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ABSTRACT

Traditional label propagation algorithms (LPA) exhibit instability and poor accuracy
in community discovery, primarily due to random node selection, uncertain label
update sequences, and neglect of node importance variations. We present
GELPA-OCD (overlapping community discovery based on graph embedding and
label propagation algorithm), an overlapping community discovery algorithm that
integrates graph embedding with label propagation to address these limitations. Our
approach introduces a multidimensional node importance assessment strategy and
employs Node2vec graph embedding to represent nodes as low-dimensional vectors,
effectively capturing network structure features. The algorithm employs
similarity-based weight factors to guide label propagation and implements adaptive
filtering mechanisms to enhance effectiveness. We conduct experiments on both real
and artificial datasets. Using EQ, NMI, and F1-score as evaluation metrics, the
experimental results show that the proposed algorithm effectively reduces
randomness and uncertainty in node selection and label updating processes,
achieving more stable and accurate overlapping community discovery.
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community. However, in real-world networks, nodes often belong to multiple
communities, and these overlapping nodes are of great significance for understanding the
topology and functionality of the entire network.

Nowadays, the label propagation algorithms (LPA)-based approach has gained
widespread adoption in community detection due to its computational simplicity and
near-linear time complexity (Chen, Jiang ¢ Guo, 2023; Wang et al., 2023). Therefore,
improving the stability of LPA-based overlapping community detection algorithms has
become a key issue.

Related work

Overlapping community structures have attracted considerable attention as they more
accurately reflect real-world network characteristics (Zhuo et al., 2024). Consequently,
researchers have developed numerous algorithms for overlapping community discovery,
each tailored to specific methodological approaches and network topologies (Feng et al.,
2024). The Clique Percolation Method (CPM) (Palla ¢ Farkas, 2005) is a representative
algorithm for overlapping community discovery that detects communities by identifying
k-cliques and their overlaps in the network. However, its performance is sensitive to the
value of k, thus limiting its applicability to large-scale or sparse networks. Local Fitness
Maximization (LEM) (Lancichinetti, Fortunato ¢ Kertész, 2009) algorithm detects overlapping
communities by optimizing a local fitness function that measures the strength of community
structure around each node, but it suffers from instability due to random seed selection.

Traditional Label Propagation Algorithm (LPA) algorithms are unstable and limited to
non-overlapping community detection (Li et al., 2022a). Gregory (2010) addressed this
limitation by proposing the Community Overlap Propagation Algorithm (COPRA), which
extends label propagation to overlapping community discovery by allowing nodes to
belong to multiple communities with membership coefficients. The COPRA algorithm
offers the advantages of low time complexity and suitability for large-scale networks.
However, the order of node updates and label selection remains highly random, which
results in unstable community discovery results. Lu ef al. (2018) proposed the LPA with
Neighbor Node Influence (LPANNTI) algorithm, which incorporates node influence
measures to guide the label propagation process. This algorithm overcame the limitations
of traditional methods that ignored the importance of nodes. El Kouni, Karoui ¢ Ben
Romdhane (2020) extended the node importance measurement method by incorporating
additional topological features. Wang et al. (2022) proposed a node-label overlapping
community partition algorithm based on entropy transformation that uses information
entropy to optimize community assignments. Tang, Li ¢» Tang (2021) proposed the
Detecting Overlapping Community based on LPA (DOCLPA) algorithm to address the
randomness issue by introducing deterministic node ordering strategies. However, this
algorithm is not suitable for sparse networks.

Recent advances in overlapping community detection have explored several promising
directions. First, graph embedding integration has attracted increasing research attention,
with studies investigating the combination of network representation learning with
community detection methods. Yang, Wang ¢ Ye (2022) explored this approach by

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3389 2/24


http://dx.doi.org/10.7717/peerj-cs.3389
https://peerj.com/computer-science/

PeerJ Computer Science

integrating the Node2vec model (Grover ¢ Leskovec, 2016) with community detection
based on node similarity. Chen et al. (2020) developed this direction further with their
Community Detection via Deep Variational Gaussian Mixture (CD-DVG) algorithm,
which employs a two-stage strategy that first extracts node features using deep learning
techniques and then identifies community structures through vector graph embedding
methods. Hu et al. (2020) investigated this integration by combining Node2vec with
spectral clustering methods, though their approach requires specifying the number of
communities in advance and has high computational complexity. Second, multi-modal
feature learning represents another research direction that addresses the limitations of
purely topological approaches. Berahmand et al. (2024) proposed a semi-supervised deep
attribute clustering method using dual auto-encoders that can simultaneously learn both
structural and attribute features of networks. While these auto-encoder approaches can
capture nonlinear data representations more effectively than Node2vec, they are less
efficient when processing pure topological structures. Berahmand et al. (2025) provided a
comprehensive review of research that integrates graph structure learning into spectral
clustering, establishing a theoretical foundation for understanding the global structural
features of networks. However, spectral clustering methods typically have higher
computational complexity. Third, higher-order relationship modeling has received
attention as researchers seek to capture complex node interactions beyond simple pairwise
relationships. Sheikhpour et al. (2025) developed semi-supervised discriminant analysis
methods using hypergraph Laplacian structures, which enable the capture of higher-order
relationships among multiple nodes through hypergraph representations. Despite these
advances, current methods face various challenges: local information dependency that may
neglect global network influence (Gao et al., 2024), computational complexity trade-offs,
and stability issues in overlapping scenarios. These challenges motivate the development of
approaches that can balance embedding effectiveness with computational efficiency while
maintaining stability in overlapping community detection.

Contribution of the study

This article proposes GELPA-OCD (overlapping community discovery based on graph
embedding and label propagation algorithm), a method based on graph embedding and
label propagation algorithm for overlapping community discovery. This study’s main
contributions are as follows.

(1) We propose a node importance measurement index that combines degree centrality,
PageRank value, and local clustering coefficient. Based on the descending order of
node importance values, we determine the update sequence of node labels, effectively
reducing the randomness in node selection and improving the stability of community
discovery results.

(2) Inthe label propagation strategy, we integrate Node2vec graph embedding to construct
node similarity matrices. Based on this, we propose a new method for computing the
label attribution coefficient. Moreover, by setting an adaptive threshold for label
filtering, the randomness and computational cost of label selection are effectively
reduced, improving the algorithm’s stability, accuracy, and efficiency.
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(3) We comprehensively evaluated the proposed algorithm using multiple metrics (EQ,
NMI, F1-score) on six real-world networks and 25 artificial datasets, demonstrating its
outstanding performance in overlapping community detection.

THEORETICAL BASIS
Graph embedding

This study focuses on community discovery in undirected and unweighted networks,
which are typically represented as a graph G(V, E), where V is the node set and E is the
edge set of the network. Graph embedding is a technique that maps nodes, edges, or
subgraphs in a given graph structure to a low-dimensional vector space. Representative
algorithms for graph embedding models include Deepwalk, Node2vec (Johnson, Murty &
Navakanth, 2024), and others. Grover ¢ Leskovec (2016) improved the random walk
method based on Deepwalk and proposed the Node2vec algorithm. Unlike the Deepwalk
algorithm, Node2vec incorporates Breadth First Search (BFS) and Depth First Search
(DFS) into random walks. It controls the direction of random walks through parameters p
and q to obtain richer network structure information (Zhang, 2024). In this study, we use
the Node2vec model to learn the topological structure of the network. Combining
Node2vec with overlapping community discovery can considerably preserve the topology
information of the network and ensure the accuracy of overlapping community discovery
results (Gao et al., 2024).

Related concepts and definitions

The following briefly explains the relevant concepts and definitions involved in the
algorithm proposed in this article. In the following text, N represents the total
number of nodes in the network, d, represents the degree of node v, I'(v) represents
the set of neighboring nodes of node v, and ‘||’ represents the number of elements in
the set.

Definition 1: Degree centrality (DC). The degree of centrality measures the direct
influence of a node and evaluates its importance. We denote the degree centrality of node v
as DC(v), which is defined as in Formula (1).

dy

DC(v):N_l.

(1)

Definition 2: PageRank value (PR). The PageRank value reflects the global importance of
anode in the network. We denote the PageRank value of node v as PR(v), which is defined
as in Formula (2), where o is the damping coefficient set to 0.85.

—(1_a)+a PR(V/).

N vel'(v) dv/

(2)

Definition 3: Clustering coefficients (CC). The clustering coefficient of a node describes
the density of edges around the node. We denote the clustering coefficient of node v as
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CC(v), which is defined as in Formula (3), where T, represents the number of edges
between neighboring nodes v.

2T,

CC(v) = (-1

(3)

GELPA-OCD METHODS

LPA-based overlapping community discovery algorithms suffer from substantial
randomness in node update ordering and label selection, leading to unstable and
inaccurate community detection results. To address these issues, this article introduces the
GELPA-OCD algorithm for overlapping community detection, which integrates graph
embedding and LPA. We construct a node importance evaluation index in the label
initialization stage by comprehensively considering nodes’ local structural characteristics
and global topological features. We then determine the update order of node labels based
on the descending order of this importance index, aiming to address the instability of
community discovery results caused by the random selection of node label update order. In
the label propagation stage, the algorithm introduces the graph embedding model
Node2vec to preprocess the network, constructs a similarity matrix, and integrates it into
calculating improved label attribution coefficients, thus proposing a cosine
similarity-based label attribution coefficient. Due to the differences in similarity between
each pair of nodes, the method can effectively avoid the situation where nodes have the
same label attribution coefficient in community attribution determination, reducing the
probability of nodes randomly selecting labels, and improving the accuracy and stability of
the algorithm for community discovery results.

Improvement of the network representation preprocessing stage
The Node2vec algorithm can balance the maintenance of local structural features and the
capture of global network information by adjusting parameters p and g for complex
networks. Additionally, Node2vec’s random walk strategy is more flexible and can adjust
sampling preferences according to actual needs, thereby obtaining more targeted node
representations. The algorithm proposed in this article uses Node2vec to learn the network
topology representation, mapping nodes to a low-dimensional vector space. We use cosine
similarity to measure the similarity between vectors. Its calculation method is the product
of the inner product of two vectors divided by the vector modulus, as shown in
Formula (4).
snii) = {ff\ll{} - S fud) foa ‘ @
T ) (S 2)

In Formula (4), sim(i, j) represents the cosine similarity between node i and node j, f;

represents the embedding vector of node i, f(; s represents the d-th dimensional
component of the embedding vector of node i, and D is the dimension of the embedding
vector. Based on Formula (4), we can construct a node similarity matrix S and apply it to
the subsequent label propagation process.
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Improvement in the label initialization phase

Node importance evaluation integrating multidimensional indicators

When evaluating the importance of a node in overlapping community discovery
algorithms, existing research mainly uses a single indicator, such as degree centrality, to
measure it (Liu et al., 2020). Given this, we propose a node importance evaluation
indicator integrating multidimensional features, comprehensively considering three
dimensions: degree centrality, PageRank value, and the clustering coefficient of nodes.
First, degree centrality measures the direct connection relationship between nodes and
other nodes. Second, the PageRank value evaluates the influence of nodes on the entire
network. Finally, the clustering coefficient measures the degree of connectivity between
neighbors of a node. After normalization, we fuse these three indicators to avoid the
potential one-sidedness of a single indicator. In this article, the importance of node v is
denoted as NI(v), as shown in Formula (5). Here, DC_norm(v), PR_norm(v), and
CC_norm(v) represent the normalized degree centrality, normalized PageRank value, and
normalized clustering coefficient of node v, respectively. Their calculation methods are
shown in Formulas (6), (7), and (8), respectively.

NI(v) = DC_norm(v) x PR_norm(v) x (1 + CC_norm(v)). (5)
DC(v)

DC_norm(V) = m . (6)

PR _norm(v) = #@P)R(u)' (7)

CC_norm(v) = ) (8)

max,cy CC(u)’
Here, DC(v), PR(v), and CC(v) are the degree centrality, PageRank value, and

clustering coefficient of node v defined in Formulas (1), (2), and (3), respectively. Max()
represents taking the maximum value of the corresponding indicator.

The strategy of label initialization

Based on the above node importance evaluation method, this article adopts the
following strategy for label initialization. Firstly, we calculate the importance
values of all nodes in the network. Secondly, we sort them in descending order to
form an updated sequence of node labels. Finally, for each node, we assign a
unique initial label and set the attribution coefficient of its initial label to 1. The
pseudocode for the node importance-based label initialization strategy is presented
as follows.

Improvement in the label propagation stage

The traditional LPA-based community discovery method uses a single indicator for
calculating the label attribution coefficient, which fails to measure the community to which
the node belongs effectively. This article proposes an improved label propagation
mechanism to address the aforementioned issues.
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Algorithm Label initialization strategy based on node importance.
Input: G(V, E)
Output: update_sequence, initialized_labels
Step 1: Calculate basic indicators
Initialize update_sequence =[ ]
For each v € V: Calculate DC(v) according to Formula (1); End For
For each v € V: Calculate PR(v) according to Formula (2); End For
For each v € V: Calculate CC(v) according to Formula (3); End For
Step 2: Calculate node importance
For each v € V: Calculate DC_norm(v) according to Formula (8); End For
For each v € V: Calculate PR_norm(v) according to Formula (9); End For
For each v € V: Calculate CC_norm(v) according to Formula (10); End For
For each v € V: Calculate NI(v) according to Formula (7); End For
Step 3: Generate update sequence
sorted_nodes = Sort (V) by NI(v) in descending order
For each v € sorted_nodes: update_sequence.append(v) ; End For
Step 4: Initialize labels
initialized_labels = { }
For each v € update_sequence
set initialized labels of v to 1; initialized_labels=initialized_labelsU{(v,1)}
End For
Return update_sequence, initialized_labels

Label update strategy based on node attribution coefficient

When nodes receive multiple candidate labels with identical attribution coefficients during
filtering, random label selection compromises algorithm stability (Li et al., 2022b). To
reduce the instability and low accuracy of community discovery results caused by the
randomness of label selection, the algorithm proposed in this article introduces the
Node2vec graph embedding technique. Our method uses cosine similarity to construct a
node similarity matrix and introduces a novel Label Membership Coefficient (LMC). This
coefficient not only considers the label weights of neighboring nodes but also introduces
node similarity based on Node2vec as a weight factor, which enables the label propagation
process to reflect the strength of relationships between nodes more accurately.

The label membership coefficient of a node reflects the degree to which that node
belongs to a community. The membership coefficient of node v to label [ is denoted as
LMC(v, 1), which is defined as Formula (9), where L(v) represents the label set of node v.
Here, L(v) represents the set of neighboring labels of node v, defined as shown in
Formula (10).

ZuGF(v) Sim(vv u) x LMC(”: l)

. 9
ZMEF(V) Zl’eL(u) sim(v, u) X LMC(H, ll) ( )
L(v) = {(I, LMC(u,1)) |u € T'(v)}. (10)

LMC(v, 1) =

Rules of adaptive label filtering

This article introduces an adaptive label filtering mechanism to ensure the effectiveness of

1
label propagation. For node v, we set a label filtering threshold 6 = o Here, |L(v)|

represents the number of labels received by node v. If the attribution coefficient LMC(v, I)
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of a particular label / to node v is lower than the threshold 0, we delete the label. If a node
retains no neighbor labels after filtering, it keeps the neighbor label with the highest
attribution coefficient.

Label propagation process
The specific rules for the label propagation process are as follows.

(1) Data preprocessing. Using the Node2vec model to generate embedding vectors for
nodes, calculate the cosine similarity between nodes based on Formula (4) and
construct the inter-node similarity matrix S based on this.

(2) Community label initialization. For each node v in network graph G, calculate each
node’s importance index NI(v) according to Formula (5), sort all nodes in descending
order according to their NI values, and form an updated sequence of node labels,
denoted as update_sequence. Setting each node’s initial label attribution coefficient
LMC(v, ]) is 1.

(3) Label collection. Collect the label information of neighboring nodes for node v to be
updated in updates_sequence and form a neighbor label set L(v) according to Formula
(10).

(4) Calculation of attribution coefficient. Based on the similarity matrix S and the label set
L(v) of nodes, calculate the new attribution coefficient LMC(v, I) of node v to label [
according to Formula (9).

(5) Label filtering. Filter the label attribution coefficient of node v according to the set
threshold 0, and delete labels below the threshold. If no labels remain after filtering, the
algorithm retains the label with the highest attribution coefficient.

(6) Normalization processing. Normalize the attribution coefficients in the retained label
set so that the sum of the attribution coefficients for all labels is 1, resulting in a new
label set L’(v) for node v.

(7) Iteration until termination. Repeat steps (3) to (6), with one iteration per round. When
the algorithm reaches the maximum number of iterations or the label attribution
coefficients of all nodes remain unchanged between two consecutive iterations, the
algorithm ends. Ultimately, all labels retained by each node represent the community
to which it belongs.

EXPERIMENTS AND RESULTS ANALYSIS

We evaluated our approach on six real networks and 25 artificial datasets, employing EQ
(Gao, 2023) and NMI (Wang et al., 2023) metrics to compare dozens of classic and recent
overlapping community discovery algorithms. EQ measures the quality of overlapping
community detection by extending traditional modularity, while NMI quantifies the
similarity between detected and ground-truth communities. We applied F1-score,
Precision, and Recall (Yang et al., 2023) to assess performance on overlapping nodes and
compared our results with five baseline algorithms. F1-score provides a balanced measure
of precision and recall for overlapping node identification. We also analyzed the
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Table 1 Basic characteristics of real datasets. The features of the real datasets are shown, where |V|
represents the number of nodes, |E| denotes the number of edges, || is the number of real communities
in the network, max(k) is the maximum value of node degree, <k> represents the average degree of nodes,
<d> denotes the average path length of the network, and <c> signifies the average clustering coefficient of

nodes.

Data set [V]| |E]| || max(k) <k> <d> <c>
Karate 34 78 2 17 4.588 2.408 0.571
Dolphin 62 159 2 12 5.129 3.357 0.259
Polbooks 105 441 3 25 8.4 3.079 0.448
Football 115 613 12 12 10.661 2.508 0.403
Power 4,941 6,594 — 19 2.67 18.989 0.108
Internet 22,963 48,436 — 2,390 4.22 3.528 0.239

algorithm’s convergence behavior, sensitivity to embedding dimensions and random walk
parameters, and computational complexity to demonstrate its superiority.

Experiment result analysis of real networks

Real datasets

We used six real datasets in the experiment. These datasets come from the Stanford
University datasets website. Table 1 shows the features of the datasets, where | V| represents
the number of nodes, |E| denotes the number of edges, || is the number of real
communities in the network, max(k) is the maximum value of node degree, <k> represents
the average degree of nodes, <d> denotes the average path length of the network, and <c>
signifies the average clustering coefficient of nodes.

Comparison with classic overlapping community discovery algorithms
We compared and analyzed the algorithm proposed in this study with five classic
overlapping community discovery algorithms on the six real datasets mentioned
above. We ran each algorithm independently 100 times on the corresponding
datasets and obtained the average EQ of the six algorithms across the six datasets, as
shown in Fig. 1.

Experimental results demonstrate that GELPA-OCD consistently outperforms all five
baseline algorithms across all datasets regarding EQ values. Especially on large-scale
networks such as Power and the Internet, the performance of the proposed algorithm
significantly improved, with an average improvement of 94.97% and 88.56%, respectively,
demonstrating its superiority in handling large-scale networks. In the medium-scaled
network, compared with other algorithms, the proposed algorithm improved EQ values by
4.77~38.31% (average improvement of 27.07%) on the Dolphin dataset, 2.66~18.55%
(average improvement of 10.33%) on the Football dataset, and 3.02~46.05% (average
improvement of 16.79%) on the Polbooks dataset. On the small-scale dataset Karate, the
proposed algorithm achieved an average improvement of 39.68% in EQ values compared
to the other five algorithms. The experimental results fully validated the proposed
algorithm’s effectiveness, correctness, and accuracy in discovering overlapping
communities.
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Figure 1 Comparison of overlapping modularity of six algorithms on six real datasets. On the six real
datasets mentioned above, the algorithm proposed in this article was compared and analyzed with five
classic overlapping community discovery algorithms. Each algorithm was independently run 100 times
on the corresponding datasets, and the average overlapping modularity of the six algorithms on the six
datasets was obtained. Full-size K&l DOT: 10.7717/peerj-cs.3389/fig-1

Performance comparison with newly appearing algorithms

To further verify the correctness and effectiveness of the proposed algorithm for
overlapping community detection, we conducted comparative analyses with seven recent
community detection algorithms: CLEM (Xue ¢» Tang, 2020), NIEM (Yang et al., 2023),
EMOFM (Tian, Yang & Zhang, 2019), OCLN (Yang et al., 2023), CFCD (Zhang, Ding &
Yang, 2019), CDSAT (Jabbour et al., 2020), and PCDSAT (Jabbour et al., 2020). We
selected four classic datasets, Karate, Dolphin, Football, and Polbooks, and used the EQ
value as the evaluation index. Table 2 shows the results.

Table 2 showed that the EQ values computed for the community discovery results of the
eight algorithms on the four classic datasets were not completely the same. However, the
GELPA-OCD algorithm proposed in this article performed well on all four classic
networks, with EQ values higher than those of the other seven algorithms. The above
results verified the proposed algorithm’s effectiveness, correctness, and higher quality for
overlapping community discovery.

Algorithm stability analysis

We conducted 100 repeated experiments on the Karate and Polbooks datasets to evaluate
algorithm stability, comparing GELPA-OCD with two classic algorithms, COPRA and
LEM. Figure 2 presents the EQ values across all experiments.

As shown in Fig. 2, the proposed algorithm showed significant advantages in stabilizing
community discovery results. On the Karate and Polbooks datasets, the GELPA-OCD
algorithm’s EQ values remained unchanged with minimal fluctuations, while the COPRA
and LFM algorithms showed significant fluctuations. The consistency of EQ values across
multiple runs is crucial as it indicates algorithmic stability and reliability. In practical
applications, stable algorithms ensure that users obtain consistent community detection
results regardless of random initialization, which is essential for reproducible research and
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Table 2 EQ values of community discovery results of eight algorithms in classical networks. The
algorithm GELPA-OCD proposed in this paper is compared with seven recent community discovery
algorithms. Four classic datasets, karate, dolphin, football and polbooks, are selected as examples, and the
overlapping modularity EQ is used as the evaluation index.

Algorithms EQ
Karate Dolphin Polbooks Football
CLEM 0.361 0.3568 0.338 0.574
NIEM 0.3505 0.4366 0.4423 0.5302
EMOFM 0.2341 0.2723 0.2703 0.3066
OCLN 0.3584 0.3332 0.4607 0.3687
CFCD 0.3718 0.4938 0.4426 0.6005
CDSAT 0.311 0.297 0.345 0.404
PCDSAT 0.396 0.324 0.345 0.420
GELPA-OCD 0.4498 0.4999 0.4698 0.6028
Table 3 Basic characteristics of artificial datasets.
Group Network name |V| k u max(k) min|Q| max|Q| |on| |om|
A LFR1~LFR5 1,000 10 0.1~0.5 50 10 50 100 2
B LFR6~LFR12 1,000 10 0.1 50 10 50 200~500 2
C LFR13~LFR18 1,000 10 0.1 50 10 50 100 3~8
D LFR19~LFR25  2,000~5,000 10 0.1 50 10 50 100 2
Table 4 Comparison of Precision, Reacll, and Fl-score among different algorithms.
Network name |V| Metric(%) COPRA BMLPA CPM LPANNI LFM GELPA-OCD
LFR19 2,000 Precision 96.6 100 44.1 98.7 12.4 98.9
Recall 85.3 45.5 354 74.6 45.2 88.0
FlI-score 90.59 65.54 39.25 84.97 1946  93.15
LFR20 2,500  Precision 97.7 96.4 35.8 98.3 25.6 98.8
Recall 86.5 53.5 45.8 59.0 25.5 89.5
FI-score 91.76 68.80 40.19 73.74 25.55 93.91
LFR21 3,000 Precision 96.8 94.9 45.8 94.4 24 98.9
Recall 83.1 38.1 31.3 67.3 325 89.5
FI-score 89.41 54.36 37.17 78.59 27.61 93.93
LFR22 3,500 Precision 85.7 85.8 35.6 93.1 36 89.6
Recall 78.7 50.0 46.9 67.3 30.5 86.7
Fl-score 82.05 63.18 40.48 78.10 33.01 88.13
LFR23 4,000 Precision 88.1 82.3 354 97.1 0 100
Recall 82.0 54.2 40.1 60.9 26.5 89.5
FlI-score 84.95 65.35 37.58 74.84 0 94.46
LFR24 4,500 Precision 97.8 77.6 0 93.2 15 100
Recall 89.5 50.3 0 59.6 21.2 90.4
Fl-score 94.45 61.02 0 72.69 17.57 94.96
(Continued)
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Table 4 (continued)

Network name |V Metric(%) COPRA BMLPA CPM LPANNI LFM GELPA-OCD

LFR25 5,000 Precision 100 70.7 54.2 100 3 95.6
Recall 89.1 61.0 32.1 61.8 18.1 89.2
Fl-score 94.23 65.47 4032 76.39 5.15 92.29
05 Karate 05 Polbooks
A
04 WA H W—Fwwmrn 04
03 J 03
& 2
02 F 02 F
01 0.1 |
——— COPRA —LFM ——— GELPA-OCD ~— COPRA —— LFM = GELPA-OCD
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Figure 2 Comparison of modularity of community partitioning results among three algorithms. To
evaluate algorithm stability, we conducted 100 repeated experiments on the Karate and Polbooks
datasets, comparing GELPA-OCD with two classic algorithms, COPRA and LFM.

Full-size Kal DOI: 10.7717/peerj-cs.3389/fig-2

reliable decision-making processes. The experimental results showed that the proposed
algorithm effectively improved the randomness of node update order by introducing a
multidimensional feature-based node importance evaluation index. The improved label
propagation process used similarity weights and adaptive label filtering thresholds,
effectively improving algorithm stability and enhancing the quality of community
discovery.

Analysis of algorithm convergence

To verify the convergence of the proposed algorithm, we recorded label changes of
network nodes with increasing iteration numbers for both the proposed GELPA-OCD
algorithm and comparative algorithms. The maximum number of iterations in the
experiments was set to 30 for small and 300 for large datasets. Taking the classic Karate
and Football datasets as examples, Fig. 3 illustrates the convergence process of three
algorithms, with the horizontal axis representing the number of iterations and the vertical
axis showing the proportion of nodes whose labels changed in the current iteration relative
to the total number of nodes in the network, i.e., the label change rate.

As shown in Fig. 3, all algorithms converged within 10 iterations, but GELPA-OCD
converged faster. On the Karate network, convergence reached just four iterations,
compared to 6 and 10 for BMLPA and COPRA, respectively. On the more complex
Football network, GELPA-OCD achieved near-zero label change by the 3rd iteration, while
BMLPA and COPRA required 7 to 10 iterations. These results confirmed the proposed
algorithm’s faster convergence and improved efficiency.
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Figure 3 Convergence comparison of three algorithms.
Full-size K&l DOT: 10.7717/peerj-cs.3389/fig-3

Analysis of experimental results of artificial datasets
Artificial datasets
Due to the unclear community structure of many real network datasets, it is not easy to
effectively measure the accuracy and effectiveness of algorithms. Therefore, we used an
LER benchmark (Lancichinetti, Fortunato & Radicchi, 2008) to generate four groups of
artificial networks: A, B, C, and D. The total number of artificial datasets is 25. Table 3
shows the basic information on artificial networks. Among them, |V| is the number of
network nodes, and the algorithm in this article takes values from 1,000 to 5,000; The
dout(v)
dV
connections for each node, with values ranging from 0.1 to 0.5 in this article; k is the

, which measures the ratio of external to total

mixing parameter u is defined as u =

average degree of nodes, with a uniform value of 10; max(k) is the maximum degree

of the network, with a uniform value of 50; min|Q| represents the minimum size of
the community, with a uniform value of 10; max|Q| represents the maximum size

of the community, with a uniform value of 50; |on| is the number of overlapping nodes
in the network, with values ranging from 100 to 500 in this article; |om| represents the
number of communities to which overlapping nodes belong, with values ranging from
2 to 8 in this article.

Comparison of NMI values for community discovery of different algorithms
We compared the proposed algorithm with five others on four groups of synthetic datasets,
using NMI as the evaluation metric to assess performance across different network
structures. Figure 4 shows the results.

Figure 4 shows that the proposed algorithm performed best on the four artificial
networks, followed by the LPANNI algorithm. In Group A, as the mixing parameter
increased, all algorithms showed declining NMI values, but our algorithm maintained the
highest scores throughout, demonstrating strong robustness in fuzzy community
structures. In Group B, increasing the number of overlapping nodes from 200 to 500 made
the networks more complex. Although all methods showed reduced performance, our
algorithm consistently achieved the highest NMI. In Group C, as the number of
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Figure 4 Comparison of NMI of six algorithms on artificial datasets. To verify the performance of the
algorithm in networks with different structural features, a comparative experiment was conducted among
the algorithm proposed in this article and five other algorithms on four groups of artificial datasets, with
NMI as the evaluation index. Full-size ] DOT: 10.7717/peerj-cs.3389/fig-4

communities per overlapping node increased, all algorithms experienced performance
drops, with BMLPA and CPM declining the most. Our algorithm showed the slowest
decline, indicating superior performance in highly overlapping scenarios. In Group D, as
the network grew from 2,000 to 5,000 nodes, the proposed algorithm’s NMI values
remained stable and slightly increased, confirming its scalability and strong performance
on large-scale networks.

Quality assessment of overlapping node detection
To more comprehensively evaluate the effectiveness and accuracy of the proposed
algorithm in identifying overlapping nodes, precision, recall, and F1-score were used as
evaluation metrics to compare the overlapping node identification performance of
different algorithms on seven artificially synthesized networks of group D. This group of
networks maintained the same mixing parameter (¢ = 0.1) and number of overlapping
nodes (on = 100), while varying the network scale. Table 4 compares precision, recall, and
F1-score for overlapping node identification by six algorithms on seven artificial networks
of different scales.

As shown in Table 4, GELPA-OCD consistently achieved excellent performance. It
maintained high precision across all networks, while other algorithms showed fluctuating
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results. For instance, BMLPA reached 100% precision on the LFR19 network but dropped
sharply on larger networks. CPM and LFM performed poorly, with precision falling below
50% and even down to 0 on some networks. Regarding recall, GELPA-OCD stayed above
86% across all networks, with an average of 89%, indicating strong coverage. COPRA
followed with an average recall of 84.9%. In contrast, LPANNI showed inconsistent results,
and CPM and LFM performed poorly, especially with CPM achieving 0% recall on LFR24
and LFM falling under 30% on several large networks. For the F1-score, which balances
precision and recall, GELPA-OCD again led, averaging 93% and showing strong stability
across different scales. COPRA ranked second, while LPANNI was stable but
underperformed compared to GELPA-OCD. CPM and LFM showed significant instability,
with the F1-score dropping to 0 on some networks. Overall, GELPA-OCD demonstrated
superior performance in community detection and overlapping node identification,
particularly in complex and large-scale network environments.

Node importance evaluation and model performance analysis
Ablation experiments on node importance metric combination strategies

To verify the effectiveness of this article’s node importance metric combination method,
we compared the community detection performance of four combination strategies:
multiplicative combination, additive combination, weighted combination, and nonlinear
combination of the proposed node importance metrics, under identical conditions.
Formulas (5), (11), (12), and (13) show the multiplicative combination (the combination
method used in this article), additive combination, weighted combination, and nonlinear
combination, respectively.

NI(v) = DC_norm(v) + PR_norm(v) + (1 + CC_norm(v)) (11)
NI(v) = w; * DC_norm(v) + w, * PR_norm(v) + w3(1 + CC_norm(v)) (12)
NI(v) = DC_norm(v) + PR_norm(v)" + (1 + CC_norm(v))" (13)

where NI(v) represents the importance of node v. The calculation methods for
DC_norm(v), PR_norm(v), and CC_norm(v) are shown in Formulas (6), (7), and (8)
above. 1, m, and w3 are weight coefficients, where w; + w, + w3 = 1. « and f§ are weight
coefficients for the nonlinear combination, where o + f = 1, facilitating normalized
comparison. To ensure the effectiveness of the node importance metric combination
method proposed in this article, we conducted a parameter sensitivity analysis for weighted
and nonlinear combinations in the experiments, using the Karate and Dolphin networks as
examples. We ran each set of weights independently 10 times and recorded the EQ values.
Table 5 shows the EQ values for different weights.

As shown in Table 5, different weighting strategies slightly affected algorithm
performance. We selected the parameter combination with the highest EQ value, (0.3, 0.3,
0.4) for the weighted method and (0.3, 0.7) for the nonlinear method.

To verify the effectiveness and superiority of the multiplicative combination method of
node importance metrics proposed in this algorithm, we conducted experiments on two
classic datasets, Karate and Dolphin. We maintained other parameters of the proposed
algorithm unchanged while only altering the calculation method for node importance.

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3389 15/24


http://dx.doi.org/10.7717/peerj-cs.3389
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 EQ values of the algorithm under different weight combinations.

(@1, w2, @) EQ EQ
Karate Dolphin (e, p) Karate Dolphin

(0.4, 0.4, 0.2) 0.3916 0.3741 (0.5, 0.5) 0.4259 0.3785
(0.3,0.2,0.5) 0.3990 0.3957 (0.4, 0.6) 0.4366 0.3957
(0.5,0.3,0.2) 0.4070 0.4082 (0.3, 0.7) 0.4155 0.4168
(0.3, 0.3, 0.4) 0.4173 0.4740 (0.7, 0.3) 0.3990 0.3192
(0.6, 0.2, 0.2) 0.4165 0.3594 (0.6, 0.4) 0.4070 0.3741
(0.2, 0.6, 0.2) 0.4022 0.3748 (0.8,0.2) 0.3155 0.4900

Each combination strategy was run independently 10 times, with averages taken to reduce
the impact of randomness.

The nonlinear, additive, weighted, and multiplicative combination strategies for the
karate dataset achieved EQ values of 0.4071, 0.4242, 0.4032, and 0.4498, respectively. The
EQ values of the four combination strategies on the dolphin dataset were 0.4065, 0.3999,
0.4461, and 0.4962, respectively. The multiplication combination strategy achieved the
highest EQ value on the two classical datasets. The multiplication combination strategy
selected in this article avoids the subjectivity of artificial parameter adjustment. Although
the multiplication combination is sensitive to a single indicator near zero, the value range
of the three basic indicators is controlled between [0, 1] after normalization. There are a
few extreme cases near zero. In addition, the form of (1 + CC_norm(v)) is adopted to
ensure that even if the clustering coefficient is zero, the overall importance of the node will
not be zero. The above experiments proved the superiority of the node importance index
under the multiplication combination strategy proposed in this article.

Parameter sensitivity analysis of the graph embedding algorithm

To investigate the impact of key parameters in Node2vec on the performance of the
proposed algorithm, we conducted experiments on a small-scale dataset, Karate, a
medium-scale dataset, Football, and large-scale datasets, Power and Internet, using EQ as
the evaluation metric, with a focus on analyzing the effects of embedding dimension and
random walk parameters p and g on algorithm performance.

(1) Impact of embedding dimension on algorithm performance. To investigate the
impact of embedding dimension on algorithm performance, we fixed random walk
parameters at p = 1.0 and g = 1.5 and tested five different embedding dimensions: 32, 64,
128, 256, and 512. As shown in Fig. 5, the horizontal axis D represents the embedding
dimension, while the vertical axis represents the EQ values corresponding to the
algorithm’s community detection results under different embedding dimensions.

As shown in Fig. 5, increasing the embedding dimension generally improved
community detection quality up to a point, after which performance stabilized or declined.
On the Karate network, the EQ value increased from 0.417 to 0.45 as the dimension rose
from 32 to 64, but declined beyond 128, suggesting that excessively high dimensions may
cause overfitting. On the Internet network, EQ values kept improving but with diminishing
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Figure 5 Comparison of EQ values for community detection results of the GELPA-OCD in ditierent
dimensions. The effect of embedding dimension on algorithm performance. The results show that
optimal dimensions vary by betwork scale: 64 for small networks (<100 nodes), 128 for medium networks
(100-1,000 nodes), and 256 for large networks (>1,000 nodes). Performance generally improves with
dimension up to a threshold, beyond which overfitting may occur.

Full-size K&l DOT: 10.7717/peerj-cs.3389/fig-5

gains beyond 256. The Power and Football networks showed more stable trends, with
optimal performance typically at 128 and 256 dimensions. Based on the experiments in
this experiment of this article, for small networks (nodes < 100), we can achieve relatively
good results by selecting a dimension of 64; for medium-scale networks (nodes between
100-1,000), we typically choose a dimension of 128, while for large-scale networks
(nodes >1,000), selecting a dimension of 256 achieves a better balance between
performance and computational efficiency.

(2) Impact of random walk parameters on algorithm performance. We conducted
experiments on three representative networks, Karate, Football, and Power, to evaluate
how Node2vec’s random walk parameters p and g affected community detection.
Parameter p controls the probability of returning to the previous node, while g
influences the exploration of new nodes. In our experiment, we fixed the embedding
dimension at 128 and varied p and q to observe their impact. Table 6 shows the
experimental results.

From the experimental results shown in Table 6, we observed that random walk
parameters had a certain impact on community detection quality. On the Football
network, when p = 1.0 and g = 1.5, the algorithm achieved the optimal EQ value of 0.616.
This parameter combination leveraged the ability to capture structural equivalence when
q < 1, which was beneficial for identifying relatively distinct community boundaries in the
network. For the Karate network, the algorithm performed best (EQ = 0.449) when
p = 1.0and g = 1.5, indicating that small-scale networks required appropriately enhanced
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Table 6 Impact of Node2vec random walk parameters (p, q) on community detection quality: EQ
values across three representative networks (Karate, Football, Power) with fixed embedding
dimension D = 128. To investigate the influence of random walk parameters p and q in the Node2-
vec model on community detection quality, comparative experiments were conducted on three repre-
sentative networks: Karate, Football, and Power.

Parameters EQ

P q Karate Football Power
0.5 0.5 0.417 0.582 0.731
0.5 1.0 0.425 0.590 0.742
0.5 1.5 0.418 0.583 0.735
0.5 2.0 0.409 0.578 0.729
1.0 0.5 0.436 0.616 0.756
1.0 1.0 0.438 0.608 0.762
1.0 1.5 0.449 0.602 0.771
1.0 2.0 0.425 0.595 0.742
1.5 0.5 0.428 0.601 0.748
1.5 1.0 0.430 0.597 0.745
1.5 1.5 0.422 0.589 0.739
1.5 2.0 0.416 0.581 0.732
2.0 0.5 0.408 0.593 0.740
2.0 1.0 0.411 0.586 0.736
2.0 1.5 0.405 0.580 0.730
2.0 2.0 0.407 0.575 0.723

stability in label propagation to avoid excessive focus on local structures. For the
medium-scale Power network, the parameter combination of p = 1.0 and g = 1.0 showed
optimal performance (EQ = 0.762). This balanced random walk strategy was more
suitable for handling larger and structurally complex networks. When the p and g
parameters deviated from the optimal combination, algorithm performance varied across
all three networks.

Overall, GELPA-OCD performed consistently well when p = 1.0 and q ranged between
0.5 and 1.5. These findings confirmed that Node2vec’s biased walks significantly
influenced overlapping community detection. Accordingly, our main experiments used
p=10andgq=15.

Performance comparison of different graph embedding algorithms
To validate the choice of Node2vec as the graph embedding method, we compared its
performance with the classic Deepwalk algorithm on four benchmark datasets. We kept
embedding dimensions, walk length, and number of walks consistent across both methods
and varied only the p and g parameters for Node2vec. Table 7 presents the EQ values and
the number of detected communities.

The results showed that Node2vec consistently outperformed Deepwalk, achieving
higher EQ values across all datasets. On the Karate and Dolphin networks, our algorithm
detected three communities instead of the actual two, but achieved higher modularity
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Table 7 Comparison of experimental results of two graph embedding algorithms on four datasets. In
the experiments in this paper, based on two different graph embedding algorithms, comparisons of
community detection quality were conducted on four classic datasets, maintaining consistent parameter
settings for embedding dimensions, walk length, and number of walks, differentiating the two methods
only by adjusting Node2vec’s p and g parameters.

Network Karate Dolphin Polbooks Football
Criteria 2] EQ || EQ |2 EQ |0 EQ
DeepWalk 5 0.4158 2 0.3957 3 0.4439 8 0.6057
Node2Vec 3 0.4498 3 0.4963 3 0.4695 10 0.6158

while maintaining stability and efficiency. On the Football network, the Node2vec-based
method produced results closest to the actual number of communities. These findings
validate Node2vec as an appropriate embedding technique, with its parameterized random
walks effectively balancing node homogeneity and structural equivalence, providing more
accurate node similarity information for label propagation.

Theoretical analysis of adaptive threshold filtering mechanism

The adaptive threshold 0 = m proposed in this article improved the label propagation
mechanism. From the perspective of algorithm convergence, this threshold ensured
monotonicity in the label propagation process; in each iteration, labels with affiliation
coefficients below the “average level” were filtered out, causing the retained label affiliation
coefficients to become more concentrated on dominant communities after normalization,
thereby accelerating the algorithm’s convergence speed. In this article’s experimental
section, “Analysis of algorithm convergence,” convergence analysis was conducted on the
classic Karate and Football datasets, comparing the proposed algorithm with three classic
overlapping community detection algorithms. Compared to COPRA and BMLPA
algorithms, the proposed algorithm demonstrated faster label distribution change rate
convergence, typically reaching a stable state after 3 or 4 iterations.

Furthermore, this threshold mechanism could automatically balance the precision and
recall of label retention in networks with different topological structural properties. In
densely connected areas (within communities), nodes typically received multiple labels
(larger |L(v)]), resulting in a lower threshold that allowed nodes to retain multiple labels
with higher affiliation coefficients, ensuring high recall. In sparsely connected areas
(community boundaries), nodes received fewer labels (smaller |[L(v)|), resulting in a higher
threshold that filtered out most labels with low affiliation coefficients through this
mechanism, improving the precision of label selection. In this article’s experimental
section, “Assessment of overlapping node detection,” experimental results on artificial
datasets of different scales showed that the proposed algorithm demonstrated good recall
and precision in identifying overlapping nodes.

ALGORITHM COMPLEXITY ANALYSIS

To analyze the complexity of the proposed algorithm, n represents the total number of
nodes in the network, m represents the number of edges, d represents the average degree of
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Table 8 Runtime performance comparison of GELPA-OCD and baseline algorithms (seconds).

Dataset BMLPA COPRA CPM LPANNI LFM GELPA-OCD
Karate 0.57 0.53 3.51 0.75 1.58 1.45

Dopphin 1.35 1.25 9.80 1.55 2.95 2.85
Polbooks 1.51 1.48 25.32 1.87 13.33 8.97

Football 3.57 3.15 180.45 5.45 120.11 35.14

Power 135.30 75.25 7,200 300.75 1,400 750

Internet 600.35 552.07 33,285 800.31 8,935 1,800

nodes, D represents the dimension of embedding vectors, t represents the maximum
number of algorithm iterations, I represents the length of random walks, w represents the
number of random walks, r represents the overlap degree, and k represents the size of
cliques in the CPM.

First, in the node importance calculation phase, the proposed algorithm needs to
calculate degree centrality, PageRank value, and clustering coefficient, with
computational complexities of O(m), O(t - (n + m)), and O(n - d*), respectively.
Second, using Node2vec for graph embedding, the time complexity is O(n - w - [ - D).
Third, in the label propagation phase, calculating the similarity matrix between
nodes requires a complexity of O(n?* - D). Finally, label iteration has a time complexity
of O(t - n - d). Therefore, the total time complexity of the algorithm in this article
isO(t-(n+m)+n-w-1-D+n®- D). The complexity of the COPRA algorithm is
O(r - t - n-d). The time complexity of the CPM algorithm can reach an exponential level
in the worst case. The complexity of the LFM algorithm is O(n*log(n)), showing lower
efficiency when processing large networks. The time complexity of the LPANNI algorithm
is O(t - n - d), but it performs poorly in networks with fuzzy community structures. The
BMLPA algorithm effectively reduced the randomness of the algorithm, with a time
complexity of O(t - n - d). The GELPA-OCD algorithm proposed in this article has a
theoretical complexity of O(t - (n+ m) +n-w-1- D+ n? - D). Although it introduces
node importance calculation and graph embedding steps, making the overall
computational complexity higher than algorithms such as LPANNI, COPRA, and
BMLPA, it addresses the issues of randomness in node update order and uncertainty in
label selection in traditional LPA-based algorithms, significantly improving the quality and
stability of community partitioning.

RUNTIME PERFORMANCE COMPARISON

To evaluate the practical computational efficiency of the proposed algorithm, we
conducted runtime experiments on representative datasets and compared GELPA-OCD
with five baseline algorithms (BMLPA, COPRA, CPM, LPANNI, and LFM). Table 8
presents the runtime (in seconds).

As shown in Table 8, GELPA-OCD demonstrates competitive runtime on
small to medium-scale networks. Although it requires higher computational time on
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large-scale datasets (Power and Internet), this overhead is justified by significant
performance improvements. As shown in Fig. 1, GELPA-OCD achieves substantial

EQ value enhancements on these large networks, with average improvements of 94.97%
on Power and 88.56% on Internet datasets compared to baseline algorithms. This
represents a favorable trade-off between computational complexity and community
detection quality for applications prioritizing accuracy over processing speed.

CONCLUSIONS

This article presents the GELPA-OCD algorithm that integrates graph embedding and
label propagation. The algorithm adopts a fixed node update strategy, proposes a new
method for measuring node importance, and develops a weighted community
membership coefficient formula. Experimental validation on diverse real-world and
synthetic datasets demonstrates significant improvements in stability and accuracy
compared to existing methods. The algorithm effectively handles networks with
overlapping community structures, achieving significant improvements in detection
accuracy and algorithmic stability.

This study focuses on undirected and unweighted networks. We plan to extend the
proposed algorithm to directed and weighted graphs in future work. We will modify the
Node2vec random walk strategy to consider edge weight and direction information. While
our evaluation encompasses diverse real-world and synthetic datasets, overlapping
communities exhibit domain-specific semantic characteristics that warrant further
investigation. Future research will continue to explore the impact of the algorithm in
specific application domains.
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