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ABSTRACT
Despite the efficacy of network sparsity in reducing the complexity of convolutional
neural networks (CNNs), the performance of sparse networks often deteriorates
significantly compared to their dense counterparts. Knowledge distillation is
regarded as a potent strategy for utilizing large models to augment the performance
of smaller counterparts; however, its advantages for sparse networks remain
substantially constrained. We identify in this article that the underlying issue stems
from sparse student models exhibiting disparate behaviors in processing foreground
and background features, thereby hindering the uniform transfer of knowledge from
dense models that address both feature types concurrently. Building on this insight,
we introduce a novel sparsity-friendly knowledge distillation (SF-KD) method, which
independently supervises the two feature types using feature decoupling to facilitate
effective knowledge distillation for sparse networks. Specifically, we decouple the
foreground and background features through unique pooling techniques and
implement separate mean squared error (MSE) feature distillation. Furthermore, we
dynamically adjust the weights of the two loss components to optimize performance.
Experimental results on Canadian Institute For Advanced Research (CIFAR) datasets
(including CIFAR-10 and CIFAR-100) and Mini-ImageNet benchmarks substantiate
significant performance enhancements, underscoring the effectiveness of our
proposed methodology.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning,
Neural Networks
Keywords Sparse training, Knowledge distillation, Feature decoupling, Model compression,
Machine learning

INTRODUCTION
Convolutional neural networks (CNNs) have emerged as powerful tools for diverse
computer vision applications (He et al., 2016; Shrivastava, Gupta & Girshick, 2016).
However, the rapid advancements in CNNs are predominantly fueled by an increasing
reliance on larger model parameters and heightened computational demands (Wei et al.,
2022; Qin et al., 2022; Wei et al., 2023; Dong et al., 2023), which complicates their
deployment on resource-limited devices. To overcome this limitation, the research
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community has developed various compression approaches include network sparsity (Han
et al., 2015; Ding et al., 2019), parameter quantization (Hubara et al., 2016; Liu et al., 2020),
tensor decomposition (Peng et al., 2018; Hayashi et al., 2019; Zeng et al., 2024), and
knowledge distillation (Romero et al., 2014; Hinton, Vinyals & Dean, 2015). Among these
methods, network sparsity has gained popularity as an effective means to eliminate
redundant parameters, thereby achieving a sparse and more efficient model (LeCun,
Denker & Solla, 1990; Zhu & Gupta, 2017; Tanaka et al., 2020).

While network sparsity effectively reduces model complexity, it often leads to
substantial performance degradation, especially at extreme sparsity levels (e.g., 90%).
Knowledge distillation offers a potential solution by transferring knowledge from dense to
sparse networks through specialized loss functions (Hinton, Vinyals & Dean, 2015). While
knowledge distillation proves to be highly effective in traditional downscaling from larger
to smaller models, its effectiveness appears less pronounced within the realm of network
sparsity i.e., employing the original dense network to distill into a sparse network often
results in limited performance improvements.

To explore further, both teacher and student models typically employ dense
architectures in conventional knowledge distillation scenarios. Such alignment in network
structures promotes cohesive supervision, which in turn facilitates the precise transfer of
knowledge from the teacher to the student network. However, we identify a distinctive
challenge in training sparse networks, where there is a tendency for the model to
disproportionately optimize background modeling capabilities at the cost of essential
foreground features. This not only undermines the sparse model’s ability to effectively
represent foreground components but also precipitates a shift in focus from that of its
dense model. As a result, this shift introduces a bottleneck in the knowledge distillation
process, preventing the sparse student model from fully assimilating the comprehensive
knowledge transferred by the dense model.

Expanding on the above, we introduce a novel sparsity-friendly knowledge distillation
(SF-KD) method to boost the performance of sparse networks. In response to the
bottleneck induced by divergent behaviors of sparse models1 in processing foreground and
background features, SF-KD deploys distinct pooling techniques to decouple these features
in the student models (He, Fu & Xiang, 2024). This enables a more precise and targeted
distillation policy, enhancing the utilization of the teacher’s knowledge for both feature
types. Furthermore, we execute targeted mean squared error (MSE) feature distillation for
both foreground and background features, customizing the distillation process to the
unique needs of each feature type. Additionally, we implement adaptive weight
adjustments for the loss components corresponding to these features. By dynamically
balancing the weights, the contribution of both foreground and background features can
be well optimized to the overall effectiveness of the student model.

To assess the performance of our proposed SF-KD, we undertook comprehensive
experiments on established benchmarks, specifically the Canadian Institute For Advanced
Research (CIFAR) datasets (including CIFAR-10 and CIFAR-100), and Mini-ImageNet
datasets. Our experimental outcomes indicate that the sparsity-friendly distillation

1 Portions of this text were previously
published as part of a preprint (https://
www.researchsquare.com/article/rs-
3811616/v1).
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framework outperforms existing techniques in terms of classification accuracy. Our
contributions in this article are as follows:

. We examined the bottlenecks and limitations of knowledge distillation within sparse
networks, identifying significant variances in emphasis on the foreground and
background elements between sparse and dense networks. These discrepancies lead to
differences in attention allocation, which in turn results in degradation of performance.

. We introduce SF-KD for independently pooling and distilling features from the
foreground versus background features between teacher and student models. This
includes a configurable loss balancing to optimally integrate the distinct foreground and
background distillation losses.

. We provide comprehensive experimental validation of our framework on the extensively
employed CIFAR-10, CIFAR-100, and Mini-ImageNet datasets, showing that our
method achieves superior classification performance relative to current methods.

BACKGROUND
Network sparsity
Network sparsity is an effective technique for reducing parameter counts in deep neural
networks, offering significant improvements in computational efficiency and memory
usage. By creating sparse models with smaller memory footprints and lower computational
demands, this approach enables efficient deployment on resource-constrained devices.
Current methods for inducing sparsity include pruning techniques including static
pruning, layer-wise sparsity allocation, rand pruning at initialization approaches (Hu et al.,
2021; Chen et al., 2022b), which we briefly introduce as follows.

Static sparse training with random pruning (Mariet & Sra, 2016; He, Zhang & Sun,
2017; Suau, Zappella & Apostoloff, 2019; Gale, Elsen & Hooker, 2019) employs layer-wise
random masking based on predefined sparsity ratios. Liu et al. (2022) demonstrated that
simple random pruning serves as an effective baseline. While uniform pruning applies
identical sparsity ratios across all layers, more sophisticated approaches have emerged to
enhance sparse model performance. For example, non-uniform and scale-free topologies
have shown improved performance compared to dense counterparts when applied to
restricted Boltzmann machines (RBMs). Expander graphs have also been used to construct
sparse convolutional neural networks (CNNs) that achieve comparable performance to
dense CNNs.

While not originally developed for static sparse training, advanced layer-wise sparsity
methods like Erase Random (ER) (Mocanu et al., 2018) and Erase Random wrt Kernel
(ERK) (Evci et al., 2020) from graph theory have demonstrated strong performance. These
approaches differ from traditional methods that pre-specify layer sparsity ratios. Instead of
pre-choosing a sparsity ratio for each layer, some approaches utilize saliency criteria to
learn layer-wise sparsity ratios before training. This approach, known as pruning at
initialization (PaI), selects structurally important connections at initialization based on
various criteria. Several efficient criteria have been proposed to improve the performance

He et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3388 3/17

http://dx.doi.org/10.7717/peerj-cs.3388
https://peerj.com/computer-science/


of non-random pruning at initialization. These include criteria based on gradient flow,
synaptic strengths, neural tangent kernel, and iterative approaches. However, recent
studies have revealed that existing PaI methods hardly exploit information from the
training data and are robust to mask shuffling. In fact, magnitude pruning after training
has been shown to learn both layer-wise sparsities and achieve comparable or better
performance compared to PaI methods. Several sanity-check experiments have
demonstrated that methods like Gradient Signal Preservation (GraSP); (Wang, Zhang &
Grosse, 2020), synaptic strengths (SynFlow; (Tanaka et al., 2020)), neural tangent kernel
(Liu & Zenke, 2020), and iterative Single-shot Network Pruning based on Connection
Sensitivity (SNIP) (de Jorge et al., 2021; Verdenius, Stol & Forré, 2020) hardly utilize
information from the training data and are robust to mask shuffling.

Random pruning at initialization with hand-designed layer-wise sparsity ratios has been
shown to outperform or achieve similar performance compared to PaI methods. These
findings suggest that what pruning at initialization methods discover are the layer-wise
sparsities themselves rather than specific weights or values. This highlights a broader
challenge inherent to pruning at initialization and emphasizes the need for further
exploration and improvement in sparse training techniques.

Knowledge distillation
Knowledge distillation (Hinton, Vinyals & Dean, 2015; Liu et al., 2023; Shao et al., 2023;
Shen et al., 2022) enables efficient knowledge transfer from a large teacher network to a
compact student network while reducing computational and memory requirements. This
technique trains the student network to replicate both the final outputs and intermediate
representations of the teacher network through carefully designed loss functions.
Current approaches can be classified into three main categories based on knowledge
transfer mechanisms: (1) response-based distillation, (2) feature-based distillation, and
(3) relationship-based distillation.

Response-based knowledge distillation usually refers to the use of responses from the
final output layer in a network to obtain knowledge and migrate it. Feature-based
knowledge distillation primarily utilizes the characterization of feature maps in the middle
of the teacher’s network to guide the training of the student’s network. The intermediate
feature maps of a network contain rich spatial and structural information regarding image
content. Therefore, feature distillation methods (Romero et al., 2015; Yim et al., 2017;
Zagoruyko & Komodakis, 2017; Chung et al., 2020) are proposed to encourage the student
model to mimic the feature representations learned by the teacher model, which shows
improved knowledge transfer performance. Yang et al. (2024) introduced a
student-centered distillation paradigm inspired by human educational principles, while
Huang et al. (2022) specifically addressed feature map distillation for low-resolution
recognition in the compressed networks. As the feature maps from different layers of the
student and teacher networks usually have different dimensions (e.g., widths, heights, and
channels), existing feature distillation methods adopt various transformations to match
their dimensions and different distance metrics to measure feature differences.
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Relationship-based knowledge distillation (Park et al., 2019; Xie et al., 2019;
Yang et al., 2024) further explores the relationships between different layers or data samples
and utilizes such relationships as knowledge to be migrated, and as the study progressed,
researchers found that relationships between features also play a large role in network
performance.

PROPOSED METHODOLOGY
Preliminary
We begin by outlining the fundamental preliminaries of knowledge distillation. The
principal concept behind knowledge distillation involves the integration of soft targets
derived from the teacher network into the overall loss function. This integration facilitates
the training of student networks, thereby enhancing their performance via effective
knowledge transfer. In classification tasks, the soft target represents the output from the
teacher network’s final layer, indicating the probability that the input image is classified
under a particular category. These soft targets are mathematically formulated as follows:

pðzi;TÞ ¼
exp zi

T

� �
P

j exp
zj
T

� � : (1)

Here, zi denotes the logits corresponding to class i, and T is the temperature parameter
used to modulate the relevance of each soft target.

The soft target encapsulates dark knowledge within the teacher’s network, which can be
transferred to the student’s network by incorporating a knowledge migration loss,
articulated as:

LR Pðzt;TÞ; Pðzs;TÞð Þ ¼ KL Pðzt;TÞ;Pðzs;TÞð Þ: (2)

Here, KL represents the Kullback-Leibler divergence. By calculating the
Kullback-Leibler divergence between the teacher and student outputs, we can facilitate the
student network’s approximation of the teacher network’s logarithmic output. Beyond
the transfer of knowledge, the student network also incurs a cross-entropy loss relative to
the actual labels, culminating in a total loss function expressed as:

L ¼ LCE y; Pðzs;T ¼ 1Þð Þ þ LR Pðzt;TÞ; Pðzs;TÞð Þ: (3)

Background modeling of sparse networks
Sparse training entails the training of deep neural networks with sparse architectures,
offering benefits such as enhanced computational efficiency and diminished memory
demands. A significant challenge in sparse training, however, is the inadvertent neglect of
critical foreground features, potentially diminishing the model’s overall effectiveness.

More particularly, there is a tendency for the sparse models during training to optimize
background modeling capabilities at the expense of salient foreground features. This
imbalanced focus may weaken the model’s ability to represent key foreground elements,
thereby impairing performance. More critically, due to the absence of such
foreground-background bias in dense models, employing the conventional distillation
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function, i.e., Eq. (3), introduces a bottleneck in the knowledge distillation process, which
hinders the sparse student model from fully assimilating the comprehensive knowledge
imparted by the dense model.

To mitigate this issue, it is imperative to maintain an equilibrium between sparsity and
foreground feature modeling. This balance may be achieved through the implementation
of distinct distillation processes tailored for both foreground and background features. By
conscientiously distilling and integrating knowledge from both domains, the model can
more accurately represent the comprehensive characteristics of the dataset, thereby
enhancing its performance.

Sparsity-friendly knowledge distillation
While sparse training provides benefits in computational efficiency and reduced memory
requirements, it is imperative to address potential performance declines caused by the
inadvertent omission of crucial foreground features. To counter this, we propose
sparsity-friendly knowledge distillation (SF-KD), the overall framework of SF-KD is
illustrated in Fig. 1, which deploys distinct distillation techniques to strike a balance
between sparsity and accurate foreground feature representation, thereby achieving
superior performance overall.

In particular, we delineate foreground from background by extracting a central patch
from the image, defining the central area as the foreground and treating the peripheral
region as the background, foreground/background patches definition examples and feature
decoupling schematic in Fig. 2. Such separate distillation of foreground and background
features enables us to capture and preserve their distinctive qualities effectively. This
approach not only allows for detailed comparison and analysis of these features within and
across different classes but also facilitates the learning of decoupled, more informative, and
discriminative features.

Figure 1 Framework overview: our proposed SF-KD leverages the unique behaviors of sparse student
models in foreground and background features. We separate these features using different pooling
techniques and apply separate mean squared error (MSE) feature distillation. Additionally, we dyna-
mically adjust the weights of the two loss components to optimize performance.

Full-size DOI: 10.7717/peerj-cs.3388/fig-1
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We extract foreground and background features by applying a spatial mask. The mask
matrix M 2 RN�C�H�W is defined as:

Mn;c;i;j ¼ 0 if i < l or i � H�l or j < l or j � W�l;
1 otherwise

�
: (4)

Here, l ¼ H==4 is an empirically chosen value, which is further analyzed in our ablation
studies. Using this mask, we obtain the foreground and background features as follows:

fg s ¼ Fs �M;
fg t ¼ Ft �M;
bg s ¼ Fs � fg s;
bg t ¼ Ft � fg t

(5)

where Fs, Ft denote the intermediate feature maps of the student model and the teacher
model, respectively.

To orchestrate the knowledge distillation process, we introduce a loss function
predicated on decoupling of middle layer features, articulated as follows:

LFKD ¼ MSEðfg s; fg tÞ þ gMSEðbg s; bg tÞ: (6)

Here, fg s and bg s denote the foreground and background features of the student
network, respectively, while fg t and bg t represent those of the teacher network. The
parameter g, which is less than 1, moderates the focus on background features during
distillation.

To enhance model efficacy further, we perform feature distillation on the decoupled
features independently. This process involves training the student network to replicate the
intermediate representations of the teacher network rather than merely its output. The
incorporation of additional loss terms fosters learning from these intermediate

Figure 2 (A) Feature decoupling schematic. (B) Patch definition examples. Instance with foreground
(red) and background (gray) patches, we delineate foreground from background by extracting a central
patch from the image, defining the central area as the foreground and treating the peripheral region as the
background. Full-size DOI: 10.7717/peerj-cs.3388/fig-2
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representations, thereby improving the model’s performance while preserving its
computational efficiency. The overall loss function for the student network is then
defined as:

Ltotal ¼ cLCE þ aLKD þ bLFKD: (7)

In this equation, c is a hyperparameter used to balance classification loss and distillation
loss and is set to 1 by default; a and b serve as hyperparameters that adjust the weighting of
the loss components related to response and feature decoupling.

EXPERIMENTS
We evaluated our method on three popular datasets: CIFAR-10/CIFAR-100 and Mini-
ImageNet. Our experiments consisted of training models with and without our method
and comparing their performances. Additionally, we explored the impact of different
distillation strategies on the decoupled features.

Datasets
(1) CIFAR-10 (Krizhevsky & Hinton, 2009) consists of 60,000 images of 32 � 32 pixels in
color, which are divided into 10 different classes, with each class containing 6,000 images.
These classes include: airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships,
and trucks. The dataset is split into 50,000 training images and 10,000 testing images.
(2) CIFAR-100 (Krizhevsky & Hinton, 2009) contains 50 K training images with 0.5 K
images per class and 10 K test images. (3) Mini-Imagenet (Deng et al., 2009) a subset of the
ImageNet dataset, commonly referred to as Mini-ImageNet, which consists of 100 classes
with 600 images per class.

Implementation
On CIFAR-100, we conduct experiments on various teacher-student models under same
or different architecture style with Contrastive Representation Distillation’s (CRD’s)
settings (Tian, Krishnan & Isola, 2020), whose training epochs are 240. We use a
mini-batch size of 64 and a standard Stochastic Gradient Descent (SGD) optimizer with a
weight decay of 0.0005. The multi-step learning rate is initialized to 0.05, decayed by 0.1 at
150, 180, and 210 epochs. For the comparison experiments with online KD methods, we
adopt the same training settings with Online Knowledge Distillation with Diverse Peers
(OKDDip) (Chen et al., 2020), whose training epochs are 300.

Main experiment
Results on CIFAR-10/CIFAR-100
Table 1 presents a comparison of the top-1 accuracies achieved by different training
methods on the CIFAR10 dataset. Where Dense+KD denotes no sparse training model
with baseline distillation method, ERK+KD and SNIP+KD denote sparse student model
distillation experiments where no separation of foreground and background is done, and
ERK+SF-KD and SNIP+SF-KD denote sparse student model distillation experiments
where foreground and background features are decoupled. The comparison includes the

He et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3388 8/17

http://dx.doi.org/10.7717/peerj-cs.3388
https://peerj.com/computer-science/


no sparse training method as well as the addition of two sparse training methods: ERK and
SNIP. The aim is to evaluate the impact of these sparse training methods in the distillation
process. Starting with the no sparse training method, which represents a baseline
approach, the accuracy obtained on the CIFAR10 dataset is not explicitly mentioned in the
provided information. However, the subsequent results highlight the potential loss of
accuracy incurred when applying sparse training strategies. When incorporating the ERK
sparse training method, the accuracy of the model experiences a decline compared to the
dense baseline. Similarly, the addition of the SNIP sparse training method also leads to a
reduction in accuracy. These results suggest that sparse training strategies can result in a
certain loss of accuracy compared to the dense approach. However, the provided
information also mentions that our method, which is not explicitly described, can further
enhance network performance. Specifically, our method achieves a higher test accuracy
rate of 93.06% on the CIFAR10 dataset, surpassing the accuracy obtained by the dense
baseline method. This improvement indicates that our method effectively mitigates the
accuracy loss associated with sparse training strategies and leads to enhanced network
performance.

Results on Mini-ImageNet
We conducted our few-shot learning experiments on the Mini-ImageNet dataset. In
Table 2 the top-1 and top-5 accuracies of the different models are compared, and the
density set to 0.65. Our proposed method also achieves consistent improvements for all
three models on Mini-Imagenet, a subset of large-scale datasets.

It is interesting to note that SF-KD does not always outperform vanilla KD, e.g., in
Table 1 sparse training is SNIP (SNIP+KD vs SNIP+SF-KD) at density = 0.9 in the cifar10
experiment and at density = 0.98 in the cifar100 experiment. Similar observations were
made in subsequent experiments, such as in the Mini-Imagenet experiment (Table 2) and
in the different teacher-student combination distillation experiments (Table 3).

Table 1 Test accuracy (%) of student networks (ResNet110-ResNet20) on CIFAR10 and CIFAR100
of different sparse training methods. Dense denotes the original model without sparse training and has
a density of 1. * denotes results are directly cited from the original publications. Bold values indicate the
best performance achieved within the same category of comparison methods.

cifar10 cifar100

Density 0.9 0.95 0.98 1.0 0.9 0.95 0.98 1.0

Dense* – – – 92.37* – – – 68.76*

Dense+KD* – – – 93.06 – – – 70.67*

Dense+SF-KD – – – 93.13 – – – 71.60

ERK 92.43 91.54 91.78 69.5 69.5 69.27

ERK+KD 92.98 92.68 91.89 71.49 71.27 71.2

ERK+SF-KD 93 93.3 93.12 71.8 71.39 71.79

SNIP 92.39 92.39 92.89 69.26 69.44 69.7

SNIP+KD 92.99 92.69 92.67 70.97 71.36 71.73

SNIP+SF-KD 92.84 92.73 93.24 71.15 71.83 71.47
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The efficacy of SF-KD depends on two key assumptions: (1) that the teacher’s feature
space contains semantically meaningful clusters and that the students have sufficient
capacity to mimic the predictions and feature distributions; and (2) that the dataset is well
characterized by the central region of the foreground. When these assumptions do not
hold (e.g., overfitting with relatively weak teachers or extremely compact students), simpler
logit matching with vanilla KD may be more robust, as observed in Table 3.

Different network structures
Table 3 shows the experimental results for different network architectures, including three
backbones: standard resnet, vgg, wide resnet, with the dataset of CIFAR100 and the density
uniformly set to 0.9. The experimental results show that the top-1 accuracy rate is
improved after knowledge distillation, and the best result is achieved by our feature
distillation method SF-KD. Compared to the state-of-the-art (SOTA) feature-based
knowledge distillation methods, such as ReviewKD (Pengguang et al., 2021), SimKD
(Chen et al., 2022a), and Class Attention Transfer (CAT)-KD (Guo et al., 2023), our
method achieves competitive results even in models without sparsity.

Table 3 Test accuracy (%) of different teacher-student distillation on CIFAR100 dataset with densety
= 0.9. * denotes results are directly cited from the original publications. Bold values indicate the best
performance achieved within the same category of comparison methods.

Teacher ResNet110 ResNet110 ResNet56 WRN-40-2 VGG13 VGG13
Student ResNet20 ResNet32 ResNet20 WRN-16-2 VGG11 VGG8

Dense* 68.76* 71.35 71.9 73.3 71.65 69.8

Dense+KD* 70.67* 73.48 71.9 75.22 74.71 72.55

Dense+ReviewKD* 71.34* 73.89* 71.89* 76.12* – 74.84*

Dense+SimKD* 71.06* 73.92* 71.05* 75.53* – 74.65*

Dense+CAT-KD* 71.37* 73.62* 71.62* 75.6* – 74.65*

Dense+SF-KD 71.60 73.53 72.07 75.04 74.66 72.58

ERK 69.50 71.41 71.87 73.02 71.83 64.45

ERK+KD 71.49 73.83 71.87 75.27 73.58 72.61

ERK+SF-KD 71.80 73.67 71.43 75.55 74.86 72.90

SNIP 69.26 71.2 70.57 73.13 74.93 71.17

SNIP+KD 70.97 73.59 71.02 73.13 74.93 72.85

SNIP+SF-KD 71.15 73.59 72.00 74.92 74.54 73.20

Table 2 Test accuracy (%) of student networks (density = 0.65) on Mini-Imagenet. Bold values
indicate the best performance achieved within the same category of comparison methods.

Teacher/Student ResNet110/ResNet20 WRN-40-2/WRN-16-2 VGG13/VGG8

Accuracy Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ERK+KD 61.48 85.73 68.63 89.56 70.26 89.68

ERK+SF-KD 62.18 86.03 70.90 90.75 70.19 89.90

SNIP+KD 58.98 89.93 70.18 90.33 69.83 89.38

SNIP+SF-KD 61.10 85.80 70.40 90.64 70.12 89.29
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The network sparsity experiments are shown in Table 4, the number of parameters of
different structural models is halved after reducing the density from 1.0 to 0.5, and the
sparsification process effectively reduces the model parameters. The inference time of a
single image is reduced, and the sparsity effectively improves the computational efficiency
of the model. However, the Top-1 accuracy generally decreases, ranging from −0.24% to
−1.66%, indicating that sparsity has different degrees of negative impact on model
performance.

Ablation
In the ablation experiments, following Gao et al. (2019), Zhang, Shu & Zhou (2018) we
comparatively study the effects of different network densities, foreground v.s. background
ratios, and different hyperparameter ratios on the performance of the network.

Different network densities

Table 5 demonstrates that reducing network density leads to a decrease in accuracy. The
sparse training process necessitates finding the right balance between network density and
accuracy, optimizing the trade-off to achieve the desired performance while leveraging the
benefits of sparsity.

Foreground-background ratios
Our experiments in Table 6 revealed that the Residual Network (ResNet) network
performed optimally when the foreground-to-background ratio was 1:1 (l ¼ H==4). This
finding emphasizes the importance of maintaining a balanced representation of
foreground and background elements in the dataset for this particular network
architecture. However, the impact of foreground-to-background ratios on other networks

Table 4 Accuracy change and runtime improvements due to sparsity on Mini-Imagenet dataset.

Model Density #Parameters (m) Top-1 Accuracy change Runtime (ms)

ResNet20 1.0!0.5 0.28!0.14 68.84!67.68 −1.16 +0.006

ResNet56 1.0!0.5 0.86!0.43 72.83!71.76 −1.07 −0.005

ResNet110 1.0!0.5 1.74!0.87 70.58!70.77 +0.19 −0.006

VGG8 1.0!0.5 3.96!1.98 70.21!70.3 +0.09 −0.001

VGG11 1.0!0.5 9.27!4.63 71.77!71.53 −0.24 −0.005

VGG13 1.0!0.5 9.46!4.73 74.79!74.25 −0.54 −0.012

WRN-16-2 1.0!0.5 0.70!0.35 72.62!70.96 −1.66 +0.003

WRN-40-2 1.0!0.5 2.26!1.13 76.21!75.32 −0.89 +0.003

Table 5 Ablation results (Top-1 accuracy (%)) of Sparse-init = ERK (c = 0.5, a = 0.5, b = 0.5) on
CIFAR100 dataset. Bold values indicate the best performance.

Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ResNet110-ResNet20 63.26 66.63 69.09 69.76 70.85 70.51 70.70 71.62 71.80

VGG13-VGG11 73.25 74.38 74.37 74.67 74.89 75.09 74.78 75.10 74.86
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may vary, highlighting the need to consider the specific requirements of each architecture
when determining the optimal ratio.

Loss item study

We analyzed the effect of the distillation loss term of foreground/background separation
on the network accuracy by setting different parameters of the hyperparameter b. The data
in Table 7 show that when the hyperparameter c = a, the best recognition accuracy can be
obtained by taking b to be 0.5; when c is not equal to a, b equals to be 0.8 to obtain the best
training results when the sparse initialization is set to ERK and density = 0.9. The data in
Table 8 indicate that under both experimental conditions—dense+SF (c = 1, a = 0, b = 1,
density = 1.0) and ERK+SF+KD (c = 0.5, a = 0.5, b = 0.5, density = 0.9)—optimal
performance is achieved or approached at g = 0.4, suggesting this value may represent a
relatively ideal hyperparameter setting. These experiment proves that the foreground
background-based the selection of distillation loss terms for separated features needs to be
balanced between different loss terms.

Different sparse initialization

We have chosen various sparse methods ER, ERK, uniform, and SNIP, Gradient Signal
Preservation (GraSP), and uniform+ for initialization, after which our proposed SF-KD is
used for distillation training, and the experimental results are shown in Table 9. Among
them, SNIP+SF-KD achieves higher accuracy in resnet architecture network and
GraSP+SF-KD achieves higher accuracy in vgg architecture network, and the experiments
prove that our proposed SF-KD scheme can adapt to different sparse initializations.

Table 7 Ablation results (Top-1 accuracy (%)) of Sparse-init = ERK (density = 0.9) on CIFAR100
dataset. Bold values indicate the best performance.

b b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.5 b = 0.6 b = 0.7 b = 0.8 b = 0.9 b = 1

c = 0.5 a = 0.5 71.33 71.80 71.10 71.73 71.83 71.41 69.20 71.62 71.38 71.74

c = 1.0 a = 1.0 71.08 71.40 71.10 71.73 71.83 71.41 68.63 71.62 71.38 71.74

c = 1.0 a = 0.5 71.47 71.13 71.40 71.70 69.54 71.41 69.20 71.62 71.38 71.71

c = 0.5 a = 1.0 71.48 71.36 71.53 71.74 69.54 71.63 71.61 71.91 71.68 71.03

Table 8 Ablation results (Top-1 accuracy (%)) of hyperparameter g on CIFAR100 dataset with
ResNet110-ResNet20. Bold values indicate the best performance.

g 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dense+SF 69.53 68.59 69.68 70.01 69.92 69.39 69.79 69.98 69.85

ERK+SF+KD 71.53 71.53 71.98 72.10 71.76 71.64 72.27 71.64 71.73

Table 6 Ablation results (Top-1 accuracy (%)) of Sparse-init = ERK c = 0.5, a = 0.5, b = 0.5 on
CIFAR100 dataset. Bold values indicate the best performance.

feats_fg/feats_fg (l) 3 4 5 6 7

ResNet110-ResNet20 71.47 71.80 71.24 71.24 71.33

VGG13-VGG8 72.59 72.27 73.00 73.00 73.00
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Visualization of feature map
We visualize the differences between the vanilla model, sparse model and distilled model
by visualizing the feature maps, activation heatmaps as shown in Fig. 3. Relative to the
dense resnet20 network, the sparsified resnet20+ERK model exhibits a focus on the
background, thus weakening its ability to effectively represent foreground components.
Our proposed SF-KD approach pulls attention back to foreground representation in sparse
networks and outperforms dense vanilla resnet20.

CONCLUSIONS
In summary, our proposed sparsity-friendly distillation approach offers several
contributions to the field. Firstly, we have developed a novel distillation framework
specifically designed for sparse students. This framework takes into account the unique
challenges and constraints associated with compressing models under sparsity conditions.
Secondly, we leverage the understanding that foreground and background representations
hold distinct insights by incorporating separate distillation processes for these
components. By treating foreground and background elements separately, we can capture
and transfer knowledge more effectively, leading to improved performance in sparse
models. Thirdly, we introduce an configurable loss balancing that intelligently integrates
the separate losses from foreground and background distillation. This weighting approach
enhances the overall distillation process and enables superior accuracy compared to
baseline methods. Our approach addresses the limitations and difficulties encountered
when compressing models under sparsity constraints through knowledge transfer. By
leveraging foreground/background insights and employing configurable weighting, we

Figure 3 Feature map visualization. Activation heatmaps of the vanilla model, sparse model and
distilled model. Full-size DOI: 10.7717/peerj-cs.3388/fig-3

Table 9 Ablaton results (Top-1 accuracy (%)) of density = 0.9 (c = 0.5, a = 0.5, b = 0.5) on CIFAR100
dataset. Bold values indicate the best performance.

sparse−init ERK SNIP GraSP uniformplus Uniform ER

ResNet110-ResNet20 71.80 71.83 71.28 71.36 71.57 71.28

VGG13-VGG8 72.27 72.53 73.12 72.26 71.31 71.31
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provide a more effective solution for enhancing the performance of sparse models.
Experimental results demonstrate the effectiveness of our proposed method, showcasing
improved performance in the context of sparse models.

However, there still remain some unexplored limitations of our method: (1)
performance depends significantly on accurate foreground/background delineation;
(2) careful tuning of the boundary definition and weighting parameters is required;
(3) current validation is primarily on classification tasks with spatial sparsity, necessitating
further exploration for other sparsity patterns and vision tasks. Future work will address:
(1) automatic techniques for defining foreground/background splits; (2) extending the
framework to other tasks (e.g., detection, segmentation) and sparsity types; (3) enhancing
compatibility with diverse model compression techniques beyond pruning. We believe that
our work will be valuable to the knowledge distillation research community, offering
insights and techniques that can contribute to advancements in compressing and
improving the performance of sparse models.
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