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ABSTRACT

Accurate crop yield prediction is vital for ensuring food security and informing
agricultural policy, particularly in wheat-dependent regions like Pakistan where
manual estimation methods are labor-intensive and imprecise. This study introduces
a novel algorithmic framework, MS-YieldStackNet, to predict wheat yield with high
spatial resolution by integrating multispectral satellite imagery, in-situ soil analytics,
and meteorological variables. A unified feature space is constructed using
Normalized Difference Vegetation Index (NDVI) and Difference Vegetation Index
(DVI), soil physicochemical attributes, and temporal climate patterns, processed
through a stacked ensemble neural architecture (MS-YieldStackNet) combining three
parallel feed-forward neural networks (FFNNs) and a Random Forest meta-learner.
The model achieved robust performance with an R-squared of 0.81, Mean Squared
Error (MSE) of 6,114.30 kg/ha, root mean squared error (RMSE) of 78.19 kg/ha,
mean absolute error (MAE) of 59.07 kg/ha, and mean absolute percentage error
(MAPE) of 3.55%, demonstrating its potential for precise and scalable crop yield
forecasting.

Subjects Computer Vision, Data Mining and Machine Learning, Data Science, Spatial and
Geographic Information Systems

Keywords Remote sensing, Yield estimation, Food security, Artificial intelligence, Ensemble
learning, Multimodal

INTRODUCTION

Wheat is a cornerstone of global food security, serving as a primary staple crop and a
critical component of agricultural economies, particularly in regions like Pakistan where it
supports millions of livelihoods. Accurate and timely wheat yield prediction is essential for
informing agricultural policy, optimizing resource allocation, and mitigating food
insecurity risks amidst a growing global population (Sharifani ¢» Amini, 2023; Pang, Chang
¢» Chen, 2022). Traditional methods, such as manual surveys and historical data analysis,
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are labor-intensive, costly, and often lack the precision needed for large-scale applications
(Paudel et al., 2021). Recent advancements in remote sensing and machine learning have
opened new avenues for improving yield forecasting by leveraging diverse data sources,
including satellite imagery, climate data, and soil properties (Cai et al., 2019; Wang et al.,
2020).

Remote sensing technologies, such as multispectral and hyperspectral imagery, provide
valuable insights into crop health and growth patterns through vegetation indices like
NDVI and DVI (Shen et al., 2022). When combined with agrometeorological parameters
(e.g., temperature, precipitation) and soil physicochemical attributes (e.g., nutrient levels,
pH), these data enable a comprehensive assessment of agricultural systems (Joshi et al,
2023). Machine learning approaches, including decision trees (DT), random forests (RF),
and neural networks, have been increasingly applied to model these complex datasets,
demonstrating improved accuracy over traditional methods (Dhiman, Bhattacharya &
Roy, 2023; Muruganantham et al., 2022). However, most studies focus on single data
modalities, such as remote sensing, or apply conventional machine learning models,
limiting their ability to capture the multifaceted interactions influencing wheat yield at a
regional level.

Despite these advancements, there remains a critical gap in integrating multispectral
satellite imagery, in-situ soil analytics, and meteorological variables within a unified
framework that leverages advanced ensemble machine learning models for regional wheat
yield prediction. Existing studies often fail to combine these diverse data sources effectively
or rely on single-model approaches that may not fully capture the complexity of
agroecological systems, particularly in diverse regions like Faisalabad, Pakistan. This study
addresses this gap by proposing MS-YieldStackNet, a novel stacked ensemble neural
architecture that integrates agrometeorological, soil, and remote sensing data to deliver
precise, spatially resolved wheat yield predictions. By combining vegetation indices
(NDVI, DVI), soil attributes, and climate patterns, and processing them through a stacked
ensemble of FFNNs and a random forest meta-learner, our approach aims to enhance
prediction accuracy and support sustainable agricultural practices.

This study focuses on the Faisalabad region of Pakistan, using a 5-year dataset of yield
records, agrometeorological parameters, laboratory-tested soil samples, and multispectral
imagery. The dataset underwent preprocessing, which involved assessing correlations
between agrometeorological parameters and yield to determine the relevance of each
attribute in yield estimation. Feature selection was conducted using multi criteria approach
to reduce computational complexity, mitigate the curse of dimensionality, and prevent
overfitting. Pearson correlation analysis is utilised to identify statistically significant linear
relationships (p < 0.05) between variables and yield, with a focus on parameters exhibiting
|r| >0.3 (e.g., temperature, wind speed, precipitation). Features with weak or negligible
correlations (|r| <0.2) were discarded to reduce noise. Domain knowledge regarding
prioritizing precipitation and temperature due to their established agroclimatic relevance
was also incorporated to ensure ecologically meaningful feature retention. Subsequently,
the prepared data was utilised to train five machine learning regression algorithms,
including decision trees, random forest, linear regression, gradient boosting, and extreme
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gradient boosting. Additionally, two neural networks, namely FFNNs and convolutional
neural networks (CNNs), were applied.
The research questions addressed in this study are as follows:

» RQI: How can the integration of agrometeorological data, soil characteristics, remote
sensing imagery, and historical yield records be leveraged to develop robust models for
predicting wheat yield at the regional level?

» RQ2: What machine learning algorithms can be employed to analyze remote sensing
data and generate accurate predictions of crop yields across large geographic regions?

* RQ3: How can the integration of laboratory-tested soil data enhance the precision and
context-awareness of yield predictions, and what computational techniques can facilitate
the incorporation of soil data into predictive models?

By addressing these questions, this work provides a scalable framework for
policymakers and farmers to optimize wheat production and reinforce food security.

LITERATURE SURVEY

Accurate wheat yield prediction is critical for food security and agricultural management,
particularly in semi-arid regions like Pakistan. Recent studies have leveraged machine
learning (ML) and remote sensing to improve forecasting, but gaps remain in integrating
diverse data sources and advanced ensemble methods. This section reviews the literature
under three topics: (1) ML methods for wheat yield prediction, (2) data types used in
models, and (3) region-specific applications, highlighting gaps and justifying the
MS-YieldStackNet approach.

Machine learning methods for wheat yield prediction

Machine learning has transformed wheat yield prediction by modeling complex
agroecological relationships. Traditional models like linear regression and decision trees
have been widely used (Wang et al., 2020), but advanced methods, such as random forests
and gradient boosting, offer improved accuracy, with R? values up to 0.78 in semi-arid
regions (Pandey ¢ Singh, 2021). Deep learning approaches, including CNNs and long
short-term memory (LSTM) models, have shown promise, achieving RMSEs as low as
522.3 kg/ha using MODIS data (Gao et al., 2022). Hybrid ML approaches, combining
multiple algorithms, further enhance performance; for instance, Agarwal ¢» Tarar (2021)
integrated random forests and LSTMs for precise forecasts in Indian agriculture. Recent
advancements in automated ML (AutoML) have streamlined model selection and
hyperparameter tuning, with Cai ef al. (2019) reporting an R? of 0.75 for wheat yield using
AutoML with satellite and climate data. The study Wang et al. (2020) fuse multi-source
data with AdaBoost, achieving an R? of 0.86 and RMSE of 0.51 t/ha for winter wheat in the
U.S., utilizing high-frequency data, which is less accessible in low-resource settings. The
development of an automated machine learning approach is proposed in Kheir et al. (2024)
for robust and fast crop yield estimation using a fusion of soil, remote sensing, and weather
dataset 20 models in the new approach, proving AutoML’s outperformance over
conventional ML. The Three Decision Support System used in Kheir et al. (2025), and
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DSSAT wheat models slightly overestimated wheat yield but accurately predicted nitrogen
content. The hybrid PBM-MLRS approach closely estimated Fe and Zn content with a root
mean square error (RMSE) of 0.42 t/ha for yield and 0.89% for nitrogen content.

However, these studies often rely on single-model architectures or limited data
modalities, failing to capture the full complexity of yield-influencing factors. Stacking
ensemble methods, which combine multiple models (e.g., neural networks and random
forests), remain underexplored for wheat yield prediction despite their potential to
improve robustness and accuracy. This study addresses this gap by integrating three
feed-forward neural networks with a random forest meta-learner, achieving an RMSE of
78.19 kg/ha and MAE of 59.07 kg/ha, surpassing prior benchmarks.

Data types in yield prediction models

The choice of data sources significantly impacts model performance. Remote sensing data,
including vegetation indices like NDVI and GNDVI, are widely used for crop monitoring,
with studies reporting RMSEs of 180-850 kg/ha when combined with weather data (Pang,
Chang & Chen, 2022; Ruan et al., 2022). Soil data, such as nutrient levels and pH, enhance
prediction accuracy by capturing ground-level variability (Shen et al., 2022). However,
most studies focus on one or two data types, limiting their ability to model complex
agroecological interactions. For example, Franch et al. (2019) used remote sensing data
alone, achieving an R? of 0.7, while Arshad et al. (2023) improved accuracy (R? =0.85) by
assimilating Sentinel-2 data into crop growth models. The lack of comprehensive
multi-source integration remains a critical gap. Our study addresses this by fusing
multispectral satellite imagery (NDVI, DVI), in-situ soil analytics, and agrometeorological
data within a unified feature space, processed by MS-YieldStackNet, to achieve high
precision in regional yield forecasting.

Region-specific applications in agroecological zones

Wheat yield prediction models must account for regional agroecological variability. In
semi-arid regions like Pakistan, Wang et al. (2020) developed a two-branch deep learning
model for winter wheat, reporting an RMSE of 721 kg/ha. In Australia, Cai et al. (2019)
fused satellite and climate data and achieved high performance with R2 = 0.75. In Brazil,
Schwalbert et al. (2020) applied neural networks for soybean yield. These studies highlight
the challenge of achieving high accuracy in diverse agroecological zones, particularly in
data-scarce regions like Faisalabad, Pakistan. The proposed system outperforms these
benchmarks by leveraging multi-source data and a stacked ensemble approach, achieving
an R? of 0.81, RMSE of 78.19 kg/ha, and MAE of 59.07 kg/ha in Faisalabad, demonstrating
superior performance in a similar agroecological context.

Novelty of this work

While prior studies have advanced wheat yield prediction, they often rely on single data
modalities or conventional ML models, limiting their scalability and precision in complex
agroecological settings. The proposed framework introduces a novel stacked ensemble
neural architecture that integrates multispectral satellite imagery, in-situ soil analytics, and
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meteorological variables, processed through three parallel feed-forward neural networks
and a random forest meta-learner. Unlike hybrid models (Agarwal ¢ Tarar, 2021) our
method optimizes multi-source data fusion and ensemble learning, achieving superior
performance metrics (R* = 0.81, RMSE = 78.19 kg/ha) that surpass all previous studies (see
Table 1). This work advances the field by providing a scalable, high-precision framework
for regional wheat yield forecasting, addressing critical gaps in data integration and model
complexity.

DATASET DESCRIPTION

This section outlines the study area, data sources, and data processing procedures. The first
step in the modeling process involves gathering data from three distinct sources and
processing it appropriately. The proposed models are constructed using traditional
regression modeling, with seven distinct regression algorithms trained and assessed using
the suggested evaluation technique.

Study area

The study is carried out at approximately city level, i.e., Faisalabad, Pakistan. As Faisalabad
is an agricultural city and a variety of crops are sown and cultivated here. The reason for
selecting this area is that there are many wheat crop lands and every year these crops are
cultivated. Wheat crop is considered the backbone of any country in perspective of food
and economy. Also, it is considered as a cash crop as it plays a vital role in the Gross
Domestic Product (GDP) of Pakistan. Agriculture University and many agriculture
research centers are the plus point with respect to information gathering. The depiction of
the study area using satellite imagery is represented in Fig. 1.

Data sources

The dataset comprises wheat yield records and different agrometeorological parameters
recorded seasonally for the past several years. Additionally, remote sensing data are
curated to calculate vegetation indices, which, combined with agrometeorological and soil
data, are utilized in constructing models for yield estimation.

LANDSAT-8 data modality

Landsat 8, launched by the United States (US) in February 2013, carries the Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS), recording data across various
wavelengths with spatial resolutions of 15 m (panchromatic), 30 m (visible, near-infrared,
shortwave infrared), and 100 m (thermal). The Landsat 8 satellite’s data is stored at the
Earth Resources Observation and Science (EROS) centre, which was co-developed by
National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey
(USGS). Multispectral data was collected via Landsat 7’s Enhanced Thematic Mapper Plus
(ETM+) band, which is also supplied by EROS, prior to the launch of Landsat-8. The
NDVI and DVI are calculated using images from precise coordinates identified via expert
Global Positioning System’s (GPS) equipment (Google Earth Engine) throughout the
growing cycle. NDVT is recognized as a superior indicator of plant health and yield
potential compared to other vegetation indices.
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Table 1 Summary of studies and proposed research on crop yield prediction.

Title Data features Model Results Study area Crop
type
Ramzan et al. Remote sensing, weather, and Regression and neural architecture MAE = 2.26 kg/ha 50 acres, Mansehra Tea
(2023) yield data using Bayesian optimizer
Islam et al. (2023) Remote sensing and weather LR, RF, GB, and stack ensemble = MAE = 317.21 kg/ha  Terai belt, Southern Rice
Nepal
Pejak et al. (2022) Remote sensing and soil data MLR, SVM, RF, XGB MAE = 4.36 kg/pixel = Upper Austria Soya
Ayub, Khan & Remote sensing RF and MLR MAE = 46.14 kg/ha Pakistan Wheat
Haider (2022)
Ruan et al. (2022) Remote sensing and weather RF RMSE = 850 kg/ha Hebei and Jiangsu Wheat
Shen et al. (2022) UAV and multispectral imagery LSTM, LSTM-RF RMSE = 684.1 kg/ha  Henan Province Wheat
Proposed Remote sensing, weather, soil, ~ RF, DT, XGB, CNN, FENN, and = MAE = 59.07 kg/ha Faisalabad, Pakistan =~ Wheat
research and yield data stack ensemble
T Bhawana Chak Jhumea
b~ oy ‘ [JP-EaNES
chak 15008
Sfaisalabad
SU 2
Palnsra
K
@ o

Figure 1 Some coordinates view using satellite imagery. Full-size Kl DOT: 10.7717/peerj-cs.3434/fig-1

Weather data

Weather data are curated from the Ayub Agriculture Research Institute, Faisalabad,
and supplemented by weather websites. They have provided the weather parameters
with corresponding latitude and longitude. The parameters include precipitation,
minimum temperature, maximum temperature, mean temperature, relative humidity
(RH), and wind-speed, recorded as seasonal averages over several years. Precipitation
quantifies water (e.g., rain, snow) reaching the ground. Minimum and maximum
temperatures represent the lowest and highest temperatures in the season, respectively,
while mean temperature is the seasonal average. RH measures atmospheric
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Table 2 Descriptive statistics of all features.

Feature Count Mean Std Min 25% Median 75% Max
Latitude 805 72.99564 0.06440 72.55 72.99321 73.00112 73.01507 73.19216
Longitude 805 31.49659 0.03659 31.273 31.4812 31.50517 31.52459 31.54178
Year 805 2020 1.41509 2018 2019 2020 2021 2022
Area 805 1 0 1 1 1 1 1

Yield 805 1,726.70 186.81 1,320 1,600 1,700 1,800 2,200
Precipitation 805 0.36562 0.27238 0.03 0.056 0.50 0.638 0.689
Min_Temp 805 9.74981 1.80622 7.6 8.1 8.6 11.2 13
Max_Temp 805 24.96298 1.85214 21 234 24.2 26.9 27.8
Mean_Temp 805 17.35639 1.77430 14.4 15.8 16.4 19.3 20.1

RH 805 57.14484 2.35881 53.1 55.8 56.0 60.0 61.5
Wind_Speed 805 1.63528 0.26159 1.2 1.4 1.6 1.8 2.2

DVI 804 0.158 0.059 0.047 0.110 0.155 0.202 0.340
NDVI 804 0.408 0.140 0.128 0.285 0.408 0.524 0.716
EC 805 3.024 0.578 2 2.56 3.07 3.50 4

pH 805 7.499 0.282 7 7.26 7.49 7.75 8
Organic matter 805 1.173 0.452 0.4 0.79 1.19 1.56 2
Available phosphorus 805 14.04761 3.49908 8 10.88 14.28 17.12 19.98
Available potassium 805 100.053 11.35783 80.06 89.97 100.23 109.36 120
Saturation 805 39.94118 2.90793 35.02 37.36 39.90 42.41 45

moisture as a percentage, and wind-speed quantifies air movement in kilometers or
miles per hour.

Soil data

Soil samples were collected from various fields in Faisalabad and analyzed at an
agricultural laboratory in Lahore, Pakistan. Parameters extracted include organic
matter, electrical conductivity (EC), potential of hydrogen (pH), available phosphorus,
available potassium, saturation, and texture. EC indicates soil salinity, pH measures

soil acidity or alkalinity on a scale from 0 to 14, and organic matter reflects soil fertility.
Available phosphorus and potassium represent nutrients accessible to plants, while
saturation and texture (proportions of sand, silt, clay) influence drainage and nutrient
retention.

Yield data

Yield data were collected per acre from landowners and farmers at specific coordinates in
Faisalabad, covering previous years. Descriptive analyses and features that have been
collected during this study are detailed in Tables 2 and 3 respectively.

DATA ANALYSIS AND PREPARATION

This section details the alignment, preprocessing, and analysis of data from remote
sensing, weather, soil, and yield sources to construct a unified feature space for the
MS-YieldStackNet model.
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Table 3 Feature values.

Feature 1 2 3 4 5 6 7 8 9 10
Latitude 7318777  73.18777  73.18777  73.18777  73.18777  73.19159  73.19159  73.19159  73.19159  73.19159
Longitude 31.44515  31.44515 31.44515 31.44515 31.44515 31.44265 31.44265 31.44265 31.44265  31.44265
Year 2018 2019 2020 2021 2022 2018 2019 2020 2021 2022
Area 1 1 1 1 1 1 1 1 1 1

Crop WHEAT WHEAT WHEAT WHEAT WHEAT WHEAT WHEAT WHEAT WHEAT WHEAT
Yield 1,640 1,600 1,800 1,680 2,080 1,780 1,840 1,720 1,600 1,960
Precipitation 0.04 0.4 0.056 0.638 0.64 0.03 0.6 0.057 0.614 0.64
Min_Temp 8.1 8.2 8.3 11 12.4 8 8 8.5 12 124
Max_Temp 23.5 23 23.6 26.4 27 22.7 229 24.6 26.4 27
Mean_Temp 15.8 15.6 15.95 18.7 19.7 15.35 1545 16.55 19.2 19.7

RH 61 60.5 60.7 53.1 55.9 60.1 60.5 60.8 53.2 55.9
Wind_Speed 1.6 1.6 1.4 1.8 2 1.6 1.4 1.4 1.8 2

DVI 0.1941 0.1351 0.1451 0.1717 0.1742 0.2149 0.0935 0.1960 0.0815 0.1490
NDVI 0.4493 0.3640 0.3942 0.4294 0.4085 0.4975 0.2959 0.5267 0.2047 0.4420
EC 3.74 3.16 2.61 33 222 4 3.17 2.4 3.38 2.63

pH 7.41 7.22 7.86 7.01 7.49 7.93 7.61 7.1 7.96 7.02
Organic Matter 1.35 0.64 0.97 0.9 1.34 1.16 1.98 0.85 1.72 0.75
Available phosphorus  19.3 13.99 9.07 13.89 13.15 19.36 17.47 18.92 8.18 19.27
Available potassium 111.08 116.78 99.5 104.78 96.8 100.2 80.51 87.5 106.35 95.19
Saturation 37.08 40.98 35.73 39.29 38.4 41.96 42.36 35.43 39.34 35.17
Texture Loam Loam Loam Loam Loam Loam Loam Loam Loam Loam

Data fusion and alignment

Data from remote sensing (NDVI, DVI from Landsat-8), weather (seasonal averages of
precipitation, minimum temperature, maximum temperature, mean temperature, relative
humidity, wind speed), soil (organic matter, EC, pH, available phosphorus, potassium,
saturation, texture), and yield (per-acre records) were aligned temporally and spatially.
Temporally, data were synchronized to the wheat growing season (November-April) using
seasonal aggregates over 5 years, with remote sensing images selected to match these
intervals. Spatially, data were georeferenced to specific coordinates in Faisalabad using GPS
equipment (aligned via Google Earth Engine for remote sensing data). Soil and yield data,
collected at the field level, were mapped to the same coordinates. After preprocessing,
features were concatenated into a single input vector per field and season, creating a
unified feature space that captures agroecological interactions for the MS-YieldStackNet
model.

Handling missing data

Missing data were minimal, with only one null value each in DVI and NDVI. These rows
were dropped using Python’s pandas library to maintain data integrity. No missing values
were reported in weather, soil, or yield data, and the dataset contained no duplicate
records.
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Figure 2 Correlating agrometeorological parameters with yield.
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Correlation analysis and feature selection

Subsequently, we performed a comprehensive analysis of the agrometeorological
parameters that impact crop yield, as determined through Pearson correlation analysis.
The correlation coefficients, ranging from -1 to 1, provide insights into the strength and
direction of the relationships between each parameter and the yield. The
agrometeorological parameter’s correlation with the yield is represented in Fig. 2. A
threshold of |r| > 0.3 was selected to retain features with moderate-to-strong correlations,
balancing statistical significance (p <0.05) and agroecological relevance for semi-arid
regions like Faisalabad, as supported by prior studies (Pandey ¢ Singh, 2021). For
example, wind speed (r = 0.375825) and precipitation (r = 0.308777) showed positive
correlations, reflecting their importance for wheat yield. Temperature attributes
(maximum, minimum, mean) were also positively correlated, with minimum
temperature exhibiting a strong relationship. Relative humidity also shows a

positive relationship with yield, with a relatively lower correlation value, indicating

that it affects the amount of wheat yield, but that the variation in humidity in the
region does not significantly affect wheat growth and yield (Ismail et al., 2023). Finally,
features were standardized using Z-score normalization, transforming each to have a
mean of zero and a standard deviation of one, ensuring compatibility with the regression
models.
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REGRESSION MODELING

Regression modeling is a robust approach for wheat yield estimation, widely utilized in
state-of-the-art research (Kadam, Kanhere & Mahindrakar, 2020; Maulud & Abdulazeez,
2020). In this study, we evaluated several algorithms during the experimental phase to
identify the most effective model for yield prediction. Conventional regression algorithms
tested include linear regression, decision tree, random forest, gradient boosting, and
extreme gradient boosting. Additionally, deep learning algorithms were assessed, including
FFNNs, LSTMs, and CNNs. The proposed MS-YieldStackNet model, a stacking ensemble
approach, was developed to enhance prediction accuracy. Data from multiple sources were
preprocessed and used to train these models (see Fig. 3). Details of the algorithms are
provided in the annexure.

Stacking ensemble for enhanced yield prediction

The MS-YieldStackNet model addresses the research gap of limited integration of
multi-source data (remote sensing, weather, soil) with advanced ensemble methods in
semi-arid regions like Faisalabad, Pakistan. Its novelty lies in combining heterogeneous
data with a stacking ensemble of three FFNNs and a random forest meta-learner, achieving
superior performance (RMSE of 78.19 kg/ha, MAE of 59.07 kg/ha) compared to
single-model approaches (Kattenborn et al., 2021; Lu, Tan ¢ Jiang, 2021).

Three identical FFNNs were selected as base learners for their simplicity, computational
efficiency, and ability to capture non-linear patterns in multi-source agricultural data.
Empirical validation showed that three FFNNs optimized diversity and computational
cost, yielding the lowest MSE (6,114.30 on the test set) compared to configurations with
one, two, or four base learners. Alternative models, such as CNNs and LSTMs,
underperformed due to the dataset’s limited spatial and temporal complexity, while
random forest produced a higher RMSE (e.g., 180 kg/ha). The random forest meta-learner
was chosen over a linear regressor for its robustness to overfitting and ability to model
non-linear relationships among base learner predictions (see Fig. 4).

The dataset was split into 80% training and 20% testing subsets, with random shuffling
applied to ensure unbiased model evaluation. Data leakage was ruled out by isolating the
test set prior to training and hyperparameter tuning, ensuring it was not used to influence
model development. Despite the dataset’s temporal structure (seasonal averages,
November-April), random shuffling was used to align with standard machine learning
practices, as the stacking ensemble effectively captured seasonal patterns.

The proposed framework for wheat yield estimation employs a comprehensive
collection of multi-source data fusion and modeling strategy, formally outlined in
Algorithm 1. This methodology integrates heterogeneous curated agricultural datasets
comprising geospatial records (Z), satellite-based vegetation indices (Z,), in-situ
meteorological measurements (Z,,), soil sample analytics (%), and corresponding
ground-truth yield observations (Z,). In the initial phase, spectral indices such as NDVI
and DVT are derived from satellite imagery. Concurrently, key meteorological variables
including temperature, precipitation, relative humidity, and solar radiation are collected
alongside critical soil parameters (e.g., pH, potassium, saturation levels). These features are
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concatenated into a unified vector representation x; € R following spatio-temporal
synchronization across all data modalities, resulting in a fused dataset .

Subsequent preprocessing steps involve noise filtering through statistical thresholding
and normalization of feature values. The dataset is then partitioned into training and
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Algorithm 1 Multi-source data fusion for wheat yield estimation using stacked ensemble neural
network (MS-YieldStackNet).

Input: Z;: Geospatial data from institutes (ESRI, SUPARCO, PARC);
9, Satellite imagery (e.g., Landsat-8);
9,,: Weather station data;
Doir: Soil sample data;
2,: Ground-truth yield records
Output: Trained model .4 ys -vieldstackne: and predicted yield y
: Step 1: Data Collection
: Extract vegetation indices from satellite imagery:
NDVI = NR—RED - py] — NIR — RED
: Collect meteorological variables:
X, = {T,P,RH, SR}
: Collect soil properties:
Xsil = {pH, K, Saturation, ...}
: Combine with ground-truth yield &,
: Step 2: Feature Engineering and Fusion
: Construct unified feature vector:
X; = [XNDVI, XDV, Xy Xsoil]; € RY
: Synchronize data sources on location and time:

®© N QU W

—
N

IOin(laL,lurL,!ime)(@s,@,7.9W,.@Soil)$9f
14: Step 3: Data Preprocessing

15: Remove noisy entries:

16: Dy — D\ {x; | ||lxj — ul| >ko}
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Algorithm 1 (continued)

17: Apply normalization:

18: x =214

: ; 5

19: Split dataset:
20: Qf = Ditrain U Drest
21: Step 4: Model Training (Stacked Ensemble)
22: Train base learners My, where k =1,...,K:

230 My:ixi— 3"

24: Concatenate oiltputs:

250 g =[5, 5]

26: Train meta-learner:

270 P = Moot (F0)

28: Step 5: Evaluation

29: Compute performance metrics:

N 22
. - L <2 2 _q_ Z i=y)
30: RMSE = Ni; Gi=y) R =1 >0y

31: Step 6: Deployment
32: Deploy .# spne in @ web-based platform for real-time prediction.

testing subsets. A Stacked Ensemble Neural Network is employed for model training,
(k)

where multiple base learners M : x; — »;" are independently trained to generate

preliminary yield predictions. Their outputs are aggregated into a meta-feature vector
?(b“se), which is then passed to a meta-learner M,,, to refine the final yield estimate ;.
Model evaluation is conducted using standard metrics, including root mean square error
(RMSE) and the coefficient of determination R?, ensuring predictive accuracy and
generalizability. Finally, the trained model .# sgn.; is deployed through a web-based
platform to facilitate real-time, scalable yield forecasting, thereby empowering farmers,
agronomists, and policymakers with actionable insights.

Neural architecture with hyperparameters

The structure starts with an input layer with 64 neurons, each corresponding to a feature
inside the dataset. These neurons feed their activations through Rectified Linear Unit
(ReLU) activation functions, which introduce non-linearity into the model. ReLU is
chosen for its simplicity and effectiveness in preventing the vanishing gradient problem,
commonly encountered in deep neural networks (Elsken, Metzen ¢ Hutter, 2019; Feurer ¢
Hutter, 2019). Following the primary hidden layer, there is a second hidden layer with 32
neurons. This layer serves to further extract and abstract features from the data, allowing
the model to learn more complex patterns. Again, ReLU activation functions are applied.
The output layer consists of a single neuron, configured with a linear activation function,
which is suitable for continuous value regression tasks (Wistuba, Rawat ¢» Pedapati, 2019).
Following the neural network layers, a random forest model is used as a meta-learner for
prediction. The choice to use Random Forest after the neural network layers is due to its
robustness to overfitting, ability to handle large datasets with high dimensionality, and
capability to capture complex non-linear relationships. Additionally, random forest
provides interpretability through feature importance analysis, complementing the deep
learning model’s predictions. The description pf model is illustrated in Table 4.
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Table 4 Description of selected hyperparameters.

Hyperparameters Description

Number of layers 3 (including input and output layers)

Hidden layer sizes (64, 32]

Activation functions ReLU for all hidden layers, Linear for output
Optimizer Adam

Random forest Number of trees, max depth, min samples split, etc.

Table 5 Evaluation metrics of various regression models.

Regression models MAE MSE RMSE MAPE R?
LR 124.95 30,122.38 173.56 7.53 0.11
DTR 183.14 65,808.26 256.53 10.70 -0.58
RFR 120.07 29,614.68 172.09 7.20 0.13
GB 135.38 35,105.11 187.36 8.07 -0.03
XGBoost 131.58 34,168.56 184.85 7.83 0.00
FFNN 130.63 32,082.89 179.12 7.82 0.06
CNN 132.13 32,113.04 179.20 7.92 0.06
LSTM 122.76 30,155.16 173.65 7.39 0.11
Stacking ensemble 59.07 6,114.30 78.19 3.55 0.81

RESULTS AND DISCUSSION

In this section, the performance of proposed model is evaluated with evaluation metrics.
Also, the performance of several predictive modeling techniques are evaluated and
compared with our proposed approach.

Evaluation metrics

Evaluation metrics provide numerical measures of a model’s performance. Evaluation
metrics aid in decision-making processes such as model selection, feature engineering,
hyperparameter tuning, and assessing the impact of different algorithms or techniques.
While numerous metrics exist for evaluating regression models, the two most common are
MSE and MAE.

MAE provides a simple understanding of the magnitude of errors in the predictions.
MSE boosts large errors due to the squaring operation, making it sensitive to outliers.
MAPE is particularly useful in time series analysis, where you are trying to predict future
values based on historical data. By calculating the MAPE, you get a sense of how far off
your forecasts are from the actual outcomes expressed as a percentage. R* is useful for
understanding how well the model explains the variability in the data and comparing
different models’ performances. Both MSE and MAE measure the differences between
predicted and actual values. However, MSE squares these differences, amplifying large
errors and potentially biasing results. MAE avoids this by using absolute values, providing
a more robust measure for datasets with outliers. RMSE balances emphasis on smaller and
larger errors by taking the square root of MSE. Detailed descriptions and formulas for
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Figure 5 Performance evaluation of regression algorithms using (A) RMSE, (B) MSE, (C) MAE, and (D) MAPE. Lower values indicate better
predictive performance. Full-size K4l DOT: 10.7717/peerj-cs.3434/fig-5

these metrics are provided in the appendix. The predictive performance of the regression
algorithms is presented in Table 5.

Experimental results and discussion

The comparison in Table 5. demonstrates that the stacking ensemble exhibits superior
predictive performance compared to baseline models, justifying its selection as the final
model. The stacking ensemble achieved an R* of 0.81, implying it explains nearly 81% of
the observed yield variance, a strong indicator of suitability for yield prediction in this
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context. Performance measurements like RMSE (78.19 kg/ha), MSE (6,114.30), MAE
(59.07 kg/ha), and MAPE were calculated to measure the error between predicted and
actual yield values, with the stacking ensemble providing the lowest values among tested
models.

Baseline models were included to provide a robust comparison. Linear regression, as a
simple baseline, achieved RMSE of approximately 173 kg/ha, reflecting its limitations with
the complex, non-linear relationships in the multi-source data. Random Forest Regression,
the second-best performing algorithm, had an RMSE of approximately 172 kg/ha, while
LSTM, ranked third, showed competitive performance based on MSE, RMSE, MAE, and
MAPE (see Fig. 5). The comparison in Table 5 indicates that the stacking ensemble’s R? of
0.81 is a reasonable value for yield prediction, reflecting its ability to capture the underlying
patterns in the fused dataset.

A critical evaluation of our work against relevant and recent state-of-the-art studies
confirms its performance and practical utility. For example, comparing with multi-source
data and AdaBoost model by Wang et al. (2020), our method marks a reduction in
prediction error. After converting their reported errors to consistent units (kg/ha) reveals
that our work reduces RMSE by approximately 85% (78.19 vs. 510 kg/ha) and MAE by
85% (59.07 vs. 390 kg/ha).

Next, Kheir et al. (2024) demonstrated the effectiveness of an AutoML framework
evaluating 20 models, our purpose method achieves a higher R* value with a more
streamlined and computationally efficient architecture Finally, MS-YieldStackNet also
outperforms the complex hybrid process-based ML approach by Kheir et al. (2025), which
reported an RMSE of 420 kg/ha. Our RMSE of 78.19 kg/ha represents an 81% reduction in
error, demonstrating that a well-designed data-driven model can surpass the yield
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prediction accuracy of more intricate hybrid methodologies. Beyond raw accuracy, a key
advantage of our approach is its design for practicality; unlike approaches reliant on
high-frequency data or multiple model integrations, it is engineered for high performance
with aggregated seasonal data, enhancing its feasibility and scalability in
resource-constrained agricultural environments.

In an ideal scenario, the residual plot should display a random and uniform
distribution of values around the identity line, serving as a critical tool for assessing the
magnitude of errors and identifying observations contributing to these errors. The plot in
Fig. 6 reveals heteroscedasticity, particularly for high-yield observations in the range of
2,000 to 2,200, which correspond to the most recent records. This pattern may be
attributed to precision farming techniques adopted in recent years and changing
agricultural methods not fully captured by the dataset attributes. These factors likely
contribute to the larger residuals observed in this range, reflecting reduced correlation with
historical data.

The scatter plot visualizes both anticipated and ground-reality yield values, with a
regression line indicating the high-quality becoming relationship among them. A modest
vertical hole among the regression line and observations suggests the version’s robustness.
The graph in Fig. 7 gives a quick assessment of the model’s predictive overall performance
and its alignment with real facts points. The following graph shows it carefully;
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Table 6 Comparative study of crop yield prediction approaches.

Study
Data features

Model applied

Kheir et al. (2025)
Process-based models, remote sensing data

Hybrid PBM-MLRS (Three decision support system models)

Results RMSE = 420 kg/ha
Crop type Wheat
Study Kheir et al. (2024)

Data features

Model applied

Remote sensing, soil, and weather data

AutoML with 20-model super-learner ensemble

Results R? = 0.70, Willmott’s d = 0.82
Crop type Multiple crops
Study Islam et al. (2023)

Data features
Model applied
Results

Area under study

Crop type

Remote sensing and weather

LR, RF, GB, and stack ensemble

MAE = 317.21 kg/ha

Terai belt region of southern lowland Nepal

Rice

Study
Data features

Model applied

Ayub, Khan & Haider (2022)
Remote sensing

RF and MLR

Results MAE = 46.14 kg/ha
Area under study Pakistan

Crop type Wheat

Study Ruan et al. (2022)

Data features
Model applied
Results

Area under study
Crop type

Remote sensing and weather
RF

RMSE = 850 kg/ha

Hebei and Jiangsu

Wheat

Study

Data features
Model applied
Results

Area under study

Crop type

Pejak et al. (2022)

UAV and multispectral imagery
LSTM, LSTM-RF

RMSE = 684.1 kg/ha

Henan Province

Wheat

Study
Data features
Model applied

Results

Shen et al. (2022)
MODIS data

LSTM

RMSE = 522.3 kg/ha
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Table 6 (continued)

Area under study China
Crop type Wheat
Study Wang et al. (2020)

Data features
Model applied
Results

Area under study

Crop type

Multi-source satellite, weather, and soil data
AdaBoost ensemble

RMSE = 510 kg/ha, MAE = 390 kg/ha, R* = 0.86
Conterminous United States

Winter Wheat

Study
Data features

Model applied

Proposed research
Remote Sensing, Weather, Soil, and Yield Data
RF, DT, XGB, CNN, FENN, and Stack Ensemble

Results MAE = 59.07 kg/ha
Area under study Faisalabad, Pakistan
Crop type Wheat

In conclusion, the stacking ensemble method showcases exceptional predictive
performance, as evidenced by its high R? value and low error metrics. This suggests its
suitability for accurate yield prediction, outperforming other regression algorithms
evaluated in the study.

This study analyzed and discussed different past studies and showed their pros and
cons. Additionally, these existing studies were compared with the proposed study (see
Table 6) and proved that how our system is beneficial, advanced and highly accurate than
the existing ones.

CONCLUSION

This study introduces the MS-YieldStackNet model, which integrates multi-source data,
remote sensing (NDVI, DVI), meteorological (seasonal averages), and soil analytics to
estimate wheat yields in Faisalabad, Pakistan, achieving an R2 of 0.81, a MAE of

59.07 kg/ha, and a standard deviation of prediction errors of 72.99 kg/ha. The model
effectively captures agroecological interactions, outperforming baseline models such as
random forest regression and linear regression within this framework. As Faisalabad, a
region in a developing country, represents a low-resource environment, the study
demonstrates the model’s feasibility in such a setting, though training the stacking
ensemble requires moderate computational resources that may challenge scalability
without optimized infrastructure. The possibility of adapting MS-YieldStackNet to other
regions, including Saudi Arabia, is noted, though this requires validation with
region-specific data. A key limitation is the availability of data, restricted to seasonal
averages over 5 years, which limits temporal resolution. Future work could focus on
broader benchmarking and the use of high-resolution datasets to enhance the model’s
applicability.
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APPENDIX

Conventional regression algorithms

Decision tree

The decision tree method is one of the most broadly used and successful approaches within
supervised learning. It can be used to solve problems involving both regression and
classification. It is a predictor that takes the form of a tree and has three distinct classes of
nodes: root node, internal nodes, and leaf nodes. The root node represents the entire
sample and can be partitioned based on criteria such as entropy and information gain.
Branches represent the decision rules, internal nodes represent dataset features, and leaf
nodes represent the regression or classification outcomes.

Random forest

Random forests are one of the most popularly employed bagging ensemble approaches,
used for both regression and classification strategies. They work by building multiple
decision trees based on bootstrapped samples of training data. The output is obtained by
averaging the values provided by the candidate models. Random forests overcome the
overfitting issues common in decision trees (Hastie, Tibshirani ¢ Friedman, 2009).

Gradient boosting

Gradient Boosting is one of the most popular ensemble learning algorithms for regression
and classification. It organizes the construction of weak models through a gradient descent
approach over an objective function, gradually improving prediction accuracy.

Extreme gradient boosting

Extreme Gradient Boosting, or XGBoost, is a distributed gradient-boosted decision tree
system. It provides an efficient and parallel boosting process and improves processing
speed over traditional gradient boosting methods. XGBoost grows trees in parallel and uses
a level-wise approach for better speed and accuracy.

Deep learning algorithms

Multi-layer perceptron

A multi-layer perceptron (MLP) consists of layers of interconnected nodes (neurons)
organized into an input layer, hidden layers, and an output layer. It introduces
non-linearity through activation functions and is widely used for classification, regression,
and pattern recognition.

Long short-term memory

A long short-term memory network is a type of recurrent neural network (RNN) capable of
learning long-term dependencies. It uses input, output, and forget gates to regulate the flow
of information and preserve important sequence data over time (Sharifani ¢» Amini, 2023).

Stacking

Stacking aggregates the predictions of multiple base models to produce a final prediction
using a meta-model. Steps involve model selection, training base models, obtaining
validation set predictions, and training a meta-model on those predictions.
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Convolutional neural network

Convolutional neural networks process data with a grid-like topology and are used
mainly for visual image analysis. Convolutional layers extract local patterns,

and pooling layers reduce spatial dimensions while preserving key features. CNNs
are widely used in tasks like object detection and image classification

(Sharifani & Amini, 2023).

Evaluation metrics

Mean squared error and root mean squared error

Mean square error (MSE) measures the average squared difference between predicted and
actual values. RMSE is the square root of MSE and balances smaller and larger errors.
Lower values indicate better model performance.

MSE :%Z (i —7,)° (1)
i=1

n —\2
RMSE = W (2)

Mean absolute error and mean absolute percentage error

Mean absolute error (MAE) calculates the average of the absolute differences between
predicted and actual values, while MAPE expresses this error as a percentage, providing an
intuitive understanding of prediction accuracy.

MAE :M (3)

n
MAPE = Y yy;y' (4)
-1 | i

Coefficient of determination (R°)

R? explains how much of the variability in a dependent variable is explained by
independent variables. It is useful for comparing model performances and understanding
predictive accuracy.

RE=1— Z?:l (yi_j’i)zz‘
2 i=1"(yi =)
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