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ABSTRACT
Due to advancements in malware competencies, cyber-attacks have been broadly
observed in the digital world. Cyber-attacks can hit an organization hard by causing
several damages such as data breach, financial loss, and reputation loss. Some of the
most prominent examples of ransomware attacks in history are WannaCry and
Petya, which impacted companies’ finances throughout the globe. Both WannaCry
and Petya caused operational processes inoperable by targeting critical infrastructure.
It is quite impossible for anti-virus applications using traditional signature-based
methods to detect this type of malware because they have different characteristics
on each contaminated computer. The most important feature of this type of malware is
that they change their contents using their mutation engines to create another hash
representation of the executable file as they propagate from one computer to another.
To overcome this method that attackers use to camouflage malware, we have created
three-channel image files of malicious software. Attackers make different variants of
the same software because they modify the contents of the malware. In the solution to
this problem, we created variants of the images by applying data augmentation methods.
This article aims to provide an image augmentation enhanced deep convolutional neural
network (CNN) models for detecting malware families in a metamorphic malware
environment. The main contributions of the article consist of three components,
including image generation from malware samples, image augmentation, and the last
one is classifying the malware families by using a CNN model. In the first component,
the collected malware samples are converted into binary file to 3-channel images
using the windowing technique. The second component of the system create the
augmented version of the images, and the last part builds a classification model.
This study uses five different deep CNNmodel for malware family detection. The results
obtained by the classifier demonstrate accuracy up to 98%, which is quite satisfactory.

Subjects Artificial Intelligence, Security and Privacy
Keywords Convolutional neural networks, Cybersecurity, Image augmentation, Malware analysis

INTRODUCTION
Recently our usage of technical gadgets has increased due to the aggressive invasion of
technology in our daily life. The frequency of use for many devices has increased many
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folds, including mobile phones, laptops, webcams, etc. Motivated by market demand, the
manufacturers have started to produce devices with attractive features ignoring the
security weakness caused by offering such features. Due to the fierce competition among
the manufacturers and rapid product development, many products are released to the
market with security weaknesses. This offers many opportunities for malicious software
developers. Malicious software, commonly known as malware, is intentionally designed to
damage computer systems and exploit security weaknesses. Malware is designed for a
specific target, often attempting to camouflage itself in another way, with intentions
such as file encryption, ransom, preventing a system from working, gaining unauthorized
access to a network, data theft, or sabotage. Malware targets various platforms such as
servers, personal computers, mobile phones, and cameras to disrupt the system’s normal
function. Malware development has become a serious activity lately, and in the only
first quarter of 2020, around 1046.10 million new malware has been found (https://www.
av-test.org/en/statistics/malware/).

Malware has acquired advanced competencies and diversity in features, which
significantly raises the importance of cybersecurity. Cybersecurity activities in various
organizations have increased (Shamshirband et al., 2020; Shamshirband & Chronopoulos,
2019) due to its vital importance to the aforementioned problem. One of the essential
cybersecurity activities is malware analysis. In order to be effectively protected from
malware, the first thing to do is to recognize the malicious software and analyze their
behavior well. In this respect, the critical point is to identify malicious software and
classify them successfully. A family of malicious software also represents the malicious
behavior to which it belongs. As a result, the countermeasures to be taken against
these behaviors may vary according to malicious software families. Several consecutive
operations are generally performed within malware analysis. This task is mainly done
using static and dynamic analysis methods, including the strings command to get the
malicious IP addresses, entropy value if the suspicious executable file, executing the file in
an isolated environment to record its behaviour.

Figure 1 provides the new malicious programs number detected per year from 2003
to 2010. In the period of 2007 and 2008, the number of new threats has increased
significantly due to an increase in the power of antivirus centers processing threats and
the evolution in file-infecting technologies. In 2009 almost the same number of new
malicious programs was detected as approximately 15 million (https://securelist.com/
kaspersky-security-bulletin-2009-malware-evolution-2009/36283/). In 2010, malware
evolution has been almost identical to the previous one (https://securelist.com/kaspersky-
security-bulletin-malware-evolution-2010/36343/).

Figure 2 presents the number of newmalware identified per year from 2011 to 2020. It is
observed a noticeable increase in the number of new malicious programs year by year.
Overall, malware activity has increased from 2011 to 2020.

Malware developers, on the other hand, develop a variety of anti-analysis techniques
with their broad knowledge of existing analysis methods. Anti-debugging and anti-
disassembly techniques are the two methods most commonly used by malware developers.
Such methods to bypass analysis are generally used to produce erroneous results by the
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disassembler and debugger tools. In anti-debugging methods, malware developers often
manipulate pointer address parameters used by jump op-code such as jz, jnz, jze.
Anti-debugging techniques are used by the developers to ensure that malware samples do
not run under a debugger, and in that case, change the execution flow accordingly. In most
cases, the reverse engineering process will be slow down by the anti-debugging technique.

Figure 1 Number of new malicious programs identified per year from 2003–2010.
Full-size DOI: 10.7717/peerj-cs.346/fig-1

Figure 2 Number of new malicious programs identified per year from 2011–2020.
Full-size DOI: 10.7717/peerj-cs.346/fig-2

Catak et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.346 3/26

http://dx.doi.org/10.7717/peerj-cs.346/fig-1
http://dx.doi.org/10.7717/peerj-cs.346/fig-2
http://dx.doi.org/10.7717/peerj-cs.346
https://peerj.com/computer-science/


The automated malware detection systems used these days do not yield very successful
results due to the aforementioned reasons. Proper malware labeling is a challenging
issue in this domain. An anti-virus application can detect malware as a trojan, whereas the
same malware is labeled as a worm by another anti-virus application. It has become even
more complicated with the advent of sophisticated malware.

With the development of machine learning, it has been observed that these techniques
are being used in the field of malware analysis. To use API calls as the feature vector is
one of the first usages of machine learning algorithms for malicious software analysis
(Mira, 2019). N-grams are other commonly used methods for the quantification of API
calls. The main reasons for using n-grams are to reduce computation-complexity of the
model, to create a simple term-frequency × inverse-document-frequency (TF-IDF) matrix,
and to use traditional algorithms such as random forests, decision tree, and support
vector machine (SVM). Although such an approach has produced high classification
performance results, they remain inadequate for the current malware infection
methods. Malware analysts need sandbox applications to create API call datasets because
a sandbox provides an isolated virtual machine (VM) with a secure and close network
environment. The behaviour of malicious software runing in the VM are recorded.

However, malware developers use anti-VM and anti-sandbox methods that integrate
various virtual machine detection code snippets into their malicious code blocks. If the
malicious software gets the impression of executing on a virtual machine or sandbox
environment, then it changes its behaviour to complicate the analysis. The most
widely used anti-VM and anti-sandbox methods are “Checking CPUID Instruction”,
“VMWare Magic Number”, “Checking for Known Mac Addresses”, “Checking for
Processes Indicating a VM”, “Checking for Existence of Files Indicating a VM” and
“Checking for Running Services”. Although malware changes its behaviour and blocks
dynamic analysis, some machine learning methods can be used to obtain malware families
depending on the malware code. Currently, the approach used for malware analysis is
based on creating a grayscale image from malware code and then using classification
algorithms.

We created classification models by extracting only the behaviour of malware samples
in our previous works (Catak & Yazı, 2019; Yazı, Catak & Gul, 2019; Catak et al., 2020).
We executed all the malware samples in the Cuckoo sandbox environment. whereas,
in this study, harmful software did not operate in an isolated sandbox environment.
This research’s main contribution is to develop a data augmentation enhanced malware
family classification model that exploits augmentation for malware variants and takes
advantage of a convolutional neural network (CNN) to improve image classification.
Herein, we demonstrate that the data augmentation-based 3-channel image classification
can significantly influence malware family classification performance. Malware developers
use different methods to camouflage the malicious behaviour of malware while
executing. There is no real execution phase in an operating system in our approach.
Another technique that malware developers apply is to put various modifications
(such as noise) to the content when they propagate from one computer to another.

Catak et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.346 4/26

http://dx.doi.org/10.7717/peerj-cs.346
https://peerj.com/computer-science/


We used data augmentation methods to solve this camouflage technique to our malware
image samples to detect their variants.

The rest of the article is organized as follows: “Related Work” briefly describes the
related work. In “System Model”, we present the system model and consists of two
subsections. The first subsection presents the image conversion, and the second subsection
presents the data augmentation. “Proposed Approach” provides fine-grained details of
the proposed approach and presents the malware classification algorithm. “Experiments”
provides an extensive analysis of results. Finally, in “Conclusion and Future Work”,
we conclude the article and present some future research directions.

RELATED WORK
Malware analysis field has gained considerable attention from research community
with rapid development of various techniques for malware detection. There is huge
research literature in this area. Since the proposed work is related to image-based
analysis using deep learning techniques, the relevant research literature regarding image
processing techniques for malware detection are briefly discussed in this section. One of
the early studies conducted on malware images was done by Nataraj et al. (2011).
The authors proposed an image texture analysis-based technique for visualization and
classification of different families of malware. This approach converts malware binaries
into grayscale images. Malware are classified using K-nearest neighbor technique with
Euclidean method. However, the system requires pre-processing of filtering to extract
the image texture as features for classification.

On the other hand, to extract the image texture as features for classification, the
system requires pre-processing of filtering. Kancherla & Mukkamala (2013) proposed a
low-level texture feature extraction technique for malware analysis parallel to Nataraj’s
technique. The authors converted malware binaries into images and then extracted
discrete wavelets transform based texture features for classification. Makandar & Patrot
(2017) identify new malware and their variants to extract wavelet transforms-based
texture features, and then supply to feed forward artificial neural network for applying
classification. Kosmidis & Kalloniatis (2017) described a two-step malware variant
detection and classification method. In the first step, binary texture analysis applied
through GIST. In the second step, these texture features classified by using machine-
learning techniques such as classification and clustering to identify malware. Although
the works mentioned above Nataraj et al., 2011; Kancherla & Mukkamala, 2013;
Makandar & Patrot, 2017; Kosmidis & Kalloniatis (2017) are helpful to detect and classify
new malware and their variants, they still have some limitations. For instance, on the
one hand, global texture features lose local information needed for classification. On the
another hand, they have significant computation overheads to process a vast amount of
malware.

According to Zhang et al. (2016), the malware classification problem can be converted
into an image classification problem. Their study provides to disassembles executable
files into opcode sequences and then convert opcode into images for identifying whether
the source file is benign or malware by using CNN. Yue (2017) presents multifamily
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malware classification approach by applying CNN. However, the performance is degraded
due to the imbalance of malware families. The author proposes softmax loss function
to mitigate this issue. This approach is reactive in nature to deal with scenarios where class
imbalance is assumed.

The other work by Ni, Qian & Zhang (2018) propose a method for malware
classification by applying deep learning techniques. Their algorithm uses SimHash and
CNN techniques for malware classification. The algorithm converts the malware codes
that is disassembled into grayscale images used SimHash algorithm and after that uses
CNN to identify their family. The performance improvement is ensured by using some
methods such as bilinear interpolation, multi-hash and major block selection during the
process. Cui et al. (2018) propose a method that applies CNN with the Bat algorithm
together in order to robust the accuracy of the model. Their implemented method converts
the malicious code into grayscale images. The method’s images are classified by using
a CNN and Bat algorithm is used to address the issue of data imbalance among
different malware families. The main limitation of this approach is that they used one
evaluation criterion to test the model. The other work by Nisa et al. (2020) suggest a new
approach using malware images with rotate, flip and scale base image augmentation
techniques.

Two stage deep learning neural network is used by Tobiyama et al. (2016) for infection
detection. Initially, the authors generated an image via the extracted behavioral features
from the trained recurrent neural network. Later, to classify the feature images, they
used CNN. An approach to derive more significant byte sequence in a malware was
proposed by Yakura et al. (2018). The authors used CNN with attention mechanism to
achieve this for the images converted from binaries. MalNet method for malware detection
was proposed by Yan, Qi & Rao (2018). The method automatically learns essential
features from the raw data. The method generates grayscale images from opcode
sequences. Later, CNN and LSTM are used to learn important features from the grayscale
images. Fu et al. (2018) proposed an approach to visualize malware as an RGB-colored
image. Malware classification is performed by merging global and local features using
random forest, K-nearest neighbor, and support vector machine. The approach
realizes fine-grained malware classification with low computational cost by utilizing
the combination of global and local features. Liu et al. (2019) proposed a malware
classification framework based on a bag-of-visual-words (BoVW) model to obtain robust
feature descriptors of malware images. The model demonstrates better classification
accuracy even for more challenging datasets. The major limitation of this approach is
higher computational cost.

Chen et al. (2019) conducted an extensive study on the vulnerabilities of the CNN-based
malware detectors. The authors proposed two methods to attack recently developed
malware detectors. One of these methods achieve attack success rate over 99% which
strongly demonstrates the vulnerability of CNN-based malware detectors. The authors
also conducted experiments with pre-detection mechanism to reject adversarial
examples and shown its effectiveness in improving the safety and efficiency of malware
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detectors. Venkatraman, Alazab & Vinayakumar (2019) used similarity mining and
deep learning architecture to identify and classify obfuscated malware accurately.
The authors used eight different similarity measures to generate similarity matrices and to
identify malware family by adopting images of distance scores. The advantage of this
approach is that it requires less computational cost as compared to classical machine
learning based methods. Dai et al. (2018) proposed a malware detection method using
hardware features due to inherent deficiencies in software methods. The approach
dumps the malware memory of runtime to binary files, then grayscale image is extracted
from the binary files. A fixed size images are generated from the grayscale image and
histogram of gradient is used to extract image features. Finally, malware classification is
done using the popular classifier algorithms. One of the limitations for this approach
is that it cannot provide against fileless malware. Gibert et al. (2019) propose a file
agnostic deep learning approach for malware classification. The malicious software
are grouped into families based on a set of discriminant patterns extracted from their
visualization as images. Yoo, Kim & Kang (2020) propose multiclass CNNmodel to classify
exploit kits. On of the root of malware contamination are exploit kits. This type of attack
has rapidly increased and detection rate is quite low. The authors proposed limited
grayscale, size-based hybrid model and recursive image update method to enhance
classification accuracy.

Traditional machine learning methods are applied in most of the existing state of
the art. Our study uses a deep learning method and differs from most other studies
examined in this section. Deep learning methods are not algorithmically new and easy
to implement. They can be trained with high-performance computations on systems
such as GPUs. Today, they have become prevalent in the field of machine learning.
Some of the studies examined also used deep learning methods, but our approach differs
from these studies because we used five different deep CNN models for malware family
classification. It is evident from the results that 3-channel image classification can
significantly influence malware family detection’s performance. The main contribution
that makes this study stand out regarding the existing state of art examined in this section
is applying data augmentation enhanced malware family classification model. This model
exploits augmentation for variants of malware clones and take advantage of CNN to
improve image classification.

SYSTEM MODEL
The system architecture of the proposed model is composed into three different
components. The first component is image conversion of malware samples using decimal
representation and entropy values of each byte. The second component is image
augmentation component. The last one is CNN based malware family classification.

Image conversion
We used our publicly available malware dataset for this approach (https://github.com/
ocatak/malware_api_class. Malware samples collected from Github platform, in the first
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step, are labeled using ClamAV open source command-line antivirus software. The model
architecture is illustrated in Fig. 3. Every malware sample is split into their bytes.
In the second step, each byte is converted from bit representations to decimal
representation for the red channel. For instance, the byte representation with 10010110 is
converted to 150 as the decimal representation. In the third step, we calculated the entropy
value of the byte representations. As an example of the same byte value of 10010110, the
entropy value is 1.

The input of the first component of the malware detection system is a collection of
malware stored in different formats such as portable executable, Word, PDF. These
malware are then converted into 3-channels PNG files as shown in Fig. 3.
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Figure 3 The architecture of the proposed 3-channel image representation of malware samples.
Given input malware samples, RGB representations are computed by applying as explained in “Basic
Idea”. Full-size DOI: 10.7717/peerj-cs.346/fig-3
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Figure 4 shows an example pixel generation process. Each byte value of the executable
file is converted to its decimal representation for the red-channel, and the corresponding
entropy value for the blue-channel.

Data augmentation
The key problem with malware detection model is data diversity. There are many
alternative methods are available for solving these problems. One approach to solve this
problem involves the use of data augmentation. Data augmentation can be defined as a
strategy to artificially increase the variety of input instances for training phase, without
really collecting new instances.

Additive noise is the most used technique for data augmentation to build reliable machine
learning models. Gaussian, Laplacian and Poisson noises are the most used techniques to
enhance the input dataset. Laplacian noise is derived eventually from white (Gaussian)
noise (Hida & Si, 2008). They are the most used additive noise techniques to improve and
enhance the image datasets (Harmsen & Pearlman, 2003; Holmstrom & Koistinen, 1992).

Additive Gaussian
Additive Gaussian noise is a fundamental noise model used in information theory to
simulate the impact of many random methods that happen in nature (Selesnick, 2008).
The Additive Gaussian noise flow is represented by a series of outputs Yi at a discrete-time
event index i. Yi is the sum of the input Xi and noise, Zi, where Zi is independent and
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Figure 4 Example process of pixel generation from the opcode.
Full-size DOI: 10.7717/peerj-cs.346/fig-4
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identically distributed and picked from a zero-mean normal distribution, including
variance N. The Zi are further assumed to not be correlated with the Xi.

Zi � Nð0;NÞ
Yi ¼ Xi þ Zi

(1)

Additive Poisson
Poisson noise is a kind of noise that can be represented by a Poisson process
(Wojtkiewicz et al., 1999). A discrete random variable X is said to have a Poisson
distribution with parameter λ > 0, if, for k = 0, 1, 2, : : : , the probability mass function of X
is given by:

f ðk;�Þ ¼ PrðX ¼ kÞ ¼ �ke��

k!
(2)

where e is Euler’s number, and k! is the factorial of k.

Additive Laplace

The Laplace distribution is a continuous probability distribution that sometimes described
the double exponential distribution because it can be considered as two exponential
distributions with an extra location parameter joined together (Marks et al., 1978).

A random variable has a Laplace distribution if its probability density function is

f ðxjm; bÞ ¼ 1
2b

exp � jx � mj
b

� �

¼ 1
2b

exp �m� x
b

� �
if x,m

exp � x � m

b

� �
if x � m

8><
>:

(3)

Malware development
Malware developers try to hide the malicious code snippets they place on legitimate
software from malware analysts and antivirus programs using different methods. In
addition, malware software developers use codes and frameworks that belong to malware
families that perform similar malicious activities, rather than rebuilding malware code
fragments. For this reason, when these malware are converted into a executable file
(example: PE forWindows) to be suitable for the target platform on which they will be run,
they are very similar when binary analysis is performed. The signature-based security
components used today are very vulnerable to changes in the code, which reduces their
detection capabilities. Developers generally use two different methods to replace the
malicious code content when contaminated software infects from one host computer to
another computer; polymorphic and metamorphic malware.

In Metamorphic malware, the situation is a bit more complicated. Although the
obfuscation techniques are applied in the same way, this time the code flux is changed.
As seen in Fig. 5, a typical metamorphic malware has more components and its structure
has become more complex. This time malware has different components such as
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disassembler, code analyzer/permutator, code transformer, assembler, and malicious
payload.

PROPOSED APPROACH
This section presents the results of the data augmentation, data enhancement-based CNN
malware classification algorithm. The basic idea of Augmented-CNN based malware
classification techniques is introduced in “Basic Idea”. The implementation of the
porposed technique is described in “Implementation of the Model”.

Figure 6 shows the flowchart of the overall method. The process of malware
classification includes the following steps in the proposed solution:

� The system creates RGB images using Decimal Conversion, Entropy Conversion and
Zeros

� Gaussian, Poisson, and Laplace noises with their combinations are added to images to
enhance the input dataset.

� In the third step the system builds a CNN based classification model.

Basic idea
As previously mentioned in “Malware Development”, malware developers are trying to
evade security components using different methods. These methods are usually in the
form of adding noise to the executable files’ binary form. One of the areas dealing with
noisy data is the image classification task. One of the methods used to overcome this

Figure 5 Typical metamorphic malware propagation. Full-size DOI: 10.7717/peerj-cs.346/fig-5
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problem and to classify images from different angles in a more reliable way is the image
augmentation technique. As part of this study, malware samples have been converted
to 3-channel images. The evasion techniques that malware developers have added are
reflected in these images as noise. We used image augmentation techniques in this study
so that the noise in the images does not affect the classification performance.

We used the imgaug Python library for implementation and increased our dataset to
5 times using AdditiveGaussian, AdditiveLaplace and AdditivePoisson noise addition
methods. In Fig. 7, new images are created with different laplace noises for Trojan/Win32.
VBKrypt.C122300 malware.

Our main tasks are to enhance data using data augmentation and classify malware
samples according their family using malware images based CNNmodel. Malware images’
basic idea is create multi-channel images using byte streams and entropy values of each
8-bits streams. Table 1 presents notations to evaluate the malware classifier model
performance and the commonly used variables is presented for convenience.

Analysis of the proposed algorithm
The reason behind of this study is the idea that using the law of large numbers theory,
we have opportunity to obtain more accurate classifier model (for this work malware
classification) by creating new samples that is comparable to original models which are
created with original input instances.
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Figure 6 Flow chart of the overall system. Full-size DOI: 10.7717/peerj-cs.346/fig-6
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In the proposed approach, there is a set of augmentation functions that acts a data
creation source for CNNmodel. The single augmentation function, f maug , is defined as follows:

XðmÞ
aug ¼ f maugðXÞ (4)

The each augmented dataset, XðmÞ
aug , using each augmentation algorithm, f ðmÞ

aug , is
combined into a single enhanced dataset. The final augmented dataset is defined as follows:

Xaug ¼
[t
i¼1

XðiÞ
aug (5)

where t is the number of augmented dataset, XðiÞ
aug is the ith augmented dataset.

Figure 7 The different additive Laplace noise to Trojan/Win32.VBKrypt.C122300 malware.
Full-size DOI: 10.7717/peerj-cs.346/fig-7

Table 1 Commonly used variables and notations.

Variables/notations Description

X Original input dataset

Xaug Augmednted version of input dataset X

f maug Augmentation function m

ε Augmentation threshold

Acc Accuracy of the classifier

k Number of classes

t Number of augmentation functions
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Implementation of the model
The pseudocode of transformation of PE executable to multichannel images is shown in
Algorithm 1. The each member (e(i)) of collected Windows executable file set, E, is
converted multi-channel images in lines 5-6. For the first channel of the executable, one
byte is read and then converted to the decimal representation in line 5. The decimal value is
assigned to the first channel of the corresponding pixel, Rði; j; 0Þ. In the same way, this
byte’s entropy value is assigned to the second channel of the corresponding pixel,Rði; j; 1Þ.
We used imgaug library which uses 3-channel PNG images as input. On the other hand,
we created 2-channel PNG images in this research. Since the imgaug software library
requires three channels images, we had to fill the last channel, the Blue channel, with
zeros. Accordingly, our algorithm’s both time and space complexity is O(n).

The pseudocode of data-augmentation enhanced CNN malware detection are shown
in Algorithm 2. The augmentation procedure is implemented based on random noise
assigment of each channel of the training dataset,X, with a set of augmentation functions,
Faug.

EXPERIMENTS
In this section, we use our public malware dataset (https://github.com/ocatak/malware_
api_class). that can be accessed publicly. The malware classification model is compared
with the original dataset. In “Dataset Detail”, we explain the dataset and parameters that

Algorithm 1 PE malware to image conversion.

1: Inputs:
PE executable set E, image width w, image height h, channel size c

2: for each e(i) ∈ E do
3: R zeros(w,h, c) where R ∈ Rw×h×c ⊳ Create a zero filled matrix
4: for each byte value b(j) ∈ e(i) do
5: Rði; j; 0Þ decimal(b(j)) ⊳ 1st channel with value ∈ [0,255]
6: Rði; j; 1Þ −Sx∈b(j) (p(x) · log p(x)) ⊳ 2nd channel with entropy ∈ [0,255]
7: end for
8: end for
9: Outputs:

Image dataset X

Algorithm 2 Data enhancement.

1: Inputs:
X = {{(xi, yi) | i = 1, : : : , n}, xi ∈ Rp, yi ∈ {−1,+1}}mi = 1, Augmentation
function set Faug

2: Initialize X(i)
aug = X

3: for each f (i)aug ∈ Faug do
4: X(i)

aug ) f (i)aug(X)
5: X ) X ∪ X(i)

aug

6: end for
7: Outputs:

Enhanced dataset X
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are used in our experiments. The conventional CNN is applied the dataset and we find the
classification performance in “Dataset Results with Conventional CNN”. In “Dataset
Results with Proposed Method”, we show the emprical results of proposed augmented
CNN training algorithm.

Experimental setup
To our knowledge, there is no public benchmark dataset for malware images
approach to make an evaluation comparison. We apply our dataset with different
hyper-parameters to indicate the effectiveness and classification performance of the
proposed model.

The experiments are done using the Python programming language and machine
learning libraries Keras, Tensorflow, and Scikit-learn. We used the Keras library to build
CNN networks.

For the experimental setup to generate a model that is able to generalize, we divided the
dataset into two partitions: the training set with 80% of the dataset and the testing set with
20% of the dataset. The learning rate for the CNN was 0.01.

Dataset detail
We trained our classifiers with our public dataset which is summarized in Table 2 with
seven different classes including Worm, Downloader, Spyware, Adware, Exploit, Malware
and Benign.

There are 5,762 malware samples from different classes in this dataset. The Cuckoo
Sandbox application, as explained above, is used to obtain theWindows API call sequences
of malicious software, and VirusTotal Service is used to detect the classes of malware.

Figure 8 illustrates the system architecture used to collect the data and labeling process.
Our system consists of two main parts, data collection, and labeling.

Evaluation
Although the dataset that is applied in our method is almost balanced, performance
evaluation in terms of traditional accuracy not sufficient to obtain an optimal classifier.
Besides, we apply four metrics such as the overall prediction accuracy, average recall,

Table 2 Description of the training dataset used in the experiments.

Malware type #Inst.

Worm 1,620

Downloader 1,512

Spyware 582

Adware 1,146

Exploit 138

Malware 456

Benign 308

Total 5,762
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average precision Turpin & Scholer (2006) and F1-score, to estimate the classification
accuracy that are used as measurement metrics in machine learning common Manning,
Raghavan & Schütze (2008) and Makhoul et al. (1999).

Precision is the ratio of predicted positive classes to positive predictions. Precision is
estimated in Eq. (6).

Precision ¼ Correct
Correctþ False

(6)

Recall is the ratio of positive classes to the sum of positive correct estimation and false
negative. It can be called Sensitivity. Recall is indicated in Eq. (7).

Precision ¼ Correct
CorrectþMissed

(7)

First, our proposed evaluation model estimates precision and recall for each and then
calculate their mean. In Eqs. (8) and (9), we present average precision and recall.

Precisionavg ¼ 1
nclasses

Xnclasses�1

i¼0

Preci � num of instancesið Þ (8)

Figure 8 General system architecture. Architecture consists of three parts; data collection, data pre-
processing and data classification. Full-size DOI: 10.7717/peerj-cs.346/fig-8
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Figure 9 Accuracy changes over learning iterations. As can be seen, although the training dataset
shows more stable progress, the test dataset is less stable, although it progresses together.

Full-size DOI: 10.7717/peerj-cs.346/fig-9

Figure 10 Loss changes over learning iterations. As can be seen, although the training dataset shows
more stable progress, the test dataset is less stable, although it progresses together as in Fig. 9.

Full-size DOI: 10.7717/peerj-cs.346/fig-10
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Recallavg ¼ 1
nclasses

Xnclasses�1

i¼0

Recalli � num of instancesið Þ (9)

The average precision and recall values are calculated using the multiplication of recall
and the number of instance in the corresponding class. Precision and Recall are evaluated
together in F-measure. It is the harmonic mean of precision and recall. F-measure is
provided in Eq. (10).

F1 ¼ 2�Precavg � Recallavg
Precavg þ Recallavg

(10)

Dataset results with conventional CNN
Figure 9 presents the accuracy performance of the conventional CNN model for
our experimental data set. As shown in figure, the model becomes its steady state after

Figure 11 The confusion matrix of the CNN model, which was trained using the original dataset.
Full-size DOI: 10.7717/peerj-cs.346/fig-11
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80th epoch. Also, Fig. 10 shows the loss value changes of classification model through
epochs.

A confusion matrix is applied to evaluate the performance of our model. The findings
from Fig. 11 show the confusion matrix that was trained by using the original dataset by
using CNN model. The findings of the confusion matrix indicate that the classification
model performance is not good enough for the malware detection.

The testing classification performance is measured through accuracy, precision, recall
and F1 measure. Table 3 shows the best performance of the conventional CNN method of
each malware family.

As can be seen from the confusion matrix and classification report, the classification
performance of the model obtained with conventional CNN is rather low. According
to these results, a standard CNN model with RGB type 3-channel image training dataset is
not suitable for malware detection and classification.

Dataset results with proposed method
Figure 12 shows the accuracy change in each iteration of the CNN model, which is trained
with the malware dataset containing a different amount of noise. The performance
results of four CNN models, whose dataset is enriched by using both Additive Laplace,
Additive Gaussian, and Additive Poisson methods, are better than the CNN model’s
classification performance that is trained only with the original training data set. When the
noise ratio is 0.5, the original CNN model’s classification result is better than the CNN
model with the Additive Poisson method. When the noise ratio is increased to 0.8, the
classification results of CNN models with Additive Gaussian, Additive Laplace, and
Additive Poisson begin to decrease.

Figure 13 shows the accuracy change in each iteration of the CNN model, which is
trained with the malware dataset containing a different amount of noise with different
combination of noise models. The performance results of five CNN models, whose dataset
is enriched by using combination of Additive Laplace, Additive Gaussian and Additive
Poisson methods, are better than the CNN model’s classification performance that is
trained only with the original training data set. When the noise ratio is 0.4, the original

Table 3 Classification report of conventional CNN for each malware class.

Precision Recall F1

Worm 0.60 0.58 0.59

Downloader 0.82 0.11 0.20

Dropper 0.62 0.05 0.10

Spyware 0.39 0.69 0.50

Adware 0.22 0.72 0.34

Exploit 0.86 0.26 0.40

Malware 0.00 0.00 0.00

Benign 0.77 0.83 0.80
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CNN model’s classification result is better than the CNN model with the several
combination of noise injection methods.

Table 4 shows the accuracy changes with different noise methods and different noise
ratio. The fields shown as bold on the table show the best accuracy value of the column.
The best accuracy value for Poisson noise is obtained with 0.902 and 0.3 noise ratio,
the best accuracy value for Gaussian noise is obtained with 0.922 and 0.4 noise ratio,
and the best accuracy value for Laplace noise is obtained with 0.819 and 0.2 noise ratio.
According to the table, we obtain the best classification performance with the Gaussian
noise’s 0.4 noise ratio.

Figure 12 The different noise ratio accuracy results for additive Laplace/Gaussian/Poisson and
original CNN model’s accuracy results. Noise scale: (A) 0.01; (B) 0.2; (C) 0.4; (D) 0.6; (E) 0.8
and (F) 1.0. Full-size DOI: 10.7717/peerj-cs.346/fig-12
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Table 5 shows the accuracy changes with the different combination of noise methods
and different noise ratio. The fields shown as bold on the table show the best accuracy
value of the column. The best accuracy value for Poisson/gaussian noise is obtained
with 0.93 and 0.2 noise ratio, the best accuracy value for Poisson/laplace noise is obtained

Figure 13 The different noise ratio accuracy results for the combination of additive Laplace/
Gaussian/Poisson and original CNN model’s accuracy results. Noise scale: (A) 0.01; (B) 0.2; (C) 0.4;
(D) 0.6; (E) 0.8 and (F) 1.0. Full-size DOI: 10.7717/peerj-cs.346/fig-13
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with 0.95 and 0.01 noise ratio, the best accuracy value for Laplace/gaussian noise is
obtained with 1.00 and 0.01 noise ratio.

The best classification performance is performed by using the Poisson noise with 0.01
value has a 100% classification performance. Figure 14 shows the confusion matrix of the
malware detection model with the best classification performance.

Table 4 Noise injection accuracy results. The bold entries show the best values.

Noise ratio Orginal model Poission Gaussian Laplace

0.01 0.83 1.00 0.96 0.99

0.2 0.83 0.95 0.99 0.87

0.4 0.83 0.95 0.95 0.98

0.6 0.83 0.60 0.98 0.92

0.8 0.83 0.49 0.94 0.35

0.0 0.83 0.33 0.80 0.48

Figure 14 The confusion matrix of the CNN model with best data noise injection ratio.
Full-size DOI: 10.7717/peerj-cs.346/fig-14
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CONCLUSION AND FUTURE WORK
The primary purpose of this research study is to detect malware families in a metamorphic
malware environment using an image augmentation enhanced deep CNN model. The
architecture of the model consists of three main components: image generation from
malware samples, image augmentation, and classifying the malware families by using
CNN models. In the first component, the collected malware samples are converted into
binary representation using the windowing technique. The imgaug Python library is used
to apply image augmentation techniques in the second component. The dataset is
enhanced using additive noise techniques such as Gaussian, Laplacian, and Poisson.
We apply it to our dataset with different hyper-parameters to demonstrate the proposed
model’s effectiveness and classification performance. Finally, we train our classifier on our
public dataset with seven different classes, including Worm, Downloader, Spyware,
Adware, Exploit, Malware and 346 Benign. The model reaches its steady-state after the
80th epoch.

We observe that the training dataset shows more stable progress as compared to the
test dataset, although both progress together. We apply four different metrics to evaluate
the classification accuracy, such as the overall prediction accuracy, average recall, average
precision and F1-score. The confusion matrix results indicate that the classification
model performance is not good enough for malware detection. The classification
performance of the model obtained with conventional CNN is relatively low. According
to these results, a standard CNN model with an RGB type 3-channel image training
dataset is not suitable for malware detection and classification. The augmentation is
measured with varying noise ratio to assess the effectiveness of the learning algorithm.
This article’s main contribution is to propose a data augmentation enhanced malware
family classification model that exploits augmentation for variants of malware clones and
takes advantage of CNN to improve image classification. It is evident from the results of
this research that the data augmentation based on 3-channel image classification can
significantly influence the performance of malware family classification. In future work,
we intend to classify the correctly labeled dataset using the malware images method.
We also plan to apply other sequential data classification algorithms used before deep
learning.

Table 5 The best accuracy rates for the combination of each noise type. The bold entries show the best
accuracy values.

Noise Org Poisson/Gaussian Poisson/Laplace Laplace/Gaussian All

0.01 0.83 0.90 0.95 0.98 0.96

0.2 0.83 0.93 0.90 0.95 0.95

0.4 0.83 0.90 0.71 0.90 0.42

0.6 0.83 0.47 0.52 0.38 0.76

0.8 0.83 0.52 0.47 0.76 0.66

0.0 0.83 0.76 0.52 0.47 0.76
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