SIFT datasets and, presented a Mean Intersection of Union (M-IOU) of 62.7%, 34%,112

39.5%, respectively. They also reported that upsampling, part of the in-network, was fast, accurate, and113

provided dense segmentation predictions. Later through a series of improvements and extensions to114

FCN (Ronneberger et al., 2015; Badrinarayanan et al., 2017; Xu et al., 2018), a symmetrical structure115

composed of encoder and decoder pipelines, called UNET (Ronneberger et al., 2015), was proposed for116

biomedical or medical image segmentation. The encoder structure predicted the segmentation area, and117

then the decoder recovered the resolution and achieved accurate spatial positioning. Also, the UNET118

used crop and copy operations for the precise segmentation of the lesions. Further, the model achieved119

good segmentation performance at the International Symposium on Biomedical Imaging (ISBI) challenge120

(Cardona et al., 2010) with the M-IOU of 0.9203. Moreover, an improved network referred as the SegNet121

was proposed by Badrinarayanan et al. (2017). The model used the first 13 convolution layers of the122

VGG16 network (Karen and Andrew, 2014) to form an encoder to extract features and predict segmen-123

tation regions. Later by using a combination of convolution layers, unpooling and softmax activation124

function in the decoder, segmentation outputs of input resolution were obtained. When tested with the125

CamVid dataset (Brostow et al., 2009), the M-IOU index of SegNet was nearly 10% higher than that of126

FCN (Long et al., 2015). Xu et al. (2018) regarded segmentation as a classification problem in which127

each pixel was associated with a class label and designed a CNN network composed of three layers of128

convolution and pooling, a fully connected layer (FC) and softmax function. The model of successfully129

segmented three-dimensional breast ultrasound (BUS) image datasets was presented into four parts: skin,130

fibroglandular tissue, mass, and fatty tissue and achieved a recall rate of 88.9%, an accuracy of 90.1%,131

precision of 80.3% and F1 score of 0.844 . According to the aforementioned literature, FCN (Long et al.,132

2015) and their improved variants presented accurate segmentation results for both natural or medical133

images. Therefore, the UNET and variants (Almajalid et al., 2019; Negi et al., 2020), due to its advantages134

of fast training and high segmentation accuracy are widely used in the field of medical image segmentation.135

136
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2.2 Improvement of medical image segmentation algorithms137

Medical images such as the ultrasound images are generally prone to speckle noise, uneven intensity138

distribution, and low contrast between the lesions and the backgrounds which affect the segmentation139

ability of the traditional UNET (Ronneberger et al., 2015) structure. Therefore, considerable efforts were140

invested in improving the architecture. Xia and Kulis (2017) proposed a fully unsupervised deep learning141

network called W-Net model that connects two UNETs to predict and reconstruct the segmentation results.142

Schlemper et al. (2019) proposed an attention UNET network, which integrated attention modules into the143

UNET (Ronneberger et al., 2015) model to achieve spatial positioning and subsequent segmentation. The144

model presented a segmentation accuracy of 15% higher than the traditional UNET architecture. Zhuang145

et al. (2019a) combined the goodness of the attention gate system and the dilation convolution module and146

proposed a hybrid architecture referred as the RDA-UNET. By introducing residual network (He et al.,147

2016) instead of traditional convolution layers they reported a segmentation accuracy of 97.91% towards148

the extraction of lesions in breast ultrasound images. Also, the GRA-UNET (Zhuang et al., 2019b)149

model included a group convolution module in-between the encoder and decoder pipelines to improve150

the segmentation of the nipple region in breast ultrasound images. Therefore, from the literature,it can151

be inferred that introducing additional modules like attention gate instead of traditional cropping and152

copying, inclusion of dilation convolution to increase the receptive fields and use of residual networks153

can favorably improve the accuracy of the segmentation model. However, these successful segmentation154

models (Schlemper et al., 2019; Zhuang et al., 2019a; Xia and Kulis, 2017) were rarely tested with CT155

scans, hence the next section concentrates on the segmentation of CT scans.156

2.3 CT scan segmentation157

CT imaging is a commonly used technology in the diagnosis of lung diseases since lesions can be158

segmented more intuitively from the chest CT scans. The segmented lesion aid the specialist in the159

diagnosis and quantification of the lung diseases(Gordaliza et al., 2018). In recent years, most of the160

classifier models and algorithms based on feature extraction have achieved good segmentation results in161

chest CT scans. Ye et al. (2009) proposed a shape-based Computer-Aided Detection (CAD) method where162

a 3D adaptive fuzzy threshold segmentation method combined with chain code was used to estimate163

infected regions in lung CT scans. In feature-based techniques, due to the low contrast between nodules164

and backgrounds, the boundary discrimination is unclear leading to inaccurate segmentation results.165

Therefore, many segmentation techniques based on deep learning algorithms have been proposed. Wang166

et al. (2017) developed a central focusing convolutional neural network for segmenting pulmonary nodules167

from heterogeneous CT scans. Jue et al. (2018) designed two deep networks (an incremental and dense168

multiple resolution residually connected network) to segment lung tumors from CT scans by adding169

multiple residual flows with different resolutions. Guofeng et al. (2018) proposed a UNET model to170

segment pulmonary nodules in CT scans which improved the overall segmentation output through the171

avoidance of overfitting. Compared with other segmentation algorithms such as graph-cut (Ye et al.,172

2009), their model had better segmentation results with a Dice coefficient of 0.73. Recently, Peng et al.173

(2020) proposed an automatic CT lung boundary segmentation method, called Pixel-based Two-Scan174

Connected Component Labeling-Convex Hull-Closed Principal Curve method (PSCCL-CH-CPC). The175

model included the following: a) the image preprocessing step to extract the coarse lung contour and176

b) coarse to finer segmentation algorithm based on the improved principal curve and machine learning177

model. The model presented good segmentation results with Dice coefficient as high as 96.9%. Agarwal178

et al. (2020) proposed a weakly supervised lesion segmentation method for CT scans based on an179

attention-based co-segmentation model (Mukherjee et al., 2018). The encoder structure composed of a180

variety of CNN architectures that includes VGG-16 (Karen and Andrew, 2014), Res-Net101(He et al.,181

2016), and an attention gate module between the encoder-decoder pipeline, while decoder composed of182

upsampling operation. The proposed method first generated the initial lesion areas from the Response183

Evaluation Criteria in Solid Tumors (RECIST) measurements and then used co-segmentation to learn184

more discriminative features and refine the initial areas. The paper reported a Dice coefficient of 89.8%.185

The above literatures suggest that deep learning techniques are effective in segmenting lesions in lung CT186

scans and many researchers have proposed different deep learning architectures to deal with COVID-19187

CT scans. Therefore, in the next section we will further study their related works.188
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2.4 Application of deep learning in segmentation of COVID-19 lesions from lung CT189

scans190

In recent months, COVID-19 has become a hot topic of concern all over the world and CT imaging is191

considered to be a convincing method to detect COVID-19. However, due to the limited datasets and the192

time and labor involved in annotations, segmentation datasets related to COVID-19 CT scans are less193

readily available. But, many researchers have still proposed advanced methods to deal with COVID-19194

diagnosis, which also includes segmentation techniques (Fan et al., 2020; Wang et al., 2020; Yan et al.,195

2020; Zhou et al., 2020; Elharrouss et al., 2020; Chen et al., 2020). On the premise of insufficient datasets196

with segmentation labels, the Inf-Net network proposed by Fan et al. (2020), combined a semi-supervised197

learning model and FCN8s network (Long et al., 2015) with implicit reverse attention and explicit198

edge attention mechanism to improve the recognition rate of infected areas. The model successfully199

segmented COVID-19 infected areas from CT scans and reported a sensitivity and accuracy of 72.5%200

and 96.0%, respectively. Elharrouss et al. (2020) proposed an encoder-decoder-based CNN method201

for COVID-19 lung infection segmentation based on a multi-task deep-learning based method, which202

overcame the shortage of labeled datasets, and segmented lung infected regions with a high sensitivity203

of 71.1%. Wang et al. (2020) proposed a noise-robust COVID-19 pneumonia lesions segmentation204

network which included a noise-robust dice loss function along with convolution function, residual205

network, and Atrous Spatial Pyramid Pooling (ASPP) module. The model was referred as Cople-Net206

presented automatic segmentation of COVID-19 pneumonia lesions from CT scans. The method proved207

that the proposed new loss function was better than the existing noise-robust loss functions such as208

Mean absolute error (MAE) loss (Ghosh et al., 2017) and Generalized Cross-Entropy (GCE) loss (Zhang209

and Sabuncu, 2018) and achieved a Dice coefficient and Relative Volume Error (RVE) of 80.72% and210

15.96%, respectively. Yan et al. (2020) employed an encoder-decoder deep CNN structure composed211

of convolution function, Feature Variation (FV) module (mainly contains convolution, pooling, and212

sigmoid function), Progressive Atrous Spatial Pyramid Pool (PASPP) module (including convolution,213

dilation convolution, and addition operation) and softmax function. The convolution function obtained214

features, FV block enhanced the feature representation ability and the PASPP was used between encoder215

and decoder pipelines compensated for the various morphologies of the infected regions. The model216

achieved a good segmentation performance with a Dice coefficient of 0.726 and a sensitivity of 0.751217

when tested on the COVID-19 lung CT scan datasets. Zhou et al. (2020) proposed an encoder-decoder218

structure based UNET model for the segmentation of the COVID-19 lung CT scan. The encoder structure219

was used to extract features and predict rough lesion areas which composed convolution function and220

Res-dil block (combines residual block (He et al., 2016) and dilation convolution module). The decoder221

pipeline was used to restore the resolution of the segmented regions through the upsampling and the222

attention mechanism between the encoder-decoder framework to capture rich contextual relationships223

for better feature learning. The proposed method can achieve an accurate and rapid segmentation on224

COVID-19 lung CT scans with a Dice coefficient, sensitivity, and specificity of 69.1%, 81.1%, and 97.2%,225

respectively. Further, Chen et al. (2020) proposed a residual attention UNET for automated multi-class226

segmentation of COVID-19 lung CT scans, which used residual blocks to replace traditional convolutions227

and upsampling functions to learn robust features. Again, a soft attention mechanism was applied to228

improve the feature learning capability of the model to segment infected regions of COVID-19. The229

proposed model demonstrates a good performance with a segmentation accuracy of 0.89 for lesions in230

COVID-19 lung CT scans. Therefore, the deep learning algorithms are helpful in segmenting the infected231

regions from COVID-19 lung CT scans which aid the clinicians to evaluate the severity of infection (Tang232

et al., 2020), large-scale screening of COVID-19 cases (Shi et al., 2020) and quantification of the lung233

infection (Ye et al., 2020). Table 1 summarizes the deep learning-based segmentation techniques available234

for COVID-19 lung infections.235

3 METHODS236

In this section, we first introduce the proposed ADID-UNET network with detailed discussion on the237

core network components including dense network, improved dilation convolution, and attention gate238

system. To present realistic comparisons, experimental results are presented at each subsection to illustrate239

the performance and superiority of the model after adding core components. Further in Section 4 we240

have presented a summary of the % improvements achieved when compared to the traditional UNET241
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architecture.242

Literature Data Type Dataset Technique
Segmentation

Results

Fan et al. (2020) CT Scan 100 CT images
Semi supervised CNN

FCN8s network

73.9%(DC)

96.0%(Sp)

Wang et al. (2020) CT Scan 558 CT images
Residual connection

CNN

80.7%(DC)

16.0%(RVE)

Yan et al. (2020) CT Scan 21,658 CT images Deep CNN
72.6%(DC)

75.1%(Sen)

Zhou et al. (2020) CT Scan 100 CT images
Attention mechanism

Res-Net,dilation convolution

69.1%(DC)

81.1%(Sen)

Elharrouss et al. (2020) CT Scan 100 CT images
Encoder-decoder-

based CNN

78.6%(Dice)

71.1%(Sen)

Chen et al. (2020) CT Scan 110 CT images
Encoder-decoder-

basedCNN

83.0%(DC)

89.0%(ACC)

Xu et al. (2020) CT Scan 110 CT images CNN
86.7%(ACC)

83.9%(F1)

Shuai et al. (2020) CT Scan 670 CT images CNN
73.1%(ACC)

67.0%(Sp)

Table 1. The summary of various deep learning algorithms for COVID-19 lung CT scans and the

segmentation results.RVE, ACC, DC, Sen, Sp and F1 represent relative volume error, accuracy, Dice

coefficient, sensitivity, specificity and F1 score, respectively.

3.1 ADID-UNET Architecture243

ADID-UNET is based on UNET (Ronneberger et al., 2015) architecture with the following improvements:244

(a) The dense network proposed by Huang et al. (2017) is used in addition to the convolution modules of245

encoder and decoder structures, (b) an improved dilation convolution (IDC) is introduced between the246

frameworks, and (c) the attention gate (AG) system is used instead of the simple cropping and copying247

operations. The structure of ADID-UNET is shown in Figure 2. Here fen, fupn, fidc describe the features248

at the n− th layer of the encoder, decoder, and IDC modules, respectively.249

When COVID-19 CT scans are presented to the encoder, the first four layers (each layer has con-250

volutions, rectification, and max pooling functions) extract features ( f1 to f4) that are passed to dense251

networks. Here dense networks are used instead of convolution and max-pooling layers to further enhance252

the features ( f5 to f6) and in Section 3.2, we elaborate the need for the dense network and present253

experimental results to prove its significance. Next, an improved dilation convolution module referred as254

the IDC model, is used between the encoder-decoder structure to increase the receptive field and gather255

detailed edge information that assists in extracting the characteristic. The module accepts the feature f6256

from the dense networks and after improvement, present fidc them as inputs to the decoder structure. To257

ensure consistency in the architecture and to avoid losing information, the decoder mirrors the encoder258

with two dense networks that replace the first two upsampling operations. Further for the better use of the259

context information between the encoder-decoder pipeline, the AG model is used instead of cropping and260

copying operations, which aggregates the corresponding layer-wise encoder features with the decoder and261

presents it to the subsequent upsampling layers. Likewise, the decoder framework presents upsampled262

features fup1 to fup6 and final feature map ( fup6) is presented to the sigmoid activation function to predict263

and segment the COVID-19 lung infected regions. The following section explains the components of264

ADID-UNET in detail.265
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Figure 2. The structure of the ADID-UNET network.

3.2 Dense Network266

It was presumed that with the increase of network layers, the learning ability of the network will gradually267

improve, but during the training, for deep networks, the gradient information that is helpful for the268

generalization may disappear or expand excessively. In literature, the problem is referred as vanishing or269

explosion of the gradient. As the network begins to converge, due to the disappearance of the gradient270

the network saturates, resulting in a sharp decline in network performance. Therefore, Zhuang et al.271

(2019a) introduced residual units proposed by He et al. (2016) into UNET structure to avoid performance272

degradation during training. The residual learning correction scheme to avoid performance degradation is273

described in (1):274

y = G(x,{Fi})+ x (1)

Here x and y are the input and output vectors of the residual block, Fi is the weight of the corresponding275

layer. The function G(x,{Fi}) is a residue when added to x, avoids vanishing gradient problems, and276

enables efficient learning.277

From (1) the summation of G(x,{Fi}) and x in Res-Net (He et al., 2016) avoids the vanishing278

gradient problems but forwarding the gradient information alone to the proceeding layers may hinder the279

information flow in the network and the recent work by (Huang et al., 2016) illustarted that of Res-Nets280

discard features randomly during training. Moreover, Res-Nets include large number of parameters,281
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which increases the training time. To solve this problem, Huang et al. (2017) proposed a dense network282

(as shown in Figure 3), which directly connects all layers, and thus skillfully obtains all features of the283

previous layer without convolution. The dense network is mainly composed of convolution layers, pooling

Figure 3. Schematic diagram of the dense network.284

function, multiple dense blocks, and transition layers. Let us consider a network with L layers, and each285

layer implements a nonlinear transformation Hi. Let x0 represent the input image, i represents layer i, xi−1286

is the output of layer i−1. Hi can be a composite operation, such as batch normalization (BN), rectified287

linear function (RELU), pooling, or convolution functions. Generally, the output of traditional network in288

layer i is as follows:289

xi = Hi × (xi−1) (2)

For the residual network, only the identity function from the upper layer is added:290

xi = Hi × (xi−1)+ xi−1 (3)

For a dense network, the feature mapping x0,x1, · · · ,xi−1 of all layers before layer i is directly connected,291

which is represented by equation (4):292

xi = Hi × ([x0,x1, · · · ,xi−1]) (4)

where [x0,x1, · · · ,xi−1] denotes the cascade of characteristic graphs and × represents the multiplication293

operation. Figure 4 shows the forward connection mechanism of the dense network where the output of294

layers is connected directly to all previous layers.

Figure 4. It is more intuitive to understand the forward connection mode of a dense network.The

output xi includes the input from x0,x1, · · · ,xi−1.295

Generally, a dense network is composed of several dense blocks and transition layers. Here we only296

use two dense blocks and transition layers to form simple dense networks. Using equation (5) to express297

the dense block:298 γ = α ([x0,x1, · · · ,xi−1] ,βi) (5)

where [x0,x1, · · · ,xi−1] denotes the cascade of characteristic graphs, βi is the weight of the corresponding299

layer. In the ADID-UNET model proposed in this paper, the feature f4 (refer to Figure 2) is fed to the300

transition layer, which is mainly composed of BN, RELU, and average pooling operation. Later the feature301

is batch standardized and rectified before convolving with a 1× 1 kernel function. Again, the filtered302

outputs go through the same operation and are convoluted with 3×3 kernel, before concatenating with the303

input feature f4. The detailed structure of the two dense blocks and transition layers used in the encoder304
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structure is shown in Figure 5 (A). Here w, h correspond to the width and height of the input, respectively,305

and b represents the number of channels. Besides, s represents the step size of the pooling operation, n306

represents the number of filtering operations performed by each layer. In our model,n takes values 32,307

64, 128, 256, and 512. It should be noted that the output of the first dense layer is the aggregated result308

of 4 convolution operations (4×n), which is employed to emphasize the features learning by reducing309

the loss of features. In the decoding structure, to restore the resolution of the predicted segmentation, a310

traditional upsampling layer of the UNET (Ronneberger et al., 2015) is used instead of the transition layer.311

The detailed structure is shown in Figure 5 (B).

Figure 5. Dense network for encoder and decoder pipelines. (A) The dense network of the encoder

pipeline. (B) The dense network of the decoder pipeline. Here, w, h, b, s, and n correspond to the width

and height of the input, the number of channels, the step size of the pooling operation, and the number of

filtering operations performed by each layer, respectively. For layers 6, 5, 4, 3, 2, 1, the values of n are

512, 512, 256, 128, 64, and 32, respectively.312

For the proposed network, we use only two dense networks mainly a) to reduce the computation costs313

and b) experiments with different layers of dense networks suggest that the use of two dense networks was314

sufficient since the segmentation results were accurate and comparable to the ground truth. Figure 6 and315

Table 2 illustrate the qualitative and quantitative comparisons with different numbers of dense network in316

the encoder-decoder framework.317

318

From the analysis of results in Figure 6 and Table 2, it is found that the effect of using two dense319

networks in the model is obvious and can present accurate segments of the infected areas that can be320

inferred directly from the qualitative and quantitative metrics.321
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Figure 6. Results of adding different numbers of dense networks. Here (A)—(C) are the CT scans,

(A1), (B1), (C1) are the ground truth, (A2)—(A7), (B2)—(B7), (C2)—(C7) are the segment results from

UNET, Num1, Num2, Num3, Num4 and Res-Net, respectively. Num1 ∼ Num4 denotes the number of

dense networks used in the encoder and decoder pipelines. Res-Net refers to the network where

convolution operations are replaced by the residual network (He et al., 2016). UNET (Ronneberger et al.,

2015) denotes the traditional architecture without dense networks.
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Moreover, with high accuracy and a good Dice coefficient, the choice of two dense networks is the322

best choice in the encoder decoder pipeline. Also, using two dense networks in place of traditional323

convolutions or residual networks enable global feature propagation, encourage feature reuse, and also324

solve the gradient disappearance problems associated with deep networks thereby significantly improving325

the segmentation outcomes.326

Number of

Dense Network
ACC DC Sen Sp Pc AUC F1 Sm Eα MAE

Num1 0.9696 0.7971 0.8011 0.9958 0.8290 0.9513 0.8129 0.8411 0.9315 0.0088

Num2 0.9700 0.8011 0.8096 0.9966 0.8596 0.9492 0.8184 0.8528 0.9394 0.0083

Num3 0.9686 0.7569 0.7546 0.9957 0.8200 0.9334 0.7806 0.8349 0.9379 0.0104

Num4 0.9699 0.7869 0.7579 0.9961 0.8485 0.9495 0.8241 0.8341 0.9348 0.0090

UNET 0.9696 0.7998 0.8052 0.9957 0.8247 0.9347 0.8154 0.8400 0.9390 0.0088

Res-Net 0.9698 0.8002 0.7978 0.9962 0.8344 0.9504 0.8180 0.8415 0.9352 0.0094

Table 2. Quantitative comparisons with respect to ground truth for different dense layers included the

UNET (Ronneberger et al., 2015) and Res-Net (He et al., 2016) architecture. ACC, DC, Sen, Sp, Pc, AUC,

F1, Sm, Eα and MAE represent accuracy, Dice coefficient, sensitivity, specificity, precision, the area under

the curve, F1 score, structural metric, enhancement alignment meter and mean absolute error, respectively.

3.3 Improved dilation convolution327

Since the encoder pipeline of the UNET structure is analogous to the traditional CNN architecture, the328

pooling operations involved at each layer propagate either the maximum or the average characteristics329

of the extracted features, hence connecting the encoder outputs directly to decoder, thus limiting the330

segmentation accuracy of the network. The RDA-UNET proposed by Zhuang et al. (2019a) utilized a331

dilation convolution (DC) module between the encoder-decoder pipeline to increase the receptive field332

and further learn the boundary information accurately. Also, the DC module is often used in many variant333

UNETs (Chen et al., 2019; Yu and Koltun, 2015) to improve the receptive field, hence, we use the DC334

module and introduce additional novelty in the DC module.335

Equation (6) describes the DC operation between the input image f (x,y) and the kernel g(i, j).336

p(x,y) = α

{

∑
i, j

f (x+ i× r,y+ j× r)×g(i, j)+ k

}

(6)

where α is the RELU function, k is a bias unit, (i, j) and (x,y) denote the coordinates of the kernel and337

those of the input images respectively, and r is the dilation rate that controls the size of receptive fields.338

The size of the receptive field obtained can be expressed as follows:339

N = ((k fsize +1)× (r−1)+ k fsize) (7)

where k fsize is the convolution kernel size, r is the convolution rate of the dilation and N is the size of the340

receptive field. As shown in Figure 7.341

Based on our experimental analysis we understand that DC module has a pronounced effect in ex-342

tracting information for larger objects or lesions and considering that most of the early ground-glass343

opacity (GGO) or late lung consolidation lesions have smaller areas, we present an improved dilation344

convolution (IDC) module between the encoder-decoder framework to accurately segment smaller regions.345

346
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Figure 7. Schematic diagram of dilation convolution. (A) It shows the visual field effect of the

classical 3×3 convolution kernel, covering 3×3 field of view each time (purple part of figure (A)); (B)

corresponds to 3×3 with r = 2. Though the size of the convolution kernel is still 3×3, but the receptive

field of convolution kernel is increased to 7×7 (purple and green parts in figure (B)); (C) corresponds to

3×3 with r =3 and a receptive field of 15×15.

Figure 8. Improved dilation Convolution (IDC).

Method
Total

Parameters

Trainable

Parameters

Non-trainable

Parameters

Train Time

epoch/(s)

Test Time

(s)

DD-UNET 56,223,034 56,190,272 32,762 145 8

DID-UNET 52,162,362 52,132,416 29,946 135 3

Table 3. Comparison results of the number of parameters of the UNET model with dense network

incorporating either improved dilation convolution module (IDC) or dilation convolution module. Here

DID-UNET refers to the inclusion of dense networks and IDC module and DD-UNET denotes dense

networks and traditional dilation convolution added to the UNET structure.

Figure 8 illustrates the IDC module that consists of several convolution functions with different347

dilation rates and rectified linear functions (RELU). Our improvements are as follows: a) combining348

single strided convolution operations and dilated convolutions with dilation rate such as 2, 4, 8, and 16,349

respectively. The above combination helps in the extraction of features from both smaller and larger350

receptive fields thus assisting in the isolation of the small infected COVID-19 regions seen in lung CT351

scans and b) referring to the idea of the dense network (Huang et al., 2017), we concatenate the input352

of the IDC module to its output and use the information of input features to further enhance feature353

learning. The input of IDC module is the rough segmentation regions obtained by encoder structure.354

The combination of the original segmentation region features and the accurate features extracted by355

IDC module not only avoids the loss of useful information, but also provides accurate input for the356

decoding pipeline, which is conducive to improve the segmentation accuracy of the model. As the inputs357

advance (left to right in Figure 8), they get convolved with a 3× 3 kernel of convolution layers and358

the dilation rate of IDC is 2, 4, 8, and 16, respectively. From the comparative experiments with the359

traditional DC model (the dilation rate is the same for both the models), we find that the computational cost360

and computation time required for the IDC module is less than that of the DC module, as shown in Table 3.361

362
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From Figure 9 and Table 4, it is found that the use of layers with convolution and smaller dilation rates363

at the end along with others ensures the cumulative extraction of features from both smaller and larger364

receptive fields thus assisting in the isolation of the small infected COVID-19 regions seen in lung CT365

scans. Also, the performance scores specifically the Dice coefficient is higher (about 3%) for DID-UNET366

compared to DD-UNET. In summary, the IDC model connected between the encoder-decoder structure,367

reduces loss of the original features but additionally expands the field of the segmented areas thereby368

improving the overall segmentation effect.369

370

Figure 9. Experimental results of the improved dilation convolution and the traditional dilation

convolution. Here (A) is the CT scan, (B) is the ground truth, (C)—(E) are the segment results from

UNET, DD UNET and DID UNET, respectively.

Method ACC DC Sen Sp Pc AUC F1 Sm Eα MAE

UNET 0.9696 0.7998 0.8052 0.9957 0.8247 0.9347 0.8154 0.8400 0.9390 0.0088

DD-

UNET
0.9697 0.7757 0.7402 0.9971 0.8622 0.9214 0.7923 0.8401 0.9312 0.0094

DID-

UNET
0.9700 0.8023 0.7987 0.9964 0.8425 0.9549 0.8241 0.8447 0.9374 0.0084

Table 4. The results of comparison indees of the improved dilation convolution experiment and the

traditional dilation convolution experiment.

3.4 Attention Gate371

Although the improved dilation convolution improves the feature learning ability of the network, due to372

the loss of spatial information in the feature mapping at the end of the encoder structure, the network has373

difficulties in reducing false prediction for (a) small COVID-19 infected regions and (b) areas with blurry374

edges with poor contrast between the lesion and background. To solve this problem, we introduce the375
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attention gate (AG) model shown in Figure 10 mechanism into our model instead of simple cropping and376

copying. AG model computes the attention coefficient σ ∈ [0,1], based on equation (8):377

σ = ε2 {pk [pi (ε1 (pn ×n+ pm ×m+bm,n))+bint]+bk} (8)

ε2 (x) =
1

1+ exp(−x)
(9)

where n and m represent the feature mapping of the AG module input from the decoder and encoder378

pipelines, respectively. And pm, pn, pi, pk are the convolution kernels of size 1×1. bm,n, bint , bk represent379

the offset unit. ε1 and ε2 denote the RELU and sigmoid activation function respectively. Here ε2 limits380

the range between 0 and 1.381

Figure 10. Diagram of Attention Gate(AG).
Finally, the attention coefficient σ is multiplied by the input feature map fi to present the output go as382

shown in equation(10):383

go = σ × fi (10)

From Figure 11 and Table 5, results showed that the inclusion AG module improved the performance384

of the network (ADID-UNET), with segmentation accuracy of almost 97%. Therefore, by introducing the385

AG model, the network makes full use of the output feature information of encoder and decoder, which386

greatly reduces the probability of false prediction of small targets, and effectively improves the sensitivity387

and accuracy of the model.388

4 EXPERIMENCE RESULTS389

4.1 COVID-19 segmentation dataset collection and processing390

Organizing a COVID-19 segmentation dataset is time-consuming and hence there are not many CT391

scan segmentation datasets. At present, there was only one standard dataset namely the COVID-19392

segmentation dataset (Medseg.ai, 2020) , which was composed of 100 axial CT scans from different393

COVID-19 patients. All CT scans were segmented by radiologists associated with the Italian Association394

of medicine and interventional radiology. Since the database was updated regularly, on April 13, 2020,395

another segmented CT scans dataset with segment labels from Radiopaedia was added. The whole396

datasets that contained both positive and negative slices (373 out of the total of 829 slices have been evalu-397

ated by a radiologist as positive and segmented), were selected for training and testing the proposed model.398

399
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Figure 11. The qualitative results of comparative experiments with or without Attention Gate in

the network. Here (A—C) illustrates the test images. (A1), (B1), (C1) are the ground truth. (A2)—(A6),

(B2)— (B6), (C2)—(C6) are the segmentation results from UNET, AG-UNET, DA-UNET, IDA-UNET

and ADID-UNET, respectively. AG-UNET– the addition of AG module to UNET, DA-UNET–adding

two dense networks and AG module to the network without including the IDC module. IDA-UNET refers

to adding IDC and AG modules to the UNET without adding dense networks, and ADID-UNET indicates

that dense networks, IDC and AG module are added to the network. 15/26PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52665:1:1:NEW 5 Nov 2020)
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Method ACC DC Sen Sp Pc AUC F1 Sm Eα MAE

UNET 0.9696 0.7998 0.8052 0.9957 0.8247 0.9347 0.8154 0.8400 0.9390 0.0088

AG-UNET 0.9697 0.8020 0.8106 0.9962 0.8347 0.9571 0.8116 0.8511 0.9345 0.0087

DA-UNET 0.9698 0.7754 0.7400 0.9959 0.8470 0.9274 0.7930 0.8334 0.9104 0.0091

IDA-UNET 0.9698 0.7961 0.7834 0.9964 0.8469 0.9450 0.8126 0.8513 0.9437 0.0085

ADID-UNET 0.9701 0.8031 0.7973 0.9966 0.8476 0.9551 0.8200 0.8509 0.9449 0.0082

Table 5. The quantitative results of the comparison with or without the AG model experiment.

AG-UNET– the addition of AG module to UNET, DA-UNET–adding two dense networks and AG

module to the network without including the IDC module. IDA-UNET refers to adding IDC and AG

modules to the UNET without adding dense networks, and ADID-UNET indicates that dense network,

IDC and AG module are added to the network.

The dataset consists of 1838 images with annotated ground truth was randomly divided into 1318400

training samples, 320 validation samples, and 200 test samples. Since the number of training images is401

less, we expand the training dataset where we first merge the COVID-19 lung CT scans with the ground402

scene and then perform six affine transformations as mentioned in Krizhevsky et al. (2012). Later the403

transformed image is separated from the new background truth value and added to the training dataset as404

additional training images. Therefore, the 1318 images of the training dataset are expanded, and 9226405

images are obtained for training. Figure 12 illustrates the data expansion process.406

407

Figure 12. Data augmentation. Illustration of vertical flipping process showing the expansion of the

training dataset.

4.2 Segmentation evaluation index408

The commonly used evaluation indicators for segmentation such as accuracy (ACC), precision (Pc), Dice409

coefficient (DC), the area under the curve (AUC), sensitivity (Sen), specificity (Sp) and F1 score (F1) were410

used to evaluate the performance of the model. These performance indicators are calculated as follows:411

(1) For computing accuracy, precision, sensitivity, specificity, and F1 score we generate the confusion412

matrix where the definitions of true positive (TP), true negative (TN), false positive (FP), and false negative413

(FN) are shown in Table 6.414

Category Actual Lesion Actual Non-Lesion

Predicted Lesion True Position(TP) False Position(FP)

Predicted Non-Lesion False Negative(FN) True Negative(TN)

Table 6. Definition of TP, FP, FN, TN.
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1) Accuracy (ACC): A ratio of the number of correctly predicted pixels to the total number of pixels in415

the image.416

Accuracy(ACC) =
T P+T N

T P+T N +FP+FN
(11)

2) Precision (Pc): A ratio of the number of correctly predicted lesion pixels to the total number of417

predicted lesion pixels.418

Precision(Pc) =
T P

T P+FP
(12)

3) Sensitivity (Sen): A ratio of the number of correctly predicted lesion pixels to the total number of419

actual lesion pixels.420

Sensitivity=
T P

T P+FN
(13)

4) F1 score (F1): A measure of balanced accuracy obtained from a combination of precision and sensitivity421

results.422

F1score(F1) = 2×
Pc ×Sen

Pc +Sen

(14)

5) Specificity (Sp): A ratio of the number of correctly predicted non-lesion pixels to the total number of423

actual non-lesion pixels.424

Specificity(Sp) =
T N

T N +FP
(15)

6) Dice coefficient (DC): Represents the similarity between the model segment output (Y ) and the ground425

truth (X). The higher the similarity between the lesion and the ground truth, the larger the Dice coefficient426

and the better the segmentation effect. Dice coefficient is calculated as follows:427

Dice Coefficient(DC) =
2× (X ∩Y )

X +Y
(16)

Also, we use a Dice coefficient (Dice, 1945) loss (dice loss) as the training loss of the model, the428

calculation is as follows:429

Train Loss = Dice Coefficient Loss = 1.0 -
2× (X ∩Y )

X +Y
(17)

7) The area under the curve (AUC): AUC is the area under the receiver operating characteristic (ROC)430

curve. It represents the degree or the measure of separability and indicates the capability of the model in431

distinguishing the classes. Higher the AUC better is the segmentation output and hence the model.432

In addition to the above widely used indicators, we also introduce the Structural metric (Sm) (Fan433

et al., 2017), Enhanced alignment metric (Eα ) (Fan et al., 2018) and Mean Absolute Error (MAE) (Fan434

et al., 2020; Elharrouss et al., 2020) to measure the segmentation similarity with respect to the ground435

truth.436

8) Structural metric (Sm): Measures the structural similarity between the prediction map and ground437

truth segmented mask, it is more in line with the human visual system than Dice coefficient.438

Sm = (1−β )×Sos (Sop,Sgt)+β ×Sor (Sop,Sgt) (18)

where Sos stands for target perception similarity, Sor stands for regional perceptual similarity, β = 0.5 is a439

balance factor between Sos and Sor. And Sop stands for the final prediction result and Sgt represents the440

ground truth.441

9) Enhance alignment metric (Eα ): Evaluates the local and global similarity between two binary maps442

computed based on equation (19):443

Eα =
1

w×h
∑

w

i ∑
h

j
α × (Sop (i, j) ,Sgt (i, j)) (19)

where w and h are the width and height of ground truth Sgt , (i, j) denotes the coordinates of each pixel in444

Sgt . α represents the enhanced alignment matrix:445

α =
2×

(

Sgt −
√

Sgt

)

×
(

Sop −
√

Sop

)

(

Sgt −
√

Sgt

)2
+
(

Sop −
√

Sop

)2
(20)

10) Mean Absolute Error (MAE): Measures the pixel-wise difference between Sop and Sgt , defined as:446

MAE =
1

w×h
∑

w

i ∑
h

j

∣

∣Sop (i, j)−Sgt (i, j)
∣

∣ (21)
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4.3 Experimental details447

The ADID-UNET proposed in this paper is implemented in Keras framework and is trained and tested448

by using the workstation with NVIDIA GPU P5000. During the training process, we set the learning449

rate as lr = 1×10−3, and Adam optimizer was selected as the optimization technique. The 9226 training450

samples, 320 verification samples, and 200 test samples were resized to 128 × 128 and trained with a451

batch size of 32 for 300 epochs. Figure 13-14 shows the performance curves obtained for the proposed452

ADID-UNET during training, validation, and testing.453

4.4 Segmentation results and discussion454

(1) Qualitative results: To show the performance of the ADID-UNET model, we used 200 pairs of455

COVID-19 lung infection CT scans as test data, and the segmentation results are shown in Figure 15.456

From the analysis of Figure 15, it was found that the ADID-UNET model can accurately segment the457

COVID-19 lung infection areas from the CT scans, especially the smaller infected areas, and the segmen-458

tation result is very close to the ground truth. This illustrates the effectiveness of the proposed method for459

the segmentation of COVID-19 lung infection regions from CT scans.460

461

Further, we also compare the proposed model with other state-of-art segmentation models. From the462

results (Figures 16 and 17 and Table 7), we can infer that the ADID-UNET model presents segmentation463

outputs closer to the ground truth. In contrast, the FCN8s network (Long et al., 2015) presents more464

under and over segmented regions. Further RAD-UNET (Zhuang et al., 2019a) presents comparable465

segmentation results but its effect is less pronounced for smaller segments. Analyzing the segmentation466

visual results from Figures 16 and 17, we can clearly find that the ADID-UNET model proposed in this467

paper can accurately segment the COVID-19 lung infection regions than other state-of-the-art model with468

results close to the ground truth, which proves the efficacy of the proposed ADID-UNET model.469

470

Figure 13. ADID-UNET training and validation performance index curve. (A-D) are the loss of

training and validation, accuracy, Dice coefficient, and sensitivity performance curves, respectively.
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Figure 14. ADID-UNET training and validation performance index curve. (E-H) is the training

and validation of the specificity, F1 score, precision, and AUC performance curves, respectively.

Figure 15. Visual comparison of the segmentation results of COVID-19 lung infection obtained from

the proposed ADID-UNET.

(2) Quantitative results: Table 7, presents the performance scores for various indicators mentioned471

in Section 4. Here, for ADID-UNET the scores such as the Dice coefficient, precision, F1score, specificity472

and AUC are 80.31%, 84.76%, 82.00%, 99.66% and 95.51%, respectively. Further, most of the perfor-473

mance indexes are above 0.8 with the highest segmentation accuracy of 97.01%. The above results clearly474

indicates that the proposed model presents segmentation outputs closer to ground truth annotations.475

(3) Discussion: The proposed model presents an improved verion of the UNET model obtained by476

the inclusion of modules such as the dense network, IDC and the attention gates to the existing UNET477

(Ronneberger et al., 2015) structure. The effectiveness of these additions were experimentally verified478
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in Section 3. Further, to summarize the effectiveness of the addition of each module to the UNET479

architecture, Table 8 tabulates the improvement at each stage of the addition. From Table 8, it is found that480

adding additional components to the UNET (Ronneberger et al., 2015) structure can obviously improve481

the overall segmentation accuracy of the network. For example, with the inclusion of the dense networks482

(D-UNET), the metrics such as Dice coefficien (DC) and AUC reached 79.98% and 93.47%, respectively.483

Method ACC DC Sen Sp Pc AUC F1 Sm Eα MAE

FCN8s 0.9666 0.6697 0.6692 0.9923 0.6860 0.9485 0.6724 0.7539 0.9134 0.0157

UNET 0.9696 0.7998 0.8052 0.9957 0.8247 0.9347 0.8154 0.8400 0.9390 0.0088

Segnet 0.9684 0.7408 0.7608 0.9937 0.7549 0.9492 0.7558 0.8080 0.9374 0.0125

Squeeze UNET 0.9689 0.7681 0.7827 0.9946 0.7776 0.9446 0.7785 0.8227 0.9326 0.0107

Residual UNET 0.9697 0.7924 0.7905 0.9961 0.8248 0.9444 0.8055 0.8397 0.9324 0.0094

RAD UNET 0.9699 0.7895 0.7625 0.9970 0.8601 0.9419 0.8062 0.8475 0.9328 0.0096

Fan et al. (2020) - - - 0.7390 0.7250 0.9600 - - - - - - - - - 0.8000 0.8940 0.0640

Elharrouss et al. (2020) - - - 0.7860 0.7110 0.9930 0.8560 - - - 0.7940 - - - - - - 0.0760

Yan et al. (2020) - - - 0.7260 0.7510 - - - 0.7260 - - - - - - - - - - - - - - -

Zhou et al. (2020) - - - 0.6910 0.8110 0.9720 - - - - - - - - - - - - - - - - - -

Chen et al. (2020) 0.8900 - - - - - - 0.9930 0.9500 - - - - - - - - - - - - - - -

ADID-UNET 0.9701 0.8031 0.7973 0.9966 0.8476 0.9551 0.8200 0.8509 0.9449 0.0082

Table 7. Quantitative results of infected areas in the COVID-19 dataset. - - - means no relevant data in

the original literature.

Method ACC DC Sen Sp Pc AUC F1 Sm Eα MAE

UNET 0.9696 0.7998 0.8052 0.9957 0.8247 0.9347 0.8154 0.8400 0.9390 0.0088

D-UNET 0.9700 0.8011 0.8096 0.9966 0.8596 0.9492 0.8184 0.8528 0.9394 0.0083

DID-UNET 0.9700 0.8023 0.7987 0.9964 0.8425 0.9549 0.8241 0.8447 0.9374 0.0084

ADID-UNET 0.9701 0.8031 0.7973 0.9966 0.8476 0.9551 0.8200 0.8509 0.9449 0.0082

Improvement of

D-UNET
↑0.04% ↑0.13% ↑0.44% ↑0.09% ↑3.49% ↑1.45% ↑0.30% ↑1.28% ↑0.04% ↓0.05%

Improvement of

DID-UNET
↑0.04% ↑0.25% ↓0.65% ↑0.07% ↑1.78% ↑2.02% ↑0.87% ↑0.47% ↓0.16% ↓0.04%

Improvement of

ADID-UNET
↑0.05% ↑0.33% ↓0.79% ↑0.09% ↑2.29% ↑2.04% ↑0.46% ↑1.09% ↑0.59% ↓0.06%

Table 8. The quantitative results showing percentages improvements of the model after adding additional

components to UNET (Ronneberger et al., 2015) structure. D-UNET denotes dense networks with UNET

structure, DID-UNET represents dense networks and improved dilation convolution to the structure of

UNET, and ADID-UNET refers to proposed model with dense networks improved dilation convolution

and attention gate modules to the UNET structure. ↑ indicates that the performance index is higher than

that of UNET structure, ↓ indicates that the performance index is lower than that of UNET structure.
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484 Further, the inclusion of the IDC improved the scores further (DID-UNET). Finally, the proposed485

model with dense network, IDC and the AG modules (namely ADID-UNET) presented the best perfor-486

mance scores and provided an improvement of 0.05%, 0.33%, 2.29%, 2.04% and 1.09% for metrics such487

as accuracy, DC, precision, AUC and structural metric respectively when compared to traditional UNET488

architecture.489

Furthermore, from Figures 16 and 17, it is obvious that ADID-UNET performs better than other490

well-known segmentation models in terms of visualization. Specifically, ADID-UNET can segment491

relatively smaller infected regions which is of great significance for clinical accurate diagnosis of COVID-492

19 infection location. The use of (a) dense networks instead of traditional convolution and max-pooling493

function, (b) inclusion of improved dilation convolution module between the encoder-decoder pipeline and494

(c) the presence of attention gate network in the skip connections have presented accurate segmentation495

outputs for various types of COVID-19 infections (GGO and pulmonary consolidation). However, ADID-496

UNET still has room for improvement in terms of Dice coefficient and sensitivity and also computational497

costs which can be researched in future.498

499

5 CONCLUSION500

The paper proposes a new variant of UNET (Ronneberger et al., 2015) architecture to accurately segment501

the COVID-19 lung infections in CT scans. The model, ADID-UNET includes dense networks, improved502

dilation convolution, and attention gate, which has strong feature extraction and segment capabilities.503

The experimental results show that ADID-UNET is effective in segmenting small infection regions,504

with performance metrics such as accuracy, precision and F1 score of 97.01%, 84.76%, and 82.00%,505

respectively. The segmentation results of the ADID-UNET network can aid the clinicians in faster506

screening, quantification of the lesion areas and provide an overall improvement in the diagnosis of507

COVID-19 lung infection.508
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7 APPENDIX512

We describe the abbreviations of this paper in detail, as shown in Table 9:513

Abbreviation Explanation

D-UNET Inclusion of Dense networks to the UNET structure

AG-UNET Inclusion of Attention gate module to the UNET structure

DA-UNET Inclusion of both dense networks and attention gate module to the UNET structure

IDA-UNET
Inclusion of Improved dilation convolution and Attention Gate module

to the UNET structure

DID-UNET
Inclusion of dense networks and improved dilation convolution to

the UNET structure

ADID-UNET
Inclusion of dense networks, Improved dilation convolution and Attention Gate

modules to the UNET structure

Table 9. An explanation of the acronyms that appears in this article.

514
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Figure 16. The visual comparison of the segmentation results of COVID-19 lung infection

compared with other advanced models. Fig. 16 (A—C) illustrate the test images obtained from

(Medseg.ai, 2020). Where (A1), (B1), (C1) are the ground truth, (A2)—(A8), (B2)— (B8), (C2)—(C8)

are the segmentation results from FCN8s (Long et al., 2015), UNET (Ronneberger et al., 2015),

SegNet(Badrinarayanan et al., 2017), Squeeze UNET (Iandola et al., 2016), Residual UNET (Alom et al.,

2018), RAD UNET (Zhuang et al., 2019a), ADID-UNET, respectively.
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Figure 17. The visual comparison of the segmentation results of COVID-19 lung infection

compared with other advanced models. Fig. 17 (D—F) illustrate the test images obtained from

(Medseg.ai, 2020). Where (D1), (E1), (F1) are the ground truth, (D2)—(D8), (E2)— (E8), (F2)—(F8) are

the segmentation results from FCN8s (Long et al., 2015), UNET (Ronneberger et al., 2015),

Segnet(Badrinarayanan et al., 2017), Squeeze UNET (Iandola et al., 2016), Residual UNET (Alom et al.,

2018), RAD UNET (Zhuang et al., 2019a), ADID-UNET, respectively.
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