Submitted 13 May 2024
Accepted 10 November 2025
Published 2 January 2026

Corresponding author
Zebulun Arendsee,
zbwrnz@gmail.com

Academic editor
Alexander Bolshoy

Additional Information and
Declarations can be found on
page 32

DOI 10.7717/peerj-cs.3435

() Copyright
2025 Arendsee

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

morloc: a workflow language for
multi-lingual programming under a
common type system

Zebulun Arendsee

Cresskill, New Jersey, United States

ABSTRACT

A conventional scientific workflow consists of many applications with untyped data
flowing between them. Each application builds an internal data structure from input
files, performs an operation, and writes output files. In practice, there are many data
formats and many flavors of each. Compensating for this requires either highly
flexible parsers on the application side or extra interface code on the workflow side.
Further, the idiosyncrasies of wrapped applications limit the expressiveness of
workflow languages; higher order functions, generics, compound data structures, and
type checking are not easily supported. An alternative approach is to create a
workflow within a single programming language using native functions rather than
standalone applications. This offers programmatic flexibility, but mostly limits usage
to one language. To address this problem, we introduce morloc: a language that
supports efficient function composition between languages under a common type
system. morloc gives the workflow designer the power of a modern functional
language while allowing the nodes of the workflow to be written freely in any
supported language as idiomatic functions of native data types.

Subjects Data Science, Scientific Computing and Simulation, Programming Languages
Keywords Workflow language, Functional programming, Polyglot, Strongly typed

INTRODUCTION

Computational researchers use a wide range of specialized programs on a daily basis. In the
life sciences, these include tools for genome assembly, sequence similarity search, sequence
alignment, phylogenetics, and protein modeling in addition to general data analysis,
statistics and visualization. The heavy algorithms are typically implemented in
high-performance languages like C and used as command line tools. Workflow-specific
analytic steps are often written in higher languages like Python or R and applied as
interpreted scripts within the pipeline or in notebooks that build on pipeline output. While
applications may be strung together with shell scripts, dedicated workflow managers are
often preferred for better scaling and reproducibility (Wratten, Wilm & Goke, 2021). These
include graphical workflow managers such Galaxy (The Galaxy Community, 2024), build
tools like Snakemake (Mdlder et al., 2021), specification languages like the Common
Workflow Language (CWL) (Crusoe et al., 2022), and domain specific languages like
Nextflow (Di Tommaso et al., 2017), BioShake (Bedd, 2019) and Cuneiform (Brandt, Reisig
& Leser, 2017).

How to cite this article Arendsee Z. 2025. morloc: a workflow language for multi-lingual programming under a common type system.
Peer] Comput. Sci. 12:e3435 DOI 10.7717/peerj-cs.3435

http://dx.doi.org/10.7717/peerj-cs.3435
mailto:zbwrnz@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3435
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

g(Clio)

7[)26—»[)2@— -~

read parse munge run join write

5 ENV

Figure 1 In a conventional pipeline a function is wrapped in six layers of extra complexity. The
numbered trapezoids are auxiliary functions. The blue triangles are points where parameters may be
passed in from the user. The red octagons are points where errors may be raised. The blue circles are data
domains. f is the core algorithm. The read layer maps the user arguments and files from the system to a
set of raw inputs. The parse layer transforms raw inputs into internal structures. The munge layer
extracts the data needed for the core functions. The run layer applies the core function to the extracted
data structure. The join layer prepares the final results, possibly merging them with data that was
removed in the munge layer. The write layer formats output data and writes it to the system.

Full-size K&l DOT: 10.7717/peerj-cs.3435/fig-1

What these managers have in common is that nodes in the workflow are individually
responsible for interpreting input and formatting output. Data between nodes is passed as
files and each node must agree on the file format and be capable of reading and writing it.
In this paradigm, scientific algorithms must be wrapped in applications that handle many
layers of complexity beyond the pure algorithm itself (see Fig. 1). The complexity of these
applications and the data they operate on lead to many problems, including those listed
below.

Format problem. A node in a workflow must parse input data into native structures,
operate on these structures, and format the results into output files. A given data structure
may be formatted in many ways. Tabular data may be formatted as TAB-delimited files,
Excel spreadsheets, Parquet, or JavaScript Object Notation (JSON). In bioinformatics,
there are many popular formats for storing biological data (sequences, alignments, trees,
protein structures, etc). These formats are often creatively overloaded with custom
information. For example, color palette information unique to one graphical program may
be appended to a text field in a phylogenetics output file. Designing software with good
format support is a hard task that must be repeated and specialized for every application.

Agreement problem. The formatted output of one node must be readable by downstream
nodes. Since many possible formats and format variants may store a specific data structure,
nodes must agree on a shared representation. However, the formatting logic is hard-coded
into the applications and the applications are usually written by different groups.
Communities, then, must converge on formatting conventions and faithfully follow them.
To avoid conflicts, applications may need to support many formats, automatically guess
formats, and handle misformatted files. Remaining conflicts must be resolved by adding
extra glue code to the wrapper. New data with unexpected formatting conventions or
uncommon patterns (like an apostrophe in a country name) can easily break pipelines.

Monolith problem. Writing a dedicated application, with robust file handling and a full
user interface, for every function is impractical. For this reason, applications often cluster

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 2/35

http://dx.doi.org/10.7717/peerj-cs.3435/fig-1
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

many independent functions behind one interface. The application may then play many
different roles in a workflow. Command line arguments are required to select and
specialize the different roles. Applications may have dozens or even hundreds of such
options. These options may overlap across functions, over-ride one another, or be
mutually exclusive. Testing and documenting all combinations is often infeasible and
usage descriptions become bloated. Further, use of any function in the monolith imports
the dependencies of all functions. Changes in any part of the monolith may trigger
application-wide version increments. Bugs anywhere in the monolith may cause the entire
system to fail.

Text problem. Bioinformatics pipelines often rely on direct operations on structured
textual formats. Writing a dedicated application for these manipulations that parses the file
into a well-defined data structure and applies safe operators to transform the data, would
require extensive coding (see Fig. 1). So instead, it is common to rely on regular
expressions over the literal text. For example, the second element in the header of a comma
delimited table may be replaced with “foo” using the command line expression sed ‘1s/~
\NCL,T15\),\([7,1*\)/\1,fo0/’. Such operations are hard to maintain and commonly
lead to bugs.

Annotation problem. Data is typically passed between applications in formats that
represent annotated collections of elements rather than the elements themselves. DNA
sequence, for example, is usually passed as files that contain many sequences that each
have an associated string annotation. If an element is changed in a pipeline, then the
annotation may need to be updated. Alternatively, if new data is inferred for an element, it
should be added to the element metadata. But when annotations are free text, with only
conventions defining their form, there is no natural way to update or extend them. This
hinders metadata propagation across the workflow.

Collection problem. When many records are passed within one file, the application must
define a strategy for processing the elements. Should element input order be preserved?
Should all elements be streamed or fully loaded into memory? Should intermediate results
be cached (and how)? Should log entries be written for each? Should elements be processed
in parallel? The best choice in each of these circumstances depends on the usage context.
When elements are independent, the application could be simplified to operate on just one
element, the base case, instead of the whole collection. Then collection handling logic could
be managed externally and applied consistently across the pipeline. But support for
standard, multi-entry formats and high application overhead prevent this approach.

Substitution problem. The design space for an application is huge: different conventions
may be used for the interface; different formats may be supported; different choices may be
made in caching, parallelism, and streaming. For this reason, even if two applications are
fundamentally isomorphic (e.g., two sequence aligners), they cannot generally be
substituted without refactoring pipeline code and risking the creation of new bugs. The
high cost of substitution favors continual use of legacy algorithms even when better
alternatives exist.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 3/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

Abstraction problem. Most standard programming abstractions are not possible in
workflow languages. Applications cannot generally be passed as arguments due to the
substitution problem. Compound data structures cannot consistently be passed between
applications since this would require format agreement. Polymorphism is usually limited
to ad hoc additions to textual fields that are interpreted in special ways by certain tools or
groups. Even basic function composition, the most fundamental prerequisite of all
workflow programs, is not possible in general without context-specific wrappers around
the application.

This paradigm leads to brittle, unreliable workflows that are hard to maintain and hard
to extend. Each application in a workflow is responsible for many separate concerns (see
Fig. 1). The interfaces between the applications are complicated by idiosyncratic
parameters and lack of format agreement. Resolving conflicts often requires unsafe textual
processing of structured files. Annotations must be propagated and extended without
knowing the annotation format. Applications must consider parallelization, data
propagation, and caching without knowing the usage context. Logically identical
applications cannot be easily or safely substituted. Vague formats and inconsistent
application behavior prevent expressive programming styles. Workflow managers may be
effective for large-scale batch processing of pipelines with a small number of large nodes
that consume clean consistent data, but they deal poorly with complexity and delegate
most work to the application creator.

Complexity scaling can be improved by developing a workflow within a single language.
Within the bioinformatics community, there are several language-specific projects
designed to facilitate end-to-end analysis. These include Bioperl (Stajich et al., 2002),
Biopython (Cock et al., 2009) and Bioconductor (R language) (Gentleman et al., 2004). The
nodes of a single-language workflow are simply functions that communicate through
native data structures in program memory. This resolves most of the problems discussed
above. However, usage is limited to one language and no one language is best in all cases.

As a third approach, we present morloc. The purpose of morloc can be summarized by
two core goals. First, the programmer should be free to focus on writing functions rather
than applications. They should be free to write in their favored language and without
responsibility for wrappers, formatting, user interfaces, or application programming
interfaces (APIs). Second, the workflow designer should be free to seamlessly compose
these functions using an expressive functional language.

morloc is a language that supports efficient function composition across languages
under a common type system. The nodes in a morloc workflow are native functions
imported from independent external libraries. All code needed for interoperability is
automatically generated by the morloc compiler. The workflow is implemented in a
simple functional programming language with full support for generics, parameterized
types, type classes, and higher-order functions. morloc modules may be directly compiled
into interactive command line tools or imported into other morloc programs.

In the following sections, we introduce the core features of the language, describe the
compiler architecture, evaluate performance, demonstrate usage through a deep case study,
compare morloc to conventional systems, and finally discuss the future of morloc.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 4/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

LANGUAGE DESIGN

Here we introduce the morloc language and show how it supports typed multi-lingual
function composition. We will provide a practical description of the language and leave
formal specification for future work.

Functions may be composed across languages

In morloc, functions are sourced from foreign languages and unified under a common
type system. Every sourced function is given a type signature that specifies the general
types of the function’s inputs and output. These general types describe
language-independent structures. They may be mapped to many different
language-specific native types. Non-function types additionally map to a common morloc
binary form. The morloc compiler generates code in native languages that transforms
native types to and from this shared binary form. Thus native types in different languages
with the same general type can be automatically interconverted, allowing communication
between languages.

The morloc programmer may import functions and develop programs through
composition without knowing anything but the function’s general type. The source
programmer may develop functions of native data structures without handling
serialization or using any morloc-specific idioms, dependencies, or syntax. These native
functions may be exported to the morloc ecosystem with no extra boilerplate beyond the
general type signature. These signatures serve as the interface between the two
programmers.

Functions may be sourced as shown below:

source Cpp from "foo.hpp" ("map", "sum", "snd")

source Py from "foo.py" ("map", "sum", "snd")

Here C++ and Python implementations of the three functions map, sum and snd are
loaded. The files “foo.hpp” and “foo.py” will be imported into the generated code and must
provide definitions for the three functions. For the Python file, “foo.py”, only snd needs to
be explicitly defined, since map and sum are already in scope as Python builtins with correct
name and type. So the “foo.py” file needs exactly two lines:

def snd(pair):
return pair[1]

For the C++ source file “foo.hpp”, all three functions may be implemented in a simple
header file. These files contain no morloc-specific syntax or dependencies and operate
only on native data types.

Next, the morloc programmer must specify the general types of the sourced functions
by adding type signatures to the morloc script:

mapab :: (a->b) -> [a] -> [b]
sndab:: (a, b) >Db
sum :: [Real] -> Real

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 5/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

The type signatures loosely follow Haskell syntax conventions. The main difference is
that generic terms (a and b here) must be introduced explicitly on the left. Bracketed terms
(e.g., [al) represent lists and comma separated terms in parentheses represent tuples.
Arrows represent functions. (a => b) is a function from generic type a to generic type b.
The map type ((a->b)->[a]->[b]) can be seen as a function that takes two input
arguments—the function (a->b) and the list [a] —and returns the list [b].

Removing the list and tuple syntactic sugar, the signatures become:

mapab :: (a->b) ->Lista->Listb
sndab :: Tuple2ab->b
sum :: List Real -> Real

List, Tuple2 and Real are general types. Since these general types may each map to
multiple native types in a given language, explicit mappings are needed to avoid ambiguity.
These mappings may be provided as language-specific type functions that evaluate to
representations of the native type. Here are examples for C++ and Python:

type Cpp => List a = "std::vector<$i>" a

type Cpp => Tuple2 ab = "std: :tuple<$l,$2>" ab
type Cpp => Real = "double"

type Py =>List a="list" a

G = W N =

type Py => Tuple2 ab = "tuple" ab
6 type Py =>Real = "float"

Type names in source languages, such as “list”, are quoted, since they may be syntactically
illegal in morloc. General types, like Real, map to native types in the source language,
such as "float". Parameterized types, like (List a), map to parameterized native types
where parameters may be substituted to make the final type. For example, morloc
represents the C++ type vector<double> as ("vector<$1>” “double"). The morloc
representation shows that double is the parameter that vector expects (this is needed for
typechecking) and $1 shows where the parameter appears in the C++ source type (it is
inserted between the angle brackets).

Sourced functions may be composed to create more complex functions. The following
composition, sumSnd, sums the second values in a list of pairs:

sumSnd xs = sum (map snd xs)

This composition extracts the second value from a list of pairs and then sums them. In this
case, the morloc compiler can infer the type, so no explicit type signature is required. The
compiler internally erases all morloc compositions, such as sumSnd, rewriting them in
terms of sourced functions. sumSnd will be rewritten as the anonymous function

\ xs -> sum (map snd xs)

To the morloc programmer, however, these functions are in all ways identical to sourced
functions. The sumSnd function may be further simplified, as shown below, since morloc
supports partial function application, eta-reduction, and the dot operator for function
composition:

sumSnd = sum . map snd

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 6/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

A B C D
map XS map 0 XS map XS .
f) o
let y map XS
9 X 9 X g M g X
map (f . g) map (f . g) map (f . g) map f . map g
monoglot (no penalty) polyglot (2n foreign calls) polyglot (n foreign call) polyglot (1 foreign calls)
E O Foreign call to language 1
map :: (a -> b) -> [a] -> [b]
XS fi::B->C O Foreign call to language 2
O g:: A->B
g x)f:s: .(/[\Ai> B) ->A ->C Function in language 1
polyglot (n foreign calls) X .A [] Function in language 2

Figure 2 The overhead cost of morloc is proportional to the number of required foreign calls. The
best-case performance of morloc is comparable to native code in the target language. This case occurs
when all functions in the final tree are in the same language (A). In this case, the generated code uses
within-language function calls. The worst-case performance is when every call is a foreign call
(B). Foreign calls must message the foreign language server and may require data reformatting and
copying. The compiler attempts to minimize foreign calls. In (C), the compiler reduces the number of
foreign calls by moving evaluation of g x to the parent language context. Alternatively, compositions may
be written so that fewer foreign calls are necessary. In (D), f and g are “unfused” into two mapping
operations, each using a language-specific map function. When foreign functions that are not fully applied
are passed as arguments, no optimizations are possible (E). With respect to data transfer, workflow
languages have performance similar to morloc’s worst case, since all function calls require full serial-
ization cycles. Full-size K&l DOT: 10.7717/peerj-cs.3435/fig-2

One term may have many definitions
An unusual aspect of morloc is that one term may have multiple definitions. This is seen in
morloc libraries where families of common functions are sourced from many supported
languages. For example, the morloc module base exports functions such as operators over
collections (e.g., map and fold), arithmetic and logical operators, and function
combinators. These form a common functional vocabulary that may be composed to build
complex programs that are polymorphic over language. When a specialized monoglot
function is used, the polyglot context will adapt to optimize compatibility (see Fig. 2). A
term may also be assigned to multiple morloc expressions. Thus any term in the internal
morloc abstract syntax tree may contain many alternative subtrees.

In the example below, the function mean is given three definitions:

import base (sum, div, size, fold, add)
import types

mean :: [Real] -> Real

1
2
3 source Cpp from "mean.hpp" ("mean"
4
5 mean xs =div (sum xs) (size xs)

6 mean xs =div (fold add 0 xs) (size xs)

Here we source an implementation directly from C++ and also write two local definitions.
Which definition is used at a given place in a program will depend on context. In a C++

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 7/35

http://dx.doi.org/10.7717/peerj-cs.3435/fig-2
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

context, the C++ sourced definition will be used. In other cases, the smaller definition that
uses sum will be chosen if sum is implemented for the contextually chosen language.
Otherwise, the larger expression that sums explicitly by folding will be chosen.

The compiler is responsible for selecting the implementation that maximize desired
qualities of the final program. This is a complex optimization problem that will be a major
focus of future work. For now we use a simple scoring system that penalizes
between-language calls and the use of “slower” languages. When terms have equal scores,
the term with fewer elements in its abstract syntax tree is chosen. When terms have the
same size and score, an error is raised stating that there is no rule to resolve the definitions.

All implementations for a given term must have the same general type; this is enforced
by the typechecker. Type equivalence theoretically guarantees that the functions may be
substituted and yield programs that can still be compiled and run, but it does not require
functional equivalence. For control functions like map, all implementations should be
equivalent (testing can confirm this). However, other functions, such as heuristic
algorithms and machine learning models, may differ systematically. The compiler cannot
yet model performance of non-equivalent functions, so programmers should avoid
equating them.

Support for multiple definitions alters the meaning of equality in morloc. The “=”
operator in morloc implies that the right-hand expression is being added as one of the
implementations of the left-hand term. Thus one may write:

x=1
x=2

morloc has a rudimentary value checker that will raise an error for this class of primitive
contradictions. Every pair of implementations for a given term are recursively evaluated to
check for such contradictions. The value checker cannot currently check past source call
boundaries, however, so contradictions such as the following will not be caught:

x=div1l (add 1 1)
x=div21

Without specific knowledge about div, morloc cannot know that the functions are not
equivalent. So the contradiction is missed and the simpler second definition is ultimately
selected.

Terms may be overloaded through typeclasses
As discussed above, the equals operator can bind a term to multiple instances of the same
type. Through typeclasses, a term may also be associated with instances of different types.
A typeclass defines a set of generic terms with type-specific instances. They were inspired
by Haskell typeclasses and are similar to interfaces in Java, traits in Rust, and concepts in C
++20.

Below are example definitions of Addable and Foldable classes:

1 class Addable a where
2 zZzeroa :: a
3 adda::a->a->a

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 8/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

instance Addable Int where
source Py "arithmetic.py" ("add")
source Cpp "arithmetic.hpp" ("add")

zero =0

O 0 N O U1 W

10 instance Addable Real where

11 source Py "arithmetic.py" ("add")
12 source Cpp "arithmetic.hpp" ("add")
13 zero=0.0

14

15 class Foldable f where

16 foldrab:: (a->b->b) >b->fa->b
17

18 instance Foldable List where

19 source Py "foldable.py" ("foldr")
20 source Cpp "foldable.hpp" ("foldr")
21

22 sum = foldr add zero

Lines 1-3 define the typeclass Addable with two terms: zero and add. Lines 5-13 define
integer and real instances for the Addable typeclass. The native functions may themselves
be polymorphic, as is the case with add, which may be implemented in Python as:

def add(x, y)
returnx +y

And in C++ as

template <class A>
A add(A x, Ay){
return(x +y);

}

Lines 15-16 define the Foldable typeclass. Here f is a container of generic elements that
can be iteratively reduced to a single value. Lines 18-20 define a Foldable instance for the
List type.

With the Addable and Foldable classes, we can define the polymorphic sum function
(Line 22) that folds the add operator over a list of values with the initial accumulator of
zero. The instances will be chosen statically after the types have been inferred by the
typechecker.

Types may be defined and passed between languages

A core principle of morloc is that cross-language interoperability should be invisible. All
terms in morloc have both a native type and a general type. The native type specifies how
the data is represented in a given language. The general type specifies a common memory

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 9/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

layout. The morloc compiler can automatically cast data in each native type to this
common binary form. This is the foundation of morloc interoperability.

morloc supports several fixed-width primitives and two collection types. The primitives
include a unit type, a boolean type, signed and unsigned integers of 8, 16, 32 and 64 bit
widths, and 32 and 64 bit floats. Next morloc offers a 1ist type which is represented by a
64-bit integer storing the container size and a pointer to a vector of contiguous, fixed-size
morloc values. Finally, morloc offers a tuple type that contains a fixed number of
fixed-size values in contiguous memory. The primitives and the two types of collections are
sufficient to represent all forms of data. The morloc compiler translates general types into
schemas that are used by language-binding libraries to cast these common binary forms to/
from native types.

Records, such as structs in C or dictionaries in Python, are represented as tuples in
memory. The field names are stored only in the type schema. Tabular data can be specified
in the same way as records, but with field types describing column types. Records and
tables can be defined and instantiated as shown below:

record Person = Person { name :: Str, age :: UInt8 }
"Alice", age =27 }

alice = { name

1
2
3
4 table People = People { name :: Str, age :: Int }
5 students = { name = ["Alice", "Bob"], age = [27, 25] }

We may also define new types from these base types, for example we can define a Pair
type as a tuple:

type Pair x y = (x, y)

Many types, though, have different structures in different languages. Suppose we want
to use the parameterized type (Map k v). This type represents a data structure that
associates keys of generic type k with values of generic type v. It may be structured in many
ways, including a hashmap, binary tree, two-column table, or list of pairs. Before being
converted to the morloc binary form, these structures must be reformatted into a common
form. This common form for Map may be a list of pairs (row form) or a pair of equal-length
lists (column form). Transforming native types to the common form requires knowledge
about the native data structure that the morloc compiler does not possess, so a pair of
functions must be given that converts the type to and from a more basic form. These
functions are provided as methods of the Packable typeclass. The class is defined as
follows:

class Packable a b where
packab::a->b
unpackab :: b->a

a and b refer to the unpacked and packed forms of the type, respectively. The packed type
is the type used by morloc functions, such as Map k v. The unpacked type is a reduced

form that eliminates the top type term (in this case Map). The unpack functions may be
recursively applied until a data structure is reduced entirely to basic types (primitives, lists,

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 10/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

and tuples). This final structure may then be transformed to the common binary form by
the language-binders and passed to a foreign language. Reversing this process in the
foreign language constructs the corresponding foreign type. The morloc compiler
generates the code to perform these transformations; the morloc user does not need to
directly use the pack and unpack functions. This framework provides a general template
for unifying data structures across languages.

The Packable instance for the column-based representation of the Map type may be
written as follows:

type Py => Map key val = "dict" key val
type Cpp => Map key val = "std: :map<$1l,$2>" key val

1
2
3
4 instance Packable ([a], [b]) (Map a b) where

5 source Cpp from "map-packing.hpp" ("pack", "unpack")

6 source Py from "map-packing.py" ("pack", "unpack")

Some languages may not support the fully general parametric form. This can be expressed
by implementing a more specific instance of Packable. For example:

type R => Map key val = "list" key val
instance Packable ([Str], [b]) (Map Str b) where
source R from "map-packing.R" ("pack", "unpack")

Here we define an instance of Map for R that is defined only when keys are strings. In cases
where non-string keys are required, R solutions will be eliminated. If no solutions remain,
a compile-time error will be raised.

Modules may be defined and compiled into executables
The organizational unit of morloc is the module. A module defines a set of terms and
types and specifies what is exported. Below is a simple example:

module foo (mean, add)
import types

mean :: [Real] -> Real

1
2
3 source Cpp from "foo.hpp" ("mean", "add")
4
5 add :: Real —> Real -> Real

morloc has no special “main” function. Instead, a module may be directly compiled
into an executable if all exports are non-generic (see Fig. 3). The functions exported from
this module are translated into an inventory of commands. Each command takes one
positional parameter for each argument of the original function. Each positional parameter
expects user input with format corresponding it the argument’s general type. Help
messages are generated based on this type. Input may be supplied as either literal JSON
strings or files containing JSON, MessagePack or morloc binary data. These user
arguments will be translated automatically to native data types before being passed to the
wrapped native functions.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 11/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

Polyglot
Front End | Pars%> |Typechecl> |Valuecheck> P;:Ju:/aglo

Tree

o Monoglot
Middle End | Prune | Segment | Serialize Singular
Trees

Single
Back End m Language Generate Build m
Trees
sources pools nexus

Figure 3 The compiler typechecks the program, selects instances, and generates polyglot executables.
The Front End reads and checks morloc scripts. It produces a typed polyglot plural tree where every
term has a single general type and where functional terms may have many definitions in many languages.
The Middle End prunes the tree down to a forest of monoglot singular trees. The Back End organizes the
many monoglot trees and generates the source code that will be compiled into the final product. Starting
at the first step in the Front End, Parse builds a syntax tree from the morloc code and resolves
inheritance across modules. Typecheck infers a general type for every term in the tree and resolves
typeclass instances. Valuecheck searches for conflicts between the implementations of each term. Prune
is a major optimization step that chooses a single implementation for each functional node. Segment
breaks the pruned tree into subtrees by language and derives language-specific types for each term.
Serialize takes each monoglot subtree and determines where (de)serialization is needed, generates
serialization strategies, and determines how serial and native forms are passed through a subtree. Pool
partitions subtrees by language and gathers their dependencies. Generate makes the source code for each
language that handles interop and implements the compositions specified in the morloc script. Build
interacts with language-specific compilers as needed to generate binaries. Dispatch makes the command
line user interface. Full-size K&l DOT: 10.7717/peerj-cs.3435/fig-3

We can compile, print usage, and run an executable as follows:

$ morloc make -o foo mean.loc
$./foo -h
The following commands are exported:
mean
param 1: [Real]
return: Real
add
param 1: Real
param 2: Real
return: Real
$./foo mean "[1,2,3]"
2.0

This simple interface serves as a toolbox of functions that can be used interactively on the
command line. Future releases of morloc will support within-code documentation that is
propagated to the generated interface. We may also explore alternative backend generators
that make REST APIs, documentation pages, and basic graphical interfaces.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 12/35

http://dx.doi.org/10.7717/peerj-cs.3435/fig-3
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

When a morloc program is compiled, the compiler writes language-specific code to
“pools” (one for each required language) and writes a “nexus” executable that accepts
arguments from the user (see Fig. 3). When the user passes a command to the nexus, the
nexus starts a pool for each language used by the specified command. Each pool contains
wrappers for all functions that are used in the pool language. When initialized, the pools
listen over UNIX domain sockets for commands from the nexus or from other pools.
When a command arrives, the pool spawns a new job in the background. The job executes
a composition of native functions and handles transformations to native data types and
foreign calls as needed.

All communications between pools and the nexus are mediated through binary packets
that each consist of a 32-byte header, a metadata block, and a data block. The header
specifies version info, metadata length, data length, and packet type. The main packet types
are “data” packets and “call” packets. A data packet describes a unit of morloc data and
specifies how it is represented. The packet may contain a type schema in its metadata
section. A call packet specifies the command that will be executed in the receiving pool and
its data block is a contiguous vector of arguments formatted as morloc data packets.

When a pool makes a foreign call, all arguments are translated to the common
binary form and written to a memory volume shared between the nexus and all pools.
Then a call packet is generated where each argument is written to the call packet data block
as a data packet that stores a relative pointer to the argument data in the shared memory
volume. The call packet is then sent to the foreign pool over a socket. The foreign pool
reads the packet, translates the data in shared memory into native data structures
(when needed), and executes the code. On success, the foreign pool writes the result to
shared memory and returns a packet containing the relative pointer to the result. On
failure, the foreign pool will return a data packet with the failing bit set and a message
containing an error message. This message will be propagated back to the nexus and
printed to the user.

AN ANALYSIS OF PERFORMANCE

The runtime of a pipeline of identical components passing data of equal size can be
modeled as:

t(n,k) = S+ Lk + n(Q + Ik + Rk) (1)

Where t is the runtime of the pipeline as a function of the number of nodes in the
pipeline (1) and the amount of data passing between each node (k). The runtime is equal to
the constant cost of starting the pipeline (S seconds), plus the variable cost of loading initial
data (L seconds per GB), plus the cost of running # nodes. Each node’s cost is equal to the
constant node startup cost (Q seconds), plus the cost of reading and writing data (I seconds
per GB), plus the cost of running the program of interest (R seconds per GB, linear for our
benchmark case).

In a single-language functional program running locally, “nodes” are function calls and
the runtime will typically be dominated by the cost of loading data (Lk) and applying it to
each function in the pipeline (nRk). Q and I will be low since function calls are fast and
data can be passed in memory.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 13/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

Function call overhead comparison between languages

10 + Nextflow
F morloc:
C to python
—~ 1+ morloc:
@ 3 Snakemake python to C
()
E [
= morloc: Cto C
0.1 3
1 morloc: python to python
0.01 E
Lol N | P T I S P 1 T S 1 I S S 1 A S O Y I S YWY N | N T
1 10 100 100 10* 10° 108 107 108 10°
Number of calls
Runtime versus data size
5
M S: start cost Q: call cost I:transfer cost
4 [ms] tin GBls
2 3 Nextflow 3667 46 [ms] 1.51
° Snakemake 498 121 ms] 1.96
E morloc: 50 60 [us] 1.62
morloc: Pyto C 51 37 [us] 1.66
1 NNM”NW morloc: 59 154 [ns] ~0
ol o8 % morloc: 2 6 [ns] ~0

40 80 120 160
Size (Mb)

Figure 4 Runtime comparison between morloc and conventional workflow programs. (Top) Log-log
plot comparing runtimes for a linear pipeline of # nodes acting on data of zero-length. All tests involve n
sequential calls between languages in morloc or to a Python script in Nextflow and Snakemake. (Bottom
Left) Comparison between runtimes for linear pipelines of constant length with varying data input size.
Each node copies the data and performs a constant time modification. (Bottom right) A table comparing
start costs (S), call costs (Q), and data transfer costs (I) (see Eq. (1)). These values were statistically
inferred from the benchmark data. The call cost column of the table is split into three cases by time units:
conventional workflow languages (milliseconds), morloc programs with foreign interop (microseconds),
and morloc programs with no foreign interop (nanoseconds). Code and documentation are available at
https://github.com/morloc-project/examples. Benchmarks were run on an i7-10510U CPU and Samsung
PM981A 512 GB SSD. Full-size kal DOI: 10.7717/peerj-cs.3435/fig-4

In conventional workflow languages, the costs of starting nodes and transferring data
between them (Q and I, respectively) are high. Invoking a node requires a system call to a
program, container, or web service. Transferring data between nodes requires a
serialization cycle and the cost of sending data over a connection or moving it to and from
files on the disk.

morloc is a hybrid between these two approaches. Nodes within the same language can
communicate as they would natively, with Q and I both nearly zero. Communication
between languages is slower since a message must be passed over a socket and data may
need to be refactored and possibly copied. The best possible performance in this
architecture is limited to a few microseconds by the speed of transmission over a UNIX

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 14/35

http://dx.doi.org/10.7717/peerj-cs.3435/fig-4
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

domain socket. The current morloc implementation generates code with modest
additional overhead for processing the packets and starting workers (see Fig. 4).

Call overhead in morloc ranges from nanoseconds for native calls (depending on the
cost of a function call in the native language) to tens of microseconds for foreign calls. For
conventional workflows, call overhead is lower-bound by the cost of invoking an external
resource. In this study, that resource is a light Python program with a roughly 100 ms
startup time. The cost of passing data between nodes is nearly zero for native calls in
morloc. For foreign morloc calls, data transfer rates measured in this benchmark were
similar to Snakemake/Nextflow.

These benchmarks were done on a local machine and without parallelism. All morloc
language pools are multi-threaded and naturally support local parallelism. Work may be
parallelized using generic control functions, such as parallel versions of the basic map
function. This might be implemented in Python as follows:

import multiprocessing
def pmap(f, xs):
with multiprocessing.Pool() as pool:
results = pool.map(f, xs)
return results

The morloc type signature of pmap is the same as its non-parallel cousin, so it is a
drop-in replacement. In contrast, conventional workflow managers delegate fine-grained
parallelism to the application.

Where workflow managers excel is in distributed computing where many large
applications are run in parallel on different data. morloc has experimental support for
remote job submission as well. In morloc, a remote job is not unlike a local foreign call. In
both cases, data must be sent from one language pool to another. The data reformatting
steps are the same for both. Within the compiler, the main difference is that the function
tree needs to be segmented by locallity, not just language. On a shared file system, the data
may be “sent” to the remote machine by serializing the call packet and associated data from
the shared memory volume to the disc. Then a job is submitted that starts the remote
morloc nexus with the call packet. The remote nexus sends the job to the proper pool and
writes the returned result to a binary output file. This output is then read by the local
calling pool after the remote worker closes. Caching of intermediate results is also
supported via functional memoization.

morloc terms may be given labels that target them for remote execution. For example:

foo = merge . map big:myJob

The big label is a hook we can use to provide annotations such as where and how
myJob is run. The annotations are included in a YAML file associated with the morloc
program. In this example, merge and map are both local and each my Job function is run on
a remote node. my Job may be an arbitrarily complex morloc composition and may submit
its own jobs recursively. While still experimental, this general approach allows fine,
unobtrusive control over execution.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 15/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

[(a, Sequence)] (RootedTree Clade Real a)
('[) Retrieve d) Make Tree) Q Classify » d) Visualize Q
FluConfig (RootedTree () Real a) PDF

Figure 5 Influenza classification case study overview. The case study consists of four major steps (top).
Retrieve takes a configuration record, FluConfig, and prepares a list of sequences and their annotations
(represented as the generic g, for simplicity). Make tree builds a phylogenetic tree from the retrieved
sequences, returning a RootedTree object. The tree type has three parameters representing the node
type, edge type, and leaf type. Classify determines the clade of each unlabeled leaf based on the labeled
reference leaves. Visualize makes a plot of the tree. Full-size 4] DOT: 10.7717/peerj-cs.3435/fig-5

CASE STUDY: INFLUENZA STRAIN CLASSIFICATION WITH
THREE LANGUAGES

This case study shows how multiple languages are interwoven and how complex programs
and types are defined in morloc. We reproduce an influenza virus classification pipeline
developed by Chang et al. (2019). In this workflow, influenza strains within a given time
range are retrieved from an online database, a phylogenetic tree is constructed, clades
(biologically distinct subtrees) are identified using a set of reference strains, and the final
labeled tree is plotted (see Fig. 5). The pipeline applies Python for data retrieval, C++ for
algorithms, and R for visualization.
The main morloc script is shown below:

module flucase (plot)

import types

import 1lib.flutypes

import lib.retrieve (retrieve, setLeafName, FluConfig)

import lib.treeplot (plotTree)
import bio.algo (upgma)
import bio.tree (treeBy, mapLeaf)
plot :: FluConfig -> ()

10 plot config=

1
2
3
4
5 import lib.classify (classify)
6
7
8
9

11 (plotTree config@treefile

12 . mapLeaf setLeafName
13 . classify

14 . treeBy upgma

15 retrieve

16) config

This script defines the module flucase and exports the function plot. It imports
required types and functions (lines 2-8) and defines the exported plot function (lines
9-16) as a composition of five functions that takes a FluConfig record as input. The
following sections will outline the four steps in Fig. 5 and describe how the tree type is
defined.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 16/35

http://dx.doi.org/10.7717/peerj-cs.3435/fig-5
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

Retrieve and clean data

The first step in the pipeline is the retrieval of data from the Entrez database (Schuler et al.,
1996). This task is performed by the retrieve function with the following signature:

retrieve :: FluConfig -> [((JsonObj, Clade), Sequence)]
The input is a FluConfig record that is defined in 1ib.flutypes as:

record FluConfig = FluConfig
{ mindate :: Date
, maxdate :: Date
, reffile :: Filename
, treefile :: Filename
, query :: Str
, email :: Str }

The record contains the query data range, the query string, an email (reqired by the remote
database), and reference and output filenames. morloc does not, and never will, have
keyword arguments. When many arguments are needed, they may be organized into
records, allowing full sets of parameters to be clearly defined and transported.

The output of retrieve is a list of annotated sequences. The annotation is a pair of
values, first a JSON object storing the full metadata record and second the clade
assignment (either an empty string or the clade stored in the reference map). The JsonObj
type specifies the JSON formatted metadata that is retrieved from the remote database.
This type is defined in the json module as follows:

type Py => JsonObj = "dict"
type R => JsonObj = "list"

type Cpp => Json0Obj = "ordered_json"
instance Packable (Str) JsonObj where

The Packable instance for JsonObj defines functions for translating JSON strings to
and from the different native data structures, such as dictionaries in Python.

The Clade, Date, and Filename types are all aliases for the string type. While the
specialized names clarify type signatures, they do not provide additional type safety. We
could alternatively define them as unique types by specifying Packable instances that map
them to strings with identity functions for the pack and unpack methods. These types
would then raise helpful errors at compile time when misused.

The retrieve function is defined as follows:

1 retrieve config =

2 (map (onFst (labelRef refmap))
3 . concat

4 . map (map parseRecord

5 . sleep 1.0

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 17/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

. fetchRecords fetchConfig
)

. shard 30

. join (keys refmap)

10 . fetchIds searchConfig

11) config@query

O 0 N &

12 where
13 refmap = readMap config@reffile

14 searchConfig =

15 { email = config@email

16 , db = "nuccore"

17 , mindate = config@mindate
18 , maxdate = config@maxdate
19 , retmax = 1000

20 X

21 fetchConfig = { email = config@email }

Lines 1-11 define the function composition that runs a query, retrieves full data records
on all returned ids in chunks of 30, flattens the list of chunks to a list, and finally adds in
clade labels from the table of references. Lines 12-21 is a where block that defines terms
that are available within the scope of the retrieve function.

Define tree types

Phylogenetic trees are represented with the (RootedTree n e 1) type. The parameters
represent node type (1), edge type (e), and leaf type (I). In a phylogenetic tree, the node
often contains a metric of confidence in the inference of its children, though we will use it
later to store clade names. The edge type usually represents branch length. The leaf may
contain the taxon name and other metadata.

The RootedTree type is unpacked as a tuple of three elements: a node list, an edge list,
and a leaf list. The node and leaf lists are ordered sets of data for each node and leaf. The
edge list is a list of tuples of three elements: parent index, child index, and generic edge
data. Node indices range from 0 to N — 1, where N is the number of nodes. Leaf indices
range from N to N + L — 1, where L is the number of leaves. This convention is adapted
from the R phylogenetic representation of trees used in phylo objects.

The RootedTree type is declared in bio.tree as:

type Cpp => (RootedTree n e 1) = "RootedTree<$1,$2,83>" nel
type R => (RootedTreene l) = "phylo"nel
instance Packable ([n], [(Int, Int, e)], [1]) (RootedTree n e 1) where
source Cpp from "rooted_tree.hpp" (
"pack_tree" as pack, "unpack_tree" as unpack)

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 18/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

instance Packable ([Str], [(Int, Int, Real)], [Str])
(RootedTree Str Real Str)
where
source R from "tree.R" ("pack_tree" as pack, "unpack_tree"
as unpack)

In C++, we map the RootedTree type to a custom recursive structure. In R, we map it
to the pre-existing R phylo class. Unlike the morloc RootedTree type, R phylo objects
are not generic; nodes and leaves are always strings and edges are always numeric. This
type limitation is reflected in the R instance above. Attempts to use the phylo object more
generically will fail at compile time.

Build trees and classify strains
The next steps in the pipeline are to build phylogenetic trees and then classify the strains.
We implement these computationally expensive steps in C++.

In the main plot function, the tree is built with the command (treeBy upgma).
treeBy is a generic control function that applies a tree building algorithm to an annotated
list of sequences and returns an annotated tree. It has the following signature:

treeBynelb :: ([b] ->RootedTree n e Int)
-> [(1, b)] -> RootedTreenel

treeBy accepts two arguments: a tree building algorithm and a list of annotated
sequences. It unzips the list of annotation/sequence pairs into two lists and feeds the list of
sequences to the tree algorithm. This algorithm creates a tree from just the sequences and
stores sequence indices in the leaves. treeBy then weaves the original annotations back
into the new tree using the indices in the leaves. This allows the tree algorithm to be a pure
function of the sequences and guarantees that the sequence annotations are not altered by
the tree builder.

In this case study, we use a simple UPGMA algorithm that builds a tree from a distance
matrix (see Fig. 6). This is implemented in the bio module as follows:

source Cpp from "algo.hpp"

("countKmers", "kmerDistance", "upgmaFromDist")
countKmers :: Int —> Str -> Map Str Int
kmerDistance :: Map Str Int -> Map Str Int -> Real
upgmaFromDist :: Matrix Real -> RootedTree () Real Int

makeDist :: Int -> [Str] -> Matrix Real
makeDist k = selfcmp kmerDistance . map (countKmers k)

upgma :: [Str] -> RootedTree () Real Int
upgma = upgmaFromDist . makeDist 8

In our implementation, the distance matrix is made by comparing the number of
occurences of each k-mer in each sequence. This is done in makeDist by composing
countKmers and selfCmp. The latter function creates a square matrix from a vector by

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 19/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

countKmers kmerDistance upgmaFromDist
A B C D
A GATTACA AA AlO
B GACCACA |j‘> AC B2 o
C CATCAAA AG cl2.6 3.2 0
D AAACAT AT D|2.22.21.40

TT

Figure 6 Algorithm for building a tree from sequence. The phylogenetic tree building starts with
unaligned DNA sequences, counts the k-mers in each sequence (2-mers in this figure), creates a distance
matrix from the counts, and then creates a tree from the distance matrix using the UPGMA algorithm.

Full-size Ka] DOI: 10.7717/peerj-cs.3435/fig-6

calling a distance function on each pair-wise value in the input vector. The distance metric
is the square root of the sum of squared k-mer frequency differences (as defined in
kmerDistance). A general implementation of the UPGMA algorithm is provided by the
upgmaFromDist function. This is written as a simple C++ function that takes a matrix of
doubles (using the matrix type from the eigen library) and returns a RootedTree
structure. The upgma function is a composition of a function that builds a distance matrix
and a pure implementation of the tree-building UPGMA algorithm.

The input to the upgma function is a list of unaligned sequences and the output is a
rooted tree with null node labels, numeric edge values (branch lengths), and integers on the
leaves representing the sequence indices in the input list. This signature is shared by all
functions in the family of phylogenetic algorithms that create rooted trees from sequence
alone. There are other families. Algorithms that estimate uncertainty at each node would
replace the node parameter with a numeric type. Algorithms that produce an ensemble of
trees would return a list of trees. The type system here provides a succinct,
machine-checked method for logically organizing families of algorithms.

Traverse the tree to assign clade labels to leaves
After building the tree, the reference strains with labeled clades are used to infer the clades
of unlabeled strains. This is done by the classify function:

1 classifynea :: RootedTreen e (a, Clade) -> RootedTree Str e (a,
Clade)
classify
= push id passClade setLeaf
. pullNode snd pullClade
where
passClade parent edge child =
(edge, ifelse (eq O (size child)) parent child)
setLeaf parent edge leaf = (edge, (fst leaf, parent))
pullClade xs
= branch (eq 1 . size) head (const "") seenClades

O 0 N O U1 W W N

—_ =
_— O

where

—
\S]

seenClades = (unique

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 20/35

http://dx.doi.org/10.7717/peerj-cs.3435/fig-6
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

13 . filter (ne 0 . size)
14) xs

This function relies on two general tree traversal algorithms. The first, pul1lNode,
makes distal nodes from leaves and then makes parent nodes from child nodes all the way
down to root. The second, push, creates new child nodes based on old parent and old child
nodes. In this case, it pushes the parent label into unlabeled children.

The pullNode function is a specialization of the pull function:

1 pullneln €

2 :: (1L->1)

3 > @->e->n ->¢)

4 > @->[(,n)] ->n)
5 -> RootedTreenel

6 -> RootedTreen' € 1

pull is a highly general function defined in the bio.tree morloc library for altering
trees from leaf to root. It takes three functional arguments. The first extracts an initial value
from a leaf. The second makes a new edge from the old parent node, the old edge, and the
new child node. The third makes a new parent node from the old parent node and the new
child nodes and edges. pullNode is defined in terms of pull as follows:

1 pullNodeneln

2 :: (1->n') > ([n'] ->1n) ->RootedTreen e 1 -> RootedTreen el
3 pullNode f g =pull

4 f

5 (\nen ->e)

6 (\n es -> g (map snd es))

This specialized function requires only two functional arguments, one for creating
initial values from leaf values and one for creating new parent nodes from new child nodes.
In the classify definition, pullNode is passed the functional arguments snd and
pullClade. snd determines how the new node is created from a leaf at the tip of the tree:
it selects the second element in a tuple. Based on the type signature of classify, the input
tree has type: (RootedTree n e (a, Clade)). So snd sets the new terminal nodes to the
strain clade. pullClade, from Lines 9-14 of the classify definition, specifies how the
children of a node determine the new node value. It sets a parent node to the clade of its
children if all child nodes either share the same clade or are undefined. Otherwise it sets the
parent node as undefined (an empty string).

The generic branch function used in pullClade is a variant of an if-else with the

signature:
branchab :: (a->Bool) > (a->b) ->(a->b) ->a->b

If the first argument to branch, a predicate of the input g, returns true, the second
functional argument is called on the input a. Otherwise the third function is called. In our
context, if children are from different clades, no parent clade is inferred. seenClades is a
unique list of non-empty child clades. If its size is exactly 1, then children share a common

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 21/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

clade and the parent clade is set to the first (and only) element in the list using the head
function. Otherwise, the parent clade is set to an empty string using the const function.
const has type a->b->a; here it is given an empty string and will ignore the empty list it is
passed.

A simpler alternative to branch would be an ifelse function of type:

ifelsea :: Bool->a->a->a

However, this function would evaluate both the “if” and “else” blocks in non-lazy
languages, leading to an error when head tries to take the first element from an empty list.

Returning to the classify implementation, the generic push function rewrites a tree
from root to leaf. It takes three functional arguments as shown in the signature below:

1 pushneln €& 1

2 :: (n->n')

3 -> (@ ->e->n->(,n))
4 > (@M >e->1->(,1))
5 -> RootedTreenel

6 -> RootedTreen e 1'

In classify, the first argument is the identity function since we are not changing the
node type. The second function, passClade, passes the parent clade to the child if the
child clade is undefined (empty string). The third function, setLeaf, sets the child leaf to
the parent leaf while preserving the original leaf annotation. The final effect is to label all
leaves that descend from labeled nodes.

We opted for a fine-grained implementation of classify. We could instead have
sourced pullClade, push or classify directly from C++ rather than composing them
in morloc. Such granularity decisions are common when writing morloc programs. A
fine-grained representation exposes more workflow logic to the reader, expands the code
that is typechecked, allows more code reuse, and increases the modularity of the program.
A coarse-grained representation, in contrast, grants more control over implementation.

Visualize the tree

The final step in the pipeline is to plot the tree. The tree object returned from the
classify function contains a metadata record for each leaf. From these records, we can
synthesize informative leaf labels that will be used in the plotted tree. Recalling the
definition of plot from the main script and adding types in comments:

plot config =
(plotTree config@treefile
. mapLeaf setLeafName
. classify
. treeBy upgma
. retrieve
) config

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 22/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

,—:beta/KU976624 1778
beta|MH80264 é1 701
eta)MG870268/1701
pdm—vacc:,ne/MG87026§/1 701

-pdm-vaccine|KU509703[1701
-pdm-vaccine/CY121680/175.

etalMF092751/1701

L p
4' e alohalKY859939]1701
alphalMG669449(1695
e

6.
lta1/l(U976748 1774
elta1/KP461657/1698
eltal/MG720203/1698

Eurasian avian-like|[KU976737[1777

-2010-human like[MG754502]17.

humanVaccine[AF25140.
— [—humanVacgine/MH81493
-humanVaccine/AY661190/109

0
human Vaccine//,(J609206£1 727
humanVaccinelKJ942616/1749
-human Vaccm%jKJ942680/1 751
humanVaccine|MG9744 (‘)41 737

1702
1701

C IVBIMG836803(1741
IVDiKkxoe4751 1701
59577/1701

C IV%/KR8 171
C IVDIKP186097[1701
————C |VBIKY465581/1701
C IVAIKX150756(1701
C IVAIMG663067/[1701

L—c IV/gMW430376 170
——C IVAIMW449544([1701

Figure 7 The final tree. Leaves are labeled with the strain clade, accession, and sequence length.

Full-size Ka] DOT: 10.7717/peerj-cs.3435/fig-7

The output of plotTree is the Unit type () indicating nothing is returned. As a side-
effect, the function creates a tree file with the name given in the configuration object
(config@treefile). The final tree is shown in Fig. 7.

We use mapLeaf to apply setLeafName to each leaf in the tree. setLeafName reads a
leaf’s metadata and generates the label that will appear in the final phylogenetic tree. Since
the metadata was originally retrieved and parsed using Python code, it reasonable to write
setLeafName in Python as well and include it in the “entrez.py” file. This encapsulates all
Entez-related code in one place.

But if setLeafName is in Python and tree-handling algorithms, including mapLeaf, are
all in C++, then a foreign call from C to Python will be required for every leaf. Any
overhead in foreign function calls will be multiplied by the number of leaves in the tree. In
morloc, this overhead is around 60 microseconds per call (Fig. 4). If better performance is
needed, we can translate setLeafName to C++ and add a one-line type signature to the
morloc source statement. The compiler will automatically choose the new C++
implementation since it reduces the number of foreign calls.

After naming the leaves, the next step is to plot the tree. We could implement plotting
at a fine scale in morloc, but most plotting libraries do not lend themselves well to

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435

23/35

http://dx.doi.org/10.7717/peerj-cs.3435/fig-7
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

functional composition since they rely on unique grammars (e.g., ggplot) or mutability
(e.g., matplotlib). So we source the plotting function from R with the type:

plotTree n :: Filename -> RootedTree n Real Str -> ()

We require the edges be parameterized as real numbers since they represent branch
lengths. The nodes may be left generic since clade labels have been pushed into the leaves.
plotTree returns the null type. It is run for its side effect of writing a plot of the given tree
to a file.

Comparison to conventional pipeline

This case study demonstrates several features of morloc that are lacking in conventional
pipelines. Together, these features solve each of the problems presented in the
introduction. Many of the features are common in general programming languages but are
lost in workflow languages where functions are replaced with applications.

morloc simplifies testing, benchmarking, maintenance, and composability. morloc
programs compose functions with well-defined types rather than command-line tools that
read arbitrary files. morloc functions can be easily unit tested and benchmarked across
languages without the added complexity of mocking files and system state. Benchmarking
is more precise since the algorithmic action is measured directly without the confounding
cost of system calls and reading/writing files. Removing UT elements and file handling
reduces the amount of code that needs to be maintained. Functions with the same type
signatures can be safely composed without considering subtle variations in file formats and
interfaces.

morloc allows data to be represented in its most natural form. Functions in morloc
align neatly to conceptual algorithmic forms. The UPGMA tree building algorithm, for
instance, is fundamentally a function from a distance matrix to a tree. The morloc type
exactly matches this form by sourcing an idiomatic C++ function of a numeric matrix that
returns a simple tree object. Traditional bioinformatics pipelines replace pure

functions like this with applications. Rather than a distance matrix, the application must
choose a file format to carry the distance matrix and must decide how to parse and
propagate any associated metadata. More likely, an application would merge the
distance matrix creation step and the tree building step into one function. This merge
within the application prevents the two individual functions from being reused in other
contexts.

morloc supports unconstrained modularity. Most morloc functions are pure
functions. Complex behavior is built through composition. These compositions are
checked and data is passed in well-defined structures. There is little or no overhead to
morloc function calls and no formatting limitations. The programmer is free to organize
functions to match the layout of the algorithm. Further, as seen in the implementation of
upgma, all functions used in the algorithm can be exported and reused independently. In
contrast, traditional pipelines must force enough work into each node to justify their high

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 24/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Scripts and components in morloc, Nexflow and Snakemake. The morloc script (top left)
imports and types a simple function from the Python source “sqr.py” (top right). The Nextflow script
(middle left) uses a Python template (middle right) that is processed into an executable Python program.
The template must contain the instructions for its own execution, hence the shebang in line 1. Nextflow
will expand ${x} into the literal 2 before execution. Before this expansion, the Python code is syntac-
tically incorrect (see red blocks around the $ signs). The Snakemake script (bottom left) copies the
Python code scripts/sqr.py (bottom right) into a Python wrapper that defines a snakemake Python
object that provides the script access to workflow variables.

main.loc—Morloc sqr.py
module sqr (val) def sqr(x):
source Py from "sqr.py" ("sqr") return (x * x)

sqr :: Int -> Int
type Py => Int = "int"

val = sqr 2

main.nf — Nextflow templates/sqr.py

process SQR { #!/usr/bin/env python3
input: val x with open("result", "w") as fh:
output: path "result" print(@{x} *8§ {x}, file=fh)

script: template "sqr.py" }
workflow { SQR(2) }

Snakefile — Snakemake scripts/sqr.py

rule add: with open(snakemake.output[0], "w") as fh:
output: "result" print (
params: x = 1, snakemake.params.x * snakemake.params.x,
script: "sqr.py" file = fh)

overhead and input/output must conform to accepted file formats. So modularity is limited
to large operations over a sparse set of intermediate data types. Even this limited
modularity is corrupted by format ambiguities and side effects that, for every new use
context, necessitate careful testing and often new glue code.

morloc supports generic and compound data. In the case study, both genetic sequences
and their metadata are passed as a compound data structure of type [(a, Sequence)].
Functions may be mapped across the sequence values without the possibility of altering the
metadata (and vice versa). The metadata may be passed cleanly into completely new
structures, such as the tree type in the case study. Such flexibility and well-defined coupling
and transport are not possible in traditional bioinformatics pipelines where metadata is
strongly limited by file format and where transformations between formats is usually lossy
and ambiguous.

morloc supports higher-order functions. In morloc, functions can be passed as
arguments, enabling functions to control the flow of operations. For example, onFst
applies a given function exclusively to the first element of a tuple. map applies a function to
every element in a list. foldTree recursively applies provided functions to reduce a tree
into a single value. In each case, structural control logic is cleanly separated from

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 25/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

A mor loc

C shell/workflow

D

B python hybrid
retrieve
sequence
file FASTA [(meta, seq)] | JSON
plot plot
makeTree
tree unlabeled tree | JSON
o o file taxa
mapLeaf rename rename - meta
mapLeaf Classify _
JSON
csv labeled tree | JSON
clade J
classif classif table
Y Y sethanes
tree named tree | JSON
K newick file

makeTree retrieve makeTree retrieve
plot
@R ®C++ oPython [Japp P morloc exe File Format

Figure 8 Comparison of paradigms. (A-D) Call trees for four possible implementations of this case study. In the morloc implementation (A), the
R plot function is evaluated first from an R context. A foreign call is made to the C++ pool requesting a tree from mapLeafs rename. The last C++
function, makeTree, makes a foreign call to retrieve in Python. The Python implementations (B) differs in that Python is the main language from
root to tip. The Python programmer is responsible for designing the Python/C++ and Python/R interfaces. The Bash/workflow implementation (C)
replaces each function with a standalone application (represented by a box). Each edge in the tree represents data passed as files in a specialized
format (in red). Since free annotations cannot easily be added to file formats like FASTA and newick (for sequences and trees, respectively), the
annotation metadata and clade predictions must be sent to separate files and then woven together with a dedicated tool (merge). Hybrid systems are
possible (D), where a conventional workflow system uses morloc executables as nodes. In this case, the files between nodes are JSON representations
of morloc data structures. Six implementations—morloc, Python, Bash, Snakemake, Nextflow, and hybrid (Snakemake and morloc)—are available
at https://github.com/morloc-project/examples. Full-size] DOI: 10.7717/peerj-cs.3435/fig-8

application logic. This increases the reuse of complex control logic which improves
consistency and reduces the likelihood of bugs. In conventional workflows, this finer logic
would have to be handled within the applications themselves. Each application would have
to independently solve problems like tree traversal. This limitation of traditional workflow
languages restricts programmer freedom and forces more work onto application
developers.

morloc nodes are simple functions rather than scripts. Each node in amorloc program
is implemented as an independent, idiomatic function in the chosen language. morloc
imposes no constraints on these functions beyond the expected type signature (see

Table 1). In a conventional workflow, a node is instead an application that is saddled with
all the complexity described in the introduction (see Fig. 1). Some workflow managers
reduce the complexity through specialized code evaluation that bypasses the need to give
the scripts full command line interfaces. Nextflow can pre-process a script template before
execution to expand workflow variables to arbitrary strings of code. Snakemake can

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435

26/35

https://github.com/morloc-project/examples
http://dx.doi.org/10.7717/peerj-cs.3435/fig-8
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

evaluate a script in a special context where a Snakemake object that stores workflow
variables is added to scope. In both cases, the target source code uses workflow-specific
syntax to access the workflow namespace. This complicates the code, interferes with testing
and linting, and prevents reuse outside the workflow (see Table 1).

morloc nodes are not containerized by default. In Nextflow, all nodes are run in
containers. This approach binds code to its environment, which improves reproducibility
and portability. In contrast, morloc programs are normally built in a single environment.
When unified builds are insufficient, containerized morloc components may be composed
(see Fig. 8D). Alternatively, morloc functions may directly invoke containers.
Containerization, though, is not built into morloc.

morloc reduces function call overhead. Traditional workflow managers support
mapping inputs (usually files) over applications, but high overhead costs (Fig. 4) make
these programs inefficient at running many small functions. To compensate, they pack
more work into each node. Individual nodes often operate on many values (e.g., sequences
in multi-entry FASTA files) and implement their own particular parallelization schemes
with accompanying dependencies and architectural requirements. morloc’s overhead, in
contrast, is nearly zero in the best case and orders of magnitude lower in the worst case
(Fig. 4). So the morloc programmer can efficiently work with concise functions and
exercise fine control over their execution and parallelization. Further, they can reuse
high-performance parallelization code, thus reducing the number of dependencies and
improving performance.

morloc programs are typechecked and support type driven design. In the conventional
bioinformatics pipeline, the form of intermediate data is only vaguely specified by the file
type. Few errors can be caught before runtime. In contrast, morloc offers type checking
and inference that allow the entire pipeline to be checked before it is run. This is of
practical significance since scientific pipelines are often computationally expensive and the
cost of late failure can be high. The typed functions also simplify reasoning and improve
readability both for humans and machines.

Comparison to programming with one main language and foreign
function interfaces
The influenza case study shows how morloc can specify a program that spans three
languages: Python, C++, and R. For comparison, we implemented the same case study
using a single primary language, Python, and making foreign function calls to C++ and R
(see Fig. 8B). For interop we used the rpy2 library for R interop and pybind11 for C++.
The program retrieves data in Python, calls three sequential C++ functions (to make the
tree, classify it, and rename the leaves) and then translates the final C++ tree object to an R
phylo object and sends it to the R interpreter to create the final tree.

The translation of the C++ tree object uses the same basic steps as morloc’s
automatically generated interop code. It first calls the C++ unpack function to extract the
tree data as a tuple (leaf list, edge list, and node list), then it uses rpy2 to cast the data into

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 27/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

Python-wrapped R types. Next, it calls the R pack function to create a Python object that
holds the Python-wrapped R phylo type. This final phylo object is passed to the R
plotting function. This manual process achieves the same transformation—from C++ tree
object to R phylo object — as the code automatically generated by morloc. While using
rpy2 and pybind11 produces a clean and efficient solution, morloc offers several
advantages.

morloc interoperability is declarative and generative. In traditional foreign function
interface (FFI) workflows, developers must research, select, and integrate a different
interoperability library for each language pair, often learning new APIs and manually
writing complex data marshaling code. This can lead to code that is tightly coupled to
specific interop tools (such as rpy2 and pybind11), which adds dependencies and
complicates future refactoring and language substitution. In morloc, this work is shifted
from the programmer to the compiler. The morloc programmer does not need to add any
interop-specific modifications to their code. They only need to declare the morloc type
signature for each imported function and then all interop code will be generated by the
compiler. This simplifies code, reduces dependencies, and allows improvements in the
compiler to benefit all morloc programs in parallel.

morloc symmetrically organizes program logic. In the morloc case study, we present a
project with functions evenly partitioned between data retrieval steps in Python,
algorithmic steps in C++, and visualization in R. With morloc, each partition can be
presented as a composition of typed, modular functions and these may be transparently
substituted and extended by the morloc programmer. If instead we choose one focal
language, say Python, then the data retrieval steps would be accessible to the Python
programmer, but the algorithmic and statistical logic would be hidden in external
codebases written in foreign languages.

morloc enforces no central runtime language. In the Python case study, Python handles
the user interface and the coordination of foreign function calls. Switching the base
language to R or C++ would require very different implementations and

dependencies. Because the core language manages the call sequence, data must repeatedly
return to it. In our Python version, three sequential C++ functions are called. For each,
Python stores the result and passes it to the next function without using it, adding
unnecessary overhead and complexity. In the penultimate step, a tree object is returned
from C++ to Python and then sent from Python to R for plotting—Python acts only as a
conduit. With morloc, these redundant Python steps and their unused type
representations disappear.

morloc allows easy polyglot prototyping. The leaf renaming step in the morloc case
study starts in R and passes a Python renaming function to a C++ tree traversal algorithm.
Each leaf renaming step requires a foreign call to Python. While not ideal for production
code (tens of microseconds of overhead per loop), this freedom of mixing functions is
valuable in a fast prototyping context. Importantly, the prototype is not a dead end. It may

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 28/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

be optimized by adding a C++ implementation of the Python function and sourcing it into
the morloc code. The morloc programmer can focus on quickly building the function
composition that best describes the problem. In conventional systems, the extra
complexity and maintenance costs incurred by manually written interoperability code
often outweighs the advantage of reusing the foreign code.

morloc provides a framework for modular library development. Most work on
language interoperability focuses on calling one language from another. This allows reuse
of code written in foreign libraries. Most commonly, slower languages like Python and R
call functions in fast C libraries. morloc offers a more symmetrical language-agnostic
approach. Libraries can be built in the abstract on the foundational common type system.
Implementations can be imported for defined functions and can share common
benchmarking and test suites. From these libraries, we can build databases of verified,
composable functions.

RELATED WORK

To the best of my knowledge, morloc is unique as a language based on multi-lingual native
function composition under a common type system. However, morloc shares the idea of
multi-lingual composition with workflow managers; the idea of a common type system

with data serialization systems; and the idea of native composition with language runtimes
and foreign function interfaces. In the following sections, we will discuss these relations.

Languages that separate scripts from components

The separation between script and component is the defining principle of all workflow
approaches (Schneider, 1999). The script specifies the connectivity of the components and
the components perform the actual data transformations. In morloc, the script is a
functional programming language and the components are native functions from other
languages. We will discuss the most common types of scripts below.

Domain specific languages (DSLs) are languages designed for a special purpose, in our
case the implementation of workflows. Cuneiform is a functional, Erlang-based
language focusing on automatic parallelization (Brand!t, Reisig ¢ Leser, 2017). BioShake is
a DSL embedded in Haskell that allows metadata for files across a workflow to be expressed
and checked by the Haskell type system (Bedd, 2019). BioNix implements purely
functional workflows using the Nix language and package manager (Bedd, Di Stefano ¢
Papenfuss, 2020). Nextflow is a Groovy-based DSL popular in bioinformatics

(Di Tommaso et al., 2017).

Scripting languages are languages focused on automating tasks. These include shell
languages such as Bash. While Bash may be used as a general programming language, it is
more often used to manage files and the execution of components (programs) written in
other languages. In addition to Bash, there are specialized scientific scripting languages, for
example BPipe (Sadedin, Pope ¢ Oshlack, 2012) and BigDataScript (Cingolani, Sladek ¢
Blanchette, 2015), which may automate job submission and reuse past results.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 29/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

Rule-based languages are declarative languages that use a recipe file (e.g., Makefile) to
coordinate the execution of commands and caching of intermediate results for efficient
building of projects. GNU Make is the most common of these. While Make is primarily
used for software compilation, it has also been applied to scientific analysis (e.g., Askren
et al., 2016). Many workflow languages have descended from it, including the popular
Snakemake (Mdlder et al., 2021) manager.

Specification languages are declarative languages for describing the behavior and
requirements of components and their connectivity. Two popular examples are the
Common Workflow Language (CWL) (Crusoe et al., 2022) and the Workflow Description
Language (WDL) (Voss, Auwera ¢ Gentry, 2017). These workflow specifications may be
run by external execution engines such as Arvados (Amstutz, 2015), Cromwell (Voss,
Auwera & Gentry, 2017) or Toil (Vivian et al., 2017).

Language-specific workflow managers are packages in a given language that manage the
execution of functions in the same language. Examples of these include Parsl (Babuji
et al., 2018) in Python and targets in R (Landau, 2021). Though all composed functions
are in one language, functions may make system calls to external applications or have
foreign function interfaces to external languages.

Frameworks for interoperability and serialization

Interoperability through serialization has been heavily explored and effectively used in
practice. Many data serialization frameworks use common type systems to generate
serialization code. These frameworks include Google Protocol Buffers (https://protobut.
dev), Apache Thrift (Slee, Agarwal ¢» Kwiatkowski, 2007), and Apache Avro (Vohra ¢
Vohra, 2016). Each of these has a means of specifying type schemas that direct the
generation of serialization code in supported languages. Remote Procedure Call (RPC)
systems build on these serialization frameworks to allow calls between systems in a
language and platform independent manner.

Interoperability runtimes circumvent the need for serialization by allowing shared
memory between languages. The Common Language Runtime (CLR) in the NET
framework is one such system that allows typed communication between supported
languages (Gough ¢ Gough, 2001). Interoperability is based on a common binary layout
specified by the Common Language Infrastructure (CLI). Languages designed for this
infrastructure can share objects without any special boilerplate. Similarly, GraalVM allows
interoperability between supported languages by executing them in a common runtime
through the TruffleVM framework (Grimmer et al., 2015).

Beyond these general purpose runtimes, many tools have been developed to enable pairs
of languages to interoperate seamlessly. The Simplified Wrapper and Interface Generator
(SWIG) (Beazley, 1996) allows C and C++ code to be called from many high-level
programming languages including Python, Perl, Ruby, and Tcl. MetaCall goes even
further, offering binary interfaces between a wide range of languages (https://metacall.io/).
Other tools are specialized for one pair of languages. These include the ctypes and
pybind11 modules for calling C++ from Python; Rcpp for calling C++ from R

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 30/35

https://protobuf.dev
https://protobuf.dev
https://metacall.io/
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

(Eddelbuettel ¢» Frangois, 2011), and PypeR (Xia, McClelland ¢» Wang, 2010) and rpy2 for
calling R from Python.

While these projects overlap with morloc, their focus differs. Their purpose is to
provide interoperability laterally between languages. They are a glue between languages.
Dedicated code is written in the target languages to allow them to communicate. morloc,
in contrast, is a system under languages that works in the background to tie the polyglot
components together. There is no morloc-specific code written in the component source.

FUTURE WORK

The current implementation of morloc (v0.53.7) demonstrates a strongly-typed solution
to high-performance, multi-lingual function composition. morloc is still being actively
developed. A few of the major goals for future work are listed below:

Improve workflow features. Though morloc has experimental support for remote

job execution and caching, it lacks the full feature set of standard workflow programs. Until
these features are mature, hybrid solutions using a conventional workflow manager

and morloc-generated components may be a helpful compromise (see Fig. 8D). Future
work includes improved error recovery, monitoring, and broader support for cloud
computing.

Increase language support. Currently only C++, Python, and R are supported. An obvious
goal is to add more languages and streamline the onboarding process. A deeper challenge is
improving language feature support. Polyglot morloc programs are currently limited to
composition of eager functions of immutable and non-streaming data. Further
generalizing morloc will require additional work on the backend generators and the

typesystem.

Expand the type system. We plan to add sum types, refinement types, contracts, extensible
records, and effect handling. Sum types, though absent in many languages, greatly improve
data modeling. Refinement types will allow the expected behavior of a function to be
described more clearly. Contracts allow the specification of pre- and post- conditions to a
function. Extensible records will improve reuse and specialization of records and tables.
Effect handling will allow behavior such as mutability, console printing, randomness, and
exceptions to be modeled by the user and correctly handled by the compiler.

Develop the ecosystem. Usability can be improved by generating executables with richer
usage statements, error messages, profiling options, debugging support, dependency
handling, and documentation integration. The generators could also be extended to make
REST APIs or simple graphical user interfaces in addition to command line executables.
We also intend to develop a searchable database of functions that can integrate with IDEs
and Al code generators.

Open the black boxes. Currently the value checker cannot determine if foreign source
code is what morloc expects. The source code is a black box. But we may be able to peak
inside with LLMs and other static analysis tools. We may similarly be able to automatically

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 31/35

http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

generate candidate type signatures for foreign libraries, reducing integration effort and
improving safety.

CONCLUSION

We present morloc as an alternative to the file and application based paradigm that now
dominates bioinformatics. Replacing the old paradigm is an ambitious but necessary goal.
It will require stripping existing monolithic applications down to their algorithmic cores
and exposing them as simple programmatic libraries. These libraries may then be raised
into the morloc ecosystem by adding type signatures to exported functions. Functions
may be shared through functional databases searchable by type. These may be easily
benchmarked and integrated into new pipelines. Novel algorithmic work may be shared as
ageless functions rather than heavy, idiosyncratic, high-maintenance applications.
Conventional bioinformatics file formats may be replaced with simple, well-defined,
generic data structures that map cleanly to native types in memory and storage types on
the disk or in databases. This transition will require refactoring most bioinformatics code
and developing infrastructure for reproducible polyglot builds. We hope to free future
scientists from floundering in software engineering and infrastructure minutiae and
instead focus on designing and using elegant functions and solving logical problems using
the languages of their choice.

AVAILABILITY

The morloc source code is published under a GPL license and is freely available on
GitHub (https://github.com/morloc-project/morloc). The present work describes
morloc version 0.53.7. We make no guarantees of backwards compatibility for this
version. The influenza case study, the five alternative implementations, and all
benchmarking code are available at https://github.com/morloc-project/examples
(release v1.1). Archived versions of the code and examples are also available through
Zenodo: code and examples.

ACKNOWLEDGEMENTS

Thanks to Jennifer Chang for major improvements to the Snakemake and Nextflow code
and for helpful comments on the adaptation of her influenza pipeline.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
e Zebulun Arendsee performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Arendsee (2026), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3435 32/35

https://github.com/morloc-project/morloc
https://github.com/morloc-project/examples
https://doi.org/10.5281/zenodo.15566364
https://doi.org/10.5281/zenodo.15566256
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:
The source code for the morloc compiler is available at GitHub and Zenodo:
- https://github.com/morloc-project/morloc.
- https://doi.org/10.5281/zenodo.15566364.
The code is available at GitHub and Zenodo:
- https://github.com/morloc-project/examples.
- https://doi.org/10.5281/zenodo.15566256.

REFERENCES

Amstutz P. 2015. Portable, reproducible analysis with Arvados. F1000Research 4:114
DOI 10.7490/f1000research.1110114.1.

Askren MK, McAllister-Day TK, Koh N, Mestre Z, Dines JN, Korman BA, Melhorn SJ, Peterson
DJ, Peverill M, Qin X, Rane SD, Reilly MA, Reiter MA, Sambrook KA, Woelfer KA,
Grabowski TJ, Madhyastha TM. 2016. Using make for reproducible and parallel neuroimaging
workflow and quality-assurance. Frontiers in Neuroinformatics 10:2
DOI 10.3389/fninf.2016.00002.

Babuji YN, Chard K, Foster IT, Katz DS, Wilde M, Woodard A, Wozniak JM. 2018. Parsl:
scalable parallel scripting in Python. In: IWSG. Available at https://danielskatz.org/papers/
IWSG2018.pdf.

Beazley DM. 1996. SWIG: an easy to use tool for integrating scripting languages with C and C++.
In: Tcl/Tk Workshop. Vol. 43. New York: ACM, 74. Available at https://www.usenix.org/legacy/
publications/library/proceedings/tcl96/full_papers/beazley.

Bedd J. 2019. BioShake: a Haskell EDSL for bioinformatics workflows. Peer] 7(5):e7223
DOI 10.7717/peer;.7223.

Bedé J, Di Stefano L, Papenfuss AT. 2020. Unifying package managers, workflow engines, and
containers: computational reproducibility with BioNix. GigaScience 9(11):giaal21l
DOI 10.1093/gigascience/giaal21.

Brandt J, Reisig W, Leser U. 2017. Computation semantics of the functional scientific workflow
language Cuneiform. Journal of Functional Programming 27:e22
DOI 10.1017/s0956796817000119.

Chang J, Anderson TK, Zeller MA, Gauger PC, Vincent AL. 2019. octoFLU: automated
classification for the evolutionary origin of influenza A virus gene sequences detected in US
swine. Microbiology Resource Announcements 8(32):¢00673-19 DOI 10.1128/mra.00673-19.

Cingolani P, Sladek R, Blanchette M. 2015. BigDataScript: a scripting language for data pipelines.
Bioinformatics 31(1):10-16 DOI 10.1093/bioinformatics/btu595.

Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff
F, Wilczynski B, de Hoon MJ. 2009. Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics 25(11):1422-1423
DOI 10.1093/bioinformatics/btp163.

Crusoe MR, Abeln S, Iosup A, Amstutz P, Chilton], Tijani¢ N, Ménager H, Soiland-Reyes S,
Gavrilovi¢ B, Goble C. 2022. Methods included: standardizing computational reuse and
portability with the common workflow language. Communications of the ACM 65(6):54-63
DOI 10.1145/3486897.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 33/35

https://github.com/morloc-project/morloc
https://doi.org/10.5281/zenodo.15566364
https://github.com/morloc-project/examples
https://doi.org/10.5281/zenodo.15566256
http://dx.doi.org/10.7490/f1000research.1110114.1
http://dx.doi.org/10.3389/fninf.2016.00002
https://danielskatz.org/papers/IWSG2018.pdf
https://danielskatz.org/papers/IWSG2018.pdf
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/full_papers/beazley
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/full_papers/beazley
http://dx.doi.org/10.7717/peerj.7223
http://dx.doi.org/10.1093/gigascience/giaa121
http://dx.doi.org/10.1017/s0956796817000119
http://dx.doi.org/10.1128/mra.00673-19
http://dx.doi.org/10.1093/bioinformatics/btu595
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1145/3486897
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow
enables reproducible computational workflows. Nature Biotechnology 35(4):316-319
DOI 10.1038/nbt.3820.

Eddelbuettel D, Fran¢ois R. 2011. Rcpp: seamless R and C++ integration. Journal of Statistical
Software 40(8):1-18 DOI 10.18637/jss.v040.108.

Gentleman RC, Carey V], Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y,
Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M,
Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J. 2004. Bioconductor:
open software development for computational biology and bioinformatics. Genome Biology
5(10):1-16 DOI 10.1186/gb-2004-5-10-r80.

Gough JJ, Gough K]J. 2001. Compiling for the. Net common language runtime. Hoboken: Prentice
Hall PTR.

Grimmer M, Seaton C, Schatz R, Wiirthinger T, Mossenbock H. 2015. High-performance
cross-language interoperability in a multi-language runtime. In: Proceedings of the 11th
Symposium on Dynamic Languages. New York: ACM, 78-90 DOI 10.1145/2816707.2816714.

Landau WM. 2021. The targets R package: a dynamic make-like function-oriented pipeline toolkit
for reproducibility and high-performance computing. Journal of Open Source Software
6(57):2959 DOI 10.21105/j0ss.02959.

Molder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, Forster J, Lee S,
Twardziok SO, Kanitz A, Wilm A, Holtgrewe M, Rahmann S, Nahnsen S, Koster J. 2021.
Sustainable data analysis with Snakemake. F1000Research 10:33
DOI 10.12688/f1000research.29032.2.

Sadedin SP, Pope B, Oshlack A. 2012. Bpipe: a tool for running and managing bioinformatics
pipelines. Bioinformatics 28(11):1525-1526 DOI 10.1093/bioinformatics/bts167.

Schneider J-G. 1999. Components, Scripts, and Glue: a conceptual framework for software
composition. PhD Thesis. University of Bern, Bern, Switzerland.

Schuler GD, Epstein JA, Ohkawa H, Kans JA. 1996. Entrez: molecular biology database and
retrieval system. Methods in Enzymology 266:141-162 DOI 10.1016/s0076-6879(96)66012-1.

Slee M, Agarwal A, Kwiatkowski M. 2007. Thrift: scalable cross-language services
implementation. Facebook White Paper. Palo Alto: Facebook. Available at https://thrift.apache.
org/static/files/thrift-20070401.pdyf.

Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JG,
Korf I, Lapp H, Lehvislaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner
P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E. 2002. The Bioperl toolkit: perl
modules for the life sciences. Genome Research 12(10):1611-1618 DOI 10.1101/gr.361602.

The Galaxy Community. 2024. The galaxy platform for accessible, reproducible, and collaborative
data analyses: 2024 update. Nucleic Acids Research 52(W1):W83-W94
DOI 10.1093/nar/gkae410.

Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, Pfeil], Narkizian J, Deran
AD, Musselman-Brown A, Schmidt H, Amstutz P, Craft B, Goldman M, Rosenbloom K,
Cline M, O’Connor B, Hanna M, Birger C, Kent W], Patterson DA, Joseph AD, Zhu J,
Zaranek S, Getz G, Haussler D, Paten B. 2017. Toil enables reproducible, open source, big
biomedical data analyses. Nature Biotechnology 35(4):314-316 DOI 10.1038/nbt.3772.

Vohra D, Vohra D. 2016. Apache Avro. In: Practical Hadoop Ecosystem: A Definitive Guide to
Hadoop-Related Frameworks and Tools. Cham: Springer, 303-323.

Voss K, Auwera GVD, Gentry J. 2017. Full-stack genomics pipelining with GATK4 + WDL +
Cromwell. F1000Research 6(ISCB Comm J):1381 DOI 10.7490/f1000research.1114634.1.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 34/35

http://dx.doi.org/10.1038/nbt.3820
http://dx.doi.org/10.18637/jss.v040.i08
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1145/2816707.2816714
http://dx.doi.org/10.21105/joss.02959
http://dx.doi.org/10.12688/f1000research.29032.2
http://dx.doi.org/10.1093/bioinformatics/bts167
http://dx.doi.org/10.1016/s0076-6879(96)66012-1
https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf
http://dx.doi.org/10.1101/gr.361602
http://dx.doi.org/10.1093/nar/gkae410
http://dx.doi.org/10.1038/nbt.3772
http://dx.doi.org/10.7490/f1000research.1114634.1
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

PeerJ Computer Science

Wratten L, Wilm A, Goke J. 2021. Reproducible, scalable, and shareable analysis pipelines with
bioinformatics workflow managers. Nature Methods 18(10):1161-1168
DOI 10.1038/s41592-021-01254-9.

Xia X-Q, McClelland M, Wang Y. 2010. PypeR, a Python package for using R in Python. Journal
of Statistical Software 35:1-8 DOI 10.18637/js5.v035.c02.

Arendsee (2026), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3435 35/35

http://dx.doi.org/10.1038/s41592-021-01254-9
http://dx.doi.org/10.18637/jss.v035.c02
http://dx.doi.org/10.7717/peerj-cs.3435
https://peerj.com/computer-science/

	morloc: a workflow language for multi-lingual programming under a common type system
	Introduction
	Language design
	An analysis of performance
	Case study: influenza strain classification with three languages
	Related work
	Future work
	Conclusion
	Availability
	flink9
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

