
AlphaViT: a flexible game-playing AI for
multiple games and variable board sizes
Kazuhisa Fujita

Department of Clinical Engineering, Komatsu University, Komatsu, Japan

ABSTRACT
This study presents three game-playing agents incorporating Vision Transformers
(ViTs) into the AlphaZero framework: AlphaViT, AlphaViD (AlphaViT with a
transformer decoder), and AlphaVDA (AlphaViD with learnable action
embeddings). These agents can play multiple board games with varying sizes using a
single shared-weight neural network, thus overcoming AlphaZero’s limitation of
fixed board sizes. AlphaViT employs only a transformer encoder, whereas AlphaViD
and AlphaVDA incorporate both a transformer encoder and a decoder. In
AlphaViD, the decoder processes the output from the encoder, whereas AlphaVDA
uses learnable embeddings as decoder input. The additional decoder in AlphaViD
and AlphaVDA provides flexibility to adapt to various action spaces and board sizes.
Experimental results show that the proposed agents, trained on either individual
games or multiple games simultaneously, consistently outperform traditional
algorithms, such as Minimax and Monte Carlo Tree Search. They achieve
performance close to that of AlphaZero despite relying on a single deep neural
network (DNN) with shared weights. In particular, AlphaViT performs well across
all evaluated games. Furthermore, fine-tuning the DNN using weights pre-trained on
small board games accelerates convergence and improves performance, particularly
in Gomoku. Notably, simultaneous training on multiple games yields performance
comparable to, or even surpassing, that of single-game training. These results
indicate the potential of transformer-based architectures for developing flexible and
robust game-playing AI agents that excel in multiple games and dynamic
environments.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Neural Networks
Keywords AlphaZero, Transformer, Game agent

INTRODUCTION
Artificial intelligence (AI) has advanced remarkably in recent years, demonstrating its
potential across a wide range of applications. One area where AI has excelled is mastering
board games, often outperforming top human players. Notable achievements include AI
agents that have defeated humans in games such as Checkers (Schaeffer et al., 1993), Chess
(Campbell, Hoane & hsiung Hsu, 2002), and Othello (Buro, 1997). A significant turning
point occurred in 2016 when AlphaGo (Silver et al., 2016), an AI designed specifically for
the game of Go, defeated the world’s top players. Subsequently, AlphaZero (Silver et al.,
2018) was introduced, demonstrating its capability to master various board games,
including Chess, Shogi, and Go. These achievements further highlight AI’s superhuman
skill in this domain.

How to cite this article Fujita K. 2025. AlphaViT: a flexible game-playing AI for multiple games and variable board sizes. PeerJ Comput.
Sci. 11:e3403 DOI 10.7717/peerj-cs.3403

Submitted 10 January 2025
Accepted 28 October 2025
Published 28 November 2025

Corresponding author
Kazuhisa Fujita,
kazu@spikingneuron.net

Academic editor
Yu-Dong Zhang

Additional Information and
Declarations can be found on
page 27

DOI 10.7717/peerj-cs.3403

Copyright
2025 Fujita

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3403
mailto:kazu@�spikingneuron.�net
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3403
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Despite these successes, many current game-playing AI agents suffer from a
fundamental limitation: they are typically designed for just one specific game and cannot
play other games. Even within the same game, these agents cannot handle variations in
board size. In contrast, humans can easily switch between different board sizes. For
example, beginners in Go often start practicing on smaller boards (e.g., 9� 9) before
progressing to larger boards (e.g., 19� 19). However, AI agents like AlphaZero, which are
designed for a single specific game and a fixed board size, require substantial
reprogramming to accommodate such changes.

For AlphaZero, this limitation arises from its deep neural network (DNN) architecture,
which requires a fixed input size. AlphaZero’s DNN consists of residual blocks and
multilayer perceptrons (MLPs) designed for a fixed input size. The output size of the
residual blocks varies with changes in input size, creating inconsistencies with the expected
MLP input size. Consequently, AlphaZero fails even with small changes in board size.

To address this limitation, this study proposes replacing residual blocks in the
AlphaZero framework with Vision Transformer (ViT) (Dosovitskiy et al., 2021). ViT is an
image-classification DNN based on the transformer architecture. ViT divides an image
into patches, encodes them using a transformer, and classifies the image based on
these encoded patches. A key advantage of ViT is its flexibility in handling various image
sizes. This flexibility enables the AlphaZero framework to adapt to various games and
board sizes.

This article presents game-playing agents capable of handling multiple games and
variable board sizes using a single DNN. These agents, named AlphaViT, AlphaViD
(AlphaViT with a transformer decoder), and AlphaVDA (AlphaViD with learnable
action embeddings), are based on the AlphaZero framework. The agents predict the value
of a game state and the policy using a DNN, and choose moves via Monte Carlo Tree
Search (MCTS) (Browne et al., 2012; Winands, 2017). Computational experiments
show that the proposed agents can be trained to play three games (Connect 4,
Gomoku, and Othello) simultaneously using a single DNN with shared weights. Moreover,
the proposed agents outperform traditional algorithms, such as Minimax and MCTS,
across various games, while approaching the performance of AlphaZero, whether
trained on a single game or multiple games simultaneously. The goal of this study is
not to surpass the state-of-the-art specialized single-game agents, but rather to
demonstrate that a single transformer architecture can flexibly handle multiple games and
board sizes.

Portions of this text were previously published as part of a preprint (https://arxiv.org/
abs/2408.13871).

RELATED WORK
Game-playing AI agents have reached superhuman performance levels in traditional board
games such as Checkers (Schaeffer et al., 1993), Othello (Buro, 1997, 2003), and Chess
(Campbell, 1999; Hsu, 1999; Campbell, Hoane & hsiung Hsu, 2002). In 2016, AlphaGo
(Silver et al., 2016), a Go-playing AI, defeated the world’s top Go players, marking the first
superhuman-level performance in Go. AlphaGo relied on supervised learning from a large

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 2/30

https://arxiv.org/abs/2408.13871
https://arxiv.org/abs/2408.13871
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

database of expert human moves and self-play data. Subsequently, AlphaGo Zero
(Silver et al., 2017) defeated AlphaGo, relying only on self-play data. In 2018, Silver et al.
(2018) proposed AlphaZero, which has no restrictions on the types of games it can play.
AlphaZero outperformed other superhuman-level AIs in Go, Shogi, and Chess.
Interestingly, AlphaZero’s capabilities extend beyond traditional two-player
perfect-information games, with research exploring its potential in more complex
scenarios. For example, Hsueh et al. (2018) showed AlphaZero’s potential in
nondeterministic games. Other extensions include handling continuous action spaces
(Moerland et al., 2018) and supporting multiplayer games (Petosa & Balch, 2019).
However, a practical limitation of AlphaZero stems from its DNN design, as its policy and
value heads include MLP layers that require fixed input shapes. This ties a trained network
to a single board size and game, preventing one shared-weight model from handling
multiple games or size variants.

Researchers have improved the AlphaZero framework to overcome its limitations. Wu
(2019) tackled some of these limitations by improving the efficiency of AlphaZero-like
training in Go. Wu’s model introduced techniques such as playout cap randomization and
policy target pruning, which significantly accelerate self-play learning. Wu used global
pooling layers to standardize varying board sizes to a fixed size, enabling the model to
estimate values using MLPs effectively. Furthermore, Wu exclusively utilized
convolutional layers for policy estimation, thereby eliminating the need for MLPs. This
design enables seamless handling of varying board sizes while efficiently calculating the
policy. This innovation represents a significant step toward creating more flexible AI
agents capable of adapting to different board configurations. Similarly, Soemers et al.
(2023) explored transfer learning across various board games, employing fully
convolutional networks with global pooling to enable effective transfer between games
with different board sizes, shapes, and rules. Their approach has demonstrated the
potential of convolutional architectures, enhanced with global pooling, to generalize across
various game scenarios.

To address these limitations, this study proposes integrating a transformer architecture
into the AlphaZero framework. A transformer architecture, initially developed for natural
language processing (Vaswani et al., 2017), has proven remarkably effective across
domains, including image-processing tasks. Transformer-based models achieve
exceptional performance in various image-related tasks, such as image classification
(Dosovitskiy et al., 2021), semantic segmentation (Xie et al., 2021), video classification
(Li et al., 2022), and video captioning (Zhao et al., 2022). ViT, introduced by Dosovitskiy
et al. (2021), is a notable example of a transformer-based model for image processing. ViT
achieved state-of-the-art performance in image classification at the time of its
introduction. A key feature of ViT is its independence from the input image size
(Dosovitskiy et al., 2021). Unlike convolutional neural networks, which require fixed-size
inputs, ViT can process images of various sizes. It achieves this by dividing each image into
fixed-size patches, each treated as a token in the transformer architecture. This flexibility
makes ViT highly adaptable and efficient when handling different image sizes. By
incorporating the ViT architecture into the AlphaZero framework, this study aims to

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 3/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

extend its capabilities to handle various games with different board sizes and enhance its
flexibility.

Some researchers have explored the use of transformers in game-playing AI. For
example, Czech et al. (2024) proposed a variant of the AlphaZero framework, AlphaVile,
using a novel network architecture with modified lightweight transformer blocks and an
original loss function. AlphaVile achieved better performance than AlphaZero in Chess.
Ruoss et al. (2024) reached grandmaster level in Chess with a transformer model trained
solely on a dataset, without any self-play or game-tree search. Monroe & Chalmers (2024)
proposed a transformer-based architecture for Chess-playing AI. Using a simple
transformer architecture, they trained agents that reached a high level of play. These
single-game successes suggest that a transformer architecture can replace convolutions,
and this study takes the next step and shows that a transformer can simultaneously master
multiple games and board sizes with a single set of weights.

METHODS: ALPHAVIT, ALPHAVID, AND ALPHAVDA
AlphaZero’s game-playing capability is limited to games with specific board sizes and rules
used during training, as discussed in previous sections. This limitation arises from
AlphaZero’s DNN architecture, in which MLPs require fixed input sizes. To address this
limitation, this study proposes AlphaViT, AlphaViD, and AlphaVDA as game-playing AI
agents based on the AlphaZero framework but using ViT architecture. These agents use a
combination of a DNN and MCTS (Fig. 1). The DNN receives the board state and outputs
a value estimate and move probabilities (policies). The MCTS searches a game tree using
the estimated value and move probabilities. By incorporating ViT instead of residual
blocks, AlphaViT, AlphaViD, and AlphaVDA can overcome the limitations of AlphaZero
and play games that have variable board sizes and rule sets. While AlphaViT employs only
a transformer encoder, AlphaViD and AlphaVDA employ both a transformer encoder and
a decoder. Importantly, AlphaViT, AlphaViD, and AlphaVDA can play any game that
AlphaZero can because they employ the same game-playing algorithm as AlphaZero (see
‘AlphaZero’ for details).

The training method for AlphaViT, AlphaViD, and AlphaVDA is identical to that of
AlphaZero, consisting of three stages: self-play, augmentation, and update. In the self-play
stage, the agent generates training data by playing games against itself. The augmentation
stage applies data augmentation techniques to the training data. Finally, during the update
stage, the DNN weights are updated using the augmented training data. The details of the
training method are described in ‘Training procedure’.

Architectures of DNNs
AlphaViT An overview of AlphaViT’s DNN architecture is shown in Fig. 2. The DNN in
AlphaViT is based on ViT, which has no input-size limitation and can classify images even
if the input image size differs from the training image size. This flexibility enables
AlphaViT to play games with different board sizes using the same network. In AlphaViT,
the game boards are fed into ViT. Initially, these inputs are transformed into patch
embeddings through a convolutional layer. Using a convolutional layer allows easy

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 4/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

adjustment of the patch partitioning parameters, such as patch size, stride, and padding.
The final output of the encoder is used to compute the value and move probabilities.
AlphaViT employs three special tokens to enable flexibility for different games and board
sizes:

. Value token xvalue: is fed to an MLP value head to predict the state value vðsÞ 2 ð�1; 1Þ,
where s is the game state, 1 indicates a certain win, and �1 a certain loss. This token is
learnable.

Board stack
Current player

Value
Policy

Board stack
Current player

Action

MCTS DNN

Figure 1 Overview of the decision process. The agents take a stack of board planes and the current
player as input and determine the next move using Monte Carlo Tree Search (MCTS). MCTS explores the
game tree using the value and policy provided by the DNN. Full-size DOI: 10.7717/peerj-cs.3403/fig-1

0 1 2 3 4 37

Transformer encoder

Linear projection of flattened patches

Convolution layer

Add position embeddings

MLP

38

MLPMLP MLP MLP MLP

Game
emb

Value
emb

Pass
emb

Figure 2 AlphaViT architecture. The input board is divided into patches by a convolutional layer,
projected to patch embeddings, and combined with value, game, and pass tokens (embeddings). After
adding positional embeddings, the sequence is processed by a transformer encoder. Outputs are used by
MLP heads to predict the state value and move probabilities.Full-size DOI: 10.7717/peerj-cs.3403/fig-2

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 5/30

http://dx.doi.org/10.7717/peerj-cs.3403/fig-1
http://dx.doi.org/10.7717/peerj-cs.3403/fig-2
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

. Game token xgame: encodes which game is currently being played. It is represented as a
non-trainable one-hot vector whose length is equal to the embedding size D. Each game
type (e.g., Connect 4, Gomoku, Othello) is assigned a unique index in this vector.
Although the token itself is fixed, the model can learn game-specific representations
through downstream layers. This design also enables flexible addition of new games, up
to D in number.

. Pass token xpass: represents the “pass” action that exists in Othello but not in Gomoku or
Connect 4. Appending a dedicated learnable token vector after all patch embeddings,
this enables the model to predict the probability of the pass move when the rules require
it. This token is learnable.

Given a game state s, AlphaViT’s DNN predicts the value vðsÞ and the move probability
vector pðsÞ, which includes pða j sÞ for each action a. In a board game, s represents the
board state, and a denotes a move.

The input to the DNN is an H �W � ð2T þ 1Þ image stack x 2 RH�W�ð2Tþ1Þ,
consisting of 2T þ 1 binary feature planes of size H �W. Here, H and W are the
dimensions of the board, and T is the number of history planes. The first T feature planes
represent the occupancies of the first player’s discs, where a feature value of 1 means that a
disc occupies the corresponding cell, and 0 means it does not. The following T feature
planes represent the occupancies of the second player’s discs. The final feature plane
represents the color of the current player’s disc, where 1 denotes the first player and −1
denotes the second player.

The convolutional layer divides the image stack x into P � P patches with stride str and
padding pad, and generates the patch embeddings zpatch. The patch size P corresponds to
the kernel size of the convolutional layer. The sequence of patch embeddings zpatch is
defined in Eq. (1) as follows:

zpatch ¼ ½x0pE; . . . ; xipE; . . . ; xNp�1
p E�; (1)

where Np is the number of patches, xip 2 RP2ð2Tþ1Þ is the ith flattened 2D patch,
and E is a trainable embedding tensor with the shape ðP2ð2T þ 1Þ;DÞ. Here,

Np ¼
��
H þ 2 pad� Pstrc þ 1

�� ��
W þ 2 pad� Pstrc þ 1

�
, where H and W are the

board height and width, P is the patch size, str is the stride, and pad is the padding used in
the convolutional layer. The kernel of the convolutional layer acts as the tensor E, which
maps each patch to a D-dimensional embedding space. Here, D is the embedding size.

To retain positional information, learnable 2D positional embeddings Epos are added to
the patch embeddings. These positional embeddings are scaled according to the board size
and hyperparameters to match the size of the patch embeddings zpatch. The resulting
position-aware patch embeddings are given by Eq. (2):

zpospatch ¼ zpatch þ Epos: (2)

The output size of the transformer encoder is determined by the number of input
tokens. For Gomoku, where the action space is HW, AlphaViT requires HW embeddings
(i.e., Np ¼ HW). To achieve this, the patch size P is set to 2kþ 1, where k is a non-negative

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 6/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

integer, stride str is set to 1, and padding pad is set to bP=2c. Note that when k > 0, patches
overlap, but the total number of patches remains HW. In contrast, for Othello, the action
space is HW þ 1 to include the pass move. Using the same parameters as Gomoku
(P ¼ 2kþ 1, str ¼ 1, and pad ¼ bP=2c), AlphaViT requires one additional token for the
pass move. To address this, a learnable pass token xpass is introduced by appending it after
all patch embeddings (see Eq. (3)). To estimate the board value, a learnable value token
xvalue is prepended. Additionally, to enable AlphaViT to recognize different game types, a
non-trainable one-hot game token xgame, represented using one-hot encoding, is
incorporated. These tokens are appended to the embeddings zpospatch. As a result, the input
embeddings z0 to the transformer encoder are defined in Eq. (3) as follows:

z0 ¼ ½xvalue; xgame; z
pos
patch; xpass�: (3)

Positional embeddings are added to the patch embeddings before appending the pass,
value, and game embeddings. This approach ensures that the positional embeddings can be
scaled independently, without being affected by embeddings that do not inherently contain
positional information.

The sequence z0 is fed into the transformer encoder, which consists of L transformer
encoder layers. The output of the final encoder layer zL has shape ðHW þ 3Þ � D. The
first vector z0L derived from the value token is processed by the value head implemented as
an MLP denoted as MLPv. This head estimates the value v using Eq. (4):

v ¼ tanhðMLPvðLNðz0LÞÞÞ; (4)

where LN represents layer normalization. The tanh activation constrains the value within
the range ð�1; 1Þ, representing the state value, where 1 indicates a certain win and �1 a
certain loss.

The vectors zp ¼ ½z2L; . . . ; zHWþ2
L � (index 0: value, 1: game, 2 . . .HW þ 1: patches,

HW þ 2: pass), derived from the board patches and the pass token, are processed by the
policy head, which is implemented as another MLP (MLPp). The H �W board positions
and the pass move are flattened into one-dimensional indices i 2 f0; 1; . . . ;HWg. For
i <HW, the move corresponds to board coordinates ðm; nÞ where m ¼ i modW is the
column index, and n ¼ bi=Wc is the row index. The policy head applies a shared MLP to
each token, and a softmax over the resulting logits yields a probability vector

pðsÞ 2 RHWþ1 whose ith entry is pðai j sÞ. The special index i ¼ HW represents the pass
action. Thus, the policy head output is defined in Eq. (5):

pðai j sÞ ¼ SoftmaxðMLPpðLNðzpÞÞÞi; (5)

where ai is the i th action, and the MLP is applied to each of the HW þ 1 tokens. For
Othello, the probability for the pass move is pðaHW j sÞ. In Gomoku, this entry is masked
out since the pass move is not allowed. In Connect 4, only the probabilities
fpðai j sÞ j 0 � i <Wg (i.e., moves ðm ¼ i; n ¼ 0Þ) corresponding to valid column choices
i are used and renormalized. Note that i is the column index in Connect 4. The agent drops
the disc into column i, and the disc then falls to the lowest available row.

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 7/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

To decide on a move, AlphaViT employs MCTS with Upper Confidence Bound applied
to Trees (UCT), using the value and move probabilities computed by the DNN. The MCTS
algorithm used in AlphaViT is identical to that of AlphaZero, as detailed in ‘AlphaZero’.
The hyperparameters for AlphaViT are listed in ‘Parameters’.

AlphaViD and AlphaVDA AlphaViT’s DNN has a significant drawback: the size of the
move probability vector (policy) is fixed by the transformer encoder’s input size. To
address this issue, AlphaViD and AlphaVDA incorporate both a transformer encoder and
a decoder for calculating value and move probabilities, as shown in Fig. 3. In AlphaViD,
the decoder receives input derived from the output of the encoder. In contrast, AlphaVDA
employs learnable action embeddings as inputs to the decoder. The value is computed
from the encoder’s final output, while the move probabilities are computed from the final
output of the decoder.

In AlphaViD and AlphaVDA, the input board is linearly embedded using a
convolutional layer and fed into a transformer encoder, similar to AlphaViT. However,
unlike AlphaViT, no pass token is included in the encoder input. The input embedding
sequence is defined in Eq. (6) as follows:

z0 ¼ ½xvalue; xgame; z
pos
patch�; (6)

where the sequence consists of a value token, a game token, and patch embeddings. The
estimated value is obtained from the value head that processes the output embedding
corresponding to the value token from the last layer of the transformer encoder. In both
AlphaViD and AlphaVDA, the encoder output is only used directly for value estimation,
indicating that the number of patch embeddings Np need not match the action-space size.

The architecture of AlphaViD’s DNN is shown at the left of Fig. 3. The DNN estimates
the move probability vector using the transformer decoder and MLPp. The input
embeddings for the transformer decoder are derived from the outputs of the transformer
encoder corresponding to the patch embeddings, which are further processed through a
fully connected layer. The initial embeddings for the decoder input are defined in Eq. (7) as
follows:

y00 ¼ MLPð½z2L; . . . ; zNpþ1
L �Þ; y00 2 RNp�Dd ; (7)

where Dd is the embedding size of the decoder. Since the embedding sequence size must
match the input size of the transformer decoder, y00 is interpolated to y0 2 RNa�Dd , where
Na is the action space size. In this study, this step uses bilinear interpolation in the function
torch.nn.functional.interpolate. This interpolation provides flexibility to adjust the action
space size depending on the game type and board size. If an additional move such as a
“pass” (e.g., in Othello) is required, Na is set to HW þ 1 and y00 is resized accordingly via
this interpolation. The additional embedding at the last position is assigned to the
additional move (e.g., the pass). Therefore, a dedicated pass token is not required for the
encoder’s input. Similar to the original transformer, the transformer decoder receives y0 as
the target sequence and zL as the memory (encoder output). Finally, MLPp calculates the

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 8/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

move probabilities from the output of the last layer of the transformer decoder yL. The
probability of action ai is given by Eq. (8):

pðai j sÞ ¼ SoftmaxðMLPpðLNðyLÞÞÞi: (8)

The architecture of AlphaVDA’s DNN is shown at the right of Fig. 3. The DNN is
similar to that of AlphaViD, but uses learnable embeddings y00 as the initial embeddings for
the transformer decoder. While the length of these learnable embeddings is fixed, they are
interpolated to the decoder input y0 to match the action space size, ensuring compatibility
and adaptability across different game configurations.

To decide on a move, AlphaViD and AlphaVDA employ MCTS with UCT, using the
value and move probabilities predicted by their DNNs. The MCTS algorithm implemented
in these agents is identical to that of AlphaZero, as detailed in ‘AlphaZero’. The
hyperparameters for AlphaViD and AlphaVDA are listed in ‘Parameters’.

EXPERIMENTAL SETUP
Games
This study evaluates the proposed agents on six game variants (three different games, each
played on two board sizes): Connect 4 (7� 6; “Connect 4”, and 5� 4; “Connect 4 5� 4”),
Gomoku (9� 9; “Gomoku”, and 6� 6; “Gomoku 6� 6”), and Othello (8� 8; “Othello”,
and 6� 6; “Othello 6� 6”). These games are two-player, deterministic, zero-sum games
with perfect information. Connect 4 is a connection game played on a 7� 6 board,
published by Milton Bradley. The players take turns dropping discs onto the board. A
player wins by forming a straight line of four discs horizontally, vertically, or diagonally.
Connect 4 5� 4 is a variant of Connect 4 on a 5� 4 board. Gomoku is a connection game

Transformer decoder

2 3 37

Transformer encoder

Linear projection

Convolution layer

Add position embeddings
0 1

MLP

Game
emb

Value
emb

Learnable
action

embeddings

Interpolation

AlphaVDA MLP MLP MLP MLP

2 3 37

Transformer encoder

Transformer decoder

Linear projection

Convolution layer

Add position embeddings
0 1

MLP

Game
emb

Value
emb

MLP MLP MLP MLP

Full connected layer

Interpolation

AlphaViD

input
embeddings

Figure 3 Architecture diagrams of AlphaViD (left) and AlphaVDA (right). The input board is divided into patches, embedded, and combined
with value and game tokens (embeddings), then processed by a transformer encoder. For policy prediction, encoder outputs are sent to a transformer
decoder via interpolation. In AlphaViD, decoder inputs are generated from board-derived embeddings via a fully connected layer; in AlphaVDA,
learnable action embeddings are used. MLP heads output the final value and move probabilities. Full-size DOI: 10.7717/peerj-cs.3403/fig-3

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 9/30

http://dx.doi.org/10.7717/peerj-cs.3403/fig-3
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

in which players place stones on a board to form a straight line of five stones, either
horizontally, vertically, or diagonally. This study uses a 9� 9 board for Gomoku and a
6� 6 board for Gomoku 6� 6. Othello (also known as Reversi) is a two-player
strategy game played on an 8� 8 board. In Othello, the discs are white on one side and
black on the other. Players take turns placing a disc with their assigned color facing up.
During a game, discs of the opponent’s color are flipped to the current player’s color if they
are in a straight line and bounded by the disc just placed and another disc of the current
player’s color. Othello 6 � 6 is played on a 6� 6 board in this study. These games were
selected (i) each has natural board-size variants (5 × 4 – 9 × 9), (ii) they are commonly used
for benchmarking, and (iii) training can be completed on commodity GPUs. The
description of the game rules is partly adapted from our previous publication
(Fujita, 2022).

Opponents
This study evaluates the performance of AlphaViT, AlphaViD, and AlphaVDA using five
different AI methods: AlphaZero, two variants of MCTS labeled MCTS100 and MCTS400,
Minimax, and Random. AlphaZero was trained using the method described in
‘AlphaZero’. The MCTS methods (MCTS100 and MCTS400) were run with 100 and 400
simulations, respectively.

The details of MCTS are provided in the Supplemental Material (Sec. S1). In these
MCTS methods, the child nodes are expanded on the fifth visit to a node. Minimax selects
a move using the minimax algorithm based on the evaluation table described in the
Supplemental Material (Sec. S2). The Random agent selects moves uniformly at random
from the set of valid moves.

Previous studies indicate that vanilla MCTS with random rollouts scales poorly,
remaining weaker than a shallow a–b search even with an increased number of
simulations. For instance, in Connect-4, a UCT agent employing 10;000 random
simulations achieved only a 19:8% win rate against a depth-8 a–b opponent (Scheiermann
& Konen, 2023). In contrast, incorporating domain-specific heuristics such as “decisive-
move” pruning substantially improves MCTS performance, often yielding strength
increases of one to two orders of magnitude (Teytaud & Teytaud, 2010; Taylor & Stella,
2024). The measurements in this study (the Supplemental Material, Sec. S3) corroborate
these findings for MCTS, showing rapid Elo improvement up to approximately 400
simulations followed by diminishing returns. Therefore, this study adopts 100 and 400
simulations as the MCTS baselines, providing clearly separated strength levels while
maintaining reasonable computational requirements.

Software
AlphaViT, AlphaViD, AlphaVDA, the opponents, and the board games were implemented
in Python, using NumPy for linear algebra operations and PyTorch for DNNs. The source
code and the raw data are available on GitHub at https://github.com/KazuhisaFujita/
AlphaViT for reproducibility and further extensions of this work.

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 10/30

http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
https://github.com/KazuhisaFujita/AlphaViT
https://github.com/KazuhisaFujita/AlphaViT
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

Hardware
All experiments were conducted on multiple custom-built PCs. The agents were run on a
variety of consumer CPUs, including AMD Ryzen 9 9900X and Intel Core i7-14700K, Core
i9-13900K, and Core i9-12900K processors. The GPUs used for the experiments were
NVIDIA GeForce RTX 4060 Ti (16 GB), RTX 3060 (12 GB), RTX 2070 Super, and RTX
2070. Each machine was equipped with 64 GB of RAM and two GPUs, and the
experiments were run on Debian Linux. Model training and evaluation were distributed
across multiple GPUs on a single machine using data parallelism. No cloud-based or
high-performance computing clusters were used, and all computations were performed on
local custom-built hardware. For example, one of the machines used for training and
evaluation was equipped with an Intel Core i9-13900K CPU, 64 GB of RAM, and two
NVIDIA GeForce RTX 4060 Ti (16 GB) GPUs.

RESULTS
The results section presents the performance and characteristics of AlphaViT, AlphaViD,
and AlphaVDA, which were trained on different games (Connect 4, Gomoku, and Othello)
with two board sizes (large and small). The main architectural difference between these
agents lies in the number of encoder layers, which directly affects their learning capacity.
Table 1 shows the number of parameters for each agent configuration. Each agent was
tested with different numbers of encoder layers, denoted by ‘L’ followed by a number
(e.g., L1, L4, L5, L8). The number of parameters ranges from 11.2 to 19.9 million,
increasing with encoder depth. For comparison, the AlphaZero agent, which serves as the
baseline, has 7.1 million parameters.

The primary architectural variable is the number of transformer encoder layers.
Throughout this article, four layers for AlphaViT and one layer for AlphaViD and
AlphaVDA (�11 million parameters) are designated as the baseline configuration, which
is also referred to as the shallower configuration in contrast to the deeper variants
described later. By contrast, deeper encoders use exactly four additional layers (e.g., L8 for
AlphaViT, L5 for AlphaViD/AlphaVDA, �20 million parameters). Here, “deeper” is used
only in this relative sense and does not imply a universal threshold on the number of layers.

Each AI agent was trained on specific games with different board sizes. Table 2
categorizes the agents based on the games on which they were trained and the board sizes
used during training. The first group includes agents trained on a single game with a large
board, denoted as LB. The second group consists of agents trained on a single game with a
small board, denoted as SB. The third group comprises agents simultaneously trained on
multiple games, including Connect 4, Gomoku, and Othello, with large boards, denoted as
Multi. The agents in the third group were trained on the three games and can play these
three games using a single DNN. In other words, they do not specialize in a specific game.
This diversity of training settings allows us to evaluate the agents’ adaptability and
generalization capabilities across different game domains.

A brief sanity-check comparing our baseline AlphaZero to AlphaZeroGP, which is a
simplified implementation using Wu’s global-pooling method, is provided in the
Supplemental Note: AlphaZeroGP.

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 11/30

http://dx.doi.org/10.7717/peerj-cs.3403/supp-2
http://dx.doi.org/10.7717/peerj-cs.3403/supp-2
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

Baseline Elo ratings
Objective and Setup. Tables 3, 4, and 5 present Elo ratings of various AI agents across
different games and board sizes. Elo ratings provide a standard measure of relative
performance in two-player games and enable systematic comparison across agents. This
study evaluated multiple variants of the proposed models, including agents trained on a
single game with either large or small boards, and multiple games with large boards.
Comparisons were conducted with other AI agents, including AlphaZero, MCTS with
different numbers of simulations, Minimax, and a Random agent. The proposed agents
and AlphaZero underwent 1,000 training iterations; each iteration consisted of self-play,
augmentation, and an update step detailed in ‘Training procedure’. The Elo ratings of all
agents were initialized to 1,500 and were calculated through 50 round-robin tournaments
between the agents. Each Elo rating is accompanied by a 95% confidence interval (95% CI);
the calculation details are provided in the Supplemental Material (Sec. S4).

Note: Throughout this article, the term strong performance refers to benchmark-relative
performance. An agent is considered strong if its Elo rating exceeds the baseline
AlphaZero’s Elo rating minus 100 (as shown in Tables 3, 4, and 5). Thus, strong
performance does not denote an absolute numerical threshold, but rather performance at
the level of AlphaZero.

Highlights across games. Single-task AlphaViT L4 approaches AlphaZero’s performance
across all evaluated games, remaining within approximately 270 Elo points of AlphaZero.
Single-task AlphaViD L1 and AlphaVDA L1 achieve AlphaZero-level performance only
on smaller boards (Connect 4 5 × 4 and Gomoku 6 × 6), yet they experience substantial
drops in Elo ratings on larger boards. Multitask AlphaViT L4 (AlphaViT L4 Multi)
demonstrates competitive performance on large boards and closely approaches AlphaZero
(within 200 Elo points). Conversely, multitask AlphaViD L1 and AlphaVDA L1 variants

Table 1 Encoder layer variations and parameter sizes in AI agents.

AI agent Number of encoder layers Number of parameters

AlphaViT L4 4 11.2M

AlphaViD L1 1 11.5M

AlphaVDA L1 1 11.3M

AlphaViT L8 8 19.6M

AlphaViD L5 5 19.9M

AlphaVDA L5 5 19.8M

AlphaZero – 7.1M

Table 2 Board size and game variations in AI agent training.

AI agents Game Board size

AlphaViT LB, AlphaViD LB, AlphaVDA LB One specific game Large

AlphaViT SB, AlphaViD SB, AlphaVDA SB One specific game Small

AlphaViT Multi, AlphaViD Multi, AlphaVDA Multi Connect 4, Gomoku, Othello Large

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 12/30

http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

Table 3 Elo ratings of AI agents for Connect 4 variants.

Agent Connect 4 Connect 4 5 × 4

Elo D Elo 95% CI Elo D Elo 95% CI

AlphaZero 2,114 – [2,073–2,159] 1,769 – [1,747–1,797]

AlphaViT L4 LB 1,846 �267:4 [1,799–1,902] 1,517 �252 [1,480–1,554]

AlphaViD L1 LB 1,739 �374:7 [1696–1783] 1,462 �306:9 [1,426–1,495]

AlphaVDA L1 LB 1,746 �367:3 [1,707–1,788] 1,507 �262:1 [1,472–1,539]

AlphaViT L4 SB 1,202 �911:6 [1,152–1,252] 1,751 �18:07 [1,722–1,777]

AlphaViD L1 SB 1,177 �936:4 [1,135–1,214] 1,764 �4:512 [1,741–1,793]

AlphaVDA L1 SB 1,251 �862:5 [1,201–1,301] 1,789 19:98 [1,763–1,818]

AlphaViT L4 Multi 1,950 �164:0 [1,917–1,988] 1,402 �366:4 [1,364–1,437]

AlphaViD L1 Multi 1,745 �369:2 [1,706–1,785] 1,317 �451:4 [1,271–1,361]

AlphaVDA L1 Multi 1,669 �444:7 [1,627–1,710] 1,305 �463:3 [1,266–1,343]

MCTS400 1,516 �836:1 [1,467–1,560] 1,563 �205:1 [1,530–1,599]

MCTS100 1,278 �598:2 [1,230–1,316] 1,502 �266:9 [1,468–1,533]

Minimax 1,012 −1,102 [970:6–1,053] 1,316 �453 [1,277–1,346]

Random 755:4 −1,358 [722:5–788:9] 1,038 �730:4 [992:4–1,082]

Note:
Elo ratings of AI agents for Connect 4 variants. Bolded ratings indicate agents whose Elo rating is within 100 points of
AlphaZero. Elo ratings were calculated from 50 round-robin tournaments beginning with an initial rating of 1,500,
including differences relative to AlphaZero (D Elo) and corresponding 95% confidence intervals.

Table 4 Elo ratings of AI agents for Gomoku variants.

Agent Gomoku Gomoku 6 × 6

Elo D Elo 95% CI Elo D Elo 95% CI

AlphaZero 2,038 – [1,982–2,091] 1,807 – [1,788–1,830]

AlphaViT L4 LB 1,966 �72:4 [1,924–2,012] 1,645 �162 [1,611–1,678]

AlphaViD L1 LB 1,698 �340 [1,659–1,744] 1,509 �298:3 [1,476–1,546]

AlphaVDA L1 LB 1,567 �471:5 [1,521–1,614] 1,261 �546:3 [1,219–1,297]

AlphaViT L4 SB 1,553 �485:7 [1,500–1,605] 1,764 �42:78 [1,745–1,786]

AlphaViD L1 SB 1,519 �519:6 [1,466–1,565] 1,779 �27:43 [1,760–1,798]

AlphaVDA L1 SB 977:2 −1,061 [943:8–1,011] 1,771 �35:96 [1,751–1,792]

AlphaViT L4 Multi 2,024 �13:93 [1,985–2,069] 1,656 �150:8 [1,626–1,688]

AlphaViD L1 Multi 1,530 �508:7 [1,484–1,576] 1,378 �428:8 [1,339–1,416]

AlphaVDA L1 Multi 1,570 �467:8 [1,517–1,622] 1,170 �636:9 [1,130–1,209]

MCTS400 1,161 �877:4 [1,116–1,201] 1,680 �126:3 [1,651–1,709]

MCTS100 1,229 �809:5 [1,180–1,274] 1,380 �426:3 [1,343–1,418]

Minimax 1,472 �566:4 [1,425–1,518] 1,348 �458:6 [1,309–1,384]

Random 696:8 −1,341 [673:9–719:2] 851:9 �954:9 [820:8–
884:9]

Note:
Elo ratings of AI agents for Gomoku variants. Bolded ratings indicate agents whose Elo rating is within 100 points of
AlphaZero. Elo ratings were calculated from 50 round-robin tournaments beginning with an initial rating of 1,500,
including differences relative to AlphaZero (D Elo) and corresponding 95% confidence intervals.

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 13/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

exhibit significantly lower performance. Note that the multitask models were not trained
on small board configurations and therefore underperform on these board sizes.

Connect 4 (Table 3). For standard Connect 4, AlphaViT L4Multi most closely approaches
AlphaZero (D Elo � �160). AlphaViT L4 LB is moderately weaker (D Elo � �260),
whereas AlphaViD L1 LB and AlphaVDA L1 LB lag behind significantly (D Elo < �300).
On the smaller 5 × 4 board, all single-task variants (AlphaViT L4 SB, AlphaViD L1 SB,
AlphaVDA L1 SB) are competitive with AlphaZero.

Gomoku (Table 4). For the large board, only AlphaViTs (L4 LB and Multi) attain
performance comparable to AlphaZero, with overlapping confidence intervals. AlphaViD
and AlphaVDA variants (L1 LB and Multi) substantially lag behind (D Elo < �300). On
the smaller board, SB variants from all architectures effectively approach AlphaZero-level
performance.

Othello (Table 5). On the large board, AlphaViT L4 LB numerically surpasses AlphaZero
(D Elo � þ20), though overlapping confidence intervals prevent definitive conclusions.
AlphaViD L1 LB and AlphaViT L4 Multi achieve performance near that of AlphaZero,
with D Elo � �100. AlphaVDA L1 LB lags behind significantly (D Elo < �300). On the
smaller board, AlphaViT L4 SB closely approaches AlphaZero (D Elo � �70). AlphaViD
L1 SB lags behind (D Elo � �230), whereas AlphaVDA L1 SB also falls short (D Elo
� �180), remaining weaker than AlphaZero. Interestingly, AlphaViT L4 LB, despite being
trained only on the large board, achieves performance comparable to AlphaViD L1 SB and

Table 5 Elo ratings of AI agents for Othello variants.

Agent Othello Othello 6x6

Elo D Elo 95% CI Elo D Elo 95% CI

AlphaZero 1,996 – [1,953–2,048] 2,034 – [1,986–2,081]

AlphaViT L4 LB 2,017 20:55 [1,973–2,065] 1,819 �215:5 [1,776–1,863]

AlphaViD L1 LB 1,896 �99:95 [1,854–1,941] 1,585 �449:5 [1,539–1,631]

AlphaVDA L1 LB 1,669 �327:2 [1,620–1,718] 1,368 �666:4 [1,322–1,415]

AlphaViT L4 SB 1,482 �513:9 [1,435–1,528] 1,963 �71:16 [1,919–2,013]

AlphaViD L1 SB 1,184 �812:4 [1,132–1,228] 1,803 �231:6 [1,757–1,854]

AlphaVDA L1 SB 1,111 �885:3 [1,063–1,159] 1,855 �179:6 [1,799–1,911]

AlphaViT L4 Multi 1,910 �86:4 [1,865–1,958] 1,090 �944:2 [1,046–1,134]

AlphaViD L1 Multi 1,668 �328:7 [1,626–1,709] 1,308 �726:4 [1,264–1,354]

AlphaVDA L1 Multi 1,578 �418 [1,529–1,626] 991:1 −1,043 [938:4–1,034]

MCTS400 1,373 �623:6 [1,329–1,412] 1,579 �455 [1,535–1,623]

MCTS100 1,194 �802:7 [1,148–1,241] 1,367 �667:6 [1,324–1,412]

Minimax 1,140 �855:9 [1,089–1,190] 1,363 �670:9 [1,311–1,411]

Random 782:8 −1,213 [744:8–816:5] 874:2 −1160 [824–
919]

Note:
Elo ratings of AI agents for Othello variants. Bolded ratings indicate agents whose Elo rating is within 100 points of
AlphaZero. Elo ratings were calculated from 50 round-robin tournaments beginning with an initial rating of 1,500,
including differences relative to AlphaZero (D Elo) and corresponding 95% confidence intervals.

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 14/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

AlphaVDA L1 SB on the smaller board. This suggests that knowledge may transfer from
larger to smaller boards.

Conclusion
In summary, AlphaViT L4 and AlphaViT L4 Multi consistently achieve or closely
approach AlphaZero-level strength across games, even without game-specific fine-tuning.
In contrast, AlphaViD L1 and AlphaVDA L1 achieve AlphaZero-level performance only
on smaller boards. The strong results for multitask agents (AlphaViT L4 Multi) suggest
that multitask training will not significantly hinder performance. The Elo ratings presented
in Table 3, 4, and 5 serve as a baseline for the subsequent experiments described in the
following sections. Further analysis of AlphaZero’s architectural variants, including deeper
networks, fine-tuning, and optimizer choices, is presented in the Supplemental Material
(Sec. S5).

Variation of Elo rating over training iterations
Setup. Figure 4 illustrates the progression of Elo ratings for AlphaViT, AlphaViD,
AlphaVDA, and AlphaZero across multiple training iterations for large and small board
configurations in three games: Connect 4, Gomoku, and Othello. Elo ratings were recorded
at every iteration from 1 to 10, subsequently every 20 iterations up to iteration 100, and
thereafter at intervals of 100 iterations until iteration 3,000 for large board configurations
and 1,000 for small board configurations. The different evaluation intervals were used
because Elo ratings change more rapidly in the early training phase. The shaded areas
around each Elo curve indicate the 95% confidence intervals computed through
bootstrapping, as detailed in the Supplemental Material (Sec. S4). One iteration
corresponds to a complete cycle of self-play data generation, data augmentation, and a
single update of the neural network (see ‘Training procedure’). The opponents used for
evaluation were identical to those described in previous experiments: AlphaViT L4 LB,
AlphaViD L1 LB, AlphaVDA L1 LB, AlphaViT L4 SB, AlphaViD L1 SB, AlphaVDA L1 SB,
AlphaViT L4 Multi, AlphaViD L1 Multi, AlphaVDA L1 Multi, AlphaZero, MCTS400,
MCTS100, Minimax, and Random agents. The Elo ratings of these opponents were fixed as
listed in Tables 3, 4, and 5. Evaluated agents’ Elo ratings were initialized to 1,500 and then
calculated through 40-game matches against each opponent, consisting of 20 games as the
first player and 20 games as the second player.

Large board configurations. Across all tested large board games, AlphaViT, AlphaViD,
and AlphaVDA variants demonstrate rapid Elo improvement during the initial training
phase, achieving approximately 80–90% of their maximum Elo within the first 300–500
iterations. In Gomoku, the single-task agents peak near 1,000 iterations and then exhibit a
moderate decline. In Othello, the growth rate slows markedly after roughly 300 iterations,
although the Elo ratings continue to increase slightly thereafter. Multitask-trained agents
(AlphaViT Multi, AlphaViD Multi, AlphaVDA Multi) show learning speeds comparable
to those of single-task models, confirming that multitask training does not adversely affect
initial convergence. Notably, single-game-trained Gomoku models (AlphaViT L4 LB,

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 15/30

http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

AlphaViD L1 LB, AlphaVDA L1 LB) exhibit moderate Elo declines after reaching peak
performance, indicating potential overfitting in later training stages. Conversely,
multitask-trained Gomoku models (AlphaViT L4 Multi, AlphaViD L1 Multi, AlphaVDA
L1 Multi) remain stable without a pronounced decline, highlighting multitask learning as a
potentially effective approach for mitigating overfitting.

Small board configurations. Agents trained on smaller board sizes exhibit notably faster
convergence, attaining peak Elo ratings within 300 iterations (�100 for Connect 4 5 × 4).
After this rapid convergence, in Connect 4 5 × 4 and Gomoku 6 × 6, Elo ratings remain
stable with minimal fluctuation, suggesting that small board training reliably and quickly

0 200 400 600 800 1000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Connect 4 5×4

AlphaViT L4
AlphaViD L1
AlphaVDA L1
AlphaZero

0 200 400 600 800 1000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Gomoku 6×6

AlphaViT L4
AlphaViD L1
AlphaVDA L1
AlphaZero

0 200 400 600 800 1000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Othello 6×6

AlphaViT L4
AlphaViD L1
AlphaVDA L1
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

El
o

ra
tin

g

Connect 4 (multi)

AlphaViT L4
AlphaViD L1
AlphaVDA L1
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

El
o

ra
tin

g
Gomoku (multi)

AlphaViT L4
AlphaViD L1
AlphaVDA L1
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

El
o

ra
tin

g

Othello (multi)

AlphaViT L4
AlphaViD L1
AlphaVDA L1
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Connect 4 (single)

AlphaViT L4
AlphaViD L1
AlphaVDA L1
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Gomoku (single)

AlphaViT L4
AlphaViD L1
AlphaVDA L1
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Othello (single)

AlphaViT L4
AlphaViD L1
AlphaVDA L1
AlphaZero

Figure 4 Elo rating progression over training iterations for AlphaViT, AlphaViD, and AlphaVDA in large board configurations (Connect 4,
Gomoku, and Othello) and small board configurations (Connect 4 5 × 4, Gomoku 6 × 6, and Othello 6 × 6). The left and middle columns show
single- and multi-game-trained agents for large board configurations, respectively, while the right column shows single-game-trained agents for the
small board configurations. Solid lines represent Elo ratings calculated directly from aggregated game outcomes without employing bootstrapping,
while shaded bands correspond to the 95% confidence intervals around these Elo ratings. Full-size DOI: 10.7717/peerj-cs.3403/fig-4

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 16/30

http://dx.doi.org/10.7717/peerj-cs.3403/fig-4
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

yields robust and stable agents. However, in Othello 6 × 6, Elo ratings exhibit slight
fluctuations of approximately �100.
Insights and implications. These findings clearly demonstrate that AlphaViT L4,
AlphaViD L1, and AlphaVDA L1 quickly achieve high-performance levels on small
boards. However, achieving similar performance stability on larger board configurations
remains more challenging. The observed plateau in Elo improvement on large boards
implies that simply extending training iterations beyond a certain point (around 1,000
iterations) yields limited additional benefit. Therefore, to achieve further performance
improvements on larger boards, enhancing model complexity—such as employing
deeper transformer encoders—rather than solely prolonging training duration may be
necessary.

Effect of transformer encoder depth on performance
In this subsection, the performance of the agents with deeper encoders, namely AlphaViT
L8, AlphaViD L5, and AlphaVDA L5, is evaluated. Figure 5 shows the variations in Elo
ratings for these agents over the iterations on large and small boards. All experiments
followed the evaluation protocol described in the Setup paragraph of ‘Variation of Elo
rating over training iterations’.

For large board configurations, the Elo ratings of agents with deeper encoders gradually
stabilize between roughly 1,000 and 2,000 iterations. This trend indicates a more
protracted improvement phase compared to their shallower counterparts (AlphaViT L4,
AlphaViD L1, and AlphaVDA L1). Conversely, in small board configurations, Elo ratings,
as well as their 95% confidence intervals, converge more rapidly, similar to those of the
shallow encoder agents. This suggests that in less complex game environments, the
additional depth of encoders offers little substantial benefit.

Table 6 lists the mean Elo ratings calculated from iterations 2,100–3,000 for large board
configurations. This highlights the performance gains achieved through the increased
encoder depth, with AlphaViD and AlphaVDA demonstrating the most notable
improvements. For example, AlphaViD L5Multi and AlphaVDA L5Multi achieve gains of
þ286 and þ231 Elo points, respectively, in Gomoku, indicating significant performance
enhancement.

The ratio of Elo ratings between the deeper and baseline DNNs, illustrated in Fig. 6,
further substantiates these findings. Across all evaluated games, deeper architectures
generally exhibit superior performance, with AlphaViD Multi and AlphaVDA Multi
achieving the highest ratios. Specifically, in Gomoku, these agents achieve Elo ratios of
1.177 and 1.149, respectively. They also outperform the baseline models in Connect 4, with
Elo ratios of 1.108 and 1.130, respectively. While single-game-trained AlphaViD and
AlphaVDA show marked gains in Connect 4 and Othello, their performance
improvements in Gomoku are modest. In contrast, both single- and multi-game-trained
AlphaViT variants exhibit relatively smaller improvements than AlphaViD and
AlphaVDA. In conclusion, these results collectively demonstrate that increasing the depth
of the transformer encoder layers positively influences agent performance across various

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 17/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

game types and board configurations. This effect is particularly pronounced for AlphaViD
and AlphaVDA, especially in larger and more complex game settings.

Effect of fine-tuning from small board games
Figure 7 illustrates the Elo ratings of AlphaViT L8, AlphaViD L5, and AlphaVDA L5 with
fine-tuned and non-fine-tuned (randomly initialized) DNNs across three games: Connect
4, Gomoku, and Othello. The fine-tuned DNNs were initialized using weights from the
single-task DNNs that had been trained for 200 iterations on the small board
configuration. For example, the fine-tuned DNN for Connect 4 was initialized with weights
from the DNN trained on Connect 4 5 × 4. In contrast, agents with non-fine-tuned DNNs
were initialized with random weights. All experiments followed the evaluation protocol

0 500 1000 1500 2000 2500 3000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Connect 4 (single)

AlphaViT L8
AlphaViD L5
AlphaVDA L5
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Gomoku (single)

AlphaViT L8
AlphaViD L5
AlphaVDA L5
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Othello (single)

AlphaViT L8
AlphaViD L5
AlphaVDA L5
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

El
o

ra
tin

g

Connect 4 (multi)

AlphaViT L8
AlphaViD L5
AlphaVDA L5
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

El
o

ra
tin

g
Gomoku (multi)

AlphaViT L8
AlphaViD L5
AlphaVDA L5
AlphaZero

0 500 1000 1500 2000 2500 3000
Iterations

El
o

ra
tin

g

Othello (multi)

AlphaViT L8
AlphaViD L5
AlphaVDA L5
AlphaZero

0 200 400 600 800 1000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Connect 4 5×4

AlphaViT L8
AlphaViD L5
AlphaVDA L5
AlphaZero

0 200 400 600 800 1000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Gomoku 6×6

AlphaViT L8
AlphaViD L5
AlphaVDA L5
AlphaZero

0 200 400 600 800 1000
Iterations

800

1000

1200

1400

1600

1800

2000

2200

El
o

ra
tin

g

Othello 6×6

AlphaViT L8
AlphaViD L5
AlphaVDA L5
AlphaZero

Figure 5 Elo trajectories for the deep configurations. The left and the middle columns show single- and multi-game-trained agents for large
board configurations, respectively, while the right column shows single-game-trained agents for small board configurations. Solid lines
represent Elo ratings calculated directly from aggregated game outcomes without employing bootstrapping, while shaded bands correspond to the
95% confidence intervals around these Elo ratings. Full-size DOI: 10.7717/peerj-cs.3403/fig-5

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 18/30

http://dx.doi.org/10.7717/peerj-cs.3403/fig-5
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

described in the Setup paragraph of ‘Variation of Elo rating over training iterations’. For
agents with non-fine-tuned (randomly initialized) DNNs, the Elo ratings previously
reported in ‘Effect of transformer encoder depth on performance’ were reused.

The results demonstrate that agents with fine-tuned DNNs consistently achieve higher
Elo ratings than those with randomly initialized DNNs for Gomoku and Othello. The
performance difference is especially pronounced during the early iterations; in this phase,
fine-tuned DNNs improve rapidly and then stabilize for Gomoku and Othello. For
Gomoku, the advantage of fine-tuning is clear, as the agents with fine-tuned DNNs

Table 6 Mean Elo Ratings from 2,100 to 3,000 iterations.

Game Connect 4 (D Elo) Gomoku (D Elo) Othello (D Elo)

AlphaZero 1,955 (−) 2,019 (−) 1,925 (−)

AlphaViT L4 LB 1,870 (−) 1,703 (−) 1,890 (−)

AlphaViT L8 LB 1,915 (+45) 1,804 (+101) 1,942 (+52)

AlphaViD L1 LB 1,747 (−) 1,630 (−) 1,726 (−)

AlphaViD L5 LB 1,851 (+104) 1,682 (+52) 1,843 (+117)

AlphaVDA L1 LB 1,738 (−) 1,569 (−) 1,749 (−)

AlphaVDA L5 LB 1,894 (+156) 1,596 (+27) 1,884 (+135)

AlphaViT L4 Multi 1,827 (−) 1,835 (−) 1,848 (−)

AlphaViT L8 Multi 1,909 (+82) 1,947 (+112) 1,883 (+35)

AlphaViD L1 Multi 1,658 (−) 1,616 (−) 1,669 (−)

AlphaViD L5 Multi 1,838 (+180) 1,902 (+286) 1,704 (+35)

AlphaVDA L1 Multi 1,666 (−) 1,556 (−) 1,670 (−)

AlphaVDA L5 Multi 1,884 (+218) 1,787 (+231) 1,833 (+163)

Note:
Mean Elo ratings from 2,100 to 3,000 iterations for each agent. D Elo indicates the difference from a shallower model.
Bolded ratings indicate agents whose Elo rating is within 100 points of AlphaZero.

Figure 6 The ratio of Elo ratings between deeper and baseline DNNs for AlphaViT, AlphaViD, and
AlphaVDA across Connect 4, Gomoku, and Othello. Ratios greater than 1.0 indicate superior per-
formance of agents with deeper DNNs compared to those with baseline DNNs. The error bars represent
95% CIs calculated through bootstrapping (see the Supplemental Material, Sec. S4).

Full-size DOI: 10.7717/peerj-cs.3403/fig-6

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 19/30

http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/fig-6
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

consistently outperform those with non-fine-tuned DNNs throughout the training
process. The plateau appears in AlphaViD L5 and AlphaVDA L5 for Gomoku between
approximately 1,000 and 2,000 iterations. However, the performance improves after 2,000
iterations. For Connect 4, fine-tuning yields little or no improvement in Elo.

DISCUSSION
The results of this study also relate to those of Soemers et al. (2021, 2023), who highlighted
the importance of transferring trained policies and value functions across games with
varying board sizes and action spaces. Similarly, the proposed agents, equipped with DNNs
that utilize weights either fine-tuned from a small board game or trained simultaneously
on multiple games, demonstrate enhanced gameplay skills. This suggests that knowledge
obtained from small board games and other games is used efficiently. The ability to train

Figure 7 Elo rating progression over training iterations of the agents (AlphaViT L8, AlphaViD L5, and AlphaVDA L5) with fine-tuned and
randomly initialized DNNs for three board games (Connect 4, Gomoku, and Othello). The three columns show the results for AlphaViT L8,
AlphaViD L5, and AlphaVDA L5, respectively. The three rows show the results for Connect 4, Gomoku, and Othello. The shaded bands represent
the 95% confidence intervals around the Elo ratings, calculated through bootstrapping (see the Supplemental Material, Sec. S4).

Full-size DOI: 10.7717/peerj-cs.3403/fig-7

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 20/30

http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/fig-7
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

on multiple games concurrently may also help these agents avoid overfitting, further
enhancing their generalization capabilities.

As shown in Tables 3, 4, and 5, AlphaZero achieves the top performance with the
smallest number of parameters in some cases, particularly for games with larger boards.
This likely stems from the strong inductive bias inherent in its convolutional and residual
network architecture, which is well-suited for single games and enables it to easily extract
local and spatial features (He et al., 2016; Battaglia et al., 2018). Remarkably, this
architecture also allows some flexibility in board size when game rules remain unchanged.
For example, Wu’s KataGo preserves the convolutional backbone while introducing global
pooling layers—calculating channel-wise mean, scaled mean, and maximum—to both the
trunk and heads, enabling a unified network to play Go from 9 × 9 through 19 × 19 without
increasing the number of parameters (Wu, 2019).

However, the strong inductive biases of convolutional neural networks (CNNs) may
limit adaptability when game rules or mechanics significantly change. Soemers et al. (2021)
systematically demonstrated that fully convolutional networks can effectively transfer
learning across different board sizes or minor variants of the same game but struggle
significantly when transferring between games with substantially different rules or
mechanics, resulting in poor or negative transfer performance even after fine-tuning. In
contrast, transformer-based agents sacrifice some of this inductive bias in favor of greater
flexibility (Dosovitskiy et al., 2021; d’Ascoli et al., 2022). This enables them to handle
multiple games and variable board sizes at the cost of an increase in parameter count. In
this study, when deep transformer encoders were employed and model parameters of
AlphaViT, AlphaViD, and AlphaVDA were significantly larger than those of AlphaZero’s
DNN, their performance approached, and in Othello even surpassed, that of
AlphaZero. This trade-off highlights a key design consideration: models with strong
inductive bias can achieve higher efficiency in specialized domains, whereas more general
architectures require additional capacity to compensate for their weaker assumptions
(d’Ascoli et al., 2022).

Although the proposed agents with transformer-based DNNs are slightly weaker than
AlphaZero, the author hypothesizes that the proposed agents have the potential for further
improvement through enhanced training techniques. For example, a properly scheduled
learning-rate decay during training iterations (Silver et al., 2016, 2017, 2018) and
warm-start methods (Wang, Preuss & Plaat, 2020, 2021) are expected to improve
performance. Increasing the number of self-plays per iteration may also be effective.

All experiments were carried out on affordable, consumer-grade GPUs (RTX 4060 Ti 16
GB and RTX 3060 12 GB) rather than on datacenter accelerators. Due to the significant
memory requirements for training transformer architectures, even moderately sized
boards, such as Gomoku 9 × 9 and Othello, approached the memory limits of these GPUs.
To address this issue, automatic mixed-precision training with torch.cuda.amp.autocast()
was enabled, so that most tensor operations run in FP16/BF16, while numerically sensitive
layers and master weights remain in FP32. Additionally, data-parallel training was enabled
across multiple GPUs within a single custom-built PC to further reduce per-device
memory usage. These practical choices emphasize the reproducibility of AlphaViT (see the

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 21/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

Supplemental Material, Sec. S6) but also restrict experimentation with deeper transformer
encoders and larger boards, such as 19 × 19 Go. Nevertheless, the proposed architecture
inherently supports variable input sizes, and the fine-tuning experiments (effect of
fine-tuning from small board games) indicate that weights pre-trained on small board
games effectively generalize to larger board configurations. Consequently, when more
powerful hardware is available, it will be feasible to first train agents with larger
transformer encoders on small boards and then efficiently fine-tune, rather than training
from scratch, to extend the proposed agents to full-sized boards and more complex games.

In future work, the author plans to extend these architectures to a broader range of
games, including those with more complex rules and stochastic elements. In addition, the
author aims to incorporate the flexibility of ViT-based DNNs into other deep
reinforcement learning frameworks, such as deep Q-networks, to create AI agents capable
of playing a wider variety of games, including video games, with enhanced adaptability.

CONCLUSION
This article introduces AlphaViT, AlphaViD, and AlphaVDA, novel game-playing AI
agents that use ViT to overcome the limitations of AlphaZero. Unlike AlphaZero, which is
restricted to fixed board sizes, the proposed agents demonstrate adaptability, handle
different board sizes effectively, and exhibit flexibility across games. Furthermore, these
agents can simultaneously train on and play multiple games, such as Connect 4, Gomoku,
and Othello, within a single shared neural network. The performance of these multitask
agents surpasses traditional game AI algorithms and, in some cases, approaches that of
AlphaZero.

The results of this study demonstrate that AlphaViT, AlphaViD, and AlphaVDA
outperform traditional methods such as Minimax and MCTS across all tested scenarios.
Although AlphaZero remains the top performer in some cases, particularly for games with
larger boards, the proposed agents exhibit competitive performance. AlphaViT L8 matches
AlphaZero in Connect 4 and Othello. In Othello, the deeper versions of AlphaViD and
AlphaVDA (L5) narrow the performance gap with AlphaZero but do not yet surpass it.
Multigame-trained variants perform on par with or better than single-game-trained
variants with deeper DNNs in Connect 4 and Gomoku, while remaining slightly behind in
Othello.

AlphaViT, AlphaViD, and AlphaVDA show strong adaptability across different games
and board sizes. The agents with DNNs trained on a single game often achieve
performance comparable to traditional game algorithms, such as Minimax and MCTS,
even when playing on board sizes on which they are not trained. Moreover,
multi-game-trained agents frequently perform on par with or surpass their
single-game-trained counterparts. The agents with fine-tuned DNNs trained on small
board games achieve better performance than that of agents with non-fine-tuned DNNs in
Gomoku and Othello, but show little or no improvement in Connect 4. In the case of
Gomoku, pre-trained weights from small board games significantly accelerate convergence
and enhance the final performance. This suggests effective knowledge transfer between

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 22/30

http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403/supp-1
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

different board sizes, mirroring human learning processes, in which skills acquired in
simpler variants (e.g., 9 × 9 Go) can be applied to more complex versions (e.g., 19 × 19 Go).
Such adaptability suggests that the proposed agents may have significant potential for
advancing the development of multitask AI.

Comparing the three proposed agents reveals that AlphaViT L4 outperforms both
AlphaViD L1 and AlphaVDA L1, despite having a similar number of parameters. This
difference in performance may be attributed to the smaller number of encoder layers used
in AlphaViD and AlphaVDA. This observation is further supported by the fact that
AlphaViD L5 and AlphaVDA L5 exhibit performance comparable to AlphaViT L4. The
simpler architecture of AlphaViT, consisting solely of encoder layers, may lead to more
efficient performance in certain games, even when it has fewer parameters than its variants.
However, this simplicity constrains AlphaViT’s flexibility, as its output size is fixed to the
number of input embeddings, limiting its applicability to games beyond classic board
games. In contrast, including a decoder layer in AlphaViD and AlphaVDA allows for
dynamic adjustment of the policy vector size, providing greater adaptability to games with
varying action spaces. This architectural flexibility makes AlphaViD and AlphaVDA
versatile candidates for handling more complex games or environments with continuous
action spaces.

APPENDIX
AlphaZero
AlphaZero integrates a deep neural network (DNN) with Monte Carlo Tree Search
(MCTS), as illustrated in Fig. 1. The DNN processes input representing the current board
state and the current player, producing an estimated state value and a move-probability
vector. MCTS then uses these outputs to select the optimal move. This same framework is
adopted by AlphaViT, AlphaViD, and AlphaVDA.

Deep neural network in AlphaZero
AlphaZero’s DNN predicts a value vðsÞ and a move-probability vector pðsÞ with
components pða j sÞ for each action a, given a state s. In the board game context, s and a
represent the board state and the move, respectively. The DNN receives input representing
the current board state and the current player’s disc color. Figure A1 illustrates the DNN
architecture, which consists of a Body (residual blocks) and two Heads (value and policy
heads). The value head outputs the estimated state value vðsÞ, while the policy head
produces the move probabilities pðsÞ.

The input to the DNN is an H �W � ð2T þ 1Þ image stack that contains 2T þ 1
binary feature planes of size H �W. Here, H �W refers to the board size, and T is the
number of histories (previous board states). The first T feature planes represent the
occupancy of the player’s discs, with a feature value of 1 indicating that a disc occupies the
corresponding cell, and 0 otherwise. Similarly, the following T feature planes represent the
occupancy of the opponent’s discs. The final plane encodes the current player, being filled
with þ1 when it is the first player’s turn and with �1 otherwise.

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 23/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

Monte Carlo tree search in AlphaZero
This subsection provides an explanation of the Monte Carlo Tree Search (MCTS)
algorithm used in AlphaZero. Each node in the game tree represents a game state, and each
edge ðs; aÞ represents a valid action from that state. The edges store a set of statistics:
fNðs; aÞ;Wðs; aÞ;Qðs; aÞ; pðs; aÞg, where Nðs; aÞ is the visit count, Wðs; aÞ is the
cumulative value, Qðs; aÞ ¼Wðs; aÞ=Nðs; aÞ is the mean value, and pðs; aÞ is the move
probability.

The MCTS for AlphaZero consists of four steps: Select, Expand and Evaluate, Backup,
and Play. A simulation is defined as a sequence of Select, Expand and Evaluate, and Backup
steps, repeated Nsim times. Play is executed after Nsim simulations.

In Select, the tree is searched from the root node sroot to the leaf node sL at time step L
using a variant of the Polynomial Upper Confidence Trees (PUCT) algorithm. At each
time step t < L, the selected action at has the maximum score, as described in Eq. (9):

at ¼ argmaxaðQðst; aÞ þ Cpuctpðst; aÞ
ffiffiffiffiffiffiffiffiffiffiffi
NðstÞ

p

1þ Nðst; aÞÞ; (9)

where NðstÞ is the number of parent visits and Cpuct is the exploration rate. In this study,
Cpuct is constant, whereas in the original AlphaZero, Cpuct increases slowly with search time

(Silver et al., 2018). Additionally, when the parent node is the root node, the node selection
is performed using an e-greedy algorithm based on the UCT scores, where e denotes the
exploration probability.

In Expand and Evaluate, the DNN evaluates the leaf node and outputs vðsLÞ and pðsLÞ. If
the leaf node is a terminal node, vðsLÞ is the color of the winning player’s disc. The leaf
node is expanded and each edge ðsL; aÞ is initialized to
fNðsL; aÞ ¼ 0;WðsL; aÞ ¼ 0;QðsL; aÞ ¼ 0; pðsL; aÞ ¼ pða j sLÞg.

In Backup, the visit counts and values are updated for each step t � L during the
backward pass. The visit count is incremented by 1, Nðst; atÞ Nðst; atÞ þ 1, and the
cumulative and average values are updated, Wðst; atÞ Wðst; atÞ þ v,
Qðst; atÞ Wðst; atÞ=Nðst; atÞ.

Finally, in Play, AlphaZero selects the action corresponding to the most visited edge
from the root node.

TRAINING PROCEDURE
AlphaViT, AlphaViD, AlphaVDA, and AlphaZero share the same three-stage training
loop: Self-play, Augmentation, and Update. One complete cycle of the three stages is called
an iteration and is repeated Niter times. This training algorithm is a modified version of the
original AlphaZero, adapted for a single-machine setting.

During the Self-play phase, an agent plays against itself Nself times. For the first Topening

turns, actions are stochastically selected among the valid moves according to the softmax
policy defined in Eq. (10):

pða j sÞ ¼ expðNðs; aÞ=sÞ=
X

b
expðNðs; bÞ=sÞ; (10)

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 24/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

where s is a temperature parameter that controls the exploration. This stochastic
exploration enables the agent to explore new and potentially better actions. After Topening,
the most visited action is selected. During Self-play, the board states, game outcomes
(winners), and the search probabilities are recorded. The search probabilities represent the
probabilities of selecting valid moves at the root node in MCTS.

In the Augmentation phase, the dataset derived from Self-play is augmented by
introducing symmetries specific to the game variant (e.g., two symmetries for Connect 4
and eight for Othello and Gomoku). This augmented data is added to a queue with a
capacity of Nqueue states to form the training dataset.

For the first update iteration, the training data queue is filled with data generated
by self-play using MCTS100, which is then augmented. In subsequent iterations,
new data generated by Self-play are added to the training data queue. To
simultaneously learn multiple games, a separate training data queue for each game is
prepared.

During the Update phase, the DNN is trained using mini-batch stochastic gradient
descent with a batch size of Nbatch for Nepochs epochs. The optimizer uses weight decay. The
loss function l combines the mean squared error between the predicted value v and the
winner’s disc color cwin, and the cross-entropy loss between the search probabilities p and
the predicted move probabilities p. The loss function is defined in Eq. (11):

l ¼ ðcwin � vÞ2 � pT log p: (11)

To train multiple games simultaneously, mini-batches are generated from the respective
training data queue of each game. During the Update phase, mini-batches are sampled
from these individual queues and used to update the DNN. For example, when an agent
simultaneously trains Connect 4, Gomoku, and Othello, one mini-batch from the training
data queues of Connect 4, Gomoku, and Othello is sequentially used to update the
network.

PARAMETERS
The hyperparameters for AlphaViT, AlphaViD, AlphaVDA, and AlphaZero are
listed in Table A1. For training, the AdamW optimizer in PyTorch is used, with all
parameters set to their default values except for the learning rate. All other parameters for
AlphaZero were consistent with the previous implementation (Fujita, 2022). The
hyperparameters of the other models were carefully hand-tuned to optimize their
performance.

Table A2 lists the game-specific hyperparameters for AlphaViT, AlphaViD,
AlphaVDA, and AlphaZero. The number of MCTS simulations (Nsim) ranges from
200 to 400, depending on the game and board size. The number of self-play games per
iteration is set to 30 for Connect 4 variants and 10 for Gomoku and Othello variants. The
opening phase (Topening) specifies the number of initial moves using softmax
decision-making with a temperature parameter (s) that is adjusted based on the game
and board size.

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 25/30

http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

Figure A1 DNN of AlphaZero. Full-size DOI: 10.7717/peerj-cs.3403/fig-8

Table A1 Hyperparameters of AlphaViT, AlphaViD, AlphaVDA, and AlphaZero.

Parameter AlphaViT AlphaViD AlphaVDA AlphaZero

Cpuct 1.25 1.25 1.25 1.25

e 0.2 0.2 0.2 0.2

T 1 1 1 1

Nqueue 100,000 100,000 100,000 100,000

Nepoch 1 1 1 1

Optimizer AdamW AdamW AdamW AdamW

Batch size 1,024 1,024 1,024 1,024

Learning rate 0.0001 0.0001 0.0001 0.0001

Weight decay 0.01 0.01 0.01 0.01

Patch size 5� 5 5� 5 5� 5 –

Patch stride 1 1 1 –

Embedding size of encoder 512 512 512 –

Encoder feedforward dimension 1,024 1,024 1,024 –

Number of encoder heads 8 8 8 –

Size of positional embeddings 512� 256 512� 256 512� 256 –

Number of decoder layers – 1 1 –

Embedding size of decoder – 512 512 –

Decoder feedforward dimension – 1,024 1,024 –

Number of decoder heads – 8 8 –

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 26/30

http://dx.doi.org/10.7717/peerj-cs.3403/fig-8
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

ACKNOWLEDGEMENTS
The author gratefully acknowledges the assistance of large language models (ChatGPT,
Google Gemini, Mistral Large 2, and Qwen2.5) and AI tools (Grammarly and Paperpal) in
improving the grammar and style of this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Kazuhisa Fujita conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data and code are available on GitHub and Zenodo:
- https://github.com/KazuhisaFujita/AlphaViT.
- Kazuhisa Fujita. (2025). KazuhisaFujita/AlphaViT: New release (release). Zenodo.

https://doi.org/10.5281/zenodo.17204839.
The trained weights of the models are available on Hugging Face: https://huggingface.

co/kazufujita/AlphaViT.
https://doi.org/10.57967/hf/6826.

Table A1 (continued)

Parameter AlphaViT AlphaViD AlphaVDA AlphaZero

Size of action embeddings – – 256 –

Dropout rate 0.1 0.1 0.1 –

Number of residual blocks – – – 6

Kernel size – – – 3

Number of filters – – – 256

Table A2 Game-specific hyperparameters for AlphaViT, AlphaViD, AlphaVDA, and AlphaZero.

Connect 4 Connect 4 5 × 4 Gomoku Gomoku 6 × 6 Othello Othello 6 × 6

Number of simulations 200 200 400 200 400 200

Number of self-play 30 30 10 10 10 10

Topening 4 4 8 6 8 6

s 100 100 40 20 80 40

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 27/30

https://github.com/KazuhisaFujita/AlphaViT
https://doi.org/10.5281/zenodo.17204839
https://huggingface.co/kazufujita/AlphaViT
https://huggingface.co/kazufujita/AlphaViT
https://doi.org/10.57967/hf/6826
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3403#supplemental-information.

REFERENCES
Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M,

Tacchetti A, Raposo D, Santoro A, Faulkner R, Gulcehre C, Song F, Ballard A, Gilmer J,
Dahl G, Vaswani A, Allen K, Nash C, Langston V, Dyer C, Heess N, Wierstra D, Kohli P,
Botvinick M, Vinyals O, Li Y, Pascanu R. 2018. Relational inductive biases, deep learning, and
graph networks. ArXiv DOI 10.48550/arXiv.1806.01261.

Browne CB, Powley E, Whitehouse D, Lucas SM, Cowling PI, Rohlfshagen P, Tavener S, Perez
D, Samothrakis S, Colton S. 2012. A survey of Monte Carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games 4(1):1–43
DOI 10.1109/tciaig.2012.2186810.

Buro M. 1997. The Othello match of the year: Takeshi Murakami vs. Logistello. ICCA Journal
20(3):189–193 DOI 10.3233/icg-1997-20311.

Buro M. 2003. The evolution of strong Othello programs. Boston, MA: Springer US, 81–88.

Campbell M. 1999. Knowledge discovery in deep blue. Communications of the ACM 42(11):65–67
DOI 10.1145/319382.319396.

Campbell M, Hoane A, Hsiung Hsu F. 2002. Deep blue. Artificial Intelligence 134(1):57–83
DOI 10.1016/s0004-3702(01)00129-1.

Czech J, Blüml J, Kersting K, Steingrimsson H. 2024. Representation matters for mastering chess:
improved feature representation in AlphaZero outperforms switching to transformers. In: ECAI
2024. Amsterdam: IOS Press, 2378–2383.

d’Ascoli S, Touvron H, Leavitt ML, Morcos AS, Biroli G, Sagun L. 2022. ConViT: improving
vision transformers with soft convolutional inductive biases�. Journal of Statistical Mechanics:
Theory and Experiment 2022(11):114005 DOI 10.1088/1742-5468/ac9830.

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M,
Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. 2021. An image is worth 16 � 16
words: transformers for image recognition at scale. In: 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3–7, 2021. OpenReview.net.

Fujita K. 2022. AlphaDDA: strategies for adjusting the playing strength of a fully trained alphazero
system to a suitable human training partner. PeerJ Computer Science 8(10):e1123
DOI 10.7717/peerj-cs.1123.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 770–778.

Hsu F-H. 1999. IBM’s deep blue chess grandmaster chips. IEEE Micro 19(2):70–81
DOI 10.1109/40.755469.

Hsueh C-H, Wu I-C, Chen J-C, Hsu T-S. 2018. Alphazero for a non-deterministic game. In: 2018
Conference on Technologies and Applications of Artificial Intelligence (TAAI), 116–121.

Li Y,Wu C-Y, Fan H, Mangalam K, Xiong B, Malik J, Feichtenhofer C. 2022.MViTv2: improved
multiscale vision transformers for classification and detection. In: 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 4794–4804.

Moerland TM, Broekens J, Plaat A, Jonker C. 2018. A0C: alpha zero in continuous action space.
ArXiv DOI 10.48550/arXiv.1805.09613.

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 28/30

http://dx.doi.org/10.7717/peerj-cs.3403#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3403#supplemental-information
http://dx.doi.org/10.48550/arXiv.1806.01261
http://dx.doi.org/10.1109/tciaig.2012.2186810
http://dx.doi.org/10.3233/icg-1997-20311
http://dx.doi.org/10.1145/319382.319396
http://dx.doi.org/10.1016/s0004-3702(01)00129-1
http://dx.doi.org/10.1088/1742-5468/ac9830
http://dx.doi.org/10.7717/peerj-cs.1123
http://dx.doi.org/10.1109/40.755469
http://dx.doi.org/10.48550/arXiv.1805.09613
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

Monroe D, Chalmers PA. 2024. Mastering chess with a transformer model. ArXiv
DOI 10.48550/arXiv.2409.12272.

Petosa N, Balch T. 2019. Multiplayer AlphaZero. ArXiv DOI 10.48550/arXiv.1910.13012.

Ruoss A, Delétang G, Medapati S, Grau-Moya J, Wenliang LK, Catt E, Reid J, Lewis CA, Veness
J, Genewein T. 2024. Amortized planning with large-scale transformers: a case study on chess.
ArXiv DOI 10.48550/arXiv.2402.04494.

Schaeffer J, Treloar N, Lu P, Lake R. 1993. Man versus machine for the world checkers
championship. AI Magazine 14(2):28–35 DOI 10.3233/icg-1993-16212.

Scheiermann J, Konen W. 2023. AlphaZero-inspired game learning: faster training by using
MCTS only at test time. IEEE Transactions on Games 15(4):637–647
DOI 10.1109/tg.2022.3206733.

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J,
Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner
N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D. 2016.Mastering
the game of go with deep neural networks and tree search. Nature 529(7587):484–503
DOI 10.1038/nature16961.

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran
D, Graepel T, Lillicrap T, Simonyan K, Hassabis D. 2018. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science 362(6419):1140–1144
DOI 10.1126/science.aar6404.

Silver D, Schrittwieser J, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A,
Chen Y, Lillicrap T, Hui F, Sifre L, Driessche G, Graepel T, Hassabis D. 2017. Mastering the
game of go without human knowledge. Nature 550(7676):354–359 DOI 10.1038/nature24270.

Soemers D, Mella V, Piette E, Stephenson M, Browne C, Teytaud O. 2021. Transfer of fully
convolutional policy-value networks between games and game variants. ArXiv
DOI 10.48550/arXiv.2102.12375.

Soemers DJNJ, Mella V, Piette E, Stephenson M, Browne C, Teytaud O. 2023. Towards a general
transfer approach for policy-value networks. Transactions on Machine Learning Research.

Taylor H, Stella L. 2024. An evolutionary framework for Connect-4 as test-bed for comparison of
advanced minimax, Q-learning and MCTs. ArXiv DOI 10.48550/arXiv.2405.16595.

Teytaud F, Teytaud O. 2010. On the huge benefit of decisive moves in Monte-Carlo tree search
algorithms. In: Proceedings of the 2010 IEEE Conference on Computational Intelligence and
Games. Piscataway: IEEE, 359–364.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I.
2017. Attention is all you need. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17. Red Hook, NY, USA: Curran Associates Inc,
6000–6010.

Wang H, Preuss M, Plaat A. 2020. Warm-start alphazero self-play search enhancements.
In: Bäck T, Preuss M, Deutz AH, Wang H, Doerr C, Emmerich MTM, Trautmann H, eds.
Parallel Problem Solving from Nature—PPSN XVI—16th International Conference, PPSN 2020,
Leiden, The Netherlands, September 5–9, 2020, Proceedings, Part II, Volume 12270 of Lecture
Notes in Computer Science. Cham: Springer, 528–542.

Wang H, Preuss M, Plaat A. 2021. Adaptive warm-start MCTS in AlphaZero-like deep
reinforcement learning. In: Pham DN, Theeramunkong T, Governatori G, Liu F, eds. PRICAI
2021: Trends in Artificial Intelligence—18th Pacific Rim International Conference on Artificial
Intelligence, PRICAI 2021, Hanoi, Vietnam, November 8–12, 2021, Proceedings, Part III, Volume
13033 of Lecture Notes in Computer Science. Cham: Springer, 60–71.

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 29/30

http://dx.doi.org/10.48550/arXiv.2409.12272
http://dx.doi.org/10.48550/arXiv.1910.13012
http://dx.doi.org/10.48550/arXiv.2402.04494
http://dx.doi.org/10.3233/icg-1993-16212
http://dx.doi.org/10.1109/tg.2022.3206733
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1126/science.aar6404
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.48550/arXiv.2102.12375
http://dx.doi.org/10.48550/arXiv.2405.16595
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

Winands MHM. 2017. Monte-Carlo tree search in board games. Singapore: Springer Singapore,
47–76.

Wu DJ. 2019. Accelerating self-play learning in go. ArXiv DOI 10.48550/arXiv.1902.10565.

Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P. 2021. SegFormer: simple and efficient
design for semantic segmentation with transformers. In: Proceedings of the 35th International
Conference on Neural Information Processing Systems, NIPS ’21. Red Hook, NY, USA: Curran
Associates Inc.

Zhao H, Chen Z, Guo L, Han Z. 2022. Video captioning based on vision transformer and
reinforcement learning. PeerJ Computer Science 8(9):e916 DOI 10.7717/peerj-cs.916.

Fujita (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3403 30/30

http://dx.doi.org/10.48550/arXiv.1902.10565
http://dx.doi.org/10.7717/peerj-cs.916
http://dx.doi.org/10.7717/peerj-cs.3403
https://peerj.com/computer-science/

	AlphaViT: a flexible game-playing AI for multiple games and variable board sizes
	Introduction
	Related work
	Methods: alphavit, alphavid, and alphavda
	Experimental setup
	Results
	Discussion
	Conclusion
	Appendix
	Training procedure
	Parameters
	flink11
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

