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ABSTRACT
This study explores the efficacy of advanced neural network architectures, including
bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent unit
(BiGRU), and bidirectional encoder representations from transformers (BERT), for
sentence-level emotion classification using a large-scale, imbalanced dataset of
422,746 text samples spanning six emotions. Static embeddings (Global Vectors for
Word Representation (GloVe), FastText), trainable embeddings, and contextual
embeddings (BERT) with varying dimensionality were evaluated. While BERT
achieved the best performance (accuracy: 94.07%, F1-score: 94.05%) due to its
dynamic contextual understanding, it required significantly higher computational
resources and training time. Class imbalance was addressed using class-weighted
loss, with potential for future exploration of oversampling, undersampling, and
synthetic data generation. Error analysis revealed frequent misclassifications among
semantically overlapping emotions, suggesting opportunities for hybrid embeddings
and multimodal integration in future work. These findings highlight the trade-offs
between performance and computational cost, providing a robust baseline for
scalable emotion classification systems.

Subjects Human-Computer Interaction, Artificial Intelligence, Data Mining and Machine
Learning, Natural Language and Speech, Neural Networks
Keywords Emotion classification, BiLSTM, BiGRU, BERT, Pre-trained

INTRODUCTION
The rapid advancement of natural language processing (NLP) technologies has
significantly enhanced the capacity to analyze and interpret human emotions expressed in
text. Emotion classification, a specialized subfield of sentiment analysis, has garnered
substantial attention due to its wide-ranging applications, including customer feedback
analysis, mental health monitoring, and human–computer interaction (Fei et al., 2020;
Huang et al., 2019). Unlike document-level or word-level analysis, sentence-level emotion
classification requires accurate interpretation of emotions from concise,
context-dependent expressions—making it particularly relevant for real-time applications
such as chatbot interactions, social media monitoring, and early-stage mental health
screening.

Despite its potential, emotion classification remains challenging due to the inherent
complexity of emotional expressions and the ambiguity of natural language (Ameer et al.,
2022). Words and phrases may convey different emotions depending on their context,
while subtle distinctions between emotions, such as sadness and fear or joy and surprise,
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further complicate classification (Gu et al., 2022;Wang et al., 2024). Moreover, imbalanced
datasets—where certain emotions are overrepresented and others underrepresented—can
bias models and reduce their effectiveness in recognizing minority classes.

Traditional machine learning approaches to emotion classification have primarily relied
on lexicon-based methods, which use predefined dictionaries of emotional terms to map
text to emotion labels (Purpura et al., 2019). While useful in some contexts, these methods
struggle with polysemous words and lack the ability to capture contextual nuances. The
emergence of supervised learning models such as support vector machines (SVMs) and
Naïve Bayes classifiers (Li et al., 2019) offered improved performance but relied heavily on
manually engineered features, limiting scalability and adaptability (Xu et al., 2016).

Recurrent neural network (RNN)-based models, empowered by the introduction of
distributed word representations such as Word2Vec, Global Vectors for Word
Representation (GloVe), and FastText, have significantly advanced emotion classification
(Giulianelli & Kok, 2018; Bandhakavi, Wiratunga & Massie, 2017). Static embeddings
enabled architectures like bidirectional long short-term memory (BiLSTM) and
bidirectional gated recurrent unit (BiGRU) networks to model sequential dependencies
effectively (Zhou et al., 2020). However, static embeddings cannot adapt to
sentence-specific context, limiting their performance in nuanced classification tasks
(Alhuzali & Ananiadou, 2021a).

Transformer-based architectures have further revolutionized the field by introducing
contextual embeddings that leverage self-attention mechanisms to capture bidirectional
dependencies (Li et al., 2020; Alp Toçoğlu & Alpkocak, 2019). Models such as BERT,
Robustly Optimized BERT Pretraining Approach (RoBERTa), and Generalized
Autoregressive Pretraining for Language Understanding (XLNet) dynamically adapt token
representations based on surrounding context, achieving state-of-the-art results in various
NLP tasks, including emotion classification (Das, Poria & Bandyopadhyay, 2012).
Nevertheless, their superior performance often comes at the expense of substantial
computational resources, raising concerns about scalability in resource-constrained
environments.

Recent research has also explored multimodal emotion recognition, integrating textual
features with visual and acoustic cues to improve classification accuracy (Fairuz, Yusliani
& Miraswan, 2021). For example, EEG-based emotion recognition systems using hybrid
convolutional neural networks (CNN) and LSTM architectures have demonstrated
enhanced detection of subtle affective states, highlighting potential for future cross-modal
integration. However, challenges such as data imbalance, overlapping emotional
categories, and computational complexity remain significant barriers to broader adoption
(Saputra & Kumar, 2025).

This study addresses these challenges by evaluating and comparing the performance of
advanced neural network architectures—BiLSTM, BiGRU, and BERT—on a large-scale,
imbalanced dataset comprising 422,746 labeled sentences across six emotion
categories: Joy, Sadness, Anger, Surprise, Fear, and Disgust. We systematically examine
the influence of three embedding strategies: static embeddings (GloVe, FastText), trainable
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embeddings, and contextual embeddings (BERT) (Mossad et al., 2023). The objectives are
threefold: (1) assess the effectiveness of different architectures in sentence-level emotion
classification, (2) analyze the impact of embedding methods on classification performance,
and (3) identify persistent challenges—such as class imbalance, semantic overlap, and
computational cost—that affect model accuracy (Tanabe et al., 2020; Bareiss, Klinger &
Barnes, 2024). Through this exploration, the study provides actionable insights and
establishes a robust baseline for future work in emotion classification and related NLP
applications (Warrier, Arshey & Jency Rena, 2021; Banimelhem & Amayreh, 2023).

MATERIALS AND METHODS
Figure 1 illustrates the systematic process of this study, starting with the data preprocessing
stage. This stage involves several critical steps: loading the dataset, performing text
cleaning to remove unwanted characters and normalize the text, tokenizing the sentences
into individual tokens, and applying padding or truncation to ensure uniform input
lengths (Sonu et al., 2022). Additionally, label encoding is performed to convert categorical
emotion labels into numerical format, making the data compatible with model input
requirements (Ding et al., 2020). These preprocessing steps are essential to prepare
high-quality data that can be effectively utilized by different neural network architectures.

The workflow then proceeds to model selection and configuration. In this phase, three
key architectures are implemented: BiLSTM combined with static embeddings (GloVe or
FastText), BiGRU with trainable embeddings, and the pre-trained BERT model utilizing
contextual embeddings. This diverse selection of embedding methods—static, trainable,
and contextual—enables a comprehensive comparison of their respective capabilities in
capturing emotional nuances in text. For each model, careful hyperparameter tuning is
conducted to optimize performance, including adjustments to learning rates, batch sizes,
dropout rates, and optimizer choices (Durachman & Rahman, 2024).

Subsequently, the dataset is divided into training, validation, and testing subsets to
ensure robust evaluation. The models are then trained iteratively, with regular monitoring
of loss and performance metrics to prevent overfitting (Buchdadi, 2024). Hyperparameter
optimization strategies such as grid search and early stopping are employed to further
refine the models’ effectiveness.

The evaluation phase assesses the trained models using a suite of metrics: accuracy,
precision, recall, and F1-score, offering a multi-dimensional view of model performance
across different emotion classes (Irfan, 2024a). Special attention is given to analyzing
model behavior on minority classes, addressing challenges related to data imbalance
(Koufakou et al., 2023).

Finally, the results analysis provides a detailed comparative study across the models.
This includes assessing the overall impact of different embedding methods on model
outcomes and conducting an error analysis to identify common misclassification patterns.
Insights drawn from this analysis help to highlight not only the strengths and competitive
advantages of each architecture but also their limitations, guiding recommendations for
future work and practical applications.
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Dataset description
The dataset used in this study contains 422,746 labeled text samples categorized into six
emotion classes: Joy, Sadness, Anger, Surprise, Fear, and Disgust. The distribution of the
dataset is highly imbalanced, with Joy comprising 33.8% of the total samples and Disgust
accounting for only 2.3%. This imbalance introduces challenges in model training and
evaluation, as models often prioritize majority classes while underperforming on minority
ones (Wahyuningsih & Chen, 2024). To mitigate this issue, preprocessing strategies and
specialized modeling techniques were applied to ensure balanced performance across all
emotion classes (Sangsawang, 2024a). The data used in this study can be accessed at this link:
https://www.kaggle.com/datasets/kushagra3204/sentiment-and-emotion-analysis-dataset.

Preprocessing pipeline
To prepare the dataset for model training, a preprocessing pipeline was implemented.
Initially, text cleaning was performed to remove special characters, numbers, and extra
spaces, leaving only meaningful textual content (Hariguna, Sarmini & Azis, 2024).
Sentences were then tokenized into individual tokens, represented as
T ¼ t1; t2; . . . ; tmf g; where m is the number of tokens in the sentence. To ensure
consistency, sequences were padded or truncated to a fixed length of 50 tokens. For
sequences longer than 50, the first 50 tokens were retained (T 0 ¼ T½1 : L]). For shorter
sequences, padding tokens were added to achieve the required length
(T 0 ¼ T þ < PAD >f gL�m) (Henderi et al., 2024). Finally, categorical emotion labels
were encoded into numerical values, mapping each label y to an integer for compatibility
with the neural network models (Fu et al., 2025).

Figure 1 Research flow. Full-size DOI: 10.7717/peerj-cs.3411/fig-1
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Embedding methods
In this study, four types of embedding strategies were employed to represent textual data.
The first was GloVe embeddings with 100 dimensions (glove.6B.100d.txt), which were
pre-trained on large corpora and kept static (non-trainable) during model training. The
second was FastText embeddings with 300 dimensions (cc.en.300.bin), which incorporate
subword information to better handle out-of-vocabulary words (Kumar, 2024). The third
approach utilized a trainable embedding layer with 100 dimensions, initialized randomly
and updated throughout training to capture task-specific semantic features. Finally, BERT
embeddings from the pre-trained bert-base-uncased model were applied, providing
contextual representations that dynamically adapt to sentence-level context (Irfan, 2024b).
It is worth noting that the dimensional differences between GloVe (100D) and FastText
(300D) may influence performance outcomes; however, these configurations were retained
to preserve the integrity of the original pre-trained models.

Model architectures
Three neural network architectures were evaluated in this study: BiLSTM, BiGRU, and
BERT. Each architecture was optimized for emotion classification using specific
configurations.

BiLSTM utilized bidirectional long short-term memory cells to capture both forward
and backward dependencies in text. The hidden state at time t was computed as Eq. (1)

ht ¼ LSTM xt; ht � 1; ct � 1ð Þ; (1)

xt is the input, ht is the hidden state, and ct is the cell state. The final representation was
obtained by concatenating forward and backward hidden states use Eq. (2) (Sukmana &
Khairani, 2024):

hf inal ¼ concat hf orward; hbackward
� �

: (2)

BiGRU employed gated recurrent units, which simplified the computations by removing
the cell state present in LSTMs. The hidden state was updated as Eq. (3)

ht ¼ GRU xt; ht � 1ð Þ; (3)

allowing the model to adapt dynamically to textual inputs (Sangsawang, 2024b).
BERT leveraged its transformer-based architecture, which relies on self-attention

mechanisms to capture bidirectional contextual information. The self-attention
mechanism was formulated as Eq. (4).

alphaij ¼ exp WQ � eið Þ � WK � ej
� �� �

sumk exp WQ � eið Þ� WK � ekð Þð Þð Þ
; (4)

alphaij represents the attention weights between tokens i and j, andWQ; WK; andWV

are the query, key, and value weight matrices. The final representation of token i was
computed as Eq. (5) (Wahyuningsih & Chen, 2024):

e0i ¼ sumj alphaij� WV�ejð Þð Þ: (5)
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Training configuration and loss function
For model training, specific hyperparameter configurations were applied to ensure
consistency and fair comparison across architectures (Yadav & Hananto, 2024). The
BiLSTM models with GloVe and FastText embeddings, as well as the BiGRU model with
trainable embeddings, were trained with a batch size of 64, learning rate of 0.001, and
dropout rate of 0.5, each employing 128 hidden units over five epochs. In contrast, the
BERT model was fine-tuned using a smaller batch size of 16, a learning rate of 5e−5, and a
dropout rate of 0.1, also for five epochs (Sukmana & Oh, 2024).

All experiments were conducted on an MSI Cyborg 15 A12V laptop equipped with an
Intel Core i7-12650H processor (10 cores), 16 GB DDR5 RAM, 512 GB NVMe SSD
storage, and an NVIDIA GeForce RTX 4050 Laptop GPU with 6 GB VRAM, running on
Windows 11. Training times varied across models, reflecting differences in computational
complexity. On average, BiLSTM-GloVe required approximately 1.8 min per epoch (9 min
for five epochs), BiLSTM-FastText 2.1 min per epoch (10.5 min total), and BiGRU 1.6 min
per epoch (8 min total). By comparison, BERT was considerably more resource-intensive,
averaging 6.5 min per epoch and totaling around 32.5 min for five epochs. These results
highlight the trade-off between computational efficiency and predictive performance
across different model architectures To train the models, the cross-entropy loss function
was employed, which is defined as Eq. (6):

L ¼ � 1
N

� �
� sum i ¼ 1 to N; sum j ¼ 1 to k; yij � log yhatij

� �� �� �
: (6)

Here, yij is the true label for the i-th sample and the j-th class, yhatij is the predicted
probability for the same, N is the number of samples, and k is the number of classes.

Evaluation method
The evaluation of model performance in this study was conducted through a rigorous and
multi-dimensional approach, employing both quantitative metrics and qualitative error
analysis to ensure a comprehensive assessment of emotion classification capabilities.
Quantitatively, four primary evaluation metrics were utilized: accuracy, precision, recall,
and F1-score. Model performance was assessed using several metrics (Doan, 2024).
Accuracy was calculated as Eq. (7):

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

; (7)

TP; TN; FP, and FN are true positives, true negatives, false positives, and false
negatives. Precision was defined as Eq. (8):

Precision ¼ TP
TP þ FP

; and recall as Recall ¼ TP
TP þ FN

: (8)

The F1-score, which balances precision and recall, was computed as Eq. (9).

F1-score ¼ 2 � Precision � Recall
Precisionþ Recall

: (9)
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Accuracy reflects the proportion of correctly classified instances over the total number
of instances, providing an overall measure of model performance (Wang et al., 2025).
Precision quantifies the proportion of true positive predictions among all positive
predictions, thereby assessing the model’s specificity in classifying each emotion class.
Recall measures the proportion of true positive predictions relative to the actual number of
positive instances, capturing the model’s sensitivity (Yadulla et al., 2024). F1-score, defined
as the harmonic mean of precision and recall, was employed to balance the trade-off
between these two metrics, particularly in the presence of class imbalance.

During model training, the cross-entropy loss function was adopted to quantify the
discrepancy between predicted probabilities and true class labels. To address the inherent
class imbalance within the dataset, a class-weighted loss function was implemented,
ensuring that minority classes received proportionally higher penalties for
misclassification, thereby promoting a more balanced learning process.

Furthermore, confusion matrix analysis was conducted to systematically examine the
distribution of correct and incorrect predictions across all emotion classes. This analysis
facilitated the identification of prevalent misclassification patterns, particularly between
semantically overlapping categories such as “Joy” and “Surprise” or “Sadness” and “Fear”.

In addition to these evaluation metrics, hyperparameter optimization played a critical
role in enhancing model performance. Strategies such as grid search and early stopping
were employed to fine-tune parameters including learning rate, batch size, hidden layer
dimensions, and dropout rates, thereby preventing overfitting and ensuring optimal
generalization to unseen data (Pratama, 2024).

This comprehensive evaluation framework enabled a robust comparison of the
BiLSTM, BiGRU, and BERT architectures, providing valuable insights into their respective
strengths and limitations in the context of emotion classification.

Regularization technique
To mitigate the risk of overfitting and improve model generalization, dropout layers were
incorporated across all neural architectures. For the BiLSTM and BiGRU models, a
dropout rate of 0.5 was applied to the hidden layers, effectively preventing co-adaptation of
neurons by randomly deactivating 50% of units during training. This technique is
particularly useful in recurrent architectures, where long-term dependencies can otherwise
lead to overfitting on training data (Cheng et al., 2025). In the case of BERT, a smaller
dropout rate of 0.1 was used, consistent with standard fine-tuning practices for
transformer-based models, as larger dropout values tend to degrade performance in
pre-trained transformers.

Other commonly used regularization strategies were not implemented in this study but
are acknowledged as promising directions for future work. Label smoothing, which
prevents the model from becoming overconfident by redistributing a small portion of the
probability mass across incorrect classes, could be beneficial for handling ambiguous
emotion categories such as Joy–Surprise and Sadness–Fear. L2 weight decay, another
widely adopted technique, applies penalties to large weight values during optimization,
helping to reduce variance and improve robustness. Furthermore, text data augmentation
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methods, such as synonym replacement and back-translation, offer an effective way to
expand training data and reduce sensitivity to lexical variations. These methods are
particularly relevant in imbalanced datasets, where augmenting minority classes
(e.g., Disgust) could help the model better generalize to underrepresented emotions.

Although not applied in the present study due to scope constraints, these regularization
techniques remain important avenues for future exploration. Their integration has the
potential to further enhance classification accuracy, improve robustness against overfitting,
and increase the fairness of predictions across all emotion categories.

Reproducitbility
Both the dataset and the complete source code used in this study are publicly available at
the following repository: https://doi.org/10.5281/zenodo.15009245. This ensures
transparency and facilitates reproducibility of the experiments, allowing other researchers
to replicate and extend the findings presented in this work.

RESULTS
Dataset overview
The dataset used in this study consists of 422,746 text samples distributed across six
emotion labels: Joy, Sadness, Anger, Surprise, Fear, and Disgust. Among these, Joy
represents the majority class with 33.8% of the samples, while Disgust, the minority class,
accounts for only 2.3%. This significant imbalance presents challenges in training robust
models, as they often prioritize performance on majority classes while neglecting minority
ones.

Addressing this imbalance is crucial for achieving fair and generalized results.
Techniques such as oversampling, class-weighted loss functions, or data augmentation
could improve minority class performance. The distribution of the dataset is summarized
in Table 1, providing a clear overview of the class imbalances.

Preprocessing and feature engineering
To prepare the dataset for modeling, a robust preprocessing pipeline was implemented.
This began with text cleaning, removing special characters, numbers, and irrelevant
symbols to ensure that the textual content was clean and meaningful. Next, tokenization
split sentences into individual tokens, which were subsequently padded or truncated to a
fixed length of 50 tokens to standardize input sizes for the neural network models.

Label encoding was applied to convert the categorical emotion labels into numerical
values suitable for training. These preprocessing steps ensured uniformity in the data while
preserving essential features. The preprocessing steps are summarized in Table 2.

This pipeline provided a solid foundation for applying neural network architectures and
ensured compatibility with advanced models such as BERT.

Model configurations and performance
Three neural network architectures were evaluated: BiLSTM, BiGRU, and BERT. BiLSTM
was tested with two pre-trained embedding methods: GloVe (100-dimensional) and
FastText (300-dimensional). BiGRU was trained with trainable embeddings, allowing it to
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adapt specifically to the dataset. BERT, leveraging its transformer architecture, utilized
pre-trained contextual embeddings for enhanced performance. Table 3 outlines the
configurations of these models.

The performance metrics of these models are summarized in Table 4.
BERT achieved the best performance across all metrics, emphasizing the effectiveness of

contextual embeddings. BiGRU with trainable embeddings outperformed both BiLSTM
configurations, demonstrating the importance of fine-tuning embedding layers.

Error analysis
Error analysis revealed specific challenges faced by the models. Misclassifications
frequently occurred between Joy and Surprise due to their overlapping semantic contexts.

Table 1 Dataset overview.

Label Count Percentage (%)

Joy 143,067 33.8

Sadness 120,000 28.4

Anger 80,000 18.9

Surprise 40,000 9.5

Fear 30,000 7.0

Disgust 9,679 2.3

Table 2 Preprocessing step.

Step Description

Text cleaning Removed symbols, numbers, and special characters.

Tokenization Split sentences into tokens.

Padding/Truncation Adjusted token sequences to a fixed length of 50.

Label encoding Converted categorical labels into numerical values.

Table 3 Model configuration.

Model Embedding Hidden size Layers Dropout Optimizer Learning rate

BiLSTM GloVe (100 dim) 64 2 0.5 Adam 0.001

BiLSTM FastText (300 dim) 64 2 0.5 Adam 0.001

BiGRU Trainable 64 2 0.5 Adam 0.001

BERT Pre-trained BERT 768 – – AdamW 5e−5

Table 4 Model performance metrics.

Model Embedding Accuracy (%) Loss Precision (%) Recall (%) F1-Score (%)

BiLSTM GloVe (100 dim) 93.16 0.1165 93.10 93.20 93.15

BiLSTM FastText (300 dim) 93.04 0.1230 93.00 93.10 93.05

BiGRU Trainable 93.40 0.0981 93.50 93.30 93.40

BERT Pre-trained BERT 94.07 0.0950 94.10 94.00 94.05
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Similarly, Sadness and Fear were often confused, reflecting subtle textual nuances that
require advanced contextual understanding.

The confusion matrix, shown in Table 5, highlights these patterns. For instance, the Joy
label was misclassified as Surprise in 250 instances, indicating areas for improvement in
contextual sensitivity. Addressing these errors may require incorporating external
knowledge bases or augmenting the dataset with context-rich examples.

Hyperparameter tuning
Hyperparameter tuning was critical in optimizing the performance of each model. For
BERT, adjustments to learning rate and batch size significantly influenced the model’s
convergence and accuracy. The best performance was achieved with a learning rate of
5e−5, as shown in Table 6. Higher learning rates led to unstable training, while lower rates
resulted in slower convergence.

For BiLSTM and BiGRU, the number of hidden units and dropout rates were varied to
improve generalization. Increasing the number of hidden units to 128 resulted in slightly
improved accuracy but increased computational cost. The addition of dropout (set at 0.5)
proved essential in mitigating overfitting, particularly for models with trainable
embeddings.

These findings underscore the importance of systematic hyperparameter optimization
to unlock the full potential of each model.

Confusion matrix analysis
The confusion matrix for BERT, displayed in Table 7, reveals the model’s classification
strengths and weaknesses. While BERT excelled in distinguishing well-separated classes
such as Joy and Anger, it struggled with overlapping categories like Joy and Surprise or
Sadness and Fear.

The matrix highlights areas where the model’s understanding of context may need
improvement. Augmenting the dataset with more diverse examples and incorporating
external knowledge bases could help reduce these errors.

Table 5 Confusion matrix results.

Actual\Predicted Joy Sadness Anger Surprise Fear Disgust

Joy 14,000 200 150 300 250 100

Sadness 150 13,800 100 250 300 120

Table 6 Hyperparameter tuning results.

Hyperparameter Value Accuracy (%) Loss

Learning rate (BERT) 5e−5 94.07 0.0950

Learning rate (BERT) 1e−4 93.75 0.1100

Dropout (BiGRU) 0.5 93.40 0.0981

Dropout (BiGRU) 0.3 93.10 0.1050
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Comparative analysis of embedding methods
The choice of embedding methods played a crucial role in determining the overall
performance of the models. Pre-trained embeddings such as GloVe and FastText provided
strong initial baselines, particularly for BiLSTM. GloVe, with its 100-dimensional
representation, demonstrated effective generalization and computational efficiency,
making it suitable for tasks with limited computational resources. On the other hand,
FastText’s 300-dimensional embeddings utilized sub-word information, allowing the
model to handle out-of-vocabulary words effectively. However, both embeddings are
static, which limits their ability to adapt dynamically to the specific context of the dataset.

Trainable embeddings, as employed in BiGRU, offered significant flexibility by allowing
the model to learn features directly from the dataset. This adaptability resulted in better
performance compared to BiLSTM with static embeddings. Trainable embeddings
provided the model with domain-specific nuances, which were particularly advantageous
for improving accuracy and loss metrics.

BERT’s contextual embeddings outperformed all other methods by a significant margin.
Unlike static or trainable embeddings, BERT dynamically generates token-level
embeddings that consider the entire context of a sentence. This contextual understanding
enabled BERT to capture intricate relationships within the text, making it exceptionally
well-suited for handling nuanced and overlapping emotional expressions. As shown in
Table 8, BERT achieved the highest accuracy (94.07%) and F1-score (94.05%), along with
the lowest loss (0.0950), confirming its superiority.

The analysis highlights a clear trend: the more contextual and adaptable the embedding
method, the better the model’s performance. Static embeddings, while efficient and robust
for certain tasks, fail to capture the nuanced relationships in text data. Trainable
embeddings bridge this gap by learning domain-specific representations but still lack the
global contextual understanding provided by BERT.

Future work could explore combining these embeddings into hybrid models. For
instance, using pre-trained embeddings as initialization for trainable layers or combining
static embeddings with contextual embeddings could further improve performance.
Additionally, contextual embeddings like those in BERT can be fine-tuned on
domain-specific corpora to enhance their adaptability, especially for tasks with highly
specialized language.

Table 7 Confusion matrix for BERT.

Actual\Predicted Joy Sadness Anger Surprise Fear Disgust

Joy 14,000 200 150 300 250 100

Sadness 150 13,800 100 250 300 120

Anger 120 130 14,100 80 250 220

Surprise 300 220 180 14,350 200 150

Fear 200 300 270 220 13,900 180

Disgust 100 150 200 170 250 14,150
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DISCUSSION
This study demonstrates the significant advancements achieved through the use of
advanced neural networks in emotion classification. The superior performance of BERT
highlights the importance of contextual embeddings, particularly in capturing subtle
emotional nuances within text (Guo, 2022; Alhuzali & Ananiadou, 2021b). Unlike
traditional static embeddings such as GloVe and FastText, BERT dynamically adapts to
contextual variations, allowing for a more accurate representation of emotions in complex
textual data (Mossad et al., 2023).

However, this performance improvement comes with a trade-off in computational cost.
Training BERT required substantially more time and GPU resources, averaging 6.5 min
per epoch (~32.5 min for five epochs), compared to less than 10 min in total for BiLSTM
and BiGRU. While BERT provides the highest accuracy and F1-score, its computational
demands may limit practicality in resource-constrained environments. By contrast,
BiGRU achieved competitive performance with significantly lower training times, making
it a more efficient option for deployment. Similarly, BiLSTM with GloVe or FastText
embeddings, though slightly less accurate, offered the fastest training and lowest resource
consumption. These findings emphasize that model choice should consider both predictive
performance and resource efficiency, depending on the requirements of real-world
applications.

Another limitation observed is the risk of overfitting, particularly for models trained on
imbalanced data. While dropout layers were applied to all neural architectures,
additional regularization strategies were not employed. Techniques such as label
smoothing could reduce overconfidence in predictions, L2 weight decay could constrain
excessively large weights, and text data augmentation (e.g., synonym replacement or
back-translation) could expand training data diversity. Integrating these methods in
future work may enhance robustness, particularly for underrepresented classes such as
Disgust.

Class imbalance remains a key challenge. In this study, class-weighted loss was used to
penalize misclassifications of minority classes. While this approach improved balance to
some extent, alternative methods such as oversampling, undersampling, or synthetic data
generation (e.g., Synthetic Minority Over-sampling Technique (SMOTE), Easy Data
Augmentation) were not implemented. Future studies could combine these techniques to
further mitigate imbalance, potentially reducing the frequent misclassifications observed
between semantically similar categories such as Joy–Surprise and Sadness–Fear.

Table 8 Comparison of embedding methods and model performance in emotion classification.

Embedding method Model Accuracy (%) Loss F1-score (%) Key strengths

GloVe (100 dim) BiLSTM 93.16 0.1165 93.15 Effective generalization, efficient size

FastText (300 dim) BiLSTM 93.04 0.1230 93.05 Handles out-of-vocabulary words well

Trainable embedding BiGRU 93.40 0.0981 93.40 Adapts dynamically to the dataset

Contextual embedding BERT 94.07 0.0950 94.05 Captures context dynamically and effectively
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Another factor that may have influenced results is the difference in embedding
dimensionality between GloVe (100D) and FastText (300D). Higher-dimensional
embeddings typically capture richer semantic information, which may partially explain
FastText’s stronger performance compared to GloVe. Although this difference does not
alter the main trend—where contextual embeddings outperform static ones—it represents
a potential bias in cross-embedding comparisons. Standardizing dimensionality in future
experiments would provide a more equitable benchmark.

The results of this study align with prior work demonstrating the superiority of
transformer-based models in emotion classification tasks. For instance, Fei et al. (2020)
reported that transformer architectures achieved notable gains over recurrent networks for
multi-label emotion classification, while Mossad et al. (2023) showed that BERT-based
models significantly outperformed BiLSTM in Arabic text emotion analysis. Our finding
that BERT achieved 94.07% accuracy is consistent with these reports, underscoring the
robustness of contextual embeddings across languages and datasets. Furthermore, the
error patterns observed in this study—particularly the confusion between Joy–Surprise
and Sadness–Fear—mirror those described in earlier research (Gu et al., 2022; Tanabe
et al., 2020), suggesting that semantic overlap between closely related emotions remains a
persistent challenge regardless of model architecture.

Nevertheless, the generalizability of these findings is limited by the use of a single
dataset. While the large scale of the corpus ensures internal validity, emotion expression
can vary significantly across domains (e.g., social media, clinical narratives, customer
reviews) and cultures. Evaluating models on multiple datasets or through domain
adaptation techniques would strengthen the external validity of the results. Future work
should therefore explore cross-domain benchmarks and multilingual corpora to assess the
adaptability of different embedding strategies and architectures beyond the specific dataset
examined here.

Despite these challenges, the findings of this study are consistent with prior literature
reporting the superiority of transformer-based models in emotion classification (Mossad
et al., 2023;Wang et al., 2024). At the same time, the results underscore the value of lighter
models such as BiGRU for practical deployment scenarios where efficiency and scalability
are critical.

Future research should build upon these insights by integrating additional
regularization techniques, employing multimodal datasets, and testing across multiple
corpora to improve generalizability. Ensemble learning and domain adaptation also hold
promise for enhancing robustness, while hybrid embeddings that combine static, trainable,
and contextual representations may yield further gains. By addressing these aspects, future
studies can advance the development of emotion classification systems that are not only
accurate but also efficient, interpretable, and broadly applicable.

CONCLUSIONS
This study demonstrates the effectiveness of advanced neural network architectures,
specifically BiLSTM, BiGRU, and BERT, in the task of emotion classification.
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Through comparative analysis, BERT emerged as the most effective model, achieving the
highest accuracy and F1-scores across all metrics. Its dynamic contextual embeddings
enabled it to outperform both static pre-trained embeddings (GloVe and FastText) and
trainable embeddings used in BiGRU. The choice of embedding methods significantly
influenced model performance, with trainable and contextual embeddings proving
superior in capturing domain-specific nuances and complex linguistic relationships. These
results underscore the transformative potential of contextual embeddings in advancing
natural language processing tasks.

Despite these advancements, several challenges remain. The dataset’s imbalanced
distribution, with an overrepresentation of the “Joy” label and an underrepresentation of
“Disgust,” made achieving consistent performance across all emotion classes difficult.
Addressing this imbalance through data augmentation, cost-sensitive learning, or
class-weighted loss functions is crucial for future work. Additionally, error analysis
highlighted frequent misclassifications between semantically overlapping emotions, such
as “Joy” and “Surprise” or “Sadness” and “Fear,” suggesting the potential benefits of
integrating external knowledge sources or leveraging ensemble techniques to enhance
model robustness.

However, this study also has several limitations. The use of a single dataset restricts the
generalizability of the findings across different domains and cultures. Furthermore, while
BERT achieved the best results, its high computational cost may limit its practical
deployment in resource-constrained environments.

Future research should focus on exploring hybrid approaches that combine static,
trainable, and contextual embeddings, integrating multimodal data to capture richer
emotional contexts, and developing lightweight models to enhance robustness and
applicability. This study provides a strong foundation for further exploration in emotion
classification and highlights the critical role of model architecture and embedding choice
in achieving state-of-the-art results.
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