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ABSTRACT
Linked data and bio-ontologies enabling knowledge representation, standardization,
and dissemination are an integral part of developing biological and biomedical
databases. That is, linked data and bio-ontologies are employed in databases to
maintain data integrity, data organization, and to empower search capabilities.
However, linked data and bio-ontologies are more recently being used to represent
information as multi-relational heterogeneous graphs, “knowledge graphs”.
The reason being, entities and relations in the knowledge graph can be represented as
embedding vectors in semantic space, and these embedding vectors have been used to
predict relationships between entities. Such knowledge graph embedding methods
provide a practical approach to data analytics and increase chances of building
machine learning models with high prediction accuracy that can enhance decision
support systems. Here, we present a comparative assessment and a standard
benchmark for knowledge graph-based representation learning methods focused on
the link prediction task for biological relations. We systematically investigated and
compared state-of-the-art embedding methods based on the design settings used
for training and evaluation. We further tested various strategies aimed at controlling
the amount of information related to each relation in the knowledge graph and its
effects on the final performance. We also assessed the quality of the knowledge
graph features through clustering and visualization and employed several evaluation
metrics to examine their uses and differences. Based on this systematic comparison
and assessments, we identify and discuss the limitations of knowledge graph-
based representation learning methods and suggest some guidelines for the
development of more improved methods.

Subjects Bioinformatics, Data Mining and Machine Learning
Keywords Knowledge graphs, Embeddings methods, Biomedicine, Comparative evaluation,
Performance studies, Linked data, Bio-ontologies

INTRODUCTION
Knowledge graphs generally refer to a form of knowledge representation that consists of
entities and their relation to each other, where heterogeneous knowledge nodes represent
entities and labeled edges represent their relation to each other (Färber et al., 2016).
Many definitions of knowledge graphs exist in the biomedical field (Ehrlinger & Wöß,
2016). Nonetheless, there are general recommendations and prerequisites of what
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constitutes a knowledge graph, which mainly emphasizes representing knowledge in a
graph structure with labeled edges adhering to explicit, and unambiguous semantics
(Ehrlinger & Wöß, 2016; Zhang, 2002).

The relational and semantic representation provided by knowledge graphs is
fundamental to logic and inference and has contributed to enhancing the intelligence of
Web searches (Raedt et al., 2016; Davis, Shrobe & Szolovits, 1993). A few examples of
such publicly available knowledge graphs include FreeBase (Bollacker et al., 2008), and
DBpedia (Auer et al., 2007; Lehmann et al., 2015), as well as proprietary knowledge
graphs such as the Google knowledge graph (Dong et al., 2014) that have been successfully
applied to many real-world applications. To that end, recently, knowledge graphs
embedding methods have emerged as an effective and promising paradigm for
analyzing and learning from knowledge graphs within and across subject domains.
The key idea is to map knowledge graph entities and relations into a low-dimensional
vector representation (i.e., an embedding), which preserves its local and global structure
and simplify its use in prediction tasks such as link prediction (i.e., knowledge graphs
completion), entity classification, and entity resolution (Nickel et al., 2016; Wang et al.,
2017).

Utilizing knowledge graph embedding methods to learn, analyze, and visualize
biological data is not new. For example, Alshahrani et al. (2017a) demonstrated the
integration of biomedical ontologies and linked data in the form of knowledge graphs that
were used to predict biological relations. That work has collectively presented several
biomedical problems as relations/links prediction. This holistic approach allows the
exploitation of existing knowledge about several types of entities and relations to predict
the missing ones. In other related work, a specific problem (i.e., relation) was studied
in more detail. For example, Alshahrani & Hoehndorf (2018a), Mohamed, Nováček &
Nounu (2020) used biomedical knowledge bases to build a knowledge graph consisting of
the drugs and their target and used it to infer candidate drugs. Another example is utilizing
Knowledge graphs for gene-disease prioritization (Alshahrani & Hoehndorf, 2018b) or
predicting disease co-morbidity (Biswas, Mitra & Rao, 2019). For ontologies-based
embedding learning, Kulmanov et al. (2019) utilized such embedding techniques to learn
from background knowledge accessed through bio-ontologies and showed its successful
application through relation predictions that involve entities annotated with ontology
classes (Kulmanov et al., 2019; Holter et al., 2019).

Utilizing knowledge graphs in biomedical domains serves many purposes:
(1) Knowledge graphs can represent different types of knowledge due to their versatile
nature of modeling biological systems through complex interactions between different
types of entities. It differs from traditional graph mining techniques due to their limited
expressiveness are not able to preserve semantic relations between entities of the graph and
can not distinguish between different interactions. For example, in protein-protein
interactions networks, traditional graph or network methods can not differentiate between
inhibition, activation, or phosphorylation. (2) Knowledge graphs can encompass formal
knowledge such as the ones found in bio-ontologies, which makes a distinction
between classes and data instances and allows formal inferences to be performed
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(Alshahrani et al., 2017a; Holter et al., 2019). (3) Knowledge graphs adapt the linked
data standards when referring to entities and relations and use (Uniform Resource
Identifiers) to facilitate linking and sharing. This property allows multimodal integration
of knowledge between different types of knowledge bases and data sources such as all types
of networks, biomedical literature, and images.

There are several such methods, and here we establish a systematic study of these
methods. To accomplish this task, we surveyed knowledge graph embedding methods,
then grouped them into seven categories according to the techniques they employ, the
information they contain and the features they encode. We then selected the most
representative and successful method of each group for our analyses. To conduct a set of
experiments that comprehensively compares the performance of the six state-of-the-art
knowledge graph embedding methods in different tasks such as relation/link prediction,
clustering, and visualization, we employed different evaluation metrics. We discussed
their usage and potential biases in specific tasks. We also provide concluding remarks
highlighting the limitations of this work and provide a directive for future works. We make
all of our data and evaluation scripts available at https://github.com/monaalsh/kg-
embeddings-in-biomedicine.

METHODS FOR KNOWLEDGE GRAPH EMBEDDING
Notations
We have used the Semantic Web technology “Resource Description Framework”, more
commonly known as RDF, as our graph data model that formally describes the semantics
or meaning of information (?). To standardize terminologies, we fixed the RDF
terminologies to represent the entities and the relations, given that the aim here is to reuse
the RDF graphs and bio-ontologies as our framework that fits a wide range of knowledge
graphs embedding methods. In RDF terms, a triple (s,p,o) consists of the subject s, the
predicate/relation p, and the object o. The equivalent terminology in knowledge graph
embedding methods consider a fact (h,r,t) with the h as its head, t as its tail entities, and r
as its relation. Boldface lower-case letters denote the embedding (i.e., low-dimensional
vector representations) of subject s, object entities o, or relations p. Upper-case boldface
letters denote matrices such as A.

Random walk-based embedding methods
Random walk statistics is a popular proximity measure in graphs. A random walk is a
stochastic process of traversing a graph to describe a path consisting of a succession of
steps selected uniformly. Implementing random walks in knowledge graphs started
with the learning of entities features using edge-weighted paths (Lao & Cohen, 2010;
Gardner & Mitchell, 2015; Wang et al., 2016). Lao & Cohen (2010) were the first to
implement and evaluate edge-weighted paths in several recommendations tasks.
They developed and applied a similar random procedure (Lao, Mitchell & Cohen, 2011)
to approximately 500,000 beliefs extracted imperfectly by never-ending language learner
(NELL) (Carlson et al., 2010). This method developed in Lao, Mitchell & Cohen (2011)
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outperformed the Horn-clause learning and inference method used by NELL to determine
if text extracted from the web was a fact. That is, Lao, Mitchell & Cohen (2011) formulated
a link prediction task that demonstrated excellent results in terms of scalability, and
predictive performance achieved was double the precision at rank 100 compared to NELL.

This graph-based representation learning led to the development of several graph
embedding methods that utilized random walks statistics to improve feature learning for
the node similarity, which showed superior performance in link prediction and node
clustering. Of those methods, it is worth singling out Deepwalk (Perozzi, Al-Rfou &
Skiena, 2014), the first approach to sample short random walk sequences in a network.
DeepWalk generalizes recent advancements in language modeling and unsupervised
feature learning from sequences of words to networks. DeepWalk uses local information
obtained from a stream of random walks to learn the latent representations of the
nodes as well as learn the probability distribution of node co-occurrence by treating the
walks as equivalent sentences. These latent representations (i.e., node embeddings) capture
the nodes’ neighborhood similarity and community membership. The approach taken
to develop Deepwalk that bridges the gap between graph embedding and word embedding
was inspired by the well-known neural language model SkipGram (Mikolov et al., 2013).
SkipGram is a language model that maximizes the co-occurrence probability among
the words that appear within a window, w, in a sentence. It predicts the context words
given the target word wt by maximizing the average log probability as follows:

J ¼ 1=N
XN

t¼1

X

�c�j�c;j6¼
logpðwtþjjwtÞ (1)

where c is size of the context window.
Node2vec (Grover & Leskovec, 2016) is a generic version of DeepWalk, but it biases the

random walk by different sampling strategies using different parameters. Node2vec aims
to learn vector representations that obey two characteristics of the graph neighborhood:
homophily and structural equivalence. The first one is related to discovering graph
communities (i.e., highly connected nodes are closer to each other), achieved through the
Depth-first search. The latter is related to finding nodes that share similar roles in different
communities, achieved through Breadth-first search. Both DeepWalk and Node2vec
embeddings are being used in the biomedical domain, such as for drug-target interaction
prediction, and they were effective in producing the desired results (Zong et al., 2017;
Thafar et al., 2020a, 2020b).

An additional random walk-based method, struc2vec (Ribeiro, Saverese & Figueiredo,
2017), is a flexible framework for learning embeddings of node’s structural identity that
captures the similarity between nodes in a network which perform similar functions.
Structural identity is a symmetry concept used to identify network nodes based on the
network structure and their relationship to other nodes. As a first step, struct2vec
constructs a multilayer weighted network that encodes the structural similarity between
nodes. Each layer k is defined using the nodes’ k-hop neighborhoods. Then, the multilayer
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graph is used to generate node sequence by a weighted random walk. After that, skip-gram
or a similar technique is used to learn the embedding from the context given by the
sequence for each node. Nodes with high structural similarity are close to each other in the
embedding space. An extension to random walk-based graph embedding is Hierarchical
random wALK (HALK) (Schlötterer et al., 2019), which removes a percentage of less
frequent nodes from the walks while learning its feature representations to captures the
global neighborhood, not just the local neighborhood.

The previous graph embeddings techniques are generally used for unlabeled graphs but
can be extended to account for edge information and, therefore, can be applied to RDF
graphs, as demonstrated by (Ristoski & Paulheim, 2016). The extension to edge-labeled
graphs (i.e., RDF graphs) requires converting the graphs into sequences of entities
and relations using graph walks (Perozzi, Al-Rfou & Skiena, 2014) or graph kernels
(Yanardag & Vishwanathan, 2015), and then applying a neural language model (Mikolov
et al., 2013) to learn low-dimensional vector representation.

Alshahrani et al. (2017a) was the first to successfully extend this procedure to
biological knowledge graphs and account for implicit knowledge contained within bio-
ontologies through automated reasoning. They then applied these processes collectively
to demonstrate the prediction of biological relations (i.e., edges) with prediction accuracy
that outperformed state-of-the-art methods.

Despite its success in several prediction tasks, random walks approaches are typically
concerned with finding a way to learn structural features that could encode features related
to the local neighborhood or global positions of nodes in the graphs with limited
incorporation or relation-specific features that identify knowledge graphs. In the following
sections, we discuss several methods that formally incorporate semantic information
through various distance methods, relation-specific (i.e., different types of relations,
taxonomies or hierarchies), and precise information of the knowledge graph.

Distance-based methods
Distance-based knowledge graph methods represent another class of relational learning,
based on the idea that entities are similar if their latent feature vectors are close after
applying a relational translation using some distance measures. Such methods infer
relations between entities by applying vector operations (i.e., translation) such as
subtraction of two embedding vectors in the embedding space. Several methods fall into
this category, including TransE (Bordes et al., 2011, 2013), TransH (Wang et al., 2014),
TransR (Lin et al., 2015b), and PTransE (Lin et al., 2015a), RotatE (Sun et al., 2018),
TorusE, and KGLG (Ebisu & Ichise, 2017, 2019). TransE is one of the most representative
and widely used as a benchmark. TransE model is described as follows:

Given a triple (subject, predicate, object) or simply (s,p,o), it aims to make the sum of the
subject and predicate vectors as close as possible to the object vector (i.e., sþ p � o) when
(s,p,o) holds, and the sum is far away otherwise. This is done based on some distance
measure dðsþ p; oÞ, which is chosen to be L1 or L2 norms. The loss function is the
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max-margin with negative sampling, and it is defined as minimizing the pairwise ranking
loss as follows:

L ¼
X

ðs;p;oÞ2L

X

ðs0;p;o0Þ2L0
½gþ dðsþ p; oÞ � dðs0 þ p; o0Þ� (2)

This loss aims to encourage discrimination between positive triples L and negative
triples L0, with γ as the margin separating them. Although translational models achieved
highly successful predictive and efficient performance in knowledge graphs benchmarks
datasets (Bollacker et al., 2008; Miller, 1995), they suffered from several limitations.
For example, the TransE models one-to-one relations successfully, but it fails to
account for other relational patterns and mapping properties such as one-to-many, many-
to-one, and many-to-many. TransH (Wang et al., 2014) addressed this limitation by
interpreting the relation as a translating operation on a hyperplane with the normal
vector wp, in which both subject and object entities are projected. Therefore, given the
triple (s,p,o), the s and o entity representations after the projection will be:

s? ¼ s� wp
Tswp; o? ¼ o� wp

Towp (3)

The loss is defined with the projected subject and object representations as follows:

L ¼
X

ðs;p;oÞ2L

X

ðs0;p;o0Þ2L0
½aþ dðs? þ p; o?Þ � dðs0? þ p; o0?Þ� (4)

TransH also proposed simple techniques for sampling the negatives. Even though
TransH solved the relations mapping issues by using relations hyperplanes, it still suffers
from other issues. For TransE as well as for the TransH model, the entities and the
relations are in the same semantic space R, so the similar entity appears in the same
entity space. However, each entity can have many aspects, and different relations pay
attention to the different aspects of the entity. Thus, TransR (Lin et al., 2015b) is proposed
to address this issue by modeling entities and relations in two different semantic spaces
(i.e., entity space Rd and the multiple relations space Rk) and performs the translation in
the corresponding relation space. The subject and object entities are first projected into the
space specific to the relation using the projection matrix Mp 2 Rk�d , in which case the
resulting vector representations are:

s? ¼ Mps; o? ¼ Mpo (5)

Similarity, given the projected entities, the loss is defined as:

L ¼
X

ðs;p;oÞ2S

X

ðs0;p;o0Þ2S0
½aþ dðs? þ p; o?Þ � dðs0? þ p; o0?Þ� (6)

Although TransR is more expressive and can model different aspects of the entities, it
suffers from high modeling complexity introduced by the projection matrix. Furthermore,
it is insufficient to build just one single relation vector to perform all translations from
subject to object. Thus, CTransR (i.e., cluster TransR) is a variant of TransR which clusters
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different entity pairs into groups and learns distinct relation vectors for each group.
CTransR constraints pairs of entities participating in the same relations to exhibit similar
features (Lin et al., 2015b). Additionally, PTransE (Path-based extension of TransE)
(Lin et al., 2015a) studies the effect of exploring multi-step relation paths using
composition operations such as addition and multiplications between entities instead of
only direct relations, and this may encode intricate and high-order inference patterns
(Wang et al., 2017).

The general intuition of all the above-mentioned methods is to infer the KG’s
connectivity patterns based on the observed facts and relations. These patterns are
symmetry/antisymmetry, inversion, and composition, and it is important to model these
patterns for link prediction tasks. However, none of these methods can model all these
patterns. For example, the TransE model (Bordes et al., 2011), which represents
relations as translations, aims to model the inversion and composition patterns but not the
other. A recent method, RotatE (Sun et al., 2018), is capable of modeling and inferring all
of these relation patterns (i.e., symmetry/antisymmetry, inversion, and composition).
The RotatE model maps the entities and relations to the complex vector space and
defines each relation as a rotation from the source entity to the target entity. Therefore,
given the triple (s,p,o), the object vector representation is to be equal to o ¼ s�p, where
s; p; o 2 C and � denotes the element-wise (Hadamard) product. Additionally, the
scoring function for the triple is defined as:

scoreðs; oÞ ¼ jjs�p� ojj2 (7)

Rule-based embedding methods
In addition to the structural features discussed in the previous sections, knowledge graphs
specifically ontologies have model-theoretic semantics. The ontology TBox contains
axioms about classes, such as taxonomic relations, equivalence, or disjointness axioms,
which includes the knowledge graph learning objective. For representing hierarchical
types, Xie et al. (2016a) proposed Type-embodied Knowledge Representation Learning
(TKRL). TKRL follows similar approach to TransE, which additionally considers the
hierarchical types as projection matrices for entities, with two type encoders designed
to model hierarchical structures. Specifically, TKRL projects the subject and object into
their corresponding hierarchical type-specific spaces using the type-specific projection
matrices Mps and Mpo as follows:

s? ¼ Mpss; o? ¼ Mpoo (8)

Mps andMpo are designed to handle multiple types, and are defined as the weighted sum
of all possible type-specific relations that a subject or an object can belong to as the
following:

Mps ¼
Pns

i¼1 aiMtiPns
i¼1 ai

(9)

where ns is the number of types, ti is the type the subject can belong to, and αi is the
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corresponding weight. Note that the type can be an ontology class, and in this case, the
method can learn type-specific representations of the biological entities associated with a
particular class in ontology. Moreover, another recent method, Poincaré Embeddings
(Nickel & Kiela, 2017), takes a fundamentally different approach in learning hierarchical
representations by embedding them into a hyperbolic space—or more precisely into an
n-dimensional instead of Euclidean space. The underlying hyperbolic geometry allows
learning parsimonious representations of symbolic data by simultaneously capturing
hierarchy and similarity. Poincaré is an efficient algorithm to learn the embeddings based
on Riemannian optimization and show experimentally that Poincaré embeddings can
outperform Euclidean embeddings significantly on data with latent hierarchies, both in
terms of representation capacity and in terms of generalization ability. Knowledge graphs
can also include other edge semantics (i.e., relations properties) such as transitivity,
asymmetry, and reflexivity. Wang, Wang & Guo (2015) integrate rules into embedding
models for KB completion. It introduced an integer linear programing (ILP) approach
with the objective function generated from embedding models and the constraints
translated from the rules. It first learns the embedding through three KG embedding
models namely RESCAL (Nickel, Tresp & Kriegel, 2011) (explained later in tensor-based
method section), TRESCAL (Chang et al., 2014) an extension of RESCAL, and TransE
(Bordes et al., 2013). Then, it solves the ILP problem by optimizing the normalized scores
from the three models under the rules. The incorporation of rules reduces the solution
space significantly and enhances the inference of KG completion accuracy. Later, Guo et al.
(2016) proposed KALE as a joint model that embeds the KG facts and the logical rules in a
unified framework, by reusing the transnational assumption to model the facts and t-norm
fuzzy logic to model the logical rules.

Another rule-based KG embedding method, Hierarchical Relation Structure (HRS)
(Zhang et al., 2018), which extends the existing KG embedding models TransE, TransH,
and DistMult, to learn embedding by leveraging the rich information. According to
HRS, the knowledge graph’s relations conform to three layers: relation clusters, relations,
and sub-relations, which can fit in the top, the middle, and the bottom layer of three-layer
HRS, respectively.

While translational embedding techniques (Bordes et al., 2013) account for asymmetry
to some extent, TARE (Embedding knowledge graphs based on Transitivity and
Asymmetry of Rules) (Wang et al., 2018) incorporates transitivity and asymmetry of
relations in the vector representations by utilizing non-negative matrix factorization
technique. This model captures the ordering of relations and infers potential new relations
based on the ordering of existing relations, as well as the properties of asymmetry and
transitivity of rules.

Factorization-based embedding methods
Tensor factorization methods have been widely applied to various problems in machine
learning and data mining. Tensors encode multi-dimensional data and can represent
multi-relational data naturally. Such tensors are then factorized to obtain latent
representations for the entities and their relationships. Tensor factorizations are an
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extended form of matrix factorization or decomposition that can be applied to account
for the existence of relations in knowledge graphs. A knowledge graph can be described as
a third-order binary tensor; each element corresponds to a triple (subject, relation, object).
The entries of the tensor are either one indicating a fact (i.e., true relation between two
entities) or zero otherwise (i.e., either negative or missing relation), and the relation
interactions in the knowledge graph are relation-specific matrices. According to Nickel,
Tresp & Kriegel (2011), the primary motivations behind applying tensor factorization for
relational learning are, (1) it provides modeling simplicity when representing relation as a
three-way tensor of higher orders, and (2) tensor methods require no prior knowledge
about the structure or the independent variables. Furthermore, tensor factorization is
considered a suitable alternative to the Markov Logic Networks that requires the
structure to be known. Also, factorization methods perform well, despite the high-
dimensional data and sparse problems commonly faced in relational learning. Traditional
and well-known tensor factorization approaches such as (Tucker, 1966; Harshman &
Lundy, 1994; Harshman, 1978) have limited scalability to large knowledge graphs and
cannot perform collective learning (Nickel, Tresp & Kriegel, 2011). On the other hand,
RESCAL is capable of collective learning. In other words, it is a tensor-based relational
learning approach that models the pairwise interactions between the subject and
object entities and the relations (i.e., three-way model), in multi-relational data. It first
performs rank-r factorization, where each slice of the tensor represents a relation-specific
matrix χp that is factorized as follows:

vp � AMpA
T; for p ¼ 1;…;m (10)

where An × d is a matrix latent factor representation of n entities of d feature dimensions.
Mp is an asymmetric relation-specific matrix containing the interactions of the latent
factor in the p-th relation. It then minimizes the function that captures the latent semantics
for each entity appearing as subject or object within a triple:

L ¼ 1
2

X

p

½vp � sMpo
T�2 (11)

The above formulation preserves the asymmetry between entities and whether they
occur as subjects (Nickel, Tresp & Kriegel, 2011). This property is essential for modeling
certain types of relations that may exist in biological datasets and ontologies; for example,
subClassOf and instanceOf relations. One of the main limitations of RESCAL is that it is
inefficient to train as it has quadratic run-time and scales poorly to large knowledge
graphs. These limitations of RESCAL led to the development of other KG embedding
methods, DistMult (Yang et al., 2014), Holographic Embeddings (HolE) (Nickel, Rosasco
& Poggio, 2016) and ComplEx (Trouillon et al., 2016). DistMult avoids the computational
complexity of RESCAL by diagonalizing the relation-specific matrix, thereby restricting
its modeling capability to symmetric relations only. However, DistMult suffers from other
limitations because its relations are represented by diagonal matrices, which causes
difficulty with longer rules extraction. These rules require modeling of more complex
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relation semantics. To avoid all previous limitations, Nickel, Rosasco & Poggio (2016) then
proposed HolE. HolE exploits the expressive of RESCAL with the efficiency and simplicity
of DistMult. It uses a circular correlation operator to construct a composite feature
representation of the subject and object, which is then semantically matched (i.e., dot
product) with the relation vector to score the fact. This approach offers expressiveness to
model asymmetric relation while maintaining low computational complexity. ComplEx
(Trouillon et al., 2016), on the other hand, explores the use of complex numbers to model
several relational patterns such as symmetry and anti-symmetry. TriModel (Mohamed &
Nováček, 2019) combines DistMult and ComplEx methodologies to investigate the
possibility of encoding symmetric and asymmetric relations.

SimplE (Kazemi & Poole, 2018), a recent powerful factorization technique learns
interpretable and expressive embeddings, allowing specific background knowledge to be
encoded through weight sharing. It addresses the issue of independence between subject
and object entities through the inverse relation as a way to capture the dependance
between entities and exploit the similarity and dissimilarity information as they occur in
different roles (i.e., as subjects and objects in a relation). As a result, SimplE similarity
function is defined as:

scoreðs; oÞ ¼ 1
2
ðhsei ; p; oeji þ hsej ; p�1; oeiiÞ (12)

The SimplE model authors (Kazemi & Poole, 2018) defined hs; p; oi to be hs; p; oi ¼
ðs�pÞ � o where � represents the element-wise (Hadamard) product and the :amp:odot;
represents the dot product.

Graph convolutional networks-based embedding methods
Recently, graph convolutional networks (GCNs) have also been utilized to learn KG
embeddings for several tasks, including link prediction and entity classification. Unlike
knowledge graph embedding methods mentioned above, which mainly employ shallow
models, GCNs have emphasized their performance using deep models features learning.
Relational Graph Convolutional Network (R-GCN) (Schlichtkrull et al., 2018) is the
first method to show that GCNs can be applied to model knowledge graphs data
(i.e., relational data). R-GCN has an encoder-decoder framework that consists of two
parts: first, the encoder model which learns the latent vector representations of entities and
their interactions, and second, a decoder model which could employ any matrix
factorization technique (DistMult (Yang et al., 2014)). R-GCN revealed shallow
factorization models, such as DistMult, can be significantly improved by learning the
encoder through deep, multi-layer inference known as message passing (described in
Duvenaud et al. (2015) and Kipf & Welling (2016)), the decoder model computes the score
similar to DistMult model (Yang et al., 2014) as follows:

scoreðs; oÞ ¼ sTRpo (13)

where R is a diagonal relation-specific associated with the p−th relation.
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Furthermore, ConvE (Dettmers et al., 2018); a multilayer GCN is another model which
learns parameter-efficient vector representations which attempt to present a tradeoff
between the lack of expressiveness of shallow models and the scaling and overfitting
problems of deep models. ConvE model forms a 2-D matrix from the subject and the
predicate vector representations, which are used as inputs to the convolutional layers.
The resulting feature maps tensor is then reshaped into a vector through vec() and
projected into the lower dimension byW and matched by the object vector representation
through the dot product which computes its interaction and generate the corresponding as
follows.

scoreðs; oÞ ¼ f ðvecðf ðconcatðS;PÞ 	 xÞÞWÞo (14)

where f() is the rectified non-linear unit (Nair & Hinton, 2010) activation functions, concat
(S, P) is 2-D matrix concatenation of the s and p embedding vectors, ω is the 2-D
convolutional filters andW is a linear transformation projection matrix. Similar to ConvE,
ConvKG (Nguyen et al., 2018) forms a 2-D matrix which instead consists of all the 3
triple elements: subject, predicate and object vector representations. This is used that as
input to the convolutions layers which applies 1-D filters. The resulting features maps are
concatenated into a single vector and matched with the weights vector w through a dot
product to generate the score. Therefore the resulting scoring function is as follows:

f ðf ðconcatðs; p; oÞ 	 vÞw (15)

where f() is the rectified non-linear unit (Nair & Hinton, 2010) activation functions. ω is
the 1-D convolutional filters. ConvKB is said to model global relationships between same
dimensional entities unlike ConvE (Nguyen et al., 2018). Lastly, Weighted GCN (Shang
et al., 2019) utilizes learnable relational specific scalar weights, while Composition-
based GCN (COMPGCN) (Vashishth et al., 2019) is a recent method developed by
systematically leveraging different composition operators introduced in various knowledge
embedding methods.

Multimodal embedding methods
While the methods discussed above primarily consider the rich structure of the knowledge
graphs, other methods can achieve improved performance by exploiting different types
of data representations such as extracting text-based or image-based features. The
combining of features from two or more modes of representation has been incorporated in
various applications to improve classification or clustering tasks such as better word
similarity (Collell, Zhang & Moens, 2017). One of the first KG methods to show multi-
modal feature integration with the textual content is Neural Tensor Network (Socher et al.,
2013), wherein pre-trained word vectors initialize the mode. Subsequently Wang et al.
(2014) showed the effective utilization of both structured and unstructured information by
aligning the KG corpus with the text corpus in a joint model and defining an aggregated
loss for both representations. In similar work that extends TransE, Description-
embodied knowledge graph (DKRL) (Xie et al., 2016a) utilizes the textual descriptions of
KG entities, and define two vector representations for each entity: one that encodes the
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structural information and another that captures the textual description features. On the
other hand, Image-embodied Knowledge Representation Learning (IKRL) (Xie et al.,
2016b) modified the loss function introduced in TransE to account for both the structural
and visual features of the entities in the knowledge graph (image features). Combining all
three modes of representation associated with knowledge graph entities has also been
studied in (Sergieh et al., 2018). These include: the translational structural features, the
Image-embodied Knowledge Representation Learning (IKRL) which encodes image-based
features, and the Description-Embodied Knowledge Representation Learning (DKRL)
which encodes text-based features were incorporated into a single model. The experiments
demonstrated that integrating multi-modal performance is better than the best IKRL
model, and the other single models. Additionally, some models exploit the metadata as a
source of prior knowledge of knowledge graph entities. Such models learn from the
information available such as relation or entity types, which could improve inference about
missing triples (Lv et al., 2019; Wang et al., 2019a; Chen et al., 2019).

Furthermore, multi-source Knowledge Representation Learning model (Tang et al.,
2019) is multimodal in terms of combining features and combining models.
It combines entity descriptions, hierarchical types, and textual relations with triple facts.
Specifically, for entity descriptions, it uses convolutional neural networks to generate
the representations. The hierarchical type computes the projection matrices of entities to
the hierarchical types they belong to using weighted hierarchy encoders. For text-based
feature generation, it uses a sentence-level attention mechanism.

EVALUATION AND COMPARISON DATA
Data sources
Table 1 shows knowledge graph sources centered around biological entities such as genes,
diseases, and drugs that were developed through the accumulation of several databases and
adding bio-ontologies such as Gene Ontology (GO) (Ashburner et al., 2000), Disease
Ontology (DO) (Schriml et al., 2012) and Human Phenotype Ontology (HPO) (Robinson
et al., 2008). As a source of background knowledge, we utilized a knowledge graph
constructed by Alshahrani et al. (2017a) centered around biological entities and their
interrelations and is complemented with domain-specific biomedical ontologies.
The graph consists of 29,984 curated disease-genes relations from DisGeNet (Piñero et al.,
2015), 432,512 drug-target relations from STITCH (Kuhn et al., 2012), and 240,775
Human protein interactions from STRING (Szklarczyk et al., 2015) filtered by the
confidence score selected above 700. We also include 6,190 drug–indications relations and
81,006 drug-side effects from SIDER (Kuhn et al., 2010). The graph also contains
244,105 Human GO annotations from SwissProt The UniProt Consortium Huntley et al.
(2015), 153,575 gene-phenotype, and 84,508 disease-phenotype annotations (Köhler et al.,
2014; Hoehndorf, Schofield & Gkoutos, 2015a). Table 1 in Appendix D provides additional
statistics of relations and entities. We normalized and mapped all database identifiers
to their ontology identifiers, as described in Alshahrani et al. (2017a). This knowledge
graph has also been utilized in several studies and was used for benchmark analysis, as
indicated in (Agibetov & Samwald, 2018a; Liu et al., 2018; Agibetov & Samwald, 2018b).
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We also included Hetionet (Himmelstein et al., 2017) that contains several types of
biological entities and relations. Specifically, we extracted a subset of Hetionet that consists
of the following relations: treats, presents, associates and causes with a 155,679 total
number of relation edges. Table 2 shows a summary of the statistics of relations and
entities.

Evaluations metrics
To solve biology-related problems, using an in silico approach, requires several evaluation
metrics. Here, we describe several evaluation metrics, including the hits@10 (%) and the
mean rank metric, as they are accepted performance metrics for knowledge graph
embedding methods. We also include the Area Under the Receiver Operating
Characteristic Curve (AUROC) and the F-score.


 Hits@10
hits@10(%) is one of the performance metrics used to evaluate the results of embedding
method _Here we report the proportions of the correctly predicted entities ranked in the
top 10 among all entities of the same type, for all tested triples.


 Mean rank
Another metric for reporting the predictions in knowledge graph methods is mean rank.
Here, we followed a similar procedure as in Bordes et al. (2011). For each tested entity,
we applied the model by fixing the first part, which corresponds to the subject and
enumerating all of the objects of the same entity type. We sorted the models’ scores in

Table 1 The biological knowledge graph sources.

Relation Relation database source Source type Target type

has function Uniprot Gene (Entrez) Function (Gene Ontology)

has disease annotation DisGeNet Gene (Entrez) Disease (Disease Ontology)

has interaction STRING Gene (Entrez) Gene (Entrez)

has sideeffect SIDER Drug (PubChem) Phenotype (Human phenotype)

has indication SIDER Drug (PubChem) Disease (Disease Ontology)

has target STITCH Gene (Entrez) Drug (PubChem)

has gene phenotype HPO annotations Gene (Entrez) Phenotype (Human Phenotype Ontology)

has disease phenotype Hoehndorf, Schofield & Gkoutos (2015b) Disease (Disease ontology) Phenotype (Human Phenotype Ontology)

Table 2 Number of relation edges and participating entities in each relation of subset of Hetionet
dataset. The semantic of each relation is as follows: treats relation: compound–treats–disease; presents
relation: disease–presents–symptom; associates relation: disease–associates–gene; causes relation: com-
pound–causes–sideeffect.

Relation # of relation edges # of source entities # of destination entities

treats relation 755 387 (Drugbank) 77 (Disease ontology)

presents relation 3,357 133 (Disease ontology) 415 (MeSH)

associates relation 12,623 134 (Disease ontology) 5,392 (Entrez Gene)

causes relation 138,944 1,071 (Drugbank) 5,701 (SIDER)
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descending order to obtain the rank of the correct object and reported the mean of all
ranks in the test triples.


 Area under the Receiver Operating Characteristic Curve (AUROC/AUC)
Area under the Receiver Operating Characteristic Curve (Fawcett, 2006) is a useful
evaluation metric for binary classifiers. To compute AUC, the true positive rate (TPR,
also known as sensitivity or recall), and the false-positive rate (FPR) must be calculated
for each threshold. The FPR and the TPR constitute the x-axis and the y-axis of the
ROC curve, respectively. The TPR is the proportion of correctly predicted positive
samples over the total number of positive samples defined as TPR ¼ TP

TPþFN, while the
FPR is the proportion of incorrectly predicted negatives over the total number of
negative samples defined as FPR ¼ FP

FPþTN. Area under the Receiver Operating
Characteristic Curve can be applied in different forms, to predict the existence of
relations in the binary form. We applied macro-AUC, the neural networks model
scores as the thresholds. At a given threshold, TP is the number of pairs predicted as
associated, and their true label retrieved from the database is positive (i.e., the number of
associated disease-genes as recorded in DisGeNet). At the same time, the TN is the
number of pairs predicted as non-associated, and there is no record in the database of
this association (i.e., when the model correctly predicted the negative class). We also
applied micro-AUC, where the classifiers’ ranks are considered the thresholds. In this
case, we consider as TP, all pairs ranked above this threshold and are found in the
respective database as associated, while we treat all non-associated pairs as negatives.
The micro-AUC can also be interpreted as computing the AUC in the multiclass setup.
For example, in the disease-gene prediction, we treat each disease as a different class.
Therefore, at each rank, we compute the TPR and FPR by aggregating all disease classes’
predictions globally.

We computed the micro-AUC (results are shown in Appendix A) to examine the effects
of a ranking scheme on the AUC results as the absence of “rue negatives” remains an
issue in the evaluation of biological results due to the possible incompleteness inherent
in the curated databases. Therefore, we are not only interested in evaluating whether a
relation/edge exists (as in the macro-AUC), but also in its rank among other possible
associations which is relevant and useful in prioritization tasks typical of biomedical
applications. The reason is that the appropriate ranking of genes associated with a
disease or targets and their associated drugs can make the experimental validation
process fast and less expensive.


 F-Score
The F1-Score is the harmonic mean of precision and recall. It is defined as follows:

F1� score ¼ 2 	 recall � precision
recall þ precision

(16)

where the recall is the same as the TPR recall = TPR defined above, and the precision is
defined as precision ¼ TP

TPþFP, which is the proportion of true positives over the number of
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predicted positives (also known as the positive predictive value (PPV)). The F1-score
is known to give more realistic measures due to its insensitivity to class imbalance
(Fawcett, 2006). The results of this evaluation metric are shown in Appendix A.

Training and evaluation
To train the models, we used a positive set consisting of the true associations for each
relation, while the negative set is constructed by sampling an equal number of negative
associations from the pool of unknown associations. We strictly require the negative
associations to be between entities of the same types. For example, for the has–disease–
annotation relation, the positive set is the true associations (as in DisGeNet curated
gene-disease associations) between disease and gene entities in the knowledge graph,
while the negative set is between the set of genes and diseases that are not associated.
To maintain fair comparisons, we fixed the training and testing triples in all of our
experiments across different methods. We also fixed the neural network architecture to
ensure one hidden layer is double the size of the input features. We ran all the methods
using the default parameters described by the original authors, except with RESCAL,
as the original implementation of RESCAL suffers from scalability issues. Other
knowledge graph-based methods circumvent this limitation by setting the regularization
parameter to zero when comparing with RESCAL as a baseline (Bordes et al., 2013; Wang
et al., 2014). We found that although this could allow us to run the method, it results in
drastically lower performance than when fixing this parameter to a reasonable value such
as 0.01. As a result, we used OpenKE for TransE, Rescal and SimplE (Han et al., 2018),
which also uses C++ based implementation for some underlying functions such as
negative sampling. This functionality is essential for large knowledge graphs, such as our
knowledge graph. For the Poincaré method, we used Gensim implementation For the
Poincaré method, we used Gensim implementation (Řehůřek & Sojka, 2010). For
R-GCN, we used Deep Graph Library (DGL) (Wang et al., 2019b). Additionally,
we have conducted experiments to show the effect of different parameter settings on
each method’s output (Appendix C). For this reason, we identified the number of
dimensions (dim), learning rate (lr), the number of epochs, and the number of minibatch
which are standard parameters among all of the knowledge graphs methods and are
known to be used for parameter optimization (Bordes et al., 2013; Lin et al., 2015b; Wang
et al., 2014).

RESULTS
Relation prediction
Using the knowledge graph described in (refer to “Data Sources” section), we conducted a
comparative experimental analysis between six knowledge graph embedding methods:
Walking RDF and The Web Ontology Language (OWL), TransE, Poincaré embeddings,
RESCAL, SimplE and R-GCN. Each method belongs to one of the categories introduced in
“Methods for Knowledge Graph Embedding”. We have specifically selected the most
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representative and successful method of each category for our comparison (Su et al., 2020;
Yue et al., 2020; Holter et al., 2019). We trained each method as feature generation and
end-to-end models:


 Feature generators models: in this mode, we employ a two-stage pipeline (Fig. 1),
which consists of treating knowledge graphs as feature generators followed by a link
prediction model (Alshahrani et al., 2017a). The aim is to assess how well the generated
features predict biological relations. Briefly, we selected neural networks as the link
prediction model, given its capability to learn non-linear functions and reveal intricate
graph patterns encoded in pairs of feature vectors (Bishop, 2006). We then used the
neural model scores produced by the sigmoid function in the last layer to predict the
object entity in the test triple.


 End-to-end models: this corresponds to the native mode in which knowledge
graph embedding methods are trained. We trained each method and applied the model
on the test triples. Briefly, we use the learned feature vectors or matrices (i.e., in case of
RESCAL and R-GCN) to compute the scoring functions. For example, in TransE,
we compute the L1 norm defined below and compare the scores of each subject in the
test triples to all of the objects (which excludes the object entities in the training set).
The results for this section are shown in Appendix B.

scoreðs; oÞ ¼ dðsþ p; oÞ (17)

For RESCAL, we computed the scores as defined by the loss function introduced in
Nickel, Tresp & Kriegel (2011) as follows:

scoreðs; oÞ ¼ sMpo
T (18)

While in the Poincaré method, they defined the distance in the hyperbolic space as
follows:

scoreðs; oÞ ¼ arcoshð1þ 2
jjs� ojj2

ð1� jjsjjÞ2ð1� jjojjÞ2Þ (19)

Where arcosh is the inverse hyperbolic cosine and ||.|| is the L2−norm.
The SimplE embedding model (Kazemi & Poole, 2018) scoring function is defined as
follows:

scoreðs; oÞ ¼ 1
2
ðhsei ; p; oeji þ hsej ; p�1; oeiiÞ (20)

Lastly, the Relational Graph Convolutional Networks (R-GCN) (Schlichtkrull et al.,
2018) model scoring function is defined as mentioned above:

scoreðs; oÞ ¼ sTRpo (21)

Where R is a diagonal relation-specific associated with the p−th relation.
We also designed our experiments to determine how partial and free settings could

affect the study results.
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 Partial: when using this setting, we removed 20% of the relations links for each biological
relation (i.e., for testing) but retained 80% of these links to generate the features for
each method (i.e., for training). After that, we trained the neural network model on each
pair of entities in the relation or applied the knowledge graph embedding method in
the native mode and computed the scoring functions in the end-to-end models. Learning
from known associations when predicting future or possible links resembles a widely
used principle (known as guilt-by-association) for evaluating computational predictions
in biomedical applications (Pahikkala et al., 2014; Thafar et al., 2019; Alshahrani et al.,
2017b).


 Free: when using this setting, all relations links were removed to generate the
features for the nodes in the relations. As our knowledge graph is heterogeneous and
multi-relational, the nodes retain connections via other relations. Compared to the
previous simplified setting, this resembles a more realistic but challenging approach and
could provide a more reliable and robust evaluation scheme for practical application.

The hit@10 in Table 3 shows Walking RDF and OWL outperforms other methods in
four and five relations out of a total of eight relations in the partial and free settings,
respectively. TransE and SimplE followed by showing overall better results than other
methods in both the settings. The performance degradation between partial and free is
clear as the latter doesn’t depend on any known associations in the tested relation edges,
but purely on other the entities and relation features connected within the knowledge
graph. The hit@10 results on the subset of Hetionet knowledge graph are in Table 4
and shown to perform similar performance indicating the advantage of random walk and
R-GCN-based methods. The Mean rank results show similar patterns and are included in
“Appendix B”.

Figure 1 Illustration of the general workflow of our experiments.
Full-size DOI: 10.7717/peerj-cs.341/fig-1
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Clustering and visualization
We further evaluated the quality of the features produced by each method and assessed
how much information they preserved when embeddings vectors are projected into
two-dimensional space. We used a recent technique called t-Distributed Stochastic
Neighbor Embedding (t-SNE) (Maaten & Hinton, 2008). This method can reveal the local
and global features encoded by the feature vectors and thus can be used to visualize clusters
within the data (Maaten & Hinton, 2008). We applied t-SNE to 6,353 feature vectors,
which refer to disease nodes from the knowledge graph. We aim to identify clusters of
Disease Ontology (DO) upper classes representing disease classes of similar phenotypes

Table 3 The top hit@10 results (partial and free settings) for relation prediction of our biological
knowledge graph as feature generators models. Partial and free settings are two evaluation strategies
correspond to: partially removing 80% of the relation edges and completely removing all relation edges,
respectively.

Relation Walking RDF/OWL TransE Poincaré Rescal SimplE R-GCN

partial

has function 12.97 10.51 7.36 5.62 19.20 9.35

has interaction 11.51 13.18 3.75 8.62 8.60 11.40

has disease annotation 31.10 26.31 21.76 19.40 24.02 20.42

has sideeffect 22.42 25.70 5.70 17.07 17.26 17.21

has indication 26.09 18.40 9.77 13.09 14.66 11.83

has target 15.32 13.70 7.68 5.50 20.28 10.93

has gene phenotype 15.23 14.89 8.67 8.59 8.97 10.07

has disease phenotype 34.69 19.86 11.36 10.32 8.61 7.22

free

has function 3.16 2.54 0.43 0.75 2.31 2.56

has interaction 4.14 2.53 1.84 0.74 2.81 0.89

has disease annotation 22.51 21.90 8.02 14.24 10.96 15.75

has sideeffect 18.14 21.20 0.05 13.94 5.82 6.77

has indication 14.78 11.95 5.25 9.61 9.09 13.40

has target 0.24 0.26 0.06 0.12 1.73 0.63

has gene phenotype 9.08 9.61 0.94 6.80 1.94 4.65

has disease phenotype 10.83 4.73 1.10 3.05 1.59 1.89

Note:
The highest performing method is indicated in bold.

Table 4 The top hit@10 results for relation prediction on the subset of Hetionet dataset as feature
generators models.

Relation Walking RDF/OWL TransE Poincaré Rescal SimplE R-GCN

treats relation 53.79 55.62 22.06 47.01 40.39 67.54

presents relation 31.28 24.85 13.26 26.93 14.43 21.13

associates relation 8.32 6.53 3.71 4.59 0.95 2.61

causes relation 16.78 13.29 8.71 13.83 15.68 8.43

Note:
The highest performing method is indicated in bold.
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and mechanisms (Schriml et al., 2011). The t-SNE plot is shown in Fig. 2, the disease data
points can be grouped into nine clusters with varying degrees of separability and overlap.
The methods Walking RDF and OWL, Poincaré, SimplE, and R-GCN showed more
distinct groups than RESCAL, which shows no clusters. The results illustrate how the
features of each method capture the original structure and reflect the similarity between
the data points in the knowledge graph. Moreover, we used Kmeans clustering to evaluate
and quantify each method’s vector representations with and without t-SNE, as shown in
Table 5. To estimate the cluster quality for each embedding method, we have used the
purity and normalized mutual information (NMI) metrics defined below:

purityðY ;CÞ ¼ 1=N
X

k

maxjck \ yjj (22)

NMIðY ;CÞ ¼ 2� IðY ;CÞ
½HðYÞ þ HðCÞ� (23)

where Y = {y1,y2,..,yj} is the class labels, C = {c1,c2,..,ck} is the cluster labels, I(Y;C) is the
mutual information and H(C) is the entropy.

Figure 2 The 2-D t-SNE plot of Disease ontology top categories according to each embedding method. (A) Walking RDF/OWL, (B) TransE
embeddings, (C) poincare embeddings, (D) rescal embeddings, (E) simple embeddings, (F) R-GCN embeddings.

Full-size DOI: 10.7717/peerj-cs.341/fig-2
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Table 5 shows that Poincaré performs better in this task than in the relations prediction,
which could be attributed to its ability to model hierarchical features, as discussed in
“Methods for Knowledge Graph Embedding”.

LIMITATIONS AND FUTURE WORK
Despite the promising results, there are several issues regarding training and evaluation
in the biological and biomedical domains. The likely incompleteness of biological
knowledgebases and the principle of Open World Assumption (OWA) in the knowledge
graphs and Linked Data, which states that non-observed facts are not necessarily false,
should guide the choice of the objective function. Our experiments showed that the
distance-based method TransE and Walking RDF/OWL generally performed better than
other methods, likely attributed to the way the loss is defined. For example, in TransE, the
pairwise ranking loss is defined as below:

L ¼
X

ðs;p;oÞ2L

X

ðs0;p;oÞ2L0
½gþ dðsþ p; oÞ � dðs0 þ p; oÞ� (24)

where L is the positive triples and L0 is the negative triples, L0 ¼ ðs0; p; oÞ [ ðs; p; o0Þ.
This loss favors low values of the scoring function for positive samplesL than those of

the negative samples L0. Such ranking loss formulation is essential as it does not assume
that the negative samples are necessarily false, but they are less likely than the positive
samples, which is the case in biological databases, in which there are no true negatives.
Similarly, Walking RDF/OWL as a feature generation method based on the Skip-gram
model (Mikolov et al., 2013)

J ¼ 1=N
XN

t¼1

X

�c�j�c;j6¼
logpðwtþjjwtÞ (25)

where c is the size of the context window c. Skip-gram optimizes the probability knowledge
graph entities co-occur within the context of the same relations. Entities that constitute
the positive triples should have more similar vector representations than entities that make

Table 5 Disease categories clusters analysis between different knowledge graph methods. Purity and
normalized mutual information (NMI) are used to measure clusters’ goodness.

Relation without t-SNE with t-SNE

Purity NMI Purity NMI

Walking RDF/OWL 0.682 0.438 0.507 0.237

TransE 0.540 0.245 0.565 0.254

PoincarÃ© 0.660 0.367 0.569 0.222

Rescal 0.510 0.165 0.434 0.032

SimplE 0.562 0.237 0.556 0.227

R-GCN 0.563 0.226 0.557 0.223

Note:
The highest performing method is indicated in bold while the second highest is underlined.
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up negative triples. Although this ranking constraint is not enforced in the skip-gram
formulation above, as in TransE, it would be interesting to incorporate such property into
random walk-based methods.

Here we have primarily shown the opportunities of applying knowledge graphs as a
prediction tool in the framework of relation/link prediction. However, employing
knowledge graph embedding to find incomplete or flagging inaccurate information stored
in biomedical warehouses not only serves as a direct application of knowledge graph
embedding methods (Nickel et al., 2015; Wang et al., 2017) but would also solve a
critical problem in the biomedical domain. Knowledge graph embedding methods
employ various methodological techniques and model different relational patterns and
properties of the knowledge graphs and scale differently with the knowledge graphs’ size.
However, their actual collective performances on large biomedical datasets do not always
prefer one method or a certain category of methods over the others. Thus, choosing
the appropriate method remains complex and data-dependent.

One of the significant limitations of knowledge graph embedding methods is that they
handle the qualitative type of information; this restricts its use to consider only the edge
semantic. Incorporating the edge weight would effectively increase its application to
quantitative information, which widely characterize biological data and its interactions
(AlShahrani, 2019).

Another potential application and currently active research topic is using zero-shot
learning (i.e., learning to predict new classes with zero instances in the training phase).
With the knowledge graph, this could be made possible as knowledge graphs are a natural
fit for multimodal data sources directly (refer to the Multimodal embedding methods
section), This is mainly attributed to the use of Semantic Web and Linked Data tools for
identification and sharing in the biomedical domain (Candan, Liu & Suvarna, 2001;
Callahan et al., 2013).

CONCLUSION
Knowledge graph representation learning is emerging as a new and interesting
paradigm for learning and prediction. In this work, we provide an overview of the main
categories of knowledge graphs embedding methods and briefly describe them using RDF
and Linked data terminologies (AlShahrani, 2019). Then, we present the first large-scale
evaluation of knowledge graph embedding methods in the biomedical domain; almost
all results from knowledge graph embedding methods are based on two general-purpose
datasets (i.e., FreeBase (Bollacker et al., 2008) and WordNet (Miller, 1995)). We show
several potential applications and opportunities for utilizing representation learning of
knowledge graphs for data analytics and prediction tasks in the biomedical field.
Specifically, we distinguish our analysis by providing different realistic and commonly
used strategies of training and evaluation used in the biomedical domains, but rarely
compared against each other systematically and collectively (i.e., partial and free for
several relations denoting several biomedical applications). We also demonstrate the
effects on the performance results by treating knowledge graphs models in various modes
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and computing similarities under unified experimental setup with regard to widely used
evaluation metrics in both the knowledge graphs and biomedical literature.
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