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ABSTRACT
Grammar Error Correction and Explanations (GECE) is considered a challenging
task for under-resourced languages. Arabic is one such language as it lacks linguistic
materials such as annotated corpuses, language supporting models, and even Natural
Language Processing (NLP) tools. The study reported in the article was designed to
evaluate the performance of Large Language Models (LLMs) in GEC and in
generating adequate and relevant explanations for these corrections. The study
explored the potential of the LLMs, GPT, Gemini, and Llama by using fine-tuning
and two prompting techniques. The study also evaluated Arabic-specific LLM,
ALLaM, using two prompting techniques. Additionally, the study compares the
performance of LLMs with existing system called LanguageTool. The research
examined whether prompting and fine-tuning techniques affected the quality of the
explanations generated for the development of LLMs as useful tools in language
learning. Human evaluation was applied to evaluate the quality and usefulness of the
generated explanations. Our findings revealed that GPT-4o outperformed the other
models based on the evaluation metrics used. The fine-tuned version of GPT-4o
achieved the highest score of 78% in the Bilingual Evaluation Understudy (BLEU)
metric, followed by the fine-tuned version of Llama and ALLaM’s version uses
few-shot prompting, which both scored 74%. The F0.5 metric of the Chunk-LEvel
Multi-reference Evaluation (CLEME) indicated that the fine-tuning technique
significantly increased the metrics for GPT-4o, Gemini, and Llama, which had
precision scores of 45%, 25%, and 29%, respectively. Furthermore, the fine-tuned
version of Llama, ALLaM using few-shot prompting, and the fine-tuned version of
GPT-4o achieved the highest average Character Error Rate (CER) of 10%, 10%, and
11%, respectively. Overall, our study shows that targeted training, starting with
examples and progressing to fine-tuning, leads to significant gains in grammar error
correction accuracy and explanation quality. Accordingly, LLMs can serve as a
reliable resource to teach the Arabic Language and automate the editing process.

Subjects Artificial Intelligence, Computational Linguistics, Data Mining and Machine Learning,
Natural Language and Speech, Text Mining
Keywords Grammar error correction and explanations, Natural language processing, Large
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INTRODUCTION
As described in Miller (1951) and Dasopang (2025), language is the ability to speak.
Developed from early childhood, it is an essential part of human expression and
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communication. In contrast, machines lack the intrinsic ability to understand or generate
human language without the assistance of complex artificial intelligence (AI) techniques as
stated by Raiaan et al. (2024). However, as mentioned in Turing (2009), for decades,
researchers have focused on empowering computers with human-level reading, writing,
and conversational skills. Deep learning, computational advances, and the availability of
large text corpora have all contributed to the development of LLMs. These models can
recognize complicated language patterns and create text that closely mimics human
conversation because they employ neural architectures with billions of parameters and
self-supervised training on vast unlabeled datasets (Shen et al., 2023). Recently, Large
Language Models (LLMs) have shown remarkable progress in the field of Natural
Language Processing (NLP). Models such as Generative Pretrained Transformer (GPT),
Gemini, and Llama, have been applied in various NLP tasks like text generation,
translation, question answering, and classifications as stated by Raheja et al. (2024) and
Kobayashi, Mita & Komachi (2024a). A recent, comprehensive review by Fan et al. (2024)
discussed the research trends in the period from 2017 to 2023, which included
enhancements in essential algorithms, NLP tasks, and applications in fields such as
medicine, engineering, social sciences and humanities.

OpenAI announced the first version of its GPT in 2018, called GPT-1, which is a
transformer decoder-based model as stated by Ghojogh & Ghodsi (2020). Older versions of
GPT have influenced subsequent models, including GPT-4 and GPT-4o, which resulted in
significant advances in language processing and creation (Fan et al., 2024). As mentioned
by Hurst et al. (2024), the GPT 4o version includes audio and video inputs in addition to
the other inputs and was trained up to October 2023 on enormous datasets from various
sources and materials. Meta introduced Llama3 in 2024, which is a herd of models that
supports multiple languages, coding, reasoning and other features (Grattafiori et al., 2024).
Meta improved the quantity and quality of data used for pre- and post-training
Llama3 models. Llama3 was trained on 15T multilingual tokens. It has 8 billion, 70 billion,
and 405 billion learnable parameters. Meta also developed extensions that support image
and face recognition, in addition to speech understanding capabilities. Another
multilingual LLM is Gemini, a family of transformer-decoder models, developed by
Google. It has various versions: Ultra, Pro, Nano, and Flash, as mentioned by Anil et al.
(2023). New enhancements to Gemini models include audio and video support (Georgiev
et al., 2024). Finally, the Arabic Large Language Model (ALLaM) is a well-known LLM
developed by the Saudi Data & AI Authority (SDAIA) to support fluency with
understanding of Arabic and English languages (Bari et al., 2024). It was trained on a
model from scratch with seven billion parameters and three models initialized by Llama2
on scales of seven billion, 13 billion, and 70 billion parameters.

Owing to the critical role of deep learning techniques and the processing of enormous
volumes of data, such models have displayed exceptional capabilities in handling a variety
of languages. However, since there are more than 7,000 spoken languages, current research
is concentrating on scaling LLMs’ multilingual capabilities to handle more languages in
various tasks as mentioned by Lai, Mesgar & Fraser (2024), Dang et al. (2024) and Mothe
(2024). Arabic is one of the most challenging languages due to the complexity and the
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richness of Arabic morphology, as stated by Kwon et al. (2023). Moreover, Arabic is a
collection of diverse languages and dialects in addition to Modern Standard Arabic (MSA).

As LLMs develop, investigation is now turning to linguistically complicated languages
such as Arabic, whose complex morphology and distinct orthographic rules provide
significant barriers to NLP. For around 300 million people, Arabic is their native language,
and it is officially recognized in 27 states, as stated by Saiegh-Haddad & Henkin-Roitfarb
(2014). Also, being the language of the Qur’an, it serves as the global holy and liturgical
medium for Muslims. As highlighted in Ghazzawi (1992), there are different varieties of
Arabic including classical Arabic, colloquial Arabic, and MSA. Classical Arabic is the
language of the Qur’an and early Islam literature. MSA is the modernized form of classical
Arabic and is the form used in media sources, speeches, academic writing, and so forth.
Colloquial Arabic is the local dialect spoken in various countries. Arabic is highly
organized and derivational, with a strong emphasis on morphology and syntax
(AlOyaynaa & Kotb, 2023). Generally, while other language grammars are considered
complex, Arabic grammar is unusually so, which makes grammar-checking a hard task.
According to Selim (2018), learning grammar is critical for two reasons: first, to prevent the
Quranic language from corruption, and second, to provide non-native speakers with a
baseline from which to build a correct grasp of the language.

This study investigated LLMs in order to enhance their performance in two
distinguished NLP tasks involving MSA grammar. The first task was grammar error
correction (GEC), which basically entails identifying textual grammatical errors and
correcting them (Zhang et al., 2023b; Wang & Yuan, 2024). Applying GEC to Arabic
reveals challenges due to the complexity of Arabic grammar and features (Kwon et al.,
2023). Grammatical mistakes are ordinary for anyone writing in any language. These
mistakes can disturb readers and lead to miscommunication (Ingólfsdóttir et al., 2023).
Therefore, GEC is considered essential for anyone, especially non-native speakers, to guide
and provide them with instant feedback to facilitate their individual learning journey
(Davis et al., 2024). The second task was Grammar Error Correction Explanation (GECE)
which is associated with the GEC task. In it, the system explains the reasons for
the grammatical corrections applied (Song et al., 2023). Generating explanations for
grammatical error corrections is helpful for readers to get a deeper understanding of
grammar rules of MSA (Song et al., 2023). Also, it clarifies concepts and reduces confusion
by identifying and understanding mistakes. Exploring GECE in LLMs and enhancing it in
several languages can result in LLMs fostering more effective learning experiences
(Ye et al., 2024).

The purpose of the study was to investigate and evaluate the performance of four
language models, GPT, Gemini, Llama, and ALLaM, in handling Arabic grammar
correction and generating reliable explanations. Furthermore, the grammatical error
correction performance of LLMs was compared against the existing tool, LanguageTool
(https://github.com/languagetool-org/languagetool). We used two datasets, anual Arabic
Spelling-Error Correction Corpus (Saty, Aouragh & Bouzoubaa, 2023) and the Arabic
Grammar Corrections Dataset (https://huggingface.co/datasets/s3h/arabic-grammar-
corrections), to train LLMs and evaluate their efficiency for Arabic GEC and explanation
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generation. This is achieved by fine-tuning the language models and adapting different
prompting techniques (i.e., zero-shot and few-shot). The metrics used to evaluate these
LLMs include Cosine Similarity, Bilingual Evaluation Understudy (BLEU), Levenshtein
Distance, Word Error Rate (WER), CER (Charachter Error Rate), Chunk-LEvel
Multi-reference Evaluation (CLEME), Generalized Language Evaluation Understanding
(GLEU), and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) as well as
conducting human evaluation.

This research study was designed to answer the following questions:

1. How efficient can LLMs be in correcting Arabic grammar and explaining the
corrections?

2. Do different prompting techniques affect the quality and clarity of explanations?

3. Which technique has the best performance: prompts or fine-tuning?

The main contributions of this article can be summarized as follows:

. It investigates the performance of GPT-4, Gemini, Llama, and ALLaM language models
in dealing with Arabic GEC and generating helpful explanations for the produced
corrections.

. It sheds light on strategies to enhance language model performance, such as
prompt-based techniques and fine-tuning.

The remainder of the article will review the relevant literature on LLM, GEC and
explanation, and different prompt engineering and fine-tuning techniques in the ‘Related
Work’. ‘Methods’ details the methodology and research pipelines, including descriptions
of the models, datasets, and evaluation metrics. ‘Discussion’ presents the data analysis and
discusses the results for each model using different techniques. Finally, ‘Conclusions’ offers
the study’s findings and conclusions.

RELATED WORK
LLMs are transformer-based AI algorithms trained on numerous datasets. They use deep
learning to be capable of handling various tasks as mentioned in Marvin et al. (2023).
Recent studies, such as La Cava & Tagarelli (2025), Yu et al. (2023), von Schwerin &
Reichert (2024) and Liu et al. (2024), have discussed the difference between open-source
and closed-source LLMs. According to La Cava & Tagarelli (2025), open-source LLMs,
such as Llama, can be used freely for any purpose, whereas closed-source models, such as
GPT and Gemini, limit interactions to API access and do not allow access to the
pretraining data (von Schwerin & Reichert, 2024). LLMs have generally demonstrated
superior capabilities to understand and generate languages, outperforming previous
systems in various NLP tasks as stated by Kobayashi, Mita & Komachi (2024a).

Besides contributing significantly to recent NLP research, LLMs can also produce
high-quality corrections in GEC like the GPT models (Creutz, 2024; Loem et al., 2023;
Zhang et al., 2023a; Park et al., 2024). Additionally, recent studies have shown noticeable
improvements in LLMs in producing relevant and meaningful explanations for GEC
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including GPT models, Qwen, DeepSeek and Llama as referred to by Kaneko & Okazaki
(2023), Song et al. (2023), Li et al. (2024) and Ye et al. (2024). However, no research has
explored GECE for Arabic yet. This is because Arabic GEC is quite challenging owing to
the ambiguity of Arabic at the orthographic, morphological, syntactic, and semantic levels
(Kwon et al., 2023; Alhafni et al., 2023; Ingólfsdóttir et al., 2023).

Grammar error correction
According to Bryant et al. (2023), writing is a learned skill and an essential form of
communication that can be challenging for non-native language speakers. Fei et al. (2023)
mentioned that the evolution of NLP applications can assist non-native speakers in
improving their writing skills. Within any given sentence, a GEC task can automatically
identify and rectify grammatical, orthographic, and semantic errors as highlighted by
Kobayashi, Mita & Komachi (2024b). Previously, various approaches were implemented
for GEC, such as classifiers, machine translation, edit-based approaches, and LLMs as
detailed by Bryant et al. (2023). Current research focuses on applying GEC in LLMs, which
is challenging according to Tang, Qu & Wu (2024). In Creutz (2024), three LLMs were
evaluated, namel GPT-3.5, GPT-4, and Claude v1, using a prompt-based approach in
correcting grammatical errors in beginner-level Finnish learner texts on different
temperature settings due to the non-deterministic nature of LLMs. GPT-4 outperformed
GPT-3.5 and Claude v1 on GEC task.

Similarly, several research articles such as Loem et al. (2023), Zhang et al. (2023a) and
Park et al. (2024), have evaluated the performance of GPT-3 in GEC task by using
prompt-based methods such as zero-shot and few-shot settings. As was detailed by Loem
et al. (2023), they found that the performance of GPT-3 was effective when using
appropriate instructions and clear examples. In addition to evaluating the performance of
LLMs, Zhang et al. (2023a) evaluated their tolerance on texts containing different levels of
noise/errors. The results showed that the level of noise can affect LLMs performance: the
performance declines as the noise increases. Additionally, according to Park et al. (2024),
LLMs performance increases when few-shot techniques are applied (increased number of
examples).

Grammar error correction explanations
As discussed in the previous section, GEC can improve writing by detecting and correcting
textual errors. However, understanding the reason for a particular correction and
identifying the type of error in a GEC system will help language learners to continuously
improve their skills by learning from their mistakes following effective feedback (i.e.,
explanations provided by GEC systems or LLMs) as described by Park et al. (2024). As
noted by Song et al. (2023), GECE in LLMs is the task of explaining the reason for an
applied correction. Kaneko & Okazaki (2023) proposed a method called controlled
generation with prompt insertion (PI). In this method, corrected tokens are sequentially
inserted in the LLM’s explanation output as prompts to guide the LLM to generate more
useful and illustrative explanations. Their study showed that using the PI method, there
was a notable increase in the LLM’s performance in explaining the reasons for corrections.
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Another study by Song et al. (2023), developed a two-pipeline stage for LLMs to generate
an explanation for each grammar correction as a pair of erroneous and corrected
sentences. Human evaluation indicated that more than 93% of the explanations produced
by their pipeline method for German and Chinese were correct. Whereas in Li et al.’s
(2024) article, the author used LLMs as explainers to train and provide explanations for
their models to enhance their performance. Also, they used LLMs as evaluators to produce
more reasonable Chinese GEC evaluations. One of their findings showed that their
SEmantic-incorporated Evaluation framework displayed a significant performance, which
made it a suitable evaluation tool for GEC in LLMs. Furthermore, Ye et al. (2024)
introduced a benchmark featuring the design of hybrid edit-wise explanations. Each edit is
structured as follows: error type, error severity level, and an error description that helps
learners and guides them to clearly understand why and how the grammatical error was
corrected.

Prompt engineering and fine-tuning
Prompt engineering is the process of crafting and optimizing prompts to acquire the
desired responses from LLMs, as outlined byMarvin et al. (2023). According toWhite et al.
(2023), a prompt is a series of instructions that unlocks the full potential of LLM by
customizing and enhancing its capabilities. Prompts are crucial for leading LLMs to create
meaningful and relevant content. Techniques such as fine-tuning, in-context learning
(ICL), zero-shot and few-shot learning, tailor LLMs for specific tasks, as mentioned by
Marvin et al. (2023).

As emphasized by Pajak & Pajak (2022), the fine-tuning technique uses a supervised
learning process to train language models to perform effectively faster and with less power
consumption in a specific task. ICL is a technique where the descriptions of tasks are
provided in the prompt, as well as a few annotated task examples as described by Yao et al.
(2024). Wei et al. (2021) created an instruction tuning method to improve both zero-shot
and few-shot ICL. Moreover, Yao et al. (2024), through enhancing the construction of
multiple ICL prompts, developed a new technique that produces confident predictions. By
contrast, zero-shot prompting is a technique of plainly describing the information of a task
without providing examples as outlined by Allingham et al. (2023). In addition to task
information, the few-shot prompting technique includes multiple examples (Chen et al.,
2023). Recent research has studied the application of prompt-based approaches in
applying LLMs to GEC, concentrating on developing effective prompts that produces
corrected sentences as detailed by Zeng et al. (2024). For example, in Kwon et al.’s (2023)
study, they found that in-context few-shot learning effectively improved the performance
of GPT-4. Conversely, Davis et al. (2024) observed that in some settings, zero-shot
prompting is as competitive as the few-shot technique. Other studies, like that of Kaneko &
Okazaki (2023), looked into different prompting strategies that improve LLMs’
explanation of corrections. Kaneko & Okazaki (2023) created a prompt insertion method
to enhance the explanation generation of GPT-3 and ChatGPT models. Finally, Ye et al.
(2024) used a fine-tuning strategy for edit extraction and a few-shot prompting technique
to prompt GPT-4 to generate edit-wise explanations.
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To our knowledge, this is the first study to discuss and evaluate Arabic grammar
correction explanations using LLMs. We developed and compared different prompting
techniques (zero-shot, few-shot) and targeted fine-tuning to encourage LLMs to deliver
concise, well-structured explanations in Arabic. By systematically comparing various
techniques and measuring both corrective performance and explanatory clarity, our study
fills a fundamental gap and sets a framework for understandable, educationally relevant
GEC systems for Arabic.

MATERIALS AND METHODS
Experiment setting
In this article, to run and analyze the data, we used a Lenovo YOGA 9i with 16 GB RAM
and 1T storage using a Windows operating system. Additionally, we utilized Python3 on
Google Colab, running data on both CPU and T4 GPU environments.

Model selection
Selection of the language models in this study was based on the performance evaluations of
recent studies (Lai, Mesgar & Fraser, 2024; Kwon et al., 2023; Raheja et al., 2024; Zhang
et al., 2023b). Our study involved prompting and fine-tuning several well-known models,
including Open AI GPT-4o, Google Gemini, Meta Llama3, and SDAIA ALLaM. OpenAI
newly developed GPT-4o (https://platform.openai.com/docs/models) family such as GPT
4o, GPT-4o mini, gpt-4-turbo, etc., that can be accessed via OpenAI API requests for
prompting and fine-tuning purposes. Similarly, Google has developed new Gemini models
(https://ai.google.dev/gemini-api/docs/models): Ultra, Pro, Flash, and Nano, which are
designed for specific applications and can be accessed through Google AI Studio for both
prompting and fine-tuning. Notably, Google documentation indicates that Gemini 1.5
Flash is the only model in the Gemini family currently available for fine-tuning; it imposes
constraints on input size, limiting it to 40,000 characters, and output size, restricting it to
5,000 characters per training example. Meta (https://www.llama.com/docs/model-cards-
and-prompt-formats/llama3_2/) has been iteratively enhancing its Llama models. This has
culminated in the current version, Llama 3, which incorporates specific modifications in
the prompt format. Furthermore, SDAIA and the National Center for AI (NCAI) have
collaboratively developed a series of LLMs specifically tailored to support the Arabic
language namely ALLaM (https://www.ibm.com/docs/en/SSYOK8/wsj/analyze-data/
assets/ALLaM-1-13b-instruct-model-card.pdf). ALLaM is a pretrained model derived
from Llama that has three variants: ALLaM-7B, ALLaM-13B, and ALLaM-70B. GPT has
shown remarkable performance in GEC, as has Llama (Lai, Mesgar & Fraser, 2024; Kwon
et al., 2023; Raheja et al., 2024; Zhang et al., 2023b). However, there is no research using
Gemini or ALLaM for GEC. Furthermore, the study compares the LLMs performance
against the existing tool, LanguageTool, which is a multilingual AI-based grammar checker
that supports Arabic language.

Datasets
In this study, we used two datasets, a manual Arabic spelling-errors correction corpus
(https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-4763) and the Hugging Face
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Arabic GEC dataset (https://huggingface.co/datasets/s3h/arabic-grammar-corrections).
Manual Arabic spelling-errors correction is a text corpus designed for Arabic spell-
checking; it was compiled from various files edited by a group of individuals and published
by Sudan University of Science and Technology (Saty, Aouragh & Bouzoubaa, 2023). The
corpus serves Arabic NLP by providing a comprehensive and open Arabic spell check
resource ready for further exploration and analysis. The corpus consists of 11,098 words
containing 1,888 errors and 20 error types, structured into several sections starting with
the person, the documents he/she edited, types of errors, and the specific errors made. Each
section contains data that elaborate on its content, which assists researchers in extracting
valuable insights. The corpus has an array of error objects, and each object has the keys
shown in Fig. 1.

We chose this dataset to pre-train the base models—GPT-4o, Gemini Pro and
Llama3—to create our fine-tuned models. According to the LLMs’ documentations, an
average of 100 examples is generally sufficient to yield promising results. After data
preprocessing, we compiled approximately 300 examples, meeting the recommended
sample size outlined in each model’s documentation for pre-training the models. Figure 2
shows the 20 types of errors on which the LLMs were trained. These types of errors were
used in the training corpus, the Manual Arabic Spelling-Errors Correction corpus.

The second dataset was the Arabic GEC dataset shared on the Hugging Face platform. It
has over 390,000 erroneous sentences and their corrections (reference sentences). We
chose the first 2,000 records to evaluate the ability of both base and fine-tuned models in
correcting erroneous sentences and explaining the purpose of corrections. Figure 3
presents a sample of the dataset.

Upon evaluating the fine-tuned models, we found that GPT-4o and Llama reproduced
the training output format nearly identically. However, Gemini failed to generate the
structured output on which it was trained, providing only error analysis without corrected

Figure 1 Data structure available in manual Arabic spelling-errors correction corpus.
Full-size DOI: 10.7717/peerj-cs.3486/fig-1
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Figure 2 Error types in the Manual Arabic Spelling-Errors Correction corpus.
Full-size DOI: 10.7717/peerj-cs.3486/fig-2

Figure 3 Sample of Hugging Face Arabic GEC dataset. Full-size DOI: 10.7717/peerj-cs.3486/fig-3
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sentences. This output prevented many rows from being evaluated by our similarity
metrics. As a result, we filtered the Gemini outputs to include only those records
containing corrected sentences, resulting in a cleaned dataset of 379 entries used in the
analysis.

Approach
We aimed to prompt and fine-tune the chosen LLMs to evaluate their capabilities for
Arabic GEC and GECE tasks. Figure 4 shows the pipeline of our full approach. We used
particular prompts to produce precise corrections and meaningful explanations of the
language models.

Data preprocessing
For fine-tuning, we first preprocessed the Manual Arabic Spelling Errors Correction
corpus. Specifically, we adopted its output structure while excluding the first three keys:
‘documentID’, ‘statementID’, and ‘PersonID’. Each model requires a different training data
format; however, they all follow the same principle of providing an input along with its
corresponding output. To enhance the training data, we prompted GPT-4o-mini to
include an additional key called “explanation” that provides the rationale behind each
correction. This makes the output both informative, comprehensive and offers a complete
understanding of the error correction process. Figure 5 shows the prompt used for
generating explanations.

Figure 6 illustrates a sample of the training data. The first column represents the
erroneous sentence, while the second column reflects the desired output structure as
shown in Fig. 7.

Figure 4 Experiment pipeline. Full-size DOI: 10.7717/peerj-cs.3486/fig-4
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Figure 5 Add explanation prompt. Full-size DOI: 10.7717/peerj-cs.3486/fig-5

Figure 6 Sample of the training data. Full-size DOI: 10.7717/peerj-cs.3486/fig-6

Figure 7 Output structure. Full-size DOI: 10.7717/peerj-cs.3486/fig-7
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Model fine-tuning and prompting techniques
Fine-tuning is the process of training a pre-trained model on a more detailed dataset to
enhance its performance on a certain task. As highlighted in Mathav Raj et al. (2024),
researchers have shown that fine-tuning technique yields promising and more accurate
results than creating a model from scratch. After preparing the training data for each
model, we fine-tuned each model using its respective platform. For Llama, we used
Laminiai, a third-party application to fine-tune the model, where a number of
hyperparameters were adjusted using the default settings in order to improve stability and
performance. The default learning rate used in Laminiai is 0.0009. Gemini was fine-tuned
using Google AI Studio at a learning rate of 0.001 and the other default settings, while
GPT-4o was fine-tuned using the recommended hyperparameters of OpenAI using API
requests. For prompting, we employed two common techniques: zero-shot and few-shot
prompting. The zero-shot approach prompts LLMs without providing examples to
measure their natural capabilities. We asked each LLM to correct the erroneous sentence

Figure 8 Zero-shot prompt. Full-size DOI: 10.7717/peerj-cs.3486/fig-8

Figure 9 Few-shot prompt-1. Full-size DOI: 10.7717/peerj-cs.3486/fig-9
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Figure 10 Few-shot prompt-2. Full-size DOI: 10.7717/peerj-cs.3486/fig-10
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and provide the corrected sentence, the number of errors found in the sentence (and for
each error, the corrected word and the type of error, identified in English and Arabic), and
finally, a detailed explanation for the corrections applied. Figure 8 shows the zero-shot
prompt.

In contrast, the few-shot approach uses a few examples in the prompts to supervise the
models to generate the desired output format and style. In this approach, we used the same
prompt used in zero-shot in addition to two examples as shown in Figs. 9, 10, 11.

Figure 11 Few-shot prompt-3. Full-size DOI: 10.7717/peerj-cs.3486/fig-11

Mohi et al. (2026), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3486 14/35

http://dx.doi.org/10.7717/peerj-cs.3486/fig-11
http://dx.doi.org/10.7717/peerj-cs.3486
https://peerj.com/computer-science/


Evaluation method
Method
In this article, we used the cross-dataset evaluation method in which the dataset used to
train the LLMs is different from the dataset used to evaluate the performance and accuracy
of both base and fine-tuned models. As mentioned in the previous sections, we used the
Manual Arabic spelling-errors correction corpus to train the fine-tuned models and the
Hugging Face Arabic GEC dataset to evaluate them.

Performance metrics
Several performance metrics were used to measure the effectiveness of LLM in the
generation of Arabic GEC and GECE. What distinguishes these metrics is their ability to
capture various aspects of error correction while ensuring an inclusive evaluation of the
language models’ performance.

CLEME is a reference-based metric used for evaluating GEC systems. It aims to provide
unbiased F0.5 scores as referenced by Ye et al. (2023). CLEME works on avoiding bias in
GEC multi-reference assessment by converting the source, hypothesis, and references into
consistent chunk sequences categorized as unchanged, corrected, or dummy. To measure
the alignment of edits with these chunk boundaries across multiple references, CLEME
calculates three statistics—the In-Corrected-Chunk (ICC) ratio, In-Unchanged-Chunk
(IUC) ratio, and Cross-Chunk (CC) ratio-using Eqs. (1), (2), and (3):

ICC ¼ 1
M

XM
i¼1

f1ðeiÞ (1)

IUC ¼ 1
M

XM
i¼1

f2ðeiÞ (2)

CC ¼ 1� ICC � IUC (3)

where M is the number of edits in a remaining reference, and e represents a single edit. f1
returns 1 if an edit ei is included in a corrected or dummy chunk, whereas f2 returns 1 if ei
is included in an unchanged chunk.

Another metric was ROUGE, as outlined by Lin (2004), it is a collection of
measurements for evaluating the quality of computer-generated summaries by comparing
them to human-created reference summaries. It computes the overlap of n-grams, word
sequences, and word pairs in the produced and reference summaries using Eq. (4):

ROUGE�N ¼
P

S2fReferenceSummariesg
P

gramn2S Count matchðgramnÞP
S2fReferenceSummariesg

P
gramn2S CountðgramnÞ (4)

where n represents the length of the n-gram, gramn, and Count_match (gramn) is the
maximum number of n-grams overlapping in a candidate summary and a set of reference
summaries. GLEU, designed for GEC, is a variant of BLEU considering both the source
and reference results in a more accurate representation of human judgment, as discussed
by Napoles et al. (2015). It evaluates the n-gram overlap between the corrected output and
reference sentences, penalizing superfluous alterations that do not correspond to the
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reference. The GLEU score is calculated as a weighted precision of n-grams, with a
shortness penalty comparable to the BLEU to account for recall. Equation (5) shows the
formula for GLEU:

GLEUðC;R; SÞ ¼ BP exp
XN
n¼1

wn log pn
0

 !
(5)

where C are the sentences, R are the references, S is the source, BP represents the brevity
penalty, pn0 represents the modified n-gram precision and wn is the weight of n-gram
precision.

For Arabic sentences, Cosine Similarity is a well-known metric typically implemented
using an Arabic tokenizer. Using Eq. (6), we computed the cosine of the angle between the
sentence vectors A and B, which contain lexical and contextual information. Similarity
scores approaching 1 indicate a high degree of similarity.

Cosine Similarity ¼ A � B
kAk � kBk : (6)

BLEU rates translation units-typically sentences-by comparing them with high-quality
reference translations as described by Sallam & Mousa (2024). BLEU calculates an n-gram
overlap score for each segment of the corpus, then averages these scores over all segments,
as outlined by Papineni et al. (2002). It works by identifying contiguous sequences of n
words in the candidate and reference texts; higher values indicate greater overlap and, thus,
better fidelity to the reference, as outlined in Eq. (7).

BLEUwðŜ; SÞ :¼ BPðŜ; SÞ � exp
X1
n¼1

wn log pnðŜ; SÞ
 !

(7)

where BP is the brevity penalty, w is the weights for each n-gram and p is the precision of
n-grams.

In analysis of variance (ANOVA), the means of three or more groups are compared to
determine whether they differ significantly from one another as mentioned by Keselman
et al. (1998). In Eq. (8), the total variability of the study is decomposed into variance
between groups and variance within groups, which are then compared using an F-statistic
calculated from the variance within and between groups. As in Keselman et al. (1998), it
shows that the resulting p-value indicates whether the observed differences in group means
are statistically significant. In this study, ANOVA was employed to assess the significance
of our findings across the various analyses and tests conducted.

F-statistic ðANOVA CoefficientÞ ¼ Mean Sum of Squares due to Treatment ðMSTÞ
Mean Sum of Squares due to Error ðMSEÞ : (8)

WER measures the percentage of word-level errors—substitutions S, deletions D, and
insertions I-needed to convert a system’s output into the reference transcript, normalized
by the reference lengthN as shown in Eq. (9). As stated inHanamaki, Kirishima & Narumi
(2024), it computes the number of errors in the sentence corrected by the model compared
to the reference. Due to its ability to capture both insertions and deletions, this metric is
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widely recognized as effective for evaluating grammar correction systems (Salhab & Abu-
Khzam, 2024; Li et al., 2025).

WER ¼ Sþ Dþ I
N

: (9)

CER follows the same principle at the character level, counting character substitutions
Sc, deletions Dc and insertions Ic over the total reference charactersM as shown in Eq. (10)
from Hanamaki, Kirishima & Narumi (2024). This kind of evaluation makes it useful for
morphologically rich languages or very short texts. It is beneficial for identifying errors at
the character level, which can be critical for detecting fine spelling variations and minor
correction inaccuracies. Smaller scores indicate closer fidelity to the reference.

CER ¼ Sc þ Dc þ Ic
M

: (10)

The Levenshtein Distance (LD) between two sentences s and t is the smallest number of
character-level insertions I, deletions D, or substitutions S needed to turn sentence s into
sentence t as shown in Eq. (11). It measures how different two strings are from each other.
This metric aids GEC systems in assessing the similarity of sentences, where minor word
variations must be identified and fixed as outlined by Naziri & Zeinali (2024) and Mehta
et al. (2021).

LDðs; tÞ ¼ minall edit sequences
transforming s!t

ðI þ Dþ SÞ: (11)

Finally, Fleiss’ Kappa is an inter-rater reliability metric that measures the degree of
agreement between two or more raters. It judges n subjects independently, through a scale
consisting of q categories as referenced by Moons & Vandervieren (2023) and Falotico &
Quatto (2015). This metric indicates which LLM achieved the highest agreement among all
raters and in which criteria (i.e., fluency, grammar correction, etc.). �P means the mean of
the overall observed proportion of agreement and Pe is the expected proportion of
agreement by chance as shown in Eq. (12).

j ¼
�P � Pe
1� Pe

: (12)

DISCUSSION
In this study, we evaluated two main strategies for Arabic GEC with explanations:
prompting techniques (i.e., zero-shot and few-shot prompting) and fine-tuning of
pretrained models (GPT-4o, Gemini, and Llama).

Automatic evaluation
Automatic evaluation metrics are necessary to evaluate the performance of LLMs in the
GEC task.

Similarity metrics
In order to measure the correction accuracy of our models’ corrected sentences, we used
the following similarity metrics: BLEU, GLEU, ROUGE, Cosine Similarity, and CLEME.
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The BLEU evaluation, compared the corrected sentences produced by our models to the
gold-standard (baseline) sentences by checking how closely the model’s correction fits to
the human edits. As illustrated in Fig. 12, the fine-tuned version of GPT-4o outperformed
the other four models in addition to LanguageTool, achieving a BLEU score of 78%. It was
closely followed by the fine-tuned Llama and ALLaM (few-shot), both with BLEU scores of
74%. Also, we note that both the fine-tuning and the few-shot techniques improved the
GEC of Gemini where the BLEU score have increased from 57% (zero-shot) to 69% and
68% respectively. Additionally, LanguageTool’s performance is on par with fine-tuned
Gemini and Llama when prompting techniques are used.

Notably, the few-shot prompting consistently improved over zero-shot baselines,
though the magnitude varied by model. This can be noticed as well in the fine-tuned
versions of the models which implies that with dedicated training, the models can be
improved. However, GPT-4o using zero-shot prompting outperformed GPT-4o using
few-shot prompting, unlike other models. We noticed that around 250 records resulted
from GPT-4o using few-shot prompting that yielded generic rejection messages as shown
in Fig. 13.

GPT-4o users have observed this behavior and reported it in OpenAI community chats.
According to OpenAI’s documentation, when using structured outputs with
user-generated input, the model may occasionally refuse to fulfill the request for unknown
safety reasons. The zero-shot setting, without customized prompts, leads to more
consistent corrections and higher GPT-4o scores when using prompting techniques.
Table 1 shows the full BLEU scores for the models and techniques. Better quality is
indicated by higher BLEU scores, which measure how similar the corrected sentence
generated by the model is to the reference sentence. That is, a higher BLEU score indicates
that the model’s output is closer to the reference output in GEC. This means that the model
made fewer mistakes and produced more accurate and grammatically correct results.

Figure 12 BLEU scores grouped by the model and technique.
Full-size DOI: 10.7717/peerj-cs.3486/fig-12
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As shown in Table 2, the fine-tuning technique improved the average Cosine Similarity
scores to 84% for GPT-4o, 75% for Llama, and 72% for Gemini. Also, it is notable that our
fine-tuned models outperformed LanguageTool. Remarkably, ALLaM, which is a
pretrained model derived from Llama, reached 75% when given a few prompt examples,
whereas our own fine-tuned Llama hit 75% outright in a zero-shot setting. As a result, our
model matches ALLaM’s best performance without relying on additional examples,
indicating that parameter-level tuning is just as effective as prompt-based adaptation and
possibly even more effective with additional training. In contrast to the BLEU evaluation,
the original and cleaned Gemini fine-tuned outputs yielded the same cosine score because
embedding models do not map empty inputs to zero vectors. Instead, they assign a learned
neutral embedding (often near the centroid of the embedding space), so including those
empty cases leaves the average Cosine Similarity essentially unchanged.

Figure 14 reveals the clear, gradual improvement in model performance as we moved
from generic to more task-focused training. Introducing just a few illustrative examples via
few-shot prompting yielded a slight boost over the zero-shot baseline, and fine-tuning each
model to correct the sentences and explain the corrections drove the highest scores. This
pattern underscores the value of progressively more targeted training—first by example,
then by direct adaptation—for specialized language processing tasks.

Figure 13 Generic rejection messages. Full-size DOI: 10.7717/peerj-cs.3486/fig-13

Table 1 BLEU scores for all models and techniques.

Model name Technique Average score

ALLaM Zero shot 0.70

Few shot 0.74

Gemini Fine-tuned 0.69

Zero shot 0.57

Few shot 0.68

GPT-4o Fine-tuned 0.78

Zero shot 0.76

Few shot 0.74

Llama Fine-tuned 0.74

Zero shot 0.60

Few shot 0.66

LanguageTool NA 0.67
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Figure 15 and Table 3 indicate that the fine-tuned GPT-4o delivered the highest
sentence-level overlap of any model, technique, and even the existing tool. LanguageTool’s
score is similar to both ALLaM and Gemini when prompting techniques are used.
Few-shot prompting also resulted in consistent gains for both ALLam and Llama,
reflecting the benefit of even a small number of examples. In contrast, Gemini’s original
fine-tuned version produced an abnormally low average due to empty or mismatched
outputs, but cleaning those records raised its GLEU from just 10% to 51%, bringing it back
in line with the other methods.

The fine-tuned version of GPT-4o exhibited the strongest lexical overlap with a ROUGE
score of 74%, with its zero-shot variant nearly matching it, while few shot prompting

Table 2 Cosine similarity scores for all models and techniques.

Model name Technique Average score

ALLaM Zero shot 0.71

Few shot 0.75

Gemini Fine-tuned 0.72

Zero shot 0.59

Few shot 0.69

GPT-4o Fine-tuned 0.84

Zero shot 0.81

Few shot 0.81

Llama Fine-tuned 0.75

Zero shot 0.63

Few shot 0.68

LanguageTool NA 0.67

Figure 14 Cosine similarity scores grouped by the model and technique.
Full-size DOI: 10.7717/peerj-cs.3486/fig-14

Mohi et al. (2026), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3486 20/35

http://dx.doi.org/10.7717/peerj-cs.3486/fig-14
http://dx.doi.org/10.7717/peerj-cs.3486
https://peerj.com/computer-science/


slightly boosted ALLaM and Llama scores to be 71% and 65%, respectively, as shown in
Table 4. The score of Gemini’s cleaned fine-tuning version was 70%, bringing it on par
with ALLaM and Llama few-shot prompting and greatly closing the gap from GPT-4o.
Overall, the observations show that fine-tuning generally improved ROUGE scores across
models.

As shown in Table 5, in all the models, CLEME results revealed that the fine-tuning
technique consistently produced the strongest error correction performance. Particularly,
the fine-tuned GPT-4o achieved the highest F0:5 score of 45% and accuracy 72% by
substantially increasing precision from 26% to 40% while maintaining higher recall 84%.
Comparatively, zero-shot prompting achieved very high recall 95% for both GPT-4o and
Gemini but struggled with precision 26% and 10%, respectively. This combined result

Figure 15 GLEU scores grouped by the model and technique.
Full-size DOI: 10.7717/peerj-cs.3486/fig-15

Table 3 GLEU scores for all models and techniques.

Model name Technique Average score

ALLaM Zero shot 0.52

Few shot 0.56

Gemini Fine-tuned 0.51

Zero shot 0.36

Few shot 0.46

GPT-4o Fine-tuned 0.63

Zero shot 0.59

Few shot 0.58

Llama Fine-tuned 0.56

Zero shot 0.41

Few shot 0.45

LanguageTool NA 0.43
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indicates that the models identified most errors but introduced many false edits (false
negatives).

After a few illustrative examples were provided in few-shot prompting, the models
yielding modest precision gains where ALLam rising from 23% to 25% and Gemini’s from
11% to 15%, at the expense of slightly lower recall, resulting in small F0:5 improvements.
Filtering out empty records for Gemini’s fine-tuned runs raised its F0:5 from 13% to 25%.
Among the fine-tuned models, Llama’s precision jumped and its F0:5 score more than
doubled 12% to 29%. ALLam also benefited, which indicated that training on a
focused task delivers the greatest overall gains. Although LanguageTool achieved a
similar accuracy range with Llama and Gemini, surprisingly, it has the lowest F0:5 and
precision. Overall, we can conclude that fine-tuning matters since it raises the F0:5 for all
models significantly above zero- and few-shot performance, up to 45% for GPT-4o, and

Table 4 ROUGE scores for all models and techniques.

Model name Technique Average sScore

ALLaM Zero shot 0.68

Few shot 0.71

Gemini Fine-tuned 0.70

Zero shot 0.56

Few shot 0.63

GPT-4o Fine-tuned 0.74

Zero shot 0.74

Few shot 0.71

Llama Fine-tuned 0.71

Zero shot 0.60

Few shot 0.65

LanguageTool NA 0.62

Table 5 CLEME results for all models and techniques.

Model name Technique No. of sample F0:5 Accuracy Precision Recall

ALLaM Zero shot 2,000 0.26 0.60 0.23 0.72

Few shot 2,000 0.28 0.61 0.25 0.61

Gemini Fine-tuned 379 0.25 0.62 0.22 0.68

Zero shot 1,919 0.14 0.53 0.11 0.95

Few shot 1,998 0.18 0.55 0.15 0.93

GPT-4o Fine-tuned 1,999 0.45 0.72 0.40 0.84

Zero shot 1,999 0.31 0.63 0.26 0.95

Few shot 1,995 0.29 0.61 0.25 0.94

Llama Fine-tuned 1,999 0.29 0.61 0.25 0.61

Zero shot 1,995 0.12 0.52 0.10 0.51

Few shot 1,994 0.12 0.54 0.10 0.32

LanguageTool NA 2,000 0.07 0.51 0.06 0.28
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provided the strongest and most consistent improvements in error correction quality.
Higher F0:5 numbers means producing few false corrections while still capturing a good
portion of real errors.

Error rate analysis
Levenshtein distance is the minimum number of character insertions, deletions, or
substitutions needed to turn one string into another. Levenshtein distance is usually read
as the number of edits, which is why we normalized it to a similarity ratio from 0 to 1 as
shown in Table 6. The number of edits per sentence by itself can be misleading; what
matters is the sentence’s length and what proportion of each sentence is changing. For
example, in regard to GPT-4o’s fine-tuned model, on average, each sentence required
around 19 character edits to match the reference; it is hard to decide if that is a good or bad
number. However, its ratio shows that 85% of characters were correctly placed which
indicates that the model outputs preserved most of the reference’s character sequence,
which means high semantic similarity. Overall results showed ratios above 80% as shown
in Fig. 16.

Better corrections mean lower WER and CER which indicate that fewer errors remain.
It’s notable that the WER and CER results lined up well with the other evaluation metrics
used. GPT-4o’s fine-tuned model achieved an average WER of 23% and average CER of
11%. On average, then, only about 23% of the words, and 11% of the characters were
erroneous, which is excellent for a grammar correction task. In second place come ALLaM
zero-shot prompting and fine-tuned Llama, which both hit averages of 35% for WER and
10% for CER-in other words, 65% word accuracy and 85% character accuracy. Thus,
overall, we can say that if a model has a WER of < ¼ 25% and a CER of < ¼ 10%, that
means it produces strong corrections, which is the case with GPT-4o’s fine-tuned model,
Llama’s fine-tuned model and ALLaM’s few-shot prompting technique, as shown in
Table 7.

Table 6 Levenshtein distance results for all models and techniques.

Model name Technique Average distance Average ratio

ALLaM Zero shot 18.73 0.85

Few shot 13.48 0.88

Gemini Fine-tuned 19.28 0.85

Zero shot 27.47 0.78

Few shot 18.98 0.84

GPT-4o Fine-tuned 18.89 0.85

Zero shot 11.43 0.89

Few shot 14.65 0.86

Llama Fine-tuned 13.48 0.88

Zero shot 43.82 0.78

Few shot 18.96 0.84

LanguageTool NA 13.31 0.88
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Human evaluation
In order to evaluate whether explanations of grammatical errors are effective in helping
Arabic learners understand corrections, we randomly selected a sample of the generated
outputs from the best performing LLMs to be evaluated, which are fine-tuned GPT-4o,
fine-tuned Gemini, fine-tuned Llama, and ALLaM using few-shot prompting. Four native
speakers and experts were recruited as annotators to evaluate the predicted corrected
sentences and explanations based on the criteria shown in Tables 8 and 9. The following
elements show the structure of the sheet provided for the annotators for evaluation:
sentence no., erroneous sentence, corrected sentence, erroneous words, errors
explanations, and the following to be rated from one to three: grammatical correctness
(GC), fluency (F), meaning preservation (MP), clarity of explanation (CE), usefulness for
learning (UL), and accuracy (ACC).

Table 7 Word and character error rates (WER and CER) for all models and techniques.

Model name Technique Average WER Average CER

ALLaM Zero shot 0.39 0.16

Few shot 0.35 0.10

Gemini Fine-tuned 0.33 0.15

Zero shot 0.52 0.25

Few shot 0.44 0.15

GPT-4o Fine-tuned 0.23 0.11

Zero shot 0.35 0.11

Few shot 0.37 0.14

Llama Fine-tuned 0.35 0.10

Zero shot 0.58 0.35

Few shot 0.42 0.15

LanguageTool NA 0.45 0.12

Figure 16 Levenshtein distance results grouped by the model and technique.
Full-size DOI: 10.7717/peerj-cs.3486/fig-16
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As shown in Table 10, the fine-tuned GPT-4o model consistently outperforms the other
models across all dimensions, achieving the highest scores in the six categories: GC, F, MP,
CE, UL, and ACC. Furthermore, ALLaM using the few-shot prompting technique
demonstrates competitive performance with GPT-4o in GC, F, and MP surpassing Gemini
and Llama. However, it performs significantly worse in terms of CE, UL and ACC,
demonstrating its limitations in explaining the corrections. Both fine-tuned Gemini and
Llama achieve balanced results. Gemini shows relatively low performance in grammar
correction, but produces more comprehensible explanations. In contrast, Llama achieves
better grammar correction results than Gemini but slightly weaker explanation results.
These human evaluation results demonstrate that the fine-tuned GPT-4o outperforms
other models, confirming its potential as a reliable supportive learning tool for educational
purposes.

Furthermore, to ensure the objectivity of the human evaluation, we employed Fleiss’
Kappa k which calculates the level of agreement among multiple raters. Table 11 shows
Fleiss’ Kappa values which indicate fair agreement among the raters across the models.

Table 8 Human evaluation criteria for Arabic GEC.

Corrected sentence evaluation

Criterion Description and Scale

Grammatical Correctness (GC) (Östling et al.,
2023)

1: Incorrect (major errors remain or new errors
introduced)

2: Partially correct (minor errors remain)

3: Fully correct (native-like)

Fluency/Naturalness (F) (Östling et al., 2023) 1: Awkward/unreadable

2: Understandable but slightly unnatural

3: Smooth and natural Arabic

Meaning Preservation (MP) (Östling et al., 2023) 1: Meaning changed significantly

2: Meaning mostly preserved with minor distortions

3: Meaning fully preserved

Table 9 Human evaluation criteria for Arabic GECE.

Explanation evaluation

Criterion Description and scale

Clarity of Explanation (CE) (Kaneko & Okazaki, 2023) 1: Hard to understand or ambiguous

2: Understandable with some effort

3: Very clear and concise

Usefulness for Learning (UL) (Kaneko & Okazaki, 2023) 1: Not helpful (doesn’t guide correction)

2: Moderately helpful

3: Very helpful and actionable

Accuracy (ACC) (Kaneko & Okazaki, 2023) 1: Incorrect explanation or misleading

2: Partially correct explanation

3: Fully accurate explanation
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ANOVA
ANOVA was performed to examine whether there were significant differences in
performance between the four language models (ALLaM, Gemini, GPT-4o, and Llama) in
various evaluation metrics (BLEU, GLEU, CS, ROUGE, LD, WER, and CER). when using
the zero-shot technique, we obtained an F-value of 18.63 and a p-value of 7.99E−07, shown
in Table 12, which is much lower than the critical F-value of 2.66. This indicated that there
were statistically significant differences between the models scores. Likewise, the few-shot
technique resulted in an F-value of 142.53 with a p-value of 3.56E−14, which is much
smaller than the critical F-value of 2.66, meaning a significant difference. Similarly, the
fine-tuning technique had an F-value of 101.26 with a p-value of 1.43E−09, which is
significantly smaller than the critical F-value of 2.99, again indicating a strongly significant
difference in performance between the models.

In short, the ANOVA for the three techniques, zero-shot, few-shot, and fine-tuning,
revealed varying levels of significance. As shown above, the results indicated that all the
techniques exhibited significant changes in performance among the models.

Figure 17 presents a better performance visualization of the evaluation metrics under
the three adaptation techniques: fine-tuned, few-shot prompting, and zero-shot prompting
in additional to LanguageTool. Radial placements closer to the center imply poorer
performance, and those toward the outer edge show better outcomes. GPT-4o’s polygon
consistently covers the biggest region in all three charts, indicating its supremacy in
similarity measurements and low error rates. ALLaM, using few-shot prompting,
slightly outperformed Llama in similarity and error metrics, while maintaining
Llama’s exact results when fine-tuned. Gemini trailed behind but closed the gap on error
rate, particularly when zero-shot prompting was used. Moreover, the visualization

Table 10 Human evaluation results.

Model name Technique GC F MP CE UL ACC

ALLaM Few-shot 2.64 2.70 2.77 1.54 1.54 1.48

Gemini Fine-tuned 1.76 1.66 1.82 2.36 2.25 2.26

GPT-4o Fine-tuned 2.67 2.70 2.78 2.64 2.53 2.58

Llama Fine-tuned 2.40 2.43 2.50 2.17 2.08 2.08

Table 11 Fleiss’ kappa values k.

Categories GC F MP CE UL ACC

k 0.27 0.28 0.29 0.26 0.22 0.26

Table 12 ANOVA test among techniques.

Technique F-statistic p-value

Zero shot 18.63 7.98727616053634E−07

Few shot 142.53 3.5607348542138E−14

Fine-tuning 101.2583784 1.4297085278784E−09
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illustrates more clearly that LanguageTool achieves scores comparable to Gemini and
Llama, but its performance remains lower than GPT-4o. Figure 17 clearly displays
GPT-4o’s leading edge and the relative strengths and trade-offs of each model under varied
techniques.

CONCLUSIONS
Concluding remarks
This work demonstrated that cutting-edge LLMs can potentially be efficiently tailored to
solve the two challenges of correcting Arabic grammatical errors and producing clear,
educationally relevant explanations. We conducted methodical experiments employing
four LLMs: GPT-4o, Gemini, Llama and ALLaM and adapted two techniques, prompting
techniques such as zero-shot and few-shot, and fine-tuning to answer the research
questions. We also compared the performance of the selected LLMs with an existing
AI-based tool called LanguageTool. On top of that, we conducted human evaluation to

Figure 17 Radar chart for each technique. Full-size DOI: 10.7717/peerj-cs.3486/fig-17
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examine the LLMs performance in correcting Arabic grammatical errors and
explaining them.

When fine-tuned, GPT-4o obtained the highest average WER of 23% and CER of 11%,
outperforming all other models in addition to LanguageTool. When zero-shot prompting
was emploed, in terms of Levenshtein Distance, GPT-4o scored 11.43, which was the
smallest amount of modification required to get the baseline sentence. Similarly, when
fine-tuned, Llama achieved better scores across all assessment measures. ALLaM, which is
an LLM developed on top of Llama, obtained scores identical to those of Llama’s
fine-tuned version when few-shot prompting was applied. Gemini’s zero-shot prompting
had the lowest score across all performance metrics. Also, LanguageTool performance was
comparable to Llama and Gemini. Few-shot prompting outperformed fine-tuning on
Cosine Similarity, GLEU, ROUGE, and WER but not on Levenshtein Distance or the
CLEME measure.

All the techniques used, whether prompting or fine-tuning, led to significant
performance changes, according to statistical analysis using one-way ANOVA, where all
F-values exceeded critical levels at p < 0:005. According to these tests, the advantages we
observed are notable and not the result of chance fluctuations. Taken together, our findings
suggest that LLMs are strong tools that can explain Arabic grammatical correction and
perform other NLP tasks. Prompting techniques and fine-tuning can unlock the full
potential of models for Arabic, which is a difficult and under-resourced language.

Limitations
Despite the valuable findings, our study has several limitations. There are few publicly
available Arabic corpora containing grammatically erroneous sentences with explicit
mistake annotations and paired gold-standard corrections. Augmenting the sample size
and training data may improve the robustness and reliability of the findings. Another
limitation is the scarcity of Arabic-specific LLMs designed for answering inquiries or
offering interpretations. Furthermore, we discovered that certain models, like Gemini,
would occasionally fail to make any correction, resulting in empty records or “unable to
respond” errors. Finally, the assessment of Arabic grammar correction and explanation
employed several evaluation metrics that were not specifically designed for the Arabic
language; a more accurate and more significant evaluation would be possible if metrics
were developed or modified to account for Arabic’s distinct morphology and syntax.

Future work
Future research should utilize more expansive and varied Arabic corpora alongside
annotation schemes that incorporate error types, facilitating multitask learning and the
creation of error-specific prompts. Furthermore, additional human assessments covering
other aspects, particularly those from teachers and language learners, will provide a more
comprehensive understanding of the quality of the explanation. Our techniques can be
validated in real-world teaching scenarios by integrating the LLMs into real-world
educational tools, especially those targeted at non-native speakers. Additionally, we can
explore how different prompt designs and languages can affect the LLMs performance.
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Finally, we can improve our understanding of the model performance by creating new
evaluation metrics specifically designed to evaluate the precision and clarity of Arabic
GECE.

Ethical considerations
Throughout this study, all datasets and models were sourced from publicly available
academic resources. For closed-source LLMs, we use official APIs, so there are no ethical
concerns about data ownership or access. The datasets contain no personally sensitive
information. Some limitations remain, however: the data may not be representative of all
types of grammatical errors, which may bias model performance towards certain patterns,
and the generated explanations may sometimes be inaccurate or misleading. Therefore, we
recommend using the system as a support along with human judgment rather than as a
standalone replacement.

REPRODUCIBILITY
This article evaluates the performance of LLMs in correcting and explaining Arabic
grammatical errors. In addition, the article explores different techniques such as
fine-tuning, zero-shot prompting, and few-shot prompting techniques. Also, we used two
datasets, a Manual Arabic Spelling Error Correction corpus and the Hugging Face Arabic
GEC dataset. Additional information can be found in the README file at GitHub (https://
github.com/kousar-Mohi/Evaluating-LLMs-Arabic-Grammar-Error-Corrections-and-
Explanations).
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