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ABSTRACT

Autism spectrum disorder (ASD) in children often leads to academic and social
challenges due to difficulties in communication, social engagement, and behavioral
adaptation. Delayed diagnosis exacerbates these issues, hindering timely
interventions. Recent machine learning (ML) algorithms have shown promise in
predicting ASD, enabling early diagnosis and intervention. However, existing
datasets suffer from limitations such as small sample sizes, class imbalance, and
privacy concerns. The main objective of this study is to design a federated learning
(FL)-based hybrid deep learning framework that can accurately and securely detect
ASD in children, overcoming data imbalance and privacy challenges. Specifically, the
study addresses the following research questions: (i) How can federated learning be
employed to securely collect and train ASD-related data across multiple schools while
ensuring privacy? (ii) Can a hybrid deep learning model combining convolutional
neural network (CNN) and long short-term memory (LSTM) improve ASD
prediction accuracy compared to existing models? (iii) To what extent can Dragonfly
Optimization (DFO) enhance hyperparameter tuning for robust performance under
imbalanced data conditions? To this end, we propose the Adaptive Learning Rate
Optimized Hybrid Model (ALROH), which integrates a modified CNN for feature
extraction, LSTM for sequential pattern recognition, and DFO for hyperparameter
optimization. Evaluated on toddler and children datasets, ALROH achieves
accuracies of 99.36% and 99.23%, respectively, outperforming state-of-the-art
methods by up to 5%. By enabling privacy-preserving and scalable ASD screening in
educational settings, ALROH facilitates early interventions, potentially improving
academic outcomes for students with ASD.

Subjects Artificial Intelligence, Computer Education, Data Mining and Machine Learning,
Optimization Theory and Computation

Keywords Autism spectrum disorder, Federated learning, Class imbalance, Hybrid deep learning,
Dragonfly optimization

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by
persistent challenges in social interaction, communication, and repetitive behaviors. It
manifests differently across individuals, from mild to severe impairments, making early
identification and intervention essential (Fuentes, Hervds ¢ Howlin, 2020; Tian, Gao ¢
Yang, 2022). In educational environments, undiagnosed ASD often leads to difficulties in
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social communication, adapting to classroom structures, and coping with conventional
teaching approaches (Stack, Symonds ¢ Kinsella, 2021). Consequently, students with ASD
may experience reduced engagement, academic struggles, and limited opportunities for
integration.

Research on inclusive education for students with ASD has highlighted diverse
perspectives on support systems. For instance, authors of Hasson et al. (2022) explored the
experiences of parents, school staff, and students with ASD, emphasizing the need for
individualized support to foster inclusivity in mainstream education. Similarly, authors of
Russell, Scriney ¢ Smyth (2022) conducted a systematic review of educator attitudes toward
including students with ASD, identifying both positive views and challenges related to
training and resources. Despite the growing awareness of ASD, a large proportion of
students remain undiagnosed or misdiagnosed due to subtle symptoms and limited
awareness among educators and parents (Munroe ¢ Dunleavy, 2023; Russell, Scriney ¢
Smyth, 2022). Traditional diagnostic procedures, such as behavioral observations and
standardized psychological tests, require professional intervention, making them
unsuitable for large-scale screening in schools (Bishop ¢ Lord, 2023; Yu, Ozonoff ¢» Miller,
2023; Spain et al., 2022). These gaps highlight a pressing need for scalable, automated, and
privacy-preserving ASD detection frameworks that can be deployed in educational settings.

From a national perspective, many countries, including India, face challenges in
providing adequate clinical resources and awareness programs for early ASD detection,
particularly in rural and underserved areas. From an international perspective, ASD
prevalence continues to rise, with the World Health Organization estimating that one in
100 children worldwide is affected (Simeoli et al., 2024; Ganai et al., 2025). Despite this,
existing educational systems globally lack integrated digital tools for early ASD
identification. Thus, there is both a national and global necessity for intelligent,
technology-driven screening methods that can complement traditional diagnostics and
support inclusive education.

Recent research has applied machine learning (ML) to ASD prediction using
behavioral, cognitive, and demographic data (Ganai et al., 2025; Corona et al., 2021; Yu,
Ozonoff & Miller, 2023). While promising, these models face two critical limitations:
class imbalance, where datasets contain disproportionately more non-ASD samples
than ASD samples, and data privacy concerns, since student health and behavioral
data are highly sensitive. To mitigate these issues, federated learning (FL) has emerged as a
decentralized and privacy-preserving paradigm that allows institutions to collaboratively
train models without sharing raw data (Mohammadi et al., 2024; Rashed et al., 2024).
Though FL has shown success in medical domains, its application in educational ASD
screening remains largely unexplored (Lakhan et al., 2023).

The primary objective of this research is to develop a federated learning-based hybrid
deep learning framework for accurate and privacy-preserving ASD detection in children.
This study is guided by the following research questions:

(1) RQ1: How can FL be leveraged to securely collect ASD-related data across schools
while ensuring data privacy and diversity?
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(2) RQ2: Can a hybrid CNN-LSTM architecture effectively learn both spatial and
sequential patterns in ASD-related features to improve predictive performance?

(3) RQ3: To what extent can Dragonfly Optimization (DFO) enhance the hyperparameter
tuning of hybrid models, thereby mitigating class imbalance and improving model
robustness?

Contributions: In addressing the above questions, this research introduces the Adaptive
Learning Rate Optimized Hybrid Model (ALROH), which integrates CNN, LSTM, and
DFO in a federated learning environment. The novelty of ALROH lies in combining
decentralized privacy-preserving data collection with hybrid deep learning to achieve high
accuracy and robustness in ASD detection. This approach offers a scalable solution that
can be implemented in educational institutions for large-scale ASD screening, thereby
contributing to inclusive education both nationally and internationally.

The manuscript is structured as follows. ‘Literature Survey’ provides an overview of
various ASD predictive approaches proposed in recent years. ‘Materials and Methods’
elaborates on the FL architecture and the proposed ALROH model. ‘Results and
Discussion’ presents the experimental results of the ALROH model, evaluating its
performance on different datasets and comparing it with existing approaches. Finally,
‘Conclusion’ concludes the study and discusses potential directions for future research.

LITERATURE SURVEY

This section provides an overview of various ASD predictive approaches that have been
presented in recent years. Thabtah (2018) presented a mobile app for screening ASD,
which was called ASDTests. The tool is easy to use, enabling parents, children, adults, and
healthcare professionals to screen for ASD. The test consisted of collecting personal data
and conducting a behavioral analysis through a quiz that included 10 questions, based on
which the ASD was predicted. Moreover, this work collected data from different age
groups, including adults, adolescents, children, and toddlers. They collected both ASD
samples and normal samples for predicting ASD. Furthermore, for prediction, two
machine learning classifiers were used: Naive Bayes (NB) and Support Vector Machine
(SVM). The findings showed that NB achieved 94.23%, 99.85%, and 97.94% accuracy in
predicting ASD in adolescents, adults, and children, respectively. This work did not use
any feature selection.

Thabtah & Peebles (2019) presented an approach for predicting ASD using a machine
learning (ML) method called Rules-ML (RML), which selects the best features for
predicting ASD. In the RML, five definitions were established, and features were selected
using these definitions. The RML and other rule-based predictive approaches were then
employed for predicting ASD. They used C4.5 Decision Tree (DT), AdaBoost (AB),
PRISM, Classification and Regression Tree (CART), Bagging, Non-Nested Generalization
(NNGE), RIDOR and RIPPER. Evaluations show that RML achieved better accuracy for
the adult dataset (95%), C4.5 DT (91%) achieved better accuracy for the children dataset,
and AB (87%) achieved better accuracy for the adolescent dataset. This work used feature
selection, yet failed to achieve higher accuracy. Alkahtani et al. (2023) presented a dataset
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for toddlers to predict ASD. Similar to the collection process presented in Thabtah (2018),
this work also follows a similar approach for collecting data, specifically by gathering
personal data and administering quizzes only to toddlers. The tests were either conducted
by health professionals or by parents. After collecting the data, they used feature scaling for
normalizing the independent features. For the prediction of ASD, three ML classifiers were
used, including K-Nearest Neighbor (KNN), SVM, LSTM, and DT. Evaluations showed
that SVM and LSTM achieved 100% accuracy. Their work failed to utilize any feature
selection, and the data considered had nearly equal sample sizes, i.e., the number of normal
cases and ASD cases was almost equal.

Farooq et al. (2023) used FL for faster prediction of ASD. They trained the FL using two
ML classifiers, namely Logistic Regression (LR) and SVM, with only two datasets: adults
and children. For better results, in FL, local-model training was performed using SVM and
LR, and then pushed to the central server, where a meta-classifier with a global model
predicted ASD with improved accuracy. Four different datasets related to adults and
children were collected from different repositories and trained to train the FL model. The
findings showed that SVM performed well for the children’s dataset (98%) and the adult
dataset (81%). This work did not consider any feature selection. Priyadarshini (2023)
presented an approach for predicting ASD in adults and toddlers. To address data
imbalance and expand the size of ASD datasets, this work employed the Synthetic Minority
Oversampling Technique (SMOTE). Further, applied or which used a feature selection/
optimization approach. This work presents two approaches: one that uses a CNN for
extracting and selecting features, LSTM for prediction, and Particle Swarm Optimization
(PSO) for finding the best approach for predicting ASD. The second approach utilized a
CNN for extracting features and selecting features with a Gated Recurrent Unit (GRU) for
prediction. Findings showed that CNN-LSTM-PSO achieved better accuracy for toddlers
(99.64%) and adults (98.89%). Pae ¢ Pae (2024) employed two machine learning (ML)
classifiers, namely Random Forest (RF) and Decision Tree (DT), for predicting ASD in
adults, adolescents, and children. The findings showed that RF achieved better accuracy for
the children dataset (95.9%), while DT achieved better accuracy for the adult (94.3%) and
adolescent (80.8%) datasets. This work did not consider any feature extraction.

Hajjej et al. (2024) presented an approach for predicting ASD in toddlers, which
involved merging two datasets from Thabtah (2018) and Alkahtani et al. (2023). To
increase the dataset size and handle data imbalance, used SMOTE. For feature selection, we
employed three methods: Boruta Feature Selection (BF), Bi-Directional Elimination
feature selection (BEFS), and ML-based feature selection (MES). DT, RF, LR, KNN, SVM,
Gradient Boosting Machine (GBM) and XGBoost (XGB) were used for classification. Also,
presented an ensemble RF-XGB approach for predicting ASD in toddlers. Findings show
that RF-XGB with MFES achieved 99% accuracy with feature selection and 94% without
feature selection. Furthermore, in this work, they presented a method for teachers to assess
and guide student behavior. Reghunathan et al. (2024) employed three ML classifiers,
namely LR, KNN, and SVM, for predicting ASD in different age groups. For reducing
features from the dataset, i.e., selecting features, the Cuckoo-Search Algorithm (CSA) was
used. They evaluated their approach considering adolescent, children and adult datasets,
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where L-R with CSA achieved better accuracy for children (96.23%), adolescents (89.42%)
and adults (97.01%). This work failed to achieve higher accuracy. Bawa et al. (2024)
presented an approach for predicting ASD in children, adolescents, and adults. They
manually selected only 14 features for evaluation and, for classification, used six ML
classifiers, including DT, KNN, NB, RF, SVM and LR. To increase the dataset size and
improve prediction accuracy, they merged all three datasets. Findings showed that LR
achieved 94.3%, 99.0% and 97.2% accuracy for children, adolescents and merged datasets.
For the adult dataset, SVM achieved an accuracy of 98.5%.

Alshammari et al. (2024) presented an approach that utilized FL with a
privacy-preserving mechanism to secure the collected ASD toddler data and employed ML
classifiers for predicting ASD. They used feature transformation and presented FL
optimization for faster computation with security. For prediction, Kernel Support Vector
Machine (KSVM), Quadratic Discriminant Analysis (QDA) with Principal Component
Analysis (PCA), Support Vector Machine (SVM) with Polynomial Kernel (SVM-PK),
KNN with Locally Linear Embedding (LLE), and Isolation Forest (IF) were used. The
findings showed that QDA-PCA achieved an accuracy of 94%. This work did not consider
any feature selection. Aldrees et al. (2024) presented an approach for predicting ASD in
toddlers, using data collected as part of the Diverse ASD screening data for toddlers. They
employed three feature selection approaches: PCA, Chi-Square, and Backward Feature
Elimination (BFE). For prediction, the following models were used: LR, RF, SVM, KNN,
XGB, Stochastic Gradient Classifier (SGC), and Extra-Trees (ET). They modified the XGB
model and presented a model called XGB 2.0. The findings showed that XGB 2.0 and
Chi-Square achieved 99% accuracy for the toddler’s dataset. Das ef al. (2025) employed five
ML classifiers, namely LR, KNN, DT, SVM, and neural networks. They utilized MFS for
feature selection and stacked the presented ML classifiers to present a new classifier for
prediction. Evaluation using the toddler dataset showed 99.14% accuracy using the stacked
method. The computation time is significantly high when more than two machine learning
classifiers are stacked. The summary of the literature survey is presented in Table 1.

According to the above survey, it has been identified that most existing ASD prediction
studies have been trained using small sample sizes and have not adequately addressed the
issue of class imbalance, which significantly affects model performance and generalization.
Only Priyadarshini (2023) has attempted to tackle the class imbalance problem among the
surveyed works using SMOTE. Furthermore, very few studies have explored the use of FL
for ASD prediction, with only Lakhan et al. (2023), Farooq et al. (2023), and Alshammari
et al. (2024) incorporating FL-based approaches. Additionally, Abu-Nowar et al. (2024)
introduced SENSES-ASD, a technology-based system designed to enhance
social-emotional skills in individuals with ASD, offering a promising approach for
personalized interventions. Given these limitations, this work introduces the ALROH
model, which leverages FL for privacy-preserving data collection and employs a hybrid DL
framework integrating CNN for feature extraction, LSTM for sequential learning, and
DFO for parameter optimization. The proposed ALROH model aims to enhance the
accuracy of ASD prediction while addressing data scarcity, class imbalance, and privacy
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Table 1 Literature review summary.

Ref. no. Model used Feature selection Best model Accuracy (%)
used
Thabtah (2018) NB, SVM No NB 94.23% (Adolescents), 99.85%
(Adults), 97.94% (Children)

Thabtah & RML, C4.5 DT, AB, PRISM, CART, Yes RML (Adult), C4.5 DT 95% (Adults), 91% (Children), 87%

Peebles (2019) Bagging, NNGE, RIDOR, RIPPER (Children), AB (Adolescents)

(Adolescent)

Alkahtani et al. KNN, SVM, LSTM, DT No SVM, LSTM 100% (Toddler)

(2023)
Farooq et al. FL with LR and SVM No SVM 98% (Children), 81% (Adults)

(2023)

Priyadarshini
(2023)

Pae & Pae (2024)
Hajjej et al. (2024)

Reghunathan
et al. (2024)

Bawa et al. (2024)

Alshammari et al.
(2024)

Aldrees et al.
(2024)

Das et al. (2025)

CNN-LSTM-PSO, CNN-GRU

RF, DT

DT, RF, LR, KNN, SVM, GBM, XGB,

RF-XGB
L-R, KNN, SVM

DT, KNN, NB, RF, SVM, LR

FL with KSVM, QDA, PCA, SVM-PK,

KNN-LLE, IF

LR, RF, SVM, KNN, XGB, SGC, ET,
XGB 2.0

Yes (SMOTE for
data balancing)

No

Yes (BF, BEFS,
MEFS)

Yes (CSA)

Yes (Manually
selected 14
features)

Yes (Feature
Transformation)

Yes (PCA, Chi-
Square, BFE)

LR, KNN, DT, SVM, Neural Networks Yes (MFS)

CNN-LSTM-PSO
RF (Children),

DT (Adult, Adolescent)
RF-XGB

L-R with CSA

LR (Children, Adolescent,
Merged), SVM (Adult)

QDA-PCA
XGB 2.0 with Chi-Square

Stacked ML Classifier

99.64% (Toddler), 98.89% (Adults)

95.9% (Children), 94.3% (Adults),
80.8% (Adolescents)

99% (with FS), 94% (without FS)
(Toddler)

96.23% (Children), 89.42%
(Adolescents), 97.01% (Adults)

94.3% (Children), 99.0%
(Adolescents), 97.2% (Merged),
98.5% (Adults)

94% (Toddler)

99% (Toddler)

99.14% (Toddler)

concerns. The detailed architecture and methodology of ALROH are discussed in the next

section.

MATERIALS AND METHODS

The complete architecture of this methodology in FL is presented in Fig. 1, which is

designed for predicting ASD in toddlers and children based on student performance data.
The architecture is structured into four hierarchical layers, beginning with schools at the
bottom, where raw ASD-related data is collected. This data includes responses to screening
questions (A1-A10), demographic attributes such as age and gender, family history of
ASD, test taker identity, and total ASD score. The collected ASD data is stored in
decentralized local databases at each participating school, ensuring that sensitive
information remains private and secure. Instead of sharing raw data, schools train the
ALROH model locally. The locally trained models are then sent to the Global Model
server, where their parameters are aggregated to refine a shared global model. The refined
global model is then redistributed back to each local entity for further training. This
iterative process continues, improving the model’s accuracy while preserving privacy. By
leveraging FL, this architecture prevents direct data sharing. It mitigates concerns about
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Collected ASD
Data

Schools

Figure 1 FL architecture for ASD prediction. Full-size Kal DOL: 10.7717/peerj-cs.3483/fig-1

data privacy and security risks, which are particularly crucial when handling sensitive
information related to healthcare and students. The ALROH model is specifically designed
to analyze ASD prediction patterns effectively by combining convolutional feature
extraction, sequential pattern recognition, and an optimized learning approach, which is
discussed in the next section.

Architecture

The architecture of the ALROH model for ASD prediction is presented in Fig. 2. The
process begins with preprocessed datasets, which are initially stored in .arff format for
compatibility with standard preprocessing tools (e.g., WEKA). To simulate a FL
environment, this dataset is partitioned into multiple client subsets, each representing an
independent data holder. Instead of centralizing the raw data, each client subset is trained
locally, and the learned parameters are aggregated on a central server using the FL
mechanism. This setup ensures that model training simulates privacy-preserving and
distributed learning rather than direct centralized training. Each client employs a CNN-
LSTM model for feature extraction and sequential behavior analysis. The CNN identifies
key patterns and dependencies in the behavioral and sensory data through convolution
operations, ReLU activation, pooling, and fully connected layers. The extracted feature
maps are then passed to the LSTM, which is well-suited for modeling the sequential
dependencies that characterize ASD-related behavioral patterns. To enhance the overall
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Figure 2 ALROH model for ASD prediction. Full-size K&l DOT: 10.7717/peerj-cs.3483/fig-2

predictive accuracy, a DFO algorithm is applied to optimize the hyperparameters and
weights of the CNN-LSTM model. The DFO utilizes swarm intelligence to dynamically
adjust network parameters, minimize prediction errors, and enhance convergence across
the federated nodes. Finally, the aggregated model parameters are forwarded to the output
layer, which generates a binary classification result: ASD-positive (1) or ASD-negative (0).
This approach facilitates early detection of ASD, enabling timely interventions and
personalized support for children at risk. Thus, the ALROH architecture integrates
simulated FL with deep learning models (CNN and LSTM) and optimization techniques
(DFO) to deliver an accurate, scalable, and privacy-aware framework for ASD prediction.

CNN for feature extraction

To handle ASD tabular datasets in .arff or .csv format, the proposed method first
preprocesses each record into a structured matrix representation, where rows correspond
to ASD-related attributes (behavioral, demographic, or screening-question features) and
columns correspond to individual samples. This transformation enables convolutional
operations in CNNss to exploit local correlations between neighboring features. The input
feature matrix I is denoted in Eq. (1).
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I={x(mn)]1 <m< W, 1<n<H}. (1)
In Eq. (1), x(m, n) denotes ASD-related features at every row m and column n, W
denotes the total number of features and H denotes different samples of ASD. Although
CNNss are conventionally applied to image data, recent studies (e.g., ConvTabNet (Borisov

et al., 2022), TabCNN (Kulkarni, 2024)) demonstrate that 1D/2D convolution can
effectively capture spatial feature interactions in tabular datasets (Alenizy ¢ Berri, 2025).
Thus, a modified 1D-CNN is adopted here, where convolution kernels slide across the
feature dimension to extract higher-order interactions among attributes. Therefore, every
feature vector is transformed using a convolution filter to capture the local dependencies
present in each sample; that is, every neuron in the convolution layer analyzes every feature
of the input ASD data. In the convolution layer, the process of convolution is to extract
spatial patterns through a filter/kernel K having size wy x hy. Using this, the feature-map
Y; is constructed using the following operation presented in Eq. (2).

Y— I®K ik: Z Kuv' m-+tu,n+v- (2)

u=—wg v=—hy

In Eq. (2), K, denotes kernel weights at position (u,v) and summation denotes the
overall kernel-window. Further, the convolution slides over I having stride Si, which
defines the step-size movement, and zero-padding is applied to ensure dimensional

consistency. Further, for every convolution-layer /, the feature map Yi(l)

Eq. (3).

is evaluated using

v =f +ZK<’ vV 3)

In Eq. (3), B ) denotes a bias matrix for every i feature map, K, denotes a
convolutional kernel between feature maps j of the previous layer and feature -maps i of the
current layer and f(x) denotes Rectified Linear Unit (ReLU) activation function, as
presented in Eq. (4).

f(x) = max(0, x). (4)
Hence, using Eq. (3), the output feature map using a convolution layer for position
(m, n) is evaluated using Eq. (5).

Wi
zmn_f 1mn+z Z Z qu Jm+3,4n+v ‘ (5)

j=1 u=—wr v=—0y

Using Eq. (5), the convolution layer enables hierarchical feature learning. After the
convolution layer, the extracted features are passed on to the pooling layer, where they are
reduced in complexity while retaining the dominant features. In the pooling layer, by
utilizing max-pooling with having window size w, x h, and stride S,, the pooling layer is
evaluated as presented in Eq. (6).
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P(v") = max(v") . (6)
m,n m<u<m-+w,n<v<n+h,

In Eq. (6), P denotes the pooling process. Using Eq. (6), only the highest value is
retained for every window. Hence, the output dimensions for the pooling layer are defined
using Eq. (7).

. W—Wk H—I’lk
d_{ 5, —i—le{ 5, —i—lJ. (7)

After multiple convolution layers and a pooling layer, the output is flattened into a
vector form denoted as z, which is then passed on to the Fully Connected Layer (FCL),
where the following operation is performed as presented in Eq. (8).

=1y A(-1) (-
fl( l)fz( 1)f3( 1)

(Y"(D)m,n =222 ng,q,r(lﬁ(lfl)) E (8)

p=1 g=1 r=1

In Eq. (8), fl(lfl), fz(Fl), f;lil) denotes total feature maps extracted using FCL, ng,q_r
denotes weights that connect every row m and column n, i.e., (m, n) for every feature-map
for I'* layer for every position (g, r) in feature-map p present in (I — 1) Layer. To avoid
overfitting in FCL, a dropout regularization function was applied, which reduced the
overall number of neurons. Moreover, softmax was applied to convert the raw output
features extracted using a modified CNN process into a binary class probability

distribution using Eq. (9).
exp ( WZ.TI )
chzl €xXp <VV]‘TI> |

In Eq. (9), p(y = i|I) denotes the probability of the given input feature matrix I belongs

ply =ill) = (9)

to a class i, i.e., 1 or 0 for ASD-positive or ASD-negative, respectively, I denotes the input
feature matrix, which is extracted from the CNN and processed by LSTM, as discussed in
the next section, W denotes weight vector for class i which maps to extracted feature to its
respective class i, WjTI denotes the dot product of the weight vector W; and I, producing a

scalar score for the class i, exp(WjTI ) denotes the applied exponential function for

class-score and ZJC:1 exp(WjTI ) denotes the normalization term, which ensures the

probabilities sum for the class C. Once the CNN layer extracted the hierarchical feature
embeddings from structured ASD records. Pooling is then applied to reduce
dimensionality, followed by flattening into a feature vector, which is passed to the LSTM.
The LSTM model, which handles sequential dependencies in the dataset, is discussed in
detail in the next section.

LSTM model for ASD prediction

After extracting features using a modified CNN, the feature matrix is passed on to LSTM,
which captures sequential patterns and temporal dependencies from ASD datasets for ASD
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prediction. The flattened CNN feature embeddings are sequentialized to exploit
dependencies among attributes. While LSTMs are designed for temporal sequences, each
ASD record is represented here as a pseudo-sequence of features, where the ordering of
attributes enables the LSTM gates to capture inter-feature dependencies that a CNN alone
cannot model. Additionally, the LSTM in this work is utilized to address the vanishing
gradient problem and learn from long-term dependencies using gates that control data
flow. For every extracted feature using the modified CNN from the input feature matrix I,
the LSTM cell processes the input sequence using Eq. (10).

I=(if,is,...,i0). (10)
In Eq. (10), i; is the input for the time step t. The LSTM cell utilizes two states at every
step. t, i.e., hidden-state h; and cell-state ¢;. The h; contains data related to upcoming steps
and c; stores long-term dependency. Further, the LSTM cell consists of three primary gates,
forget-gate f;, input-gate i, and output gate o;. The f; decides which previous data has to be
forgotten, i; determines which new data has to be stored and o; controls which data is
passed on to the next time step. The f; decides which data has to be forgotten or retained
using previous cell-state ¢;_;. Moreover, the f; uses input x; and previous h,_;, applies
weight-transformation and passes to the sigmoid-activation function as presented
in Eq. (11).

fi = G(fot + Ufht_l + bf). (11)

In Eq. (11), f; has activation values 0 (close-forget past data) and 1 (retain past data), Wy
denotes weight-matrix for x;, Uy denotes weight-matrix for h;_1, by is a bias term. The o(x)
is a sigmoidal activation function, which is evaluated using Eq. (12).

1
olx) = 1+e >

The i, consists of two processes, i.e., input-gate activation i, and candidate cell-state ¢,

(12)

which are evaluated using Eqgs. (13) and (14), respectively.

ir = o(Wix¢ + Uihy—1 + b)) (13)
¢; = tanh(Wex; + Uchy—g + b,). (14)
In Egs. (13) and (14), i; controls how much new data enters and W;, W, U;, U, b; and b,
are weights and bias terms, ¢; denotes candidate-memory content, which helps in
identifying which new data has to be added and tanh (x) is a hyperbolic-tangent activation
function, which is evaluated using Eq. (15).
e —e*
tanh(x) = prgnperd (15)
Moreover, the ¢; is updated utilizing f; and i, using Eq. (16).
¢=fOc 1 +i O (16)
In Eq. (16), ¢; denotes updated cell state, © denotes element-wise multiplication,

ft ® ¢;—1 ensures past memory is kept and i; © ¢; ensures new data is added. Finally, the o,
determines which ¢; has to be sent as h;. Similar to i, o; also consists of two processes, first
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where output-gate activation is evaluated and then h; is updated. The output-gate
activation is evaluated using Eq. (17).

0; — U(Woxt + Uohtfl + bo) (17)

In Eq. (17), o; determines output strength and W, U, and b, are weights and bias terms.
Further, the &, is updated using Eq. (18).

hy = o; © tanh(c;). (18)

In Eq. (18), h; has relevant data from ¢; and tanh scales ¢; between —1 and 1 for a stable
learning process. After the learning process using LSTM, the ASD prediction is performed.
This work presents the DFO approach for optimizing hyperparameters of the CNN-LSTM
model, which is discussed in detail in the next section.

Dragon-fly optimization

After extracting features from a CNN and utilizing sequential learning with LSTM, this
work presents a DFO approach that optimizes the hyperparameters of CNN-LSTM to
enhance accuracy and minimize loss. The CNN-LSTM framework involves critical
hyperparameters (learning rate, number of CNN filters, LSTM hidden units, dropout rate,
batch size). To avoid manual tuning, the DFO metaheuristic is employed. Each dragonfly
represents a candidate hyperparameter set, and its position is updated by balancing
exploration (global search) and exploitation (local refinement). DFO is a swarm-intelligent
approach inspired by the swarm behaviour of dragonflies. The dragonflies move in groups
during the exploration phase and remain in a static state during the exploitation phase,
based on five key forces. These forces help optimize hyperparameters such as batch size,
learning rate, LSTM total units, dropout rate, and others. In the DFO approach, every
dragonfly denotes a candidate approach S; in hyperparameter searching space. The
position update of dragonfly is evaluated using Eq. (19).

S = S+ W M; + wiS; + waA; + w.Ci + w,E;. (19)

In Eq. (19), S denotes dragonfly position i at time ¢ (current hyper-parameter values),
M; denotes memory-based movement (previous best position), S; denotes separation, i.e.,
avoid collision or overcrowding, A; denotes alignment, which helps to synchronize velocity
with respect to its other dragonfly neighbors, C; denotes cohesion, i.e., the dragonfly moves
towards center of its neighboring solutions, E; denotes attraction towards the best
approach found during optimization, w,,, ws, w,, w. and w, denote weight coefficients that
control the impact of every movement factor. The M; is evaluated as Eq. (20).

M; =8, (20)
The Eq. (20) ensures every dragonfly remembers its best solution and returns to them if

a new position does not improve fitness. Further, the S; is evaluated using Eq. (21).

N

Si=—> (S—9). (1)

=1
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The Eq. (21) avoids collision with other dragonflies by repelling dragonflies that are too
close and N denotes the total number of neighboring solutions. The A;, C; and E; are
evaluated using Eqgs. (22), (23) and (24), respectively.

1 N
A==V (22)
N &
1 N
C; :NZsj ~ ;. (23)
j=1
E =S, —S:. (24)

In Eq. (22), the A; ensures the dragonflies’ velocity is the same as its neighbors, in
Eq. (23) ensures the movement of dragonflies toward the swarm center and in Eq. (24),
every dragonfly moves towards the best global solution S, found so far. This position
update approach provides a framework for efficiently exploring and exploiting the search
space, thereby enhancing hyperparameters for ASD prediction. Furthermore, the fitness
function is used to evaluate every dragonfly’s solution. Hence, the accuracy and loss of the
CNN-LSTM model for ASD prediction are evaluated using a fitness function guiding
optimization in Eq. (25).

F = o - Accuracy — f - Loss. (25)

In Eq. (25), F denotes fitness-score, Accuracy denotes the prediction accuracy of the
CNN-LSTM model, Loss denotes loss attained during cross-entropy and « and f are
balancing coefficients. Through iterative position-velocity updates, DFO avoids premature
convergence and identifies hyperparameters that maximize ASD prediction accuracy. In
DFO, every candidate solution (dragonfly) is tested utilizing Eq. (25), and the
best-performing hyperparameters are retained. Further, every dragonfly updates its
respective velocity to control convergence speed using Eq. (26).

Vit =w- Vi +n(P; = S) +n(G—$). (26)
In Eq. (26), V/ is the velocity of a dragonfly i at time ¢, w denotes inertia weight, P;
denotes best local solution found is dragonfly, G denotes the best global solution found by

Dragonfly and ry, r, denotes random coefficients, which ensure exploration and avoid
premature convergence. Moreover, in Eq. (26), w - V! keeps momentum using the
previous velocity, r;(P; — S;) moves toward a best local solution and (G — S;) moves
towards the best global solution. This velocity update process allows dragonflies to adapt
dynamically, reduce search stagnation, and find the best solution. The complete
hyper-tuning process for the CNN-LSTM model is presented in Algorithm 1 below.

Using the DFO in the CNN-LSTM model, the approach avoids local minima, balances
random exploration, handles class imbalance, provides focused learning, and finds the best
optimal values for hyperparameter tuning. The overall ALROH model achieves higher
prediction accuracy using hyperparameter tuning, which is discussed in detail in the next
section.
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Algorithm 1 DFO-based hyperparameter tuning process for CNN-LSTM.

Step1  Start

Step 2 Initialize the Dragonfly Population

Step 3  Define hyperparameter ranges of CNN-LSTM

Step 4 Randomly generate initial position S; and velocity V;

Step 5 Evaluate fitness function

Step 6 Train CNN-LSTM using every dragonfly’s hyperparameter set

Step 7 Compute accuracy and loss to determine fitness-score F

Step 8 Update Position and Velocity

Step 9 Use the position update value for generating new hyperparameter values
Step 10 Update velocity for controlling convergence speed

Step 11 Check convergence

Step 12 If a stopping condition is met

Step 13 Stop

Step 14 Else repeat from Step 2

Step 15 End If

Step 16  Return the best hyperparameters

Step 17 The best dragonfly’s position represents optimized CNN-LSTM hyperparameters
Step 18 End

RESULTS AND DISCUSSION

This section begins by describing the system specifications for implementing the ALROH
model and the performance metrics employed for evaluation. It then provides a detailed
discussion of the datasets utilized in this study. Finally, the performance of the ALROH
model is analyzed for each dataset and compared with existing approaches to assess its
effectiveness.

System requirements and performance metrics

To evaluate the performance of the proposed ALROH model, experiments were conducted
on a system equipped with 16 GB of RAM and an Intel Core i7 processor. The model was
implemented using Python and executed within the Anaconda environment, which was
installed on a Solid-State Drive (SSD) to enhance computational speed and efficiency.
Using an SSD helped reduce data retrieval time, thereby optimizing the training and
evaluation process. Standard performance metrics were also employed to assess the
effectiveness and reliability of the ALROH model. These included accuracy, precision,
recall, and F-score, widely used in ML to evaluate predictive models. The mathematical
formulations of these metrics are presented in Eqs. (27), (28), (29), and (30), ensuring a
comprehensive assessment of the model’s predictive capabilities.

TP+ TN

A = 27
Y = TP Y IN 1 FP+ EN 27)
Precisi P (28)

recision = —————

SO = Tp L Fp

TP
Recall = ———— 29
= TP Y EN (29)
Precision X Recall

F-score = 2 x (30)

Precision + Recall
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In Egs. (27), (28), (29) and (30), TP and FP denotes true-positive and false-positive, and
TN and FN denotes true-negative and false-negative.

Datasets

In this work, three publicly available ASD datasets were utilized to evaluate the
performance of the proposed ALROH model. The goal was to assess the model’s predictive
capabilities across different datasets and ensure its generalizability in ASD detection. The
first dataset was the children dataset, collected by Thabtah (2018). This dataset is openly
accessible and can be downloaded from UCI Machine Learning Repository (2025). It
contains 292 samples, with 141 ASD-positive cases and 151 non-ASD cases. Additionally,
Thabtah (2018) also collected a toddler dataset, which is publicly available and can be
accessed from Kaggle.com (2025). This dataset comprises 1,053 samples, where 728 cases
were identified as ASD-positive, while 325 cases were classified as non-ASD, referred to as
the toddler 1 dataset in this work. Furthermore, another toddler dataset was considered,
which was collected by Alkahtani et al. (2023). This dataset is openly accessible and can be
downloaded from Kaggle.com (2022). It comprises a total of 506 samples, consisting of 341
ASD cases and 165 non-ASD cases, which is referred to as the toddler 2 dataset in this
work. With respect to population context, the datasets employed in this study were
originally collected by Thabtah (2018) and Alkahtani et al. (2023) using standardized
screening questionnaires (such as Autism Spectrum Quotient—AQ-10) and behavioral
indicators. The participants were toddlers and children flagged for screening in
educational and healthcare contexts. These datasets do not explicitly categorize children by
ASD severity levels or therapy participation; instead, they label children as “ASD-positive”
or “non-ASD” based on screening thresholds. Therefore, the data reflect screening-level
detection rather than detailed clinical severity assessments or therapy outcomes. This
makes the datasets particularly suitable for evaluating early-detection models such as
ALROH, which aim to assist schools in identifying at-risk children for further professional
evaluation. Thus, enhance the robustness of the evaluation, a combined toddler dataset was
created by merging the datasets collected by Thabtah (2018) and Alkahtani et al. (2023).
The merged dataset comprised 1,559 samples, including 1,069 ASD-positive cases and 490
non-ASD cases, which is referred to as the merged toddler dataset in this work. Finally, a
comprehensive dataset was generated by merging the children and toddler datasets
collected by Thabtah (2018) and the toddler dataset collected by Alkahtani et al. (2023).
The final merged dataset consisted of 1,851 samples, comprising 1,210 ASD cases and 641
non-ASD cases, which is referred to as the merged dataset in this work. Five different
datasets were used to rigorously evaluate the ALROH model. By considering multiple
datasets with varying distributions of ASD and non-ASD cases, this study aimed to ensure
the reliability, effectiveness, and generalization capability of the proposed model across
different age groups and data distributions.

Research questions and hypotheses: The empirical evaluation of ALROH was guided by
three research questions (RQ): RQ1: Can federated learning (FL) enhance the
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generalizability of ASD prediction models by securely integrating data from multiple
sources? RQ2: Does a hybrid CNN-LSTM architecture capture both spatial and
sequential behavioral patterns more effectively than conventional models? RQ3: To what
extent does Dragonfly Optimization (DFO) improve hyperparameter tuning,
convergence speed, and robustness under class-imbalanced conditions? Based on these, the
following hypotheses were tested: (i) FL improves model generalization across datasets;
(ii) CNN-LSTM outperforms baseline ML/DL approaches in accuracy and recall;

(ili) DFO enhances predictive stability and convergence efficiency compared to
non-optimized baselines.

Children dataset

The performance of the proposed ALROH model was thoroughly evaluated using the ASD
children dataset, and the results are illustrated in Fig. 3. The model demonstrated
exceptional predictive capability across all standard performance metrics. Specifically, the
ALROH model achieved 99.23% accuracy, indicating its high reliability in correctly
classifying ASD and non-ASD cases. Additionally, the model achieved a precision of
99.23%, indicating its ability to minimize false positives while accurately identifying ASD
cases. A 99.21% recall further highlights the model’s effectiveness in correctly detecting
ASD cases, ensuring that very few ASD-positive instances were misclassified. Finally, the
99.22% F-score reflects the model’s balanced performance, demonstrating its robustness in
predicting ASD.

Toddler dataset 1

The performance evaluation of the ALROH model on the ASD Toddler 1 dataset is
presented in Fig. 4, demonstrating the model’s effectiveness in accurately predicting ASD
in toddlers. The ALROH model achieved 99.36% accuracy, indicating strong predictive
performance and reliability in classifying ASD and non-ASD cases. Additionally, the
model achieved 99.32% precision, ensuring minimal false positives while accurately
identifying ASD-positive instances. A 99.33% recall further highlights the model’s ability
to accurately detect ASD cases, thereby minimizing false negatives (FNs) and improving
early diagnosis. Moreover, a 99.34% F-score reflects a balanced performance, signifying the
overall robustness of the model.

Toddler dataset 2

The performance evaluation of the ALROH model on the ASD Toddler 2 dataset is
presented in Fig. 5, showcasing its high efficiency in predicting ASD among toddlers. The
ALROH model achieved 99.28% accuracy, indicating its strong capability in distinguishing
ASD and non-ASD cases with minimal errors. The model also demonstrated 99.26%
precision, ensuring that FPs were kept to a minimum while accurately identifying ASD
cases. Additionally, the 99.27% recall highlights the model’s effectiveness in accurately
detecting ASD cases, thereby minimizing FNs and enhancing early diagnosis. The 99.27%
F-score further validates the model’s balanced performance, demonstrating its robustness
in classifying ASD.
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Figure 3 Performance evaluation of ALROH model on ASD children dataset.
Full-size k&l DOT: 10.7717/peerj-cs.3483/fig-3
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Figure 4 Performance evaluation of ALROH model on ASD Toddler 1 dataset.
Full-size k&l DOT: 10.7717/peerj-cs.3483/fig-4
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Merged toddler dataset

The performance evaluation of the ALROH model on the ASD merged toddler dataset is
presented in Fig. 6, demonstrating its effectiveness in handling a larger and more diverse
dataset. The ALROH model achieved 98.61% accuracy, demonstrating its robustness and
generalization capabilities across various toddler ASD datasets. The 98.6% precision
reflects the model’s ability to classify ASD cases while minimizing FPs correctly.
Additionally, 98.6% recall highlights the model’s efficiency in identifying true ASD cases,
ensuring minimal FNs. The 98.6% F-score further confirms the model’s balanced
performance, making it a reliable approach for ASD prediction in toddlers. The slightly
lower accuracy compared to individual toddler datasets suggests that the merged dataset
introduces greater variability. Yet, ALROH still maintains high performance, showcasing
its adaptability and effectiveness in predicting ASD across different datasets.

Merged dataset

The performance evaluation of the ALROH model on the ASD merged dataset is presented
in Fig. 7, highlighting its strong predictive capabilities across a diverse dataset that includes
both children and toddlers. The ALROH model achieved 99.34% accuracy, demonstrating
its ability to generalize well across different age groups and dataset variations. The 99.32%
precision indicates the model’s efficiency in correctly identifying ASD cases while
minimizing FPs. Furthermore, 99.31% recall reflects the model’s effectiveness in detecting
ASD cases, ensuring that very few actual ASD cases are misclassified. The 99.31% F-score
further validates the model’s balanced performance. These high-performance metrics
indicate that ALROH can effectively handle larger and more diverse datasets, making it a
promising tool for early ASD detection in both children and toddlers, thereby improving
screening accuracy and facilitating timely interventions. Further, in the next section, the
ALROH model is compared with existing approaches discussed in the literature survey.

Ablation study

To evaluate the contribution of each component in the ALROH model, an ablation study
was conducted using the merged toddler dataset. The study assessed the model’s
performance under four conditions: (1) ALROH without DFO, using standard gradient
descent for optimization; (2) ALROH without LSTM, replacing it with a fully connected
layer for prediction; (3) ALROH without CNN, using raw input features directly fed to
LSTM; and (4) ALROH without FL, trained on a centralized dataset. The results,
summarized in Table 2, demonstrate that the full ALROH model (with CNN, LSTM, DFO,
and FL) achieved the highest accuracy (98.61%), precision (98.6%), recall (98.6%), and
F-score (98.6%). Removing DFO reduced accuracy to 96.5%, indicating its role in
optimizing hyperparameters. Replacing the LSTM with a fully connected layer decreased
accuracy to 95.8%, highlighting the importance of the LSTM in capturing sequential
patterns. Omitting CNN led to a significant drop in accuracy to 94.2%, underscoring its
effectiveness in feature extraction. Finally, training without FL reduced accuracy to 97.1%,
suggesting that FL enhances generalization through decentralized data. These findings
confirm that each component is integral to ALROH’s superior performance.
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Figure 5 Performance evaluation of ALROH model on ASD Toddler 2 dataset.
Full-size K&l DOT: 10.7717/peerj-cs.3483/fig-5
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Figure 6 Performance evaluation of ALROH model on ASD merged toddler dataset.
Full-size k&l DOT: 10.7717/peerj-cs.3483/fig-6
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Figure 7 Performance evaluation of ALROH model on ASD merged dataset.
Full-size Ka] DOT: 10.7717/peerj-cs.3483/fig-7

Comparative study
This section discusses the results of the ALROH model and compares them with existing
approaches. The results are compared in Table 3, which highlights the superiority of the
proposed ALROH model over existing approaches. The ALROH model achieved 99.23%
accuracy, outperforming previous models, including SVM (98%) from Farooq et al. (2023),
RF (95.9%) from Pae ¢ Pae (2024), L-R (96.23%) from Reghunathan et al. (2024), and LR
(94.3%) from Bawa et al. (2024). Additionally, ALROH demonstrated significantly higher
precision (99.23%), recall (99.21%), and F-score (99.22%), ensuring better overall
performance in accurately predicting ASD cases. In contrast, the SVM model from
Farooq et al. (2023) had 44% recall, indicating a high number of FNs, which is critical in
ASD prediction as undiagnosed cases may not receive timely intervention. Similarly, while
RF from Pae ¢ Pae (2024) and LR from Reghunathan et al. (2024) yielded competitive
results, their accuracy and recall values were lower than those of ALROH, suggesting a
slightly reduced ability to classify ASD cases correctly. Furthermore, the LR model from
Bawa et al. (2024) had the lowest accuracy (94.3%), making it the least effective among the
compared approaches.

Furthermore, the comparative study on the ASD toddler dataset is presented in Table 4,
demonstrating the ALROH model’s effectiveness compared to other state-of-the-art
approaches. The ALROH model achieved 99.36% accuracy, outperforming models such as
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Table 2 Ablation study on merged toddler dataset.

Model configuration Accuracy (%) Precision (%) Recall (%) F-score (%)
Full ALROH model 98.61 98.6 98.6 98.6
Without DFO 96.5 96.4 96.5 96.4
Without LSTM 95.8 95.7 95.8 95.7
Without CNN 94.2 94.1 94.2 94.1
Without FL 97.1 97.0 97.1 97.0

Table 3 Comparative study on ASD toddler dataset.

Ref Year Model Accuracy Precision Recall F-score
Farooq et al. (2023) 2023 SVM 98 92 44 60

Pae & Pae (2024) 2024 RF 95.9 95.8 95.8 95.8
Reghunathan et al. (2024) 2024 L-R 96.23 94.5 94.7 97.9
Bawa et al. (2024) 2024 LR 94.3 93.1 94.4 93.8
Proposed 2025 ALROH 99.23 99.23 99.21 99.22

QDA-PCA (94%) from Alshammari et al. (2024) and Stacked Model (99.14%) from Das
et al. (2025), while showing competitive performance against CNN-LSTM-PSO (99.64%)
from Priyadarshini (2023), RE-XGB (99%) from Hajjej et al. (2024), and XGB 2.0 (99%)
from Aldrees et al. (2024). In addition to its high accuracy, ALROH also demonstrated
better precision (99.32%), recall (99.33%), and F-score (99.34%), ensuring a balanced
performance in ASD prediction. Notably, while CNN-LSTM-PSO from Priyadarshini
(2023) achieved a slightly higher accuracy of 99.64%, its precision (96%), recall (94%), and
F-score (91%) were significantly lower than those of ALROH, indicating that it had more
false positives and false negatives. On the other hand, QDA-PCA from Alshammari et al.
(2024) had the lowest accuracy (94%) and an F-score of only 87%, suggesting weaker
overall predictive performance. Moreover, compared to RF-XGB from Hajjej et al. (2024)
and XGB 2.0 from Aldrees et al. (2024), both of which achieved 99% accuracy, the ALROH
model still performed better in terms of precision and recall, making it more reliable and
effective for ASD prediction in toddlers. The Stacked Model from Das et al. (2025)
combined multiple classifiers and achieved strong results (99.14% accuracy, 98.76%
precision, 99.37% recall, and 99.07% F-score), but its computational complexity was
significantly higher than that of ALROH.

Practical Implications of Findings. ALROH’s superior performance is attributed to its
hybrid DL framework, which integrates CNN for feature extraction, LSTM for sequential
learning, and DFO for hyperparameter tuning. This combination enables better
generalization and robustness in predicting ASD, making ALROH a highly efficient and
effective model for early ASD detection in toddlers. Beyond achieving superior predictive
performance, the results of ALROH carry important implications for practice. For parents,
the availability of accurate and privacy-preserving screening tools may help raise early
awareness of ASD-related behaviors, reducing delays in seeking professional evaluation

Algahtani and Alzahrani (2026), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3483 21/26


http://dx.doi.org/10.7717/peerj-cs.3483
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Comparative study on ASD toddler dataset.

Ref Year  Model Accuracy  Precision  Recall  F-score
Priyadarshini (2023) 2023 CNN-LSTM-PSO 99.64 96 94 91
Hajjej et al. (2024) 2024  RF-XGB 99 99 99 99
Alshammari et al. (2024) 2024  QDA-PCA 94 93 100 87
Aldrees et al. (2024) 2024  XGB 2.0 99 98 99 99

Das et al. (2025) 2024  Stacked 99.14 98.76 99.37 99.07
Proposed 2025 ALROH 99.36 99.32 99.33 99.34

and therapy. For teachers, the system can serve as a supportive decision-making aid,
enabling early identification of students who may require differentiated instructional
approaches or referrals to specialists. For school administrators and policymakers,
ALROH demonstrates the feasibility of deploying federated learning frameworks that
allow institutions to collaborate without compromising student privacy. This could guide
the creation of national screening initiatives and inclusive education policies, ensuring
equitable access to early interventions.

While the current datasets primarily focus on screening outcomes (ASD-positive or
non-ASD), they do not include detailed socio-economic or clinical contexts, such as family
education level, economic background, age stratification, or therapy history. Such variables
could provide deeper insights into risk factors and strengthen the objectivity of ASD
prediction frameworks. As part of future research, incorporating these variables into
federated learning pipelines would allow models such as ALROH to capture both
behavioral patterns and contextual risk factors, thus enhancing their relevance for
educational planning and social policy design. In the next section, the conclusion, along
with a detailed discussion of future work, is presented.

CONCLUSION

This work presented an ASD prediction model using a federated learning-based hybrid
deep learning framework, the ALROH model. The primary objective was to improve ASD
detection in children and toddlers while ensuring privacy preservation and addressing
challenges such as class imbalance and small dataset sizes. The ALROH model integrated
CNN for feature extraction, LSTM networks for sequential learning and prediction, and
the DFO approach for hyperparameter optimization, thereby achieving consistent
improvements over existing ASD predictive models. Specifically, for the ASD children
dataset, ALROH achieved 99.23% accuracy, outperforming conventional models such as
SVM, RF, and L-R. Similarly, for the ASD toddler dataset, ALROH surpassed CNN-LSTM-
PSO, RF-XGB, XGB 2.0, and stacked models, attaining an accuracy of 99.36%. The results
confirm ALROH as a highly accurate and efficient model for ASD detection, while also
highlighting the critical role of federated learning in the privacy-preserving collection and
training of ASD data across multiple institutions. Unlike traditional centralized learning,
FL enables collaborative knowledge sharing without exposing sensitive child health data.
However, this study also acknowledges certain limitations. A significant challenge remains
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the collection of sufficiently large and representative datasets, as well as ensuring the
accuracy and reliability of multi-institutional data. Furthermore, collaborative learning
among different schools introduces issues of interoperability, communication overhead,
and network security, all of which are crucial when handling sensitive behavioral and
medical data of children. Looking ahead, several research perspectives can further
strengthen this work. Future research will focus on measuring the impact of network
performance parameters, such as bandwidth, edge-cloud communication time, and
aggregation delays, on FL-based ASD screening systems. Also, the work may consider
incorporating passive sensing devices (e.g., smartwatches, speech monitors, or
environmental cameras) to enable richer, multi-sensory ASD detection. Enhancing the FL
framework with blockchain or advanced encryption mechanisms could address
confidentiality and security concerns in data sharing across school networks. Additionally,
integrating FL with scalable cloud-edge infrastructures would improve computational
efficiency, real-time model updates, and deployment feasibility at a larger scale. By
addressing these limitations and extending FL capabilities, future research can pave the
way for a secure, scalable, and more inclusive early ASD prediction system.
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