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ABSTRACT
Background: Accurate prediction of intravenous (IV) fluid utilization in emergency
departments (ED) is essential for optimal clinical decision-making, resource
allocation, and patient management. However, existing predictive models typically
rely solely on structured clinical variables, overlooking the rich, contextual insights
available in unstructured patient narratives. This study aimed to develop and
evaluate predictive models that integrate structured clinical data with natural
language processing (NLP)-derived embeddings from unstructured patient
narratives to enhance prediction accuracy for IV fluid administration in ED settings.
Methods: We analyzed a large dataset from the National Hospital Ambulatory
Medical Care Survey—Emergency Department (NHAMCS-ED, n = 13,115),
comprising both structured patient demographics and clinical variables, alongside
unstructured chief complaints. Patient narratives were processed using three distinct
Natural Language Processing (NLP) techniques: CountVectorizer, Word2Vec
embeddings, and pre-trained GPT-2 embeddings. An early fusion strategy was
employed, concatenating structured and unstructured features before feeding them
into Logistic Regression (LR) and Gradient Boosting Classifier (GBC) models. Model
performance was evaluated using 5-fold cross-validation, with the area under the
receiver operating characteristic curve (AUC) as the primary metric.
Results: The integrated models, which combined structured clinical variables with
NLP features from patient narratives, consistently demonstrated superior predictive
performance over models using either data type alone. We compared several NLP
techniques, including CountVectorizer, Word2Vec, and pre-trained Generative Pre-
trained Transformer 2 (GPT-2) embeddings. Unexpectedly, the integrated models
using traditional NLP features, particularly CountVectorizer, achieved the best
performance, reaching an AUC of 0.786 with the Gradient Boosting Classifier (GBC)
and 0.781 with logistic regression. These results outperformed the integrated model
using GPT-2 embeddings (GBC AUC = 0.772). This suggests that for the short,
keyword-driven patient complaints found in the emergency department,
frequency-based methods may be more effective at extracting predictive signals.
Conclusions: Our findings confirm that integrating patient narratives with
structured clinical data significantly enhances predictive accuracy for IV fluid
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utilization. This multimodal approach, particularly when leveraging traditional NLP
models like CountVectorizer, provides a robust framework for improving clinical
decision-making, resource allocation, and patient care in the ED. The study
highlights the critical importance of aligning NLP model choice with the specific
characteristics of clinical text data.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Natural Language and Speech, Neural Networks
Keywords Intravenous fluid utilization, Emergency department, Predictive modeling,
Clinical decision support, Natural language processing, GPT-2 embeddings

INTRODUCTION
Intravenous (IV) fluid therapy (Hoste et al., 2014;Myburgh & Mythen, 2013) is commonly
administered in emergency departments (EDs), playing a critical role in managing
conditions ranging from mild dehydration to severe, life-threatening illnesses requiring
urgent fluid resuscitation. Despite its routine use, variability and uncertainty persist
regarding IV fluid administration decisions, potentially leading to inconsistent patient
care, unnecessary resource utilization, and adverse patient outcomes (Pines, Griffey &
Cone, 2015). Optimizing the decision-making process for IV fluid use can substantially
enhance clinical effectiveness, patient safety, and operational efficiency (Kawamoto et al.,
2005).

Advancements in medical informatics, particularly the widespread implementation of
electronic health records (EHRs), have facilitated access to extensive datasets comprising
both structured clinical variables and unstructured patient narratives (Hripcsak & Albers,
2013; Jensen, Jensen & Brunak, 2012). Structured data typically include quantifiable metrics
such as demographic information, vital signs, medical history, and clinical severity
indicators. While structured data offer easily interpretable and standardized measures,
they often fail to capture the complete clinical context required for precise patient
management decisions. In contrast, unstructured data, such as narrative text documented
by clinicians during patient visits, provide richer context and nuanced details that are often
absent from structured data (Meystre et al., 2017; Xiao, Choi & Sun, 2018).

Recent developments in natural language processing (NLP), especially
transformer-based models such as Generative Pre-trained Transformer 2 (GPT-2), have
revolutionized the extraction and interpretation of critical medical insights from
unstructured textual data (Kreimeyer et al., 2017; Lee et al., 2020; Radford et al., 2019).
These advanced NLP methods enable sophisticated understanding and quantification of
patient narratives, which can significantly augment clinical predictions derived from
structured data alone (Esteva et al., 2019; Wu et al., 2020). Indeed, prior research has
consistently demonstrated the value of combining these data modalities for a range of
clinical predictions, from inpatient mortality and 30-day readmissions (Rajkomar et al.,
2018) to predicting patient disposition from the ED (Hong, Haimovich & Taylor, 2018).
These studies affirm that unstructured narratives contain diagnostic and prognostic
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information often absent from structured fields alone. However, while the general benefit
of data fusion is recognized, its application to resource-specific predictions like IV fluid
utilization remains less explored. Furthermore, which NLP techniques are most effective
for extracting signals from the short, keyword-driven texts common in the ED is an area
requiring further investigation.

This study aimed to address this gap by developing and evaluating predictive models of
IV fluid utilization in emergency departments using structured clinical data and
NLP-derived insights from unstructured patient narratives. The primary objective was to
assess whether an integrated predictive modeling approach, combining structured and
unstructured data, would yield superior performance compared to models relying
exclusively on either data type. Such models could inform clinical decisions, enhance
patient care management, and optimize resource allocation in emergency medical practice.

METHOD
The overall pipeline of our study is illustrated in Fig. 1. The process begins with data
acquisition from the NHAMCS-ED dataset, followed by cleaning and a train/test split. The
data is then separated into two streams: a structured data stream and an unstructured text
stream. For the text data, we extracted features using three distinct NLP techniques:
CountVectorizer, Word2Vec, and pre-trained GPT-2 embeddings. Finally, both
single-modality (structured-only, unstructured-only) and integrated (combined via early
fusion) datasets were used to train and evaluate Logistic Regression (LR) and Gradient
Boosting Classifier (GBC) models for predicting IV fluid administration.

Computing infrastructure
This study was conducted using a standard Google Colab environment. The experiments
were performed on a typical Ubuntu-based system with available CPU and GPU resources
provided by Colab, without the use of any specialized hardware. This setup was adequate
for executing data preprocessing and model training tasks efficiently.

Reproducibility and code repository
All experiments and analyses presented in this study are fully reproducible using the
provided code and data. The complete implementation—including data preprocessing,
model training, evaluation, and result visualization—is documented in a series of Jupyter
notebooks designed to run on Google Colab. Detailed instructions, including environment
setup and dependency installation, are provided in the repository’s README file. The
code leverages Python libraries such as scikit-learn, pandas, numpy, and transformers,
ensuring that researchers can replicate the experiments using publicly available tools and
datasets. The repository, along with the necessary datasets and instructions, is available at
https://doi.org/10.5281/zenodo.17116941.

Data preprocessing
This study conducted a retrospective analysis using data from the 2021 National
Hospital Ambulatory Medical Care Survey–Emergency Department (NHAMCS-ED)
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(Cairns & Kang, 2022), a nationally representative database of ED visits across the United
States. The analytic sample included 13,115 adult patients aged 18 years or older after
excluding pediatric cases. The dataset contained structured data—including demographic
details, clinical characteristics, and medical histories—as well as unstructured data
comprising free-text patient narratives documenting chief complaints and injury reasons.

Structured data variables consisted of demographics (age, sex, race/ethnicity), visit
information (arrival time, mode of transportation, visit type), clinical measurements
(temperature, heart rate, respiratory rate, pulse oximetry, pain levels), and the Emergency
Severity Index (ESI) score. Medical history included chronic conditions such as
Alzheimer’s disease, diabetes, chronic obstructive pulmonary disease, and coronary artery
disease. Additional structured factors were residence type, insurance type, presence of
injury, trauma, poisoning, or adverse medical effects. Missing data was addressed using
median imputation. Unstructured data encompassed free-text patient-reported chief
complaints and descriptions of injuries, providing additional clinical insights beyond
structured metrics. NLP techniques were utilized to transform narrative text into
meaningful predictive variables.

The study population was characterized using descriptive statistics stratified by IV fluid
administration status. Frequencies and percentages were reported for categorical variables,
and comparisons were conducted using chi-square tests. Multivariable logistic regression
was performed to identify independent predictors of IV fluid utilization, employing a
stepwise variable selection process to enhance model interpretability and reduce
multicollinearity. Statistical significance was defined at a p-value of <0.05, with all
hypothesis tests conducted as two-sided analyses.

Natural language processing feature extraction

CountVectorizer: We implemented a bag-of-words (BoW) model using scikit-learn’s
CountVectorizer. The raw text of patient complaints was first preprocessed by converting
to lowercase and removing special characters. We configured the vectorizer to build a

Figure 1 Overall pipeline for predicting IV fluid administration in the ED.
Full-size DOI: 10.7717/peerj-cs.3441/fig-1
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vocabulary of the top 500 features based on term frequency across the corpus, considering
both unigrams and bigrams (ngram_range = (1, 2)). To ensure robustness, terms that
appeared in fewer than two documents (min_df = 2) or in more than 95% of documents
(max_df = 0.95) were excluded. English stop words were also removed.

Word2Vec: To capture semantic relationships between words, we trained a custom
Word2Vec model using the gensim library. The narrative texts were tokenized and fed into
a Continuous Bag-of-Words (CBOW) model (sg = 0). The model was configured with a
vector size of 100, a window size of 5, and a minimum word count of 2. The model was
trained for 10 epochs. For each patient narrative, a single feature vector was generated by
averaging the vectors of all words present in that text and in the model’s vocabulary.

GPT-2 embeddings: For a transformer-based representation, we utilized a pre-trained
GPT-2 model from the transformers library. Each patient narrative was tokenized and
processed in batches to generate embeddings. We extracted the hidden state of the first
token (often representing the (CLS) token’s aggregated sentence meaning) from the last
layer of the model as the fixed-size embedding for each text.

Predictive modeling and integration strategy
Predictive models were developed using structured and unstructured data separately and
subsequently integrated through an early fusion approach. Structured data models
included LR (Stoltzfus, 2011) and GBC (Chen & Guestrin, 2016; Natekin & Knoll, 2013),
with hyperparameter tuning to optimize performance parameters such as tree depth,
learning rate, and number of estimators. For unstructured data, narrative entries from
patient records were processed using the Generative Pre-trained Transformer 2 (GPT-2)
model, generating numerical embeddings that were inputs for logistic regression and GBC
models. For the integrated models, we employed an early fusion approach where the
normalized structured features were horizontally concatenated with the NLP-derived text
features (from CountVectorizer, Word2Vec, or GPT-2, respectively) to create a single,
unified feature matrix for each NLP method. These combined matrices were then used as
input for the LR and GBC models. Model performance was assessed through 5-fold
cross-validation to ensure robustness and reduce potential overfitting.

Evaluation method
Evaluation metrics included accuracy, sensitivity, specificity, and the area under the
receiver operating characteristic (ROC) curve (AUC). The optimal decision thresholds
were identified based on ROC analysis, balancing clinical sensitivity and specificity
(Steyerberg et al., 2010).

Study design and ethical considerations
This research utilized publicly available, anonymized data from NHAMCS-ED, managed
by the U.S. Centers for Disease Control and Prevention. As this secondary analysis
involved de-identified data, the study received exempt approval from the Institutional
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Review Board (IRB) at the University of Pittsburgh (protocol STUDY24120115), adhering
to ethical guidelines for secondary data use.

RESULTS
A total of 13,115 adult patients were included in this analysis, of which 4,193 (32.0%)
received intravenous (IV) fluids during their ED visits (Table 1). Patients who received IV
fluids were more frequently female (56.1% vs. 53.0%, p = 0.0008), older (28.8% aged ≥65
years vs. 19.6%, p < 0.0001), and predominantly White (65.1% vs. 56.1%, p < 0.0001). They
were also more likely to reside in nursing homes (3.4% vs. 1.5%, p < 0.0001) and had higher
proportions of Medicare insurance coverage (33.9% vs. 23.7%, p < 0.0001). Clinically, IV
fluid recipients showed greater severity indicators, such as higher rates of ambulance
arrival (29.2% vs. 17.3%, p < 0.0001), severe or unbearable pain levels (31.1% vs. 28.1%,
p = 0.0187), elevated body temperature above 38�C (3.6% vs. 1.1%, p < 0.0001), increased
heart rates greater than 90 bpm (44.7% vs. 36.0%, p < 0.0001), lower oxygen saturation
levels (15.2% vs. 8.2% with pulse oximetry ≤94%, p < 0.0001), and elevated respiratory rates
greater than 20 breaths per minute (14.1% vs. 6.6%, p < 0.0001). Additionally, IV fluid
recipients more often presented with conditions related to overdose, poisoning, adverse
medical effects, or trauma (21.6% vs. 36.2%, p < 0.0001) and had higher Emergency
Severity Index scores categorized as immediate or emergency (28.4% vs. 14.3%, p < 0.0001).
Patients receiving IV fluids also had notably higher prevalence of chronic conditions,
including coronary artery disease (12.4% vs. 5.7%, p < 0.0001), diabetes mellitus type II
(12.6% vs. 7.9%, p < 0.0001), hypertension (41.8% vs. 28.5%, p < 0.0001), chronic kidney
disease (7.7% vs. 3.5%, p < 0.0001), and obesity (10.3% vs. 7.5%, p < 0.0001).

Figure 2 presents a heatmap visualizing the percentage point differences in demographic
and clinical characteristics between patients who received IV fluids and those who did not.
This visualization highlights the most significant differentiating factors. Notably, patients
with an ‘Urgent’ or ‘Semi-urgent’ Emergency Severity Index score, those with a history of
hypertension or diabetes, and those arriving by ambulance showed a markedly higher
prevalence in the IV fluid group. Conversely, patients presenting with trauma or injury
were substantially less likely to receive IV fluids, likely because their treatments were
focused on other interventions. This graphic representation complements the detailed
statistics provided in Table 1.

Figure 3 presents a forest plot illustrating odds ratios (ORs) and corresponding 95%
confidence intervals (CIs) for significant predictors of IV fluid utilization derived from
multivariable logistic regression analysis. The plot visually depicts the relative influence of
various patient demographics, clinical characteristics, and medical histories on the
likelihood of receiving IV fluids in emergency department visits. Key findings include
notably higher odds for IV fluid administration among patients arriving by ambulance
(OR = 1.99, 95% CI [1.82–2.17]), those aged ≥65 years (OR = 2.05, 95% CI [1.86–2.25]),
patients with elevated temperatures (>38 �C; OR = 3.27, 95% CI [2.52–4.25]), and elevated
respiratory rates (>20 breaths per minute; OR = 2.41, 95% CI [2.13–2.73]). Additionally,
patients categorized with higher Emergency Severity Index (immediate or emergency) and
those experiencing injury or adverse medical effects also exhibited significantly increased
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Table 1 Demographic and clinical characteristics of emergency department patients categorized by IV Fluid utilization.

IV fluid

No Yes p value

8,922 (68.0%) 4,193 (32.0%)

Gender 0.0008

Female 4,728 (53%) 2,354 (56.1%)

Male 4,194 (47%) 1,839 (43.9%)

Age, y <0.0001

18–39 3,864 (43.3%) 1,295 (30.9%)

40–65 3,312 (37.1%) 1,692 (40.4%)

>=65 1,746 (19.6%) 1,206 (28.8%)

Race/ethnicity <0.0001

White 5,008 (56.1%) 2,729 (65.1%)

Black 2,140 (24%) 883 (21.1%)

Hispanic 1,393 (15.6%) 434 (10.4%)

Other 381 (4.3%) 147 (3.5%)

Residence type <0.0001

Private residence 8,171 (94.2%) 3,881 (94.6%)

Nursing home 128 (1.5%) 138 (3.4%)

Homeless 264 (3%) 50 (1.2%)

Other 111 (1.3%) 33 (0.8%)

Insurance type <0.0001

Private insurance 2,264 (28.1%) 1,218 (31.9%)

Medicare 1,905 (23.7%) 1,296 (33.9%)

Medicaid or CHIP 2,854 (35.4%) 945 (24.7%)

Uninsured 686 (8.5%) 255 (6.7%)

Other 345 (4.3%) 105 (2.7%)

Day of week 0.0814

Weekdays 6,626 (76.2%) 3,184 (77.6%)

Weekend 2,071 (23.8%) 919 (22.4%)

Arrival time 0.7501

Morning 2,480 (28.6%) 1,207 (29.3%)

Afternoon 2,718 (31.3%) 1,262 (30.6%)

Evening 1,372 (15.8%) 640 (15.5%)

Night 2,104 (24.3%) 1,014 (24.6%)

Arrive by ambulance <0.0001

Yes 1,496 (17.3%) 1,198 (29.2%)

No 7,169 (82.7%) 2,898 (70.8%)

Follow-up visit <0.0001

No 7,373 (91.7%) 3,682 (93.8%)

Yes 667 (8.3%) 245 (6.2%)

Seen within last 72 h 0.7539

Yes 338 (4.3%) 164 (4.1%)

(Continued)
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Table 1 (continued)

IV fluid

No Yes p value

No 7,553 (95.7%) 3,796 (95.9%)

Pain level 0.0187

No or mild pain 2,111 (39%) 1,013 (37.7%)

Moderate or severe pain 1,775 (32.8%) 836 (31.1%)

Very severe and unbearable pain 1,521 (28.1%) 836 (31.1%)

Temperature <0.0001

36�C – 38�C 7,950 (95.6%) 3,680 (92.8%)

<= 36�C 273 (3.3%) 142 (3.6%)

> 38�C 95 (1.1%) 142 (3.6%)

Heart rate, times/min <0.0001

<= 60 381 (4.6%) 181 (4.4%)

> 90 2,998 (36%) 1,824 (44.7%)

61–90 4,960 (59.5%) 2,074 (50.8%)

DBP mm Hg <0.0001

< 60 430 (5.1%) 324 (7.9%)

60–80 3,756 (44.4%) 1,809 (44.2%)

> 80 4,279 (50.5%) 1,957 (47.8%)

SBP mm Hg <0.0001

< 80 6 (0.1%) 18 (0.4%)

80–120 1,924 (22.7%) 979 (24%)

> 120 6,542 (77.2%) 3,090 (75.6%)

Pulse oximetry (percent) <0.0001

0–94 678 (8.2%) 620 (15.2%)

95+ 7,599 (91.8%) 3,446 (84.8%)

Respiratory rate per minute <0.0001

< 12 24 (0.3%) 19 (0.5%)

12–20 7,802 (93.1%) 3,481 (85.5%)

> 20 551 (6.6%) 573 (14.1%)

Injury/trauma, overdose/poisoning or adverse effect of medical/surgical treatment <0.0001

Yes, injury/trauma 2,585 (30.6%) 567 (14.1%)

Yes, overdose/poisoning 83 (1%) 56 (1.4%)

Yes, adverse effect of medical/surgical treatment 219 (2.6%) 142 (3.5%)

No 5,385 (63.8%) 3,156 (78.4%)

Questionable injury status 165 (2%) 106 (2.6%)

Emergency severity index <0.0001

Immediate 85 (1.5%) 117 (3.8%)

Emergency 721 (12.8%) 760 (24.6%)

Urgent 2,820 (50.1%) 2,002 (64.8%)

Semi-urgent 1,752 (31.1%) 187 (6.1%)

Non-urgent 248 (4.4%) 24 (0.8%)
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odds. Chronic conditions such as congestive heart failure, coronary artery disease, chronic
kidney disease, diabetes, cancer, and hypertension significantly contributed to the
likelihood of IV fluid administration. Conversely, factors associated with reduced
likelihood included non-White race/ethnicity, residence in nursing homes or
homelessness, and patients on Medicaid or uninsured. This detailed representation
emphasizes clinically relevant predictors influencing IV fluid use, highlighting critical
factors for clinical decision-making and resource optimization in emergency settings.

Figure 4 reports results for the LR models and Fig. 5 for GBC models, each using three
NLP representations of the unstructured narratives—CountVectorizer, Word2Vec, and
pre-trained GPT-2. Across both model families, combined models that integrated
structured and unstructured data consistently outperformed models using either data type
alone, regardless of the NLP technique. Among the NLP methods, clear performance
differences emerged: in the GBC analyses (Fig. 3), the combined CountVectorizer model
achieved the best AUC (0.786), followed by Word2Vec (0.785) and GPT-2 (0.772); the
unstructured-only models showed the same ordering (CountVectorizer 0.735, Word2Vec

Table 1 (continued)

IV fluid

No Yes p value

Medical history

Alzheimer’s disease/Dementia 113 (1.3%) 93 (2.2%) <0.0001

Asthma 917 (10.3%) 485 (11.6%) 0.028

Cancer 320 (3.6%) 338 (8.1%) <0.0001

Cerebrovascular disease/History of stroke (CVA) 330 (3.7%) 252 (6%) <0.0001

Chronic kidney disease (CKD) 313 (3.5%) 324 (7.7%) <0.0001

Chronic obstructive pulmonary disease (COPD) 511 (5.7%) 404 (9.6%) <0.0001

Congestive heart failure (CHF) 352 (3.9%) 327 (7.8%) <0.0001

Coronary artery disease (CAD) 509 (5.7%) 522 (12.4%) <0.0001

Depression 1,266 (14.2%) 704 (16.8%) 0.0001

Diabetes mellitus (DM)—Type I 52 (0.6%) 50 (1.2%) 0.0003

Diabetes mellitus (DM)—Type II 709 (7.9%) 528 (12.6%) <0.0001

End-stage renal disease (ESRD) 89 (1%) 96 (2.3%) <0.0001

Pulmonary embolism (PE), DVT, or venous thromboembolism (VTE) 176 (2%) 105 (2.5%) 0.058

HIV infection/AIDS 102 (1.1%) 39 (0.9%) 0.3111

Hyperlipidemia 993 (11.1%) 759 (18.1%) <0.0001

Hypertension 2,547 (28.5%) 1,752 (41.8%) <0.0001

Obesity (BMI >= 30) 673 (7.5%) 430 (10.3%) <0.0001

Obstructive sleep apnea (OSA) 251 (2.8%) 203 (4.8%) <0.0001

Osteoporosis 87 (1%) 72 (1.7%) 0.0004

Substance abuse or dependence 868 (9.7%) 444 (10.6%) 0.1336

Note:
The variables “Respiratory Rate,” “Temperature,” “Pulse Oximetry,” “Heart Rate,” “Payment Type,” “Seen Within Last 72 Hours,” and “Episode of Care” have missing
data proportions ranging between 5% and 10%. The variables “Arrival Time,” “Patient Residence,” “Arrival by Ambulance,” “Systolic Blood Pressure,” “Diastolic Blood
Pressure,” and “Visit Related to Injury/Trauma, Overdose/Poisoning, or Adverse Effect of Medical/Surgical Treatment” have missing data proportions of less than 5%.
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Figure 2 Heatmap of group differences (percentage points). Full-size DOI: 10.7717/peerj-cs.3441/fig-2
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Figure 3 Forest plot of odds ratios with 95% CI (log scale). Full-size DOI: 10.7717/peerj-cs.3441/fig-3
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0.725, GPT-2 0.698). For LR (Fig. 2), the combined models followed the identical pattern
(CountVectorizer 0.781, Word2Vec 0.775, GPT-2 0.766). Taken together, these results
indicate that while incorporating patient narratives is critical, simpler keyword-based
representations are more effective than a complex, context-based pre-trained model like
GPT-2 for extracting predictive signal from the short emergency department
chief-complaint texts.

DISCUSSION
This study evaluated the predictive capability of integrating structured clinical variables
with unstructured patient narratives to forecast IV fluid administration in ED settings. The
primary finding confirms that an integrated, multimodal approach consistently
outperforms models that rely on either structured or unstructured data alone. This aligns
with emerging evidence supporting the fusion of diverse data sources to enhance the
accuracy and efficiency of clinical decision-making. The improved performance
underscores that patient narratives contain crucial, clinically relevant information not fully
captured by traditional structured metrics (Su et al., 2022; Zhang et al., 2019, 2024).

Figure 4 Mean ROC curves for LR models predicting emergency department IV fluid utilization.
Full-size DOI: 10.7717/peerj-cs.3441/fig-4

Figure 5 Mean ROC curves for GBC models predicting emergency department IV fluid utilization.
Full-size DOI: 10.7717/peerj-cs.3441/fig-5
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A key and unexpected finding of this study, however, emerged from our comparative
analysis of different NLP techniques. Contrary to the prevailing trend of leveraging large,
complex models, we found that traditional NLP methods, specifically the frequency-based
CountVectorizer model, yielded superior predictive performance compared to the
advanced, pre-trained GPT-2 transformer model (Shaik et al., 2023). This suggests that for
the specific task of predicting IV fluid utilization based on short ED chief complaints, the
choice of NLP methodology is not trivial and “more complex” does not necessarily mean
“more effective”.

Our primary finding that an early fusion of features provides a significant performance
boost is consistent with previous work in the ED setting. For example, Hong, Haimovich &
Taylor (2018) found that incorporating chief complaint text features with structured triage
data significantly improved the prediction of hospital admissions. Our results, however,
provide a crucial, nuanced counterpoint to the narrative that newer, more complex NLP
models are always superior. While unexpected, this finding is not without precedent. In a
comparison of transformer models and bag-of-words for classifying radiology reports, Lu,
Ehwerhemuepha & Rakovski (2022) noted that the performance gain from a sophisticated
Clinical-BERT model over simpler baselines was modest, highlighting that model
complexity must be justified by the task. Our study extends this concept, demonstrating
that for the concise, keyword-driven nature of ED chief complaints, the efficient keyword
detection of a CountVectorizer model is more effective than the deep contextual
understanding of a general-purpose transformer.

We hypothesize several reasons for this outcome. First, the nature of clinical text in the
ED is typically short, factual, and keyword-driven (e.g., “chest pain,” “shortness of breath”).
“Bag-of-words” models like CountVectorizer excel at capturing the presence and
frequency of these critical keywords, which are themselves powerful predictive signals.
Second, the strength of models like GPT-2 lies in understanding nuanced syntax and
long-range context, which are largely absent in these brief patient complaints. Attempting
to model deep context in short, factual text may introduce noise rather than improving
signal detection. Finally, the GPT-2 embeddings used were from a general-purpose model,
not fine-tuned on medical text. In contrast, CountVectorizer builds its vocabulary directly
from the task-specific data, making its features highly relevant and optimized for this
particular clinical dataset. Our findings thus highlight the critical importance of aligning
model choice with data characteristics.

Despite the variations in NLP model performance, the key clinical predictors identified
by our best-performing models remained consistent and clinically coherent. Factors such
as arrival by ambulance, older age, a history of coronary artery disease, and elevated heart
rate prominently emerged as significant predictors of IV fluid administration. The
identification of these factors, which logically align with higher patient acuity, reinforces
the clinical validity and applicability of the integrated modeling approach. This
demonstrates that such models can reliably capture the key indicators that influence
real-world clinical decision-making in emergency care.
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The implications of this study for healthcare informatics are twofold. It reinforces the
value of leveraging unstructured narrative data, but it also serves as a crucial reminder that
the optimal NLP approach is task-dependent. For clinical prediction tasks involving short,
keyword-rich text, simpler, more interpretable, and computationally efficient models may
be superior to large, general-purpose language models. This methodological insight is
valuable, suggesting that future research should focus not just on applying the newest
models, but on rigorously comparing different techniques to find the best fit for specific
clinical problems. This approach could be expanded to enhance predictive models for
various other clinical outcomes and resource allocation challenges in healthcare.

CONCLUSIONS
In conclusion, this study demonstrates that integrating structured clinical data with
unstructured patient narratives substantially improves the accuracy of predictive models
for IV fluid utilization in emergency departments. Our research further reveals that for the
short clinical texts characteristic of emergency chief complaints, traditional NLP
techniques like CountVectorizer are more effective at extracting predictive features than
advanced, pre-trained GPT-2 models. This multimodal approach, combining the
interpretability of logistic regression and the high performance of Gradient Boosting, offers
a robust framework for enhancing clinical decision-making, streamlining resource
allocation, and elevating patient care.

Model justification
The selection of predictive models was guided by the dual requirements of clinical
interpretability and high predictive accuracy, which are essential for developing
trustworthy decision support tools in an emergency department setting.

Logistic Regression (LR) was chosen primarily for its transparency. In a clinical context,
understanding why a model makes a certain prediction is often as important as the
prediction itself. LR’s straightforward parameter estimates allow clinicians to easily
interpret the influence of each predictor on the likelihood of IV fluid administration. This
level of interpretability is critical for building trust and facilitating the adoption of
predictive tools in clinical practice, as it provides clear, actionable insights.

Gradient Boosting Classifier (GBC) was selected to maximize predictive performance. As
a powerful ensemble method, GBC is highly effective at capturing the complex, non-linear
relationships and interactions among variables that are common in heterogeneous clinical
datasets. By leveraging its robust predictive capabilities, GBC serves as a benchmark for the
high-end accuracy achievable on this task, ensuring that our performance evaluation is
rigorous.

By employing this dual-model strategy, our study provides a comprehensive analytical
framework. It balances the need for clinically actionable insights (from LR) with the goal of
achieving high-fidelity, data-driven predictions (from GBC), thereby offering a more
complete and practical solution for resource planning and clinical decision support in
the ED.
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Limitation and future work
Several limitations should be acknowledged. First, the study’s retrospective design and
reliance on the NHAMCS-ED dataset may introduce biases inherent to observational data,
including missing data and coding inaccuracies. However, rigorous data preprocessing and
imputation methods were applied to mitigate these issues. Second, the model’s
generalizability should be validated through prospective studies and external datasets from
diverse healthcare settings to ensure broader applicability and robustness. Future research
should explore further refinements of NLP methodologies and investigate real-time
integration of predictive models within electronic health records to support clinical
decision-making actively (Obermeyer & Emanuel, 2016).

Evaluating the practical impact of these models on clinical outcomes and resource
optimization through prospective, randomized controlled trials could provide additional
evidence of their value in clinical practice. Third, our study employed an early fusion
technique, where normalized structured clinical features and NLP-derived text features
(from CountVectorizer, Word2Vec, or GPT-2) were concatenated prior to model training.
While this method effectively integrated information from both modalities and
demonstrated improved performance, it represents a relatively straightforward approach
to multimodal data integration. Future work could explore more sophisticated fusion
strategies, such as attention-based models or joint embedding methods, which might better
capture the complex, synergistic interplay between structured and unstructured data.
These advanced approaches could potentially offer enhanced robustness in handling
common challenges inherent in EHR data, such as sparsity and irregularity.
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