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ABSTRACT
Deep learning has become an influential tool in the machine learning domain,
enabling artificial intelligence systems to identify complex patterns in
two-dimensional (2D) images and present precise predictions frommassive datasets.
One of the deep learning’s promising uses is human disabilities detection, a
diagnostic field for enhancing the identification and classification of people with
physical and sensory limitations. In this research, a deep learning framework is
proposed for identifying and transferring six primary human disabilities, namely,
blindness, Down syndrome, dwarfism, cerebral palsy, prosthetic arms, and prosthetic
legs in a secure medical imaging system. The proposed framework is evaluated based
on broadly accepted performance metrics to accurately measure human disability
detection in images with complex interfering objects where various visual elements
are partially blocking or overlapping the person of interest, which makes it
challenging for the deep learning models to determine relevant human disability
features. The performance of the proposed approach is evaluated by implementing
the current state-of-the-art object detection models, RetinaNet, Single Shot MultiBox
Detector (SSD), Faster Region Convolutional Neural Network (FR-CNN), YOLOv11,
and EfficientNet. A robust security technique is developed to verify the privacy,
security, and integrity of human disabilities in medical imaging systems. The
experimental results demonstrated that the proposed framework enables human
multi-disabilities detection accuracy exceeding 97% and proves potential image
transmission in secure medical imaging systems.
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INTRODUCTION
Recent progressions in image processing play a crucial role in identifying specific
characteristics of human disabilities, allowing accurate recognition of individuals with
disabilities in two-dimensional (2D) images. Precise image recognition can be achieved by
several machine learning techniques, such as neural networks (Bharadiya, 2023; Hasan
et al., 2024), which efficiently identify image features and address diverse challenges in
computer vision. Various approaches are present for image classification using filtering
techniques designed for object recognition according to a certain object key feature or
activity (Menezes et al., 2023; Alexandrov et al., 2024; Yang et al., 2024). Object recognition
is extensively employed in various systems, with cameras capturing object mobility in
specific areas and computer control systems determining object identity (Chen et al., 2023).
Object detection is essential for monitoring systems that help individuals with disabilities
in their mobility and providing alerts in critical situations.

Face recognition methodologies have been developed based on feature extraction and
recognition (Ochango, 2023; Subramanyam, Kumar & Singh, 2024) that improve the
performance of object recognition. Addressing the ability to gather crucial details about the
facial features (Santhosh & Rajashekararadhya, 2022). However, their application remains
constrained by the composite nature of the human face, which is formed of small and
variable components such as the eyes, nose, and mouth (Antonarakis et al., 2020).
Traditional methods such as eigenfaces, hybrid descriptors, and principal component
analysis are sensitive to variations in posture, illumination, and especially to non-standard
or atypical facial structures, thereby limiting their applicability to individuals with
disabilities.

Approaches employing graph-structured models, such as the weber and
pentagonal-triangle pattern, attempt to reduce dimensionality, but this comes at the
expense of losing critical fine-grained information (Wadhera & Agarwal, 2022).

Viola-Jones algorithm is used to detect human faces by computing facial feature
vectors within a certain threshold. While this method is computationally
efficient, but it is less capable of distinguishing abnormal or irregular faces,
underscoring a need for more adaptable frameworks that preserve subtle facial cues
(Rizqullah et al., 2021).

Self-organizing maps combined with convolutional neural networks have been
proposed to improve feature extraction under limited data conditions (Almotiri, 2022;
Qu et al., 2021). Nevertheless, the assignment of feature weights remains challenging, and
the assumption of pixel neighborhood similarity is often invalid for faces with disabilities,
leading to misclassification.

Research on visual impairment detection has leveraged deep learning architectures to
classify images of individuals with and without mobility aids (Kumar & Jain, 2021); yet this
framework fails to incorporate real-world variability such as occlusion by sunglasses or
masks, differences in eye shapes, or the presence of guiding helpers, thereby restricting
their robustness.

Some challenges are observed in Down syndrome recognition studies that are based on
facial analogy (Martzoukou, Nousia & Marinis, 2020; Jin, Cruz & Gonçalves, 2020),
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geometric descriptors (Hendrix et al., 2021), and local binary patterns (Pooch, Alva &
Becker, 2020; Bhosle & Kokare, 2020). These studies suffer from either computational
complexity, dependence on frontal images, or narrow training datasets that exclude
essential features such as ears, neck, or varied body postures.

Distance-based deep learning classifiers struggle the limitation of training exclusively on
Down syndrome faces, considering datasets that include mixed body positions, thereby
reducing their generalizability (Khan et al., 2022). This highlights the gap in developing
holistic models capable of integrating multi-view and multimodal data for reliable
syndrome detection.

Equally, cerebral palsy detection systems demonstrate promise through distance-robust
mechanisms and hybrid detection models (Balgude et al., 2024; Paul et al., 2022), but their
reliance on fixed neighborhood sizes reduces adaptability across scales, while the absence
of standardized ground truth introduces bias and inconsistency. The reliance on disjoint
datasets further requires normalization across detection categories, reflecting a need for
comprehensive, scalable, and standardized datasets.

In the dwarfism detection domain, multimodal radiomics approaches that combine
image and clinical features emulate medical diagnostic reasoning (Pritchard, 2020; Qiu
et al., 2022) but are computationally intensive, rendering them impractical for real-time or
resource-constrained settings.

Detection systems for prosthetic usage and activity recognition using depth cameras and
support vector machine (SVM)-based classifiers demonstrate potential for intent
recognition (Zhong et al., 2021), yet they often rely on simplified depth features and fail to
extend their applicability to powered prosthetic limbs, limiting their real-world clinical
relevance.

Securing medical images data by steganography and asymmetric encryption techniques
contribute to privacy and security (Dutta & Saini, 2021; Chen & Ye, 2022) but constrained
by trade-offs between data quality and quantity, high computational overhead, and the
limited functionality of one-way hashing schemes that cannot support key recovery. This is
an indication of existing research gap for establishing robust, real-time encryption and
privacy-preserving frameworks tailored for large-scale medical imaging systems.

Specifically, there is still a vital need for creating trustworthy frameworks that can
accommodate individuals with atypical features due to mental or physical restrictions.
Current techniques mainly rely on regular spatial assumptions of features that conform to
standard anatomical structures, but not mainly for individuals with disabilities, leading to
less reliability. In addition, there is a critical lack of real-time, widely adopted, multi-class
classification, and lightweight diagnostic support systems for immediate and scalable
human disability detection, particularly under-resourced settings or non-specialist
environments. Furthermore, current artificial intelligence approaches deployed on
healthcare field are centralized processing and do not support privacy and security
deployment, making these approaches untrusted for sensitive medical and legal
applications.

Although traditional approaches have achieved significant progress through
dimensionality reduction algorithms and feature extraction methods, however, these
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techniques often suffer from accurately addressing the disabilities of individuals with
mental or physical disorders. In addition, these techniques expose lack of comprehensive
datasets, multi-class image support, real-time latency, data privacy, and computationally
efficient cost. Table 1 presents a comparative analysis of the current approaches that
extract and secure human disability features.

This comparison underlines a critical breach in the field of human disabilities and arises
the need for comprehensive, adaptive, and clinically sensitive object detection models that
can adjust inconsistency beyond the typical detection models’ structure.

Therefore, the proposed approach bridges the gap between academic research and the
real-world needs of human disabilities screening, offering a novel solution that addresses
technical, clinical, ethical, and practical needs simultaneously. This study is driven by the
increasing need to enhance human disabilities recognition systems, particularly for
individuals with mental and physical disorders. In addition, the objectives of this research
are aligned with clinical regulatory compliance, individuals’ data privacy, and real-time
latency.

The dominance of this study appears in its quest for specialized detection techniques
that identify, classify, and secure human disabilities in 2D images. While current deep
learning models generate potential results in standard environments, they often show
shortage in critical cases involving individuals with multi-disabilities where the risks for
accurate critical medical diagnostics are particularly extreme. Hence, the proposed
approach aims to bridge this gap by incorporating atypical biometric features into training
datasets, developing robust, bias-aware image processing framework, and integrating

Table 1 Current approaches comparative analysis of extract and secure human disability features.

Study Objective Method(s) used Dataset &
characteristics

Strengths Limitations Opportunities/Relevance to this
study

Deep facial
diagnosis via
transfer learning

Detect facial
distortions for
diagnosis

Deep transfer
learning from
face recognition

Not clearly
defined

Leverages
pre-trained
models

Misses key facial
features for
Down
syndrome

Supports use of transfer learning
adapted to specific medical
conditions

Cerebral Palsy
(CP) detection
with voting
technique

Classify CP patients
by mobility aid
(wheelchair,
walking)

2D image
analysis + voting
system

Image-based;
each pixel’s
coordinate
examined

Spatial analysis
with
prediction
support

Fixed-size
testing areas
affect accuracy

Supports dynamic, adaptable
spatial models for variable
disability presentations

Dwarfism CAD
via multimodal
pyradiomics

Identify dwarfism
using imaging +
clinical features

Radiomics +
tensor
enhancement +
fusion model

Medical images
multimodal,
clinical data
linked

Simulates
physician
workflow

High
computational
complexity

Motivates development of
lightweight, clinically aware
models for abnormal body
proportions

Depth camera for
prosthesis
activity
recognition

Predict activity
intent for
lower-limb
prosthetics

Depth imaging +
SVM

Depth photos in
multiple
modes

Activity-aware
classification

Limited to
prosthetics;
facial data not
analyzed

Encourages exploration of depth
imagery in facial recognition
under occlusion

Asymmetric
image
encryption with
SHA-3

Secure medical
image
transmission

Hashing + RSA
cryptosystem +
compressive
sensing

Not dataset-
based

Strong
encryption
protocols

Irreversible
hash function
limits
decryption

Highlights need for
privacy-preserving medical
imaging in diagnostic systems
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security framework that ensuring data privacy, preserving data integrity and avoiding
illegal access and breaches, and adopting in real-world applications.

In this research, the integration of security measures into the human disability detection
model operates on sensitive visual data containing private health information, such as
facial features and physical impairments, which must be protected from unauthorized
access and tampering. Therefore, the proposed framework incorporates a security system
with multiple layers that combines advanced encryption standard (AES)-256 encryption,
Secure Hash Algorithm (SHA)-based hashing, and integrity verification, ensuring the
image confidentiality and authenticity are maintained throughout the image’s detection
and transmission. This integration places the proposed framework as a timely and relevant
contribution to the fields of medical imaging and assistive technologies, aligning with both
the technical and ethical imperatives of contemporary healthcare delivery.

The collected images in this study are labelled, and the human disabilities are identified
by the current state-of-the-art deep learning object detection models (Chen et al., 2023)
namely, Single Shot MultiBox Detector (SSD) (Kumar & Srivastava, 2020), Faster Region
Convolutional Neural Network (FR-CNN) (Li, 2021), YOLOv11 (Zhang et al., 2025),
EfficientNet (Koonce, 2021), and RetinaNet (Alhasanat et al., 2021). The human disabilities
features are extracted based on the models’ architectural components, Backbone network
(Elharrouss et al., 2022), Feature Pyramid Network (Deng et al., 2021), Anchor Boxes (Shen
et al., 2021), Non-Maximum Suppression (Ridnik et al., 2023), Bounding Box Regression
(Zhao & Song, 2024), Multi-Scale Features (Wang et al., 2024), Region Proposal Network
(Du & Liang, 2024), and Cross Stage Partial with kernel size 2 (C3k2) block (Khanam &
Hussain, 2024). This framework resolves the challenges associated with identifying
disabled people during their daily activities and interactions in reasonable time to provide
them the necessary support specially in emergency cases. The main contributions of this
research are:

. Efficiently detect and support features’ extraction of human disabilities in 2D images.

. Effectively handling rare and imbalanced human disability classes and ability to
distinguish them in interfering image compositions.

. Adaptability to identify new disabilities with minimal retraining and scalability across
healthcare environments.

. Securely processing and transmitting sensitive medical images and reduced manual
workload for healthcare professionals.

The remainder of this article is outlined as follows; ‘Materials and Methods’ introduces
the proposed framework methods and materials. ‘Experimental Results’ provides details of
the experimental analyses conducted to evaluate the capability of the object detection
models in identifying human disabilities. ‘Discussion’ presents the discussion of the
proposed results. The conclusions and future work are drawn in ‘Conclusions’.

MATERIALS AND METHODS
In this study, a framework is proposed to build, validate and evaluate several deep learning
object detection models and show its effectiveness in achieving high accuracy of detecting
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single and multiple human disabilities in secure medical imaging systems. In addition, a
security technique is proposed to ensure the privacy and confidentiality of transferred
images in large public systems.

Human disabilities dataset
This study consists of 3,877 human disability 2D images named HD-Set collected
originally from publicly available and free loyalty sources that provide free-to-use images
for public domain. Despite their benefits for research and prototyping, public datasets
come with inherent biases and ethical restrictions that can limit detection models’
performance and ethical integrity. One main issue is dataset imbalance, where certain
disabilities are rare, overlapping, or completely missing, leading models to favor more
common disabilities and perform poorly on less frequent ones. Additionally, the lack of
demographic diversity, particularly in gender, age, and ethnicity, results in biased
performance and reduced accuracy for diminished groups, raising concerns about fairness
and inclusivity. Ethical problems also arise when images are sourced from the internet or
social media without clear consent, potentially violating privacy rights and research
standards. Furthermore, many datasets are collected in specific settings and lack the
involvement of real-world environments, such as differed lighting, background noise, or
obstruction, which limit the model’s ability to recognize in real-life applications. Moreover,
there is a risk of stereotyping due to visual labeling bias, where features are inferred from
appearance only, boosting harmful relationships between physical characteristics and
specific disorders without medical validation. Addressing these shortcomings requires
careful dataset auditing, bias mitigation strategies, and diverse ethically sourced data to
ensure fairness of individuals with disabilities.

Therefore, the Deanship of Scientific Research and the Institutional Review Board (IRB)
at German Jordanian University (GJU) reviewed and approved the proposed study
protocol (Approval Numbers 14/1/53/336–11/9/2022 and IRB/GIU#02/2022) and
confirmed that the collected images in the Disabilities-Dataset (HD-Set) are from
royalty-free datasets, specifically, All-free-download https://all-free-download.com/pages/
licence.html, Unsplash https://unsplash.com/s/photos/person-images-free-download?
license=free, Dreamstime https://www.dreamstime.com/free-photos, Shutterstock https://
www.shutterstock.com/data-licensing, Pexels https://www.pexels.com/license/, Aylward
http://www.aylward.org/notes/open-access-medical-image-repositories, Google Storage
https://support.google.com/photos/thread/26633759/clarification-of-google-terms-for-
google-photos-user-content?hl=en, Kaggle https://www.kaggle.com/terms, Istockphoto
https://www.istockphoto.com/help/licenses, Pixabay https://pixabay.com/service/license-
summary/, and Adobe https://stock.adobe.com/jo/search/free?k=disability
+physical&search_type=recentsearch. In addition, the Scientific Research Deanship
Council at GJU settles that the images in the Disabilities-Dataset (HD-Set) are
copyright-free to ensure obedience with data sharing ethics and used only for research
purposes. The code and images dataset used in this study are publicly available at our
GitHub repository Disabilities-Dataset (DOI 10.5281/zenodo.17041230). The repository
includes human disability images dataset HD-Set that consists of 3,877 images across seven
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classes namely, blind persons with different helping tools, down syndrome individuals of
different ages, dwarf people of various ages, cerebral palsy persons, individuals with
prosthetic arms, persons with prosthetic legs, and normal people doing different activities.
In addition, the repository includes the following files: (train.py, test.py) for training/
inference scripts, (data_prepare.py) for data preparation utilities, cross-validation splits
and resizing, (crop_image.py) for helping tools, and (requirements.txt) for recreating the
software environment. The HD-Set images are scanned by a professional medical specialist
at the University of Jordan Hospital who checked the ground truth of the collected images.

The requirements.txt file is provided to recreate the software environment. The dataset
is released under CC BY 4.0; scripts cover common detectors (RetinaNet via Detectron2,
FR-CNN and SSD via TensorFlow, and YOLOv11 via Ultralytics), enabling researchers to
replicate and extend our experiments by employing a structured plan that spans data,
model design, integration, and compliance through the following actionable steps:

. Reproduce splits & preprocessing: run data_prepare.py to generate 10-fold cross-
validation (CV) splits and standardized image resizing.

. Train baseline detectors: use train.py to train RetinaNet/FR-CNN/SSD/YOLOv11 with
the provided folds; test.py performs single-image inference for quick validation.

. Swap/extend architectures: plug in alternative backbones or add CenterNet/EfficientNet
detection heads by following the existing model selection pattern in train.py.

. Recreate conditions: install dependencies via pip install -r requirements.txt; fix random
seeds for reproducibility as outlined in our implementation methods.

. Cite & reuse: cite the repository’s HD-Set entry when reusing data; license terms (CC BY
4.0) permit modification and redistribution with proper attribution.

Preprocessing human disabilities datasets
Several image preprocessing techniques were applied on the collected HD-Set prior to
initiating the training procedure, which entailed resizing while preserving the inherent
aspect ratio. Despite its high accuracy rate (>90%) of clarity, the original images were not
clear enough and not ready for processing by the deep learning object detection models,
therefore, image augmentation (Xu et al., 2023) including shearing, zooming, scaling, and
normalizing were employed and described as follows:

. Shearing: there is a shear intensity to the image (Zhang, Sun & Gao, 2023) where the
angle of shear is measured in degrees, and the shear direction is counterclockwise.
Shearing distorts the image by slanting it along a specific axis.

. Zooming and flipping: a zooming effect is applied, which includes flipping the image
horizontally and vertically. Furthermore, random rotations within a specified range are
applied using the transformations and random rotation functions (Sunil & Narsimha,
2024). This step introduces variations in the image’s orientation and scale.

. Scaling: scaling is performed to adjust the size of the image (Avidan & Shamir, 2023).
The scaling process involves multiplying the image by a scaling constant to generate
images of different sizes.
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. Normalization: the original images have red, green, blue (RGB) coefficients ranging from
0 to 255. To simplify processing and analysis due to hardware limitations, these values
are normalized to a range of 0 to 1 (Pei et al., 2023). This is achieved by dividing the RGB
values by 255.

During the testing phase, the trained model was supplied with images that had
undergone resizing while retaining their original aspect ratios. However, some
augmentation techniques may provide indirect support for involving images in the dataset,
such as image duplication, and don’t offer data privacy and security, especially when
transferring sensitive image files. Therefore, a security technique is proposed to verify that
no distortion has occurred before supplying images into deep learning object detection
classifiers and described in the following section.

Securing human disability images
Individuals with disabilities are often part of protected populations and require enhanced
ethical handling. Unauthorized exposure could lead to social stigma, discrimination, or
loss of privacy. Therefore, a structured, multi-stage security framework is developed to
preserve the privacy, confidentiality, and integrity of human disability images while
transferring within public medical imaging environments. The proposed framework
initially employs image augmentation (e.g., shearing, zooming, normalization) to remove
irrelevant data and format images for processing, ensuring compatibility with subsequent
security operations. Then, the framework employs a multi-layered security technique that
integrates the advanced encryption standard algorithm (AES-256) for robust data
encryption during transmission with the secure hash algorithm (SHA-3) that generates
unique digital fingerprints to defend against unauthorized changes. Piping these
algorithms together establishes a consistent security architecture that defends images’ data
violations, prevents the risk of interfering, and maintains privacy aligned with medical data
protection standards. The proposed security framework is presented in Fig. 1 and
described as follows:

(1) Image encryption: after image augmentation, the training and testing HD-Sets are
encrypted using AES-256 to guarantee that even if image data is interrupted, it cannot
be assessed without the decryption key and ensures the image data is transformed into
a non-readable format, preventing unauthorized access during transmission.

(2) Hash value generation: SHA-3 hashing algorithm is employed to produce a unique
digital hash value for the encrypted image. The hash value serves as a fingerprint of the
image, enabling discovery of any modification or interfering.

(3) Image transmission: the encrypted image along with its generated hash value is
transmitted over the public medical imaging network. The image encryption
guarantees confidentiality, while the hash value provides a reference for subsequent
verifications.

(4) Image decryption and validation: the received image is decrypted by AES-256
technique, returning it to its original and readable form for authorized use while its
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hash value is recalculated and compared with the original transmitted hash value.
Matching values prove that the image has not been altered during transfer, confirming
data integrity.

(5) Secure storage and access control: verified images are stored in the testing and training
HD-Sets with controlled access privileges, ensuring ongoing protection of disability
individuals’ data and aligned with medical data protection regulations.

Figure 1 The proposed framework security architecture. The framework employs a multi-layered
security technique that integrates the advanced encryption standard algorithm (AES-256) for robust data
encryption during transmission with the secure hash algorithm (SHA-3) that generates unique digital
fingerprints to defend against unauthorized changes. Full-size DOI: 10.7717/peerj-cs.3381/fig-1
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The proposed security framework is employed before identifying human disability
images by deep learning models. Specifically, image encryption is done before
training and testing phases. The overhead of this security framework on the model’s
performance is measured as the sum of average encryption/decryption time
(~0.04643 s/image), hashing time (~0.000085 s/image), and the best model’s inference
time (RetinaNet, ~0.05326 s/image). Hence, the total processing time of the proposed
approach is (~0.09977 s/image). Since the security encryption and hashing tasks are
completely decoupled from the model’s training and inference computations, they do not
interfere with model’s architecture, features extraction, and prediction, so they do not
affect the model’s performance. In addition, the images are fully decrypted and validated
before entering the training model, ensuring that the learning and detection accuracy
remain unaffected.

In essence, the proposed security technique ensures that human disability images
remain confidential, secured throughout transmission, and protected from intervention,
altering, or unauthorized disclosure.

Selection of deep learning object detection models
The state-of-the-art object detection models namely, RetinaNet, SSD, FR-CNN, YOLOv11,
and EfficientNet were selected, implemented and evaluated to determine the best model
that generates the highest evidence results of identifying the human disabilities in 2D
images. The selection criteria of object detection models are based on the application
requirements such as hardware resources available, processing time, and application
complexity level. Therefore, we select object detection models that depend on
computational proficiency, speed, and accuracy. In addition, we include different object
detection classification architectures, one-stage detector (RetinaNet, SSD, and YOLO11)
that promptly expect the object classes and bounding boxes in a one-pass, two-stage
detector (FR-CNN) that generate possible object locations in the first-stage and then refine
the generated locations’ bound boxes in the second-stage, and a backbone architecture
(EfficientNet) that is used as a feature extractor in both one-stage and two-stage detectors.

Specifically, RetinaNet model is used to detect small or uncommon objects in
unbalanced datasets. The SSD model is exploited for real-time object detection that
accurately settles speed and accuracy. FR-CNN model is utilized for complicated
classifications where accuracy is the main requirement. The YOLO11 model is an
exceptionally fast and accurate real-time object detector. The EfficientNet model is selected
for its computation competency and as impressive backbone for one-phase and two-phase
detectors.

Performance metrics
Several performance metrics are employed to assess the deep learning model’s detection
performance. The performance metrics that represent different classification qualities
including accuracy, F1-score, precision, specificity, sensitivity (recall), Matthew’s
correlation coefficient (MCC) (Foody, 2023), error rate, and false positive rate (Long, 2021).
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Each evaluation metric plays a critical and distinct role in assessing the performance of
the human disability detection models, mainly because the models are employed in
applications that involve real-world clinical decisions and potential missed diagnoses. The
performance metrics are computed based on the following hallmark measures that are
useful in quantifying the efficiency of the deep learning model, P: number of real positive
occurrences, N: number of real negative occurrences, True Positive (TP): the actual result
obtained positive but the detection model forecasted positive, True Negative (TN): the real
outcome was negative but the detection model forecasted negative, False Positive (FP): the
actual result found negative but the detection model forecasted positive, False Negative
(FN): the real result was positive but the detection model forecasted negative. Each
performance metric offers a distinct viewpoint on the effectiveness of the deep learning
detection model. For instance, Accuracy offers a broad snapshot of how often the model is
correct and most useful when classes are balanced. Precision is important for reducing false
alarms to avoid unnecessary further testing or referrals. Specificity measures how well the
model avoids recognizing healthy individuals as disabled. Sensitivity (recall) indicates the
model trustworthiness for early object identification, which is vital for systems
interference. F1-score balances how many positives are found with how many positive
predictions were correct. MCC gives more reliable evaluation when the dataset is
imbalanced. Error Rate measures the overall model error that helps in model refinement.
False Positive Rate is useful for quantifying how often healthy individuals are incorrectly
identified. For each of the following metrics, accuracy, precision, specificity, sensitivity
(recall), F1-score, and MCC, the higher the performance value, the better detection. On the
other hand, the lower the Error Rate and False Positive Rate values are, the better detection.
The performance assessment metrics computations are presented in the following
equations:

Accuracy ¼ TN þ TPð Þ
TN þ TP þ FN þ FPð Þ : (1)

Precision ¼ TP
TP þ FPð Þ : (2)

Specif icity ¼ TN
TN þ FPð Þ : (3)

Recall ¼ TP
TP þ FNð Þ : (4)

F1-score ¼ 2 � precision � recallð Þ
precisionþ recallð Þ : (5)

MCC ¼ TP � TN � FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � TN þ FNð Þp : (6)

Error Rate ¼ Total number of f ailed requests
Total number of requests

: (7)

FPR ¼ FP
FP þ TN

: (8)
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These assessment metrics offer supplementary scales on the object detection
models’ performance. Using a combination of the performance metrics gives more
thoughtfulness, particularly when the costs of different types of application faults are
varied.

Human disabilities object detection framework
To identify human disability class in each image, the following initial procedures are
applied on each image of the HD-Set: resizing the input images and entering the ground
truth labels of all human disability images for constructing the framework training and
testing datasets, followed by splitting the resized images into training and testing datasets
and applying image augmentation techniques on the training set to generate the
augmented training set, then securing the augmented training and testing datasets using
the proposed security technique to produce the secured and augmented training dataset
and secured testing datasets.

The training phase of human disabilities object detection model includes training cycles,
loss functions, and optimization strategies that are designed to optimize the model’s
performance across various real-world applications. In this phase, the model was trained
for hundred epochs as a baseline and early stopping was applied when ten successive
epochs showed no improvement in validation loss. Training continued for up to ten
epochs after the last improvement before stopping to prevent overfitting and minimizing
wasted computation and to ensure model robustness across variations in disability type,
camera angles, and lighting conditions. This learning strategy allows the model to maintain
the balance between training accuracy and the prediction of the hidden images.
Furthermore, the training phase utilizes multi-part loss functions, specifically Localization
Loss function that used by RetinaNet and SSD models for bounding box regression to
predict accurate coordinates of the disability object in varying spatial conditions,
Cross-Entropy Loss function that is used by FR-CNN and EfficientNet to penalize
incorrect multi-class predictions, and Confidence Loss function that is used by YOLOv11
to determine whether a predicted box contains a relevant disability feature. Additionally,
Adam optimizer was used due to its robustness in smoothing out noisy gradient updates
using an exponentially weighted moving average of past gradients, preventing unnecessary
fluctuations.

Furthermore, the entire training dataset was split using 10-fold cross-validation, 90% for
training and 10% for validation in each fold to ensure model robustness across
demographic diversity and imaging variations, and the model’s performance was averaged
over 10 folds to get stable and generalizable performance evaluations. The model
performance was evaluated per fold using the validation loss, F1-score, and average
precision at different Intersection over Union thresholds (0.5 and 0.75) to guide the early
stopping and model check points.

The training phase reflects a well-structured and clinically aware design, with
mechanisms such as early stopping and multi-fold validation to reduce overfitting and
ensure generalizability. By combining multiple loss functions fitted to detection and
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classification, the model is well-optimized for identifying different mental and physical
disabilities under real-world imaging environments.

Single-class object detection model
The proposed single-class object detection model is illustrated by the following processes
that are applied after the initial procedures to identify human disability in each image: the
secured and augmented training set is split into individual training classes, each class
dataset represents one human disability namely, blindness, down syndrome, dwarfism,
cerebral palsy, prosthetic arms, and prosthetic legs. Then, the transfer-learning technique
(Kim et al., 2022) and the pretrained deep learning object detection models, ImageNet
(Shankar et al., 2020) and Microsoft Common Objects in Context (MS-COCO) (Bideaux
et al., 2024), are applied on the secured and augmented single-class training datasets to
build the trained single-class object detection model for each disability. Finally, the object
detection single-class training model is applied on the secured single-class testing set, and
the result of the disability identification is determined based on the highest confidence
value along with associated label. Figures 2A–2C illustrates the processes of identifying
human disabilities by using a single-class object detection model.

Multi-class object detection model
The proposed multi-class object detection model is explained by the following processes
that identify human disability in each image: the pretrained deep learning object detection
models, ImageNet and MS-COCO, are applied on the secured and augmented multi-class
training set to build the trained multi-class object detection model. Then, the trained
multi-class object detection model is applied on the secured multi-class testing dataset.
Where the multi-class training dataset is the secured and augmented training dataset of all
human disabilities and the multi-class testing dataset is the secured testing dataset of all
human disabilities. The results of disability identification by the trained multi-class object
detection model are determined based on the highest confidence value along with
associated label. Figures 3A, 3B describes the processes of recognizing human disabilities
by using multi-class object detection models. The steps of identifying human disabilities
features by the proposed framework single-class and multi-class object detection models
are summarized in Algorithm 1.

Evaluation method
Deep learning object detection models were explicitly evaluated by applying the trained
single-class/multi-class deep learning object detection models that are generated by
Algorithm 1 on the secured testing datasets. The evaluation results determined the human
disability class based on the highest confidence value along with the associated ground
truth label. The outcomes of the single-class and the multi-class object detection models
were recorded in tables, compared and transformed into graphical representation to show
clear performance evidence.
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Single-class models evaluation
Each single-class object detection model was applied separately on each human disability
testing dataset. The experiment results were detailed in Table 2 and presented in Figs. 4–10
as follows: Fig. 4: normal people doing different activities, Fig. 5: blind people with
dissimilar guidance, Fig. 6: down syndrome people at different ages, Fig. 7: dwarf people at
various ages, Fig. 8: cerebral palsy people on wheelchair, Fig. 9: people with left/right
prosthetic arms, and Fig. 10: people with left/right prosthetic legs. The experimental results
confirm that the RetinaNet object detection model achieved higher performance (in terms
of accuracy, F1-score, sensitivity/Recall, and MCC) than the other four models YOLOv11,
SSD, FR-CNN, and EfficientNet.

Multi-class models evaluation
Each object detection model was applied on all human disabilities testing datasets together.
The experimental results were displayed in Table 3 and presented in Fig. 11. The
experimental results disclose that the RetinaNet multi-class object detection model

Figure 2 Preprocessing and securing input images for single-class object detection model. Figure (A–C) illustrates the processes of identifying
human disabilities by using a single-class object detection model. Full-size DOI: 10.7717/peerj-cs.3381/fig-2
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Figure 3 Preprocessing and securing input images for multi-class object detection model. Figure (A–
B) describes the processes of recognizing human disabilities by using multi-class object detection models.

Full-size DOI: 10.7717/peerj-cs.3381/fig-3

Algorithm 1 Identifying human disabilities in 2D images.

Input: Human disability image file
Output: Human disability Class
Initialization:

Step 1: Resize the input image and enter the ground truth label of HD-Set images.
Step 2: Split the resized images into training and testing datasets.
Step 3: Apply shearing, zooming, scaling, and normalization augmentation techniques on the training
set.
Step 4: Secure the augmented training and testing image sets using the proposed security technique.

Processing:
If single-class object detection model is selected, then perform steps 5–8, else if multi-class object
detection model is selected, then perform steps 9–12.

Begin
Step 5: Split the secured and augmented training set into individual human disability training classes.
Step 6: Apply transfer learning technique and the ImageNet and MS-COCO pretrained deep learning
models on each disability training dataset to build the trained disability single-class object detection
model.
Step 7: Apply the object detection single-class training model on the secured testing set.
Step 8: The single-class training model determines if the human disability in the image belongs to a
certain class, based on the highest confidence value along with associated label.

(Continued)
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achieved higher performance than the other four models in terms of accuracy, F1-score,
sensitivity/recall, and MCC. The YOLOv11 model generates the next higher performance
values, followed by the FR-CNN model, then SSD model, and finally the EfficientNet
model that produces the lowest performance results because of the conflicts with

Algorithm 1 (continued)

End.
Multi-class object detection model
Begin

Step 9: Use the secured and augmented training set of all human disabilities for multi-class training
set.
Step 10: Apply transfer learning technique and the ImageNet and MS-COCO pretrained deep
learning models on the secured and augmented multi-class training set to build the trained
multi-class object detection model.
Step 11: Apply the trained multi-class object detection model on the secured multi-class testing set.
Step 12: The multi-class training model determines the human disability in the image belongs to
which disability class, based on the highest confidence value along with associated label.

End.

Table 2 The performance metrics mean ± standard deviation of the proposed single-class models.

Deep learning
model

Accuracy F1-score Precision Specificity Sensitivity MCC Error rate FPR

RetinaNet 0.97156 ± 0.02293 0.97156 ± 0.01071 0.97185 ± 0.00600 0.99532 ± 0.00107 0.97156 ± 0.02293 0.96698 ± 0.01211 0.02843 ± 0.02293 0.00467 ± 0.00107

YOLOv11 0.92855 ± 0.04905 0.9566 ± 0.02910 0.98769 ± 0.01742 0.99805 ± 0.002725 0.92855 ± 0.049051 0.95122 ± 0.03245 0.07147 ± 0.04905 0.001948 ± 0.00272

SSD 0.64754 ± 0.15986 0.61996 ± 0.21037 0.61029 ± 0.24700 0.95160 ± 0.00284 0.64754 ± 0.15986 0.57577 ± 0.19090 0.35245 ± 0.15986 0.04839 ± 0.00284

FR-CNN 0.90058 ± 0.03397 0.89753 ± 0.03794 0.89533 ± 0.04985 0.98323 ± 0.00260 0.90058 ± 0.03397 0.88113 ± 0.03817 0.09941 ± 0.03397 0.01676 ± 0.00260

EfficientNet 0.54316 ± 0.21113 0.50426 ± 0.26197 0.50185 ± 0.29408 0.92710 ± 0.02436 0.54316 ± 0.21113 0.44410 ± 0.25509 0.45683 ± 0.21113 0.07289 ± 0.02436

Figure 4 Normal people identification. The results of identifying normal people doing different
activities. Full-size DOI: 10.7717/peerj-cs.3381/fig-4
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overlapping objects. Furthermore, the results presented in Table 3 confirm that RetianNet
model produced the lowest error rate followed by YOLOv11, FR-CNN, SSD, and
EfficientNet respectively. However, YOLOv11 accomplishes the least false positive rate
results followed by RetinaNet, FR-CNN, SSD, and EfficientNet consequently.

Figure 5 Blind people with dissimilar guidance. The results of identifying blind people with dissimilar
guidance. Full-size DOI: 10.7717/peerj-cs.3381/fig-5

Figure 6 Down syndrome people of different ages. The results of identifying down syndrome people of
different ages. Full-size DOI: 10.7717/peerj-cs.3381/fig-6
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Inference time and efficiency evaluation
The framework inference time, security time, and efficiency evaluation are detailed as
follows:

. The inference time (Inference_Time) of object detection is computed in Eq. (9):

Inference Time ðnÞ ¼
XNumber of HD dataset Images

n¼1

P time nð Þð Þ (9)

Figure 7 Dwarf people of various ages. The results of identifying dwarf people of different ages.
Full-size DOI: 10.7717/peerj-cs.3381/fig-7

Figure 8 Cerebral palsy people on wheelchair. The results of identifying cerebral palsy people on
wheelchair. Full-size DOI: 10.7717/peerj-cs.3381/fig-8
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where (P_time) is the image prediction time, and n represents the number of images in
the HD-Set.

. The average security time (Security_time) required for each image in HD-Set is
computed in Eq. (10):

Security time ¼ EDT timeþ Hash time: (10)

Figure 9 People with left/right prosthetic arms. The results of identifying people with left/right
prosthetic arms. Full-size DOI: 10.7717/peerj-cs.3381/fig-9

Figure 10 People with left/right prosthetic legs. The results of identifying people with left/right
prosthetic legs. Full-size DOI: 10.7717/peerj-cs.3381/fig-10
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. The average time for encryption, decryption, and transmission (EDT_time) is computed
in Eq. (11):

EDT time ¼ AES time=Number of HD dataset Images: (11)

where the number of HD-Set images is 3,877 of a total size 1 GB. The AES_time required
for applying the AES-256 algorithm on the dataset is equal to 3 min (180 s), and the
average EDT_time (~0.046427 s/image).

Table 3 The average performance results of the proposed multi-class model.

Deep learning model Accuracy F1-score Precision Specificity Sensitivity MCC Error rate FPR

RetinaNet 0.97198 0.97156 0.97185 0.99532 0.97156 0.96698 0.02801 0.00467

YOLOv11 0.92855 0.95667 0.98769 0.998051 0.928552 0.951223 0.07144 0.00194

SSD 0.71062 0.61996 0.61029 0.95160 0.64754 0.57577 0.28937 0.04839

FR-CNN 0.89978 0.89229 0.89141 0.98330 0.89411 0.87588 0.10021 0.01669

EfficientNet 0.51279 0.43705 0.44224 0.91892 0.46923 0.36690 0.48720 0.08107

Figure 11 Human disabilities all classes performance percentage. The deep learning models results for
identifying human disabilities of all classes. Full-size DOI: 10.7717/peerj-cs.3381/fig-11

Table 4 The framework security and runtimes. The framework inference, security, and precessing
times.

Multi-class model Inference time (s) Security time (s) Processing time (s)

RetinaNet 0.053261 0.046512 0.099773

YOLOv11 0.006013 0.046512 0.052525

SSD 0.062480 0.046512 0.108992

FR-CNN 0.088304 0.046512 0.134816

EfficientNet 0.058325 0.046512 0.104837
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. The average hash time (Hash_time) of the HD-Set using high-end GPU with SHA
hashing algorithm speed SHA_speed of 3 GB/s is computed in Eq. (12):

Hash time ¼ HD dataset Size GBð Þ=SHASpeed ðGB=sÞ: (12)

The average hash_time required is ~0.333333 s for the HD-Set of 1 GB, this is equivalent
to (~0.000085 s/image). Hence, the average security time is (~ 0.046512 s/image).

. The average Processing_time required for each image in HD-Set is computed in Eq. (13):

Processing time ¼ inf erence timeþ security time: (13)

The average inference and processing times of the multi-class object detection models are
recorded in Table 4 and presented in Fig. 12.

EXPERIMENTAL RESULTS
Various experiments were conducted on the HD-Set to assess the performance of the
selected object detection models in detecting human disabilities in 2D images. The
experiments were executed on a workstation with 2x Intel Xeon 20-cores CPU, Nvidia
Tesla V100 GPU, and 128 GB RAM. Each experiment was performed ten folds on each
single-class model, and another ten folds on each multi-class model. The training to testing
ratio was set to 90:10.

The proposed approach evaluates five state-of-the-art object recognition detection
models, RetinaNet, YOLOv11, SSD, Faster R-CNN, and EfficientNet. Each model is
implemented for both single-class and multi-class human disability detection. The key
parameters that distinguish each deep learning model are summarized in Table 5 and

Figure 12 The inference and processing times. The proposed approach inference and processing times.
Full-size DOI: 10.7717/peerj-cs.3381/fig-12
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described as follows: Input Size: resolution (height × width in pixels) of input images that
the model accepts and defines for the neural network. This parameter influences both
model’s performance and accuracy. Learning Rate (default start): initial learning rate used
for training, some models start with a fixed rate (e.g., 5e−4), others gradually decrease from
a higher initial value. Batch Size (default): number of training cases used in one forward/
backward pass. For instance, a batch size of 64 means the model processes 64 images at
once. However, batch size affects memory usage and training stability. Epochs: number of
training steps. It indicates how long the model is trained as if it passes the entire dataset.
Optimizer (default): the optimization algorithm used to minimize the loss during training
such as Adam/AdamW are adaptive optimizers with/without weight decay, Stochastic
Gradient Descent (SGD) which is often used with momentum and weight decay, and root
mean square propagation (RMSProp) that is adaptive learning rate, often used for mobile
or lightweight models. Loss functions are used to compute the error between predictions
and ground truth that guides model’s learning, such as focal loss function that handles
class disparity by concentrating on hard instances, smooth L1 regression loss for bounding
box coordinates, Multibox function which is a combination of classification and bound
box regression, Region Proposal Network (RPN) loss function used for region proposal
network, distribution focal loss function that attains class imbalance in datasets, binary
cross-entropy function that achieves class imbalance and used for multi-class problems,
and the complementary classification (cls) and bounding box (bbox) loss functions that
used to train model by quantifying the error in predicting the correct class label or a region
of interest.

The programming language employed in the experimental development is Python 3.10.
In addition, the deep learning libraries, PyTorch 2.0 and torchvision 0.15 are employed for
experimental development of RetinaNet, YOLOv11, Faster R-CNN, and SSD models,
while TensorFlow 2.11 and Keras are employed for the EfficientNet model. Furthermore,
PyTorch frameworks are employed for experimental development of RetinaNet,
YOLOv11, Faster R-CNN, SSD, and EfficientNet models, while TensorFlow Object
Detection API is employed for RetinaNet, Faster R-CNN, and SSD models.

Table 5 Key parameters of the evaluated object detection models.

Model Image input
size (pixels)

Learning rate (default
start)

Batch size
(default)

Epochs Optimizer (default) Loss function

RetinaNet 640 × 640 1e−4 (cosine decay) 64 25–50 epochs
equiv.

SGD (momentum 0.9,
wd 1e−4)

Focal loss (cls) + Smooth L1
(bbox)

YOLOv11 640 × 640 1e−3 / cosine decay 16 100 AdamW Composite loss (CIoU/DFL + BCE
cls/obj)

Faster
R-CNN

640 × 640 0.08 / cosine decay 64 ~25 epochs
equiv.

SGD (momentum 0.9,
wd 4e−5)

RPN loss + classification +
Smooth L1 bbox

SSD 640 × 640 0.04 (cosine decay) 64 ~25 epochs
equiv.

SGD (momentum 0.9,
wd 4e−5)

MultiBox (cls + Smooth L1 bbox)

EfficientDet 512 × 512 0.08 / cosine decay 64 ~300 epochs
equiv.

RMSProp (momentum 0.9,
wd 4e−5)

Focal loss (cls) + Smooth L1
(bbox)
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The results shown in Table 2 and presented in Figs. 4–10 confirm that the RetinaNet
deep learning model outperforms YOLOv11, SSD, FR-CNN, and EfficientNet models in
single-class human disabilities detection. In addition, the experimental results depicted in
Table 3 and presented in Fig. 11 disclose the superiority of the RetinaNet model over the
other models in comparison in multi-class human disabilities detection. These results
confirm the ability of the proposed framework training models to enhance human
disability detection in 2D images.

The proposed approach offers a detailed, evidence-based analysis of the experimental
results. The description of deep learning models’ architecture, frameworks, libraries,
pretrained datasets, and their influences on human disability detection are illustrated in the
following subsections.

Deep learning detectors selection
This study clearly demonstrates the criteria of selecting the deep learning models, aligning
with the research objectives and highlighting their practical advantages and potential
real-world benefits. RetinaNet was selected for its strong capabilities in detecting small or
uncommon objects, which is essential in the context of identifying various human
disabilities. RetinaNet outperformed all other models in multi-class classification tasks,
achieving the highest performance metrics, accuracy (97.19%), F1-score (97.15%), recall
(97.15%), and MCC (96.69%). This superior performance is principally due to its
architectural components such as the feature pyramid network (FPN), dense anchor
generation, and focal loss. This model employs transfer learning using pre-trained weights
from ImageNet andMS-COCO datasets, which significantly improved performance on the
HD-Set disability dataset.

YOLOv11, while not achieving the top scores in accuracy, stood out for its extremely
fast inference time (0.006 s per image) and creditable performance metrics: accuracy
(92.85%), F1-score (95.66%), recall (92.85%), and MCC (95.12%). Its architecture is
optimized for speed through a single-pass detection mechanism and lightweight detection
heads. Although YOLOv11 excels in detecting larger objects, it is less sensitive to smaller
features that are common in the HD-Set. Hence, it results in misidentification of objects
particularly in images that consist of multi-disabilities. Despite this limitation, YOLOv11
remains a strong option for real-time systems where speed processing is critical.

Faster R-CNN also delivered solid outcomes with accuracy (89.97%), F1-score
(89.22%), Recall (89.41%), and MCC (87.58%), though it had the slowest inference time
(~0.088 s/image). Its two-stage detection mechanism, region proposal stage followed by
classification and regression, offers high accuracy but comes with the cost of complexity
and slower speed. For datasets like HD-Set, which include many small and unusual
patterns, the generic region proposal strategy may not always perform well unless it is
carefully fine-tuned. This model also requires a longer training schedule and more
resources to optimize performance. While talented, Faster R-CNN is not as efficient as
RetinaNet in detecting human disabilities due to its sensitivity to region proposal quality
and extended training requirements.
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The SSD model was designed for real-time object detection, relying on multiple anchor
boxes of varying sizes to detect different objects. Although it operates at a moderate
inference speed, SSD struggled significantly on the HD-Set, recording poor performance
scores, accuracy (71.06%), F1-score (61.99%), recall (64.75%), and MCC (57.57%). Its
main limitation comes from difficulties in detecting small objects and managing
overlapping features, which are common in images depicting individuals with disabilities.
SSD’s efficiency is highly dependent on accurate tuning of anchor scales to match image
resolutions. Inadequate tuning led to many missed detections, resulting in decreasing
overall performance.

EfficientNet is known for its parameter-efficient backbone architecture. However, it
achieved the lowest performance measures, accuracy (51.27%), F1-score (43.70%), recall
(46.92%), and MCC (36.69%). Its architecture was not well-suited for object detection
tasks involving small-scale features without integrating more advanced components like
feature pyramid networks or carefully selected anchor configurations. EfficientNet also
generates high false positive rates, hence, leading to poor reliability in the context of
human disability detection.

The study impact and application
The primary objective of the proposed research was to construct a resilient deep learning
model proficient in precise detection of multiple disabilities in 2D medical images and
securely handling and transmission of sensitive medical data. These images often include
complex backgrounds, small distinguishing features, and suffer from class imbalances. The
outcomes of the experiments showed that the proposed approach effectively meets these
challenges. Notably, the high recall values indicate a lower risk of missed diagnoses, even in
visually cluttered images. This model shows strong performance across both common and
rare disability cases in adequate real-time detection speed (0.053 s/image) that makes it
well-suited for emergency healthcare applications, while the combination of accuracy and
secure image processing builds trust in automated diagnostic tools.

In addition, this study supports healthcare professionals by validating preliminary
assessments or monitoring disable individuals over time and issues timely alerts in
emergency case particularly in regions with shortage of specialists. In telemedicine
scenarios, the model enables secure and private remote diagnostics. It can also support
public health initiatives by automatically collecting data on disability cases, which can
improve their planning and services.

Practical benefits of the study
Several advantages emerge from the proposed deep learning model. It improves diagnostic
accuracy by minimizing the errors in identifying human disabilities and handles
imbalanced datasets effectively, ensuring rare disabilities are not neglected. The model is
adaptable and can be extended to detect new human disability types, such as auditory
impairments, with minimal retraining. Additionally, it enhances operational efficiency by
reducing manual image analysis time, allowing healthcare staff to focus more on
medication care. Furthermore, the secured images produced from this study ensure
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compliance with medical data privacy regulations and the model’s scalability make it
applicable across various healthcare environments, from large healthcare centers to small
clinics with limited resources.

Therefore, the proposed approach effectively tackles the key challenges of accurately,
securely, and efficiently identifying multiple human disabilities in 2D images. With its
strong detection performance, ability to handle multiple human disabilities, and the
potential to enhance disable individuals’ safety, it stands out as a dependable real-time
detection tool that supports both in-person and remote medical services.

DISCUSSION
While one-stage object detection models such as RetinaNet, SSD, and EfficientNet
accommodate for efficiency by generating direct predictions without region of interest
(ROI) pooling, two-stage object detection models such as FR-CNN, select accuracy over
speed. Although YOLOv11 is a one-stage object detection model, it compromises between
accuracy and speed that make it suitable for real-time systems that do not need very high
accuracy. The RetinaNet model results are promising, however, future performance can be
enhanced by using higher filtering approaches that accurately identify the human disability
region in the image, especially in cases when people have multiple and complex disabilities.

Despite the reasonably large amount of time required to train and secure our framework
models, the training and securing processes are performed offline. The average inference
time shown in Table 4 and depicted in Fig. 12 confirms the superiority of YOLOv11 in
identifying the input image class as the fastest object detection model, followed by
RetinaNet, EfficientNet, SSD, and finally the two-stage FR-CNN model. This proves the
speed priority of the YOLOv11 model over the accuracy.

The proposed framework offers high computational performance, efficient scalability,
and strong potential deployment in real-world clinical environments. Nevertheless, it
comes with slight concerns on misclassification of human disability that may cause delayed
diagnosis or influence healthcare decisions. In addition, disability-related images are
highly sensitive and have ethical and social concerns, integrating them with non-secured
public clinical-grade audit trails, consent protocols, and at-home monitoring
environments could violate human autonomy and breach disability person’s privacy.
Therefore, real-world deployment demands deep attention to ethical, legal, and practical
risks.

Consequently, the ultimate challenge of our research is to balance innovation with
responsibility to ensure that the proposed prediction model offers a faster, secure, accurate,
more flexible, and better-targeted solution than traditional commercial medical imaging
models. Its latency (<0.1 s/image) enables real-time clinical diagnostics and makes it closer
to point-of-care and even at-home monitoring situations that conventional medical
models have not effectively addressed. In addition, the proposed model embeds
privacy-preserving mechanisms that allow safely operating under strict healthcare
regulations without rerouting data through external servers which is an issue for many
commercial approaches. Moreover, it is open to fine-tuning and extension to other medical
scenarios, making it highly relevant to human-function assessment beyond clinical scans.
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Also, it can be optimized for visible-light cameras in uncontrolled environments, waiting
rooms, schools, or sidewalks, making it deployable on user’s hardware with lower cost and
far more resourceful than the current widely adopted medical imaging solutions.

Its computational costs and scalability vary depending on the chosen architecture and
the intended clinical deployment. The model cost is assessed on the time-based
components, specifically training phase, inference phase, security overhead, and hardware
requirements. The training phase is computationally heavy, especially for high-accuracy
models like RetinaNet and FR-CNN, which involve composite feature extraction and
multi-stage processing. However, training is performed offline, so it does not directly
impact the model’s performance. The model’s inference phase cost is reasonable for
one-stage detectors (YOLOv11, SSD) and a bit higher for two-stage detectors (FR-CNN).
For example, YOLOv11 inference time is ~0.006 s/image, while RetinaNet inference is
~0.053 s/image, and FR-CNN inference is ~0.088 s/image, which makes the proposed
approach suitable for real-world clinical applications. The security processes add an
overhead of ~0.046 s/image, which is relatively small time but ensures compliance with
disabled persons’ privacy regulations. A powerful workstation with 2x Intel Xeon 20-cores
CPU, Nvidia Tesla V100 GPU, and 128 GB RAM were used to generate the models’
experimental results in acceptable processing time.

Furthermore, the proposed approach is scalable in real-world clinical settings due to the
model’s selection trade-offs, where RetinaNet offers the best accuracy but higher
computational demands, making it more suited to clinics prioritizing diagnostic precision
over speed, while YOLOv11, being the fastest is ideal for real-time applications such as
persons monitoring but may slightly underperform on small or multipart disability cases.
This approach presents potential throughput, with inference times well below 0.1 s/image,
clinical systems can scale to handle large image volumes if run on capable GPUs or via
cloud-based services. Furthermore, this approach shows security integration feasibility that
emphasizes limiting data collection and prioritizing privacy, making it easier to integrate
into digital technology that could be used in healthcare to manage, store, and share medical
images. The proposed approach is scalable for medium-to-large clinical environments with
proper hardware or cloud support and balancing accuracy vs. speed based on clinical
needs.

CONCLUSIONS
Manipulating human disabilities images is a talented research field. Enhancing image
classification in this field is a challenge. The proposed approach has a significant impact on
identifying people with different disabilities, especially in emergency situations where they
may need help. The human disabilities’ images collected in HD-Set were utilized to
validate our approach for satisfying the demands of human disabilities classification
activity. We evaluated our approach performance by employing five current state-of-the-
art object detection models, namely RetinaNet, FR-CNN, SSD, EfficientNet, and
YOLOv11. The performance evaluation metrics have been used to measure the efficiency
of the deep learning object detection models in comparison. Furthermore, we have
measured the top-performing object detection model at two levels, single-class and
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multi-class object detection models. We have tallied the quantity of testing images for
which a certain model produced the best results of each performance parameter that we
examined. We have produced a performance histogram for each object detection model in
identifying each human disability. The experimental results confirm that the RetinaNet
model enabled effective human disability detection and outperformed other approaches in
terms of accuracy, F1-score, sensitivity/recall, and MCC. The results generated by this
research highlighted that 97.3% of the estimated cases were within ±10� of the actual
disabilities. On the other hand, the YOLOv11 model proves the superiority in the speed of
identifying human disabilities.

However, this research has some limitations caused by the selected object detection
models. Each of these detectors has its trade-offs, and the decision between them is based
on the particular requirements of the application, such as how important the real-time
performance, detection accuracy, inference speed, detection small object, and
computational complexity are. The models’ limitations are described as follows:

. Speed vs. accuracy: compared to two-stage models, YOLOv11 and SSD are typically
faster but compromise some accuracy.

. Small object detection: the RetinaNet model outperforms the YOLOv11 and SSD
models, which have trouble detecting small objects.

. Real-Time Application: YOLOv11 is best suited for real-time applications because of its
speed; nevertheless, it might not be as precise on small or complicated objects.

. Computational Complexity: FR-CNN and RetinaNet are less appropriate for real-time
applications with limited resources because they are computationally more costly than
YOLOv11 and SSD.

Future ambitions to extend the proposed approach and use it for effective human
disabilities detection tasks are in line with the new developments in deep learning and
medical imaging technology. Intensive ways to improve this research are by identifying
human disabilities through face detection and adding additional human disabilities, such
as deaf people, to evaluate the effectiveness of our proposed framework and examine the
effects of these disabilities on the entire identification process, considering the
performance measures employed in this research.

Expanding human disability detection to include face-based diagnosis and
hearing-related impairments indicates a powerful evolution of the proposed approach.
Integrating these models into real-world clinical workflows supported by robust technical
pipelines, privacy-preserving mechanisms, and transparent regulatory strategies can
deliver equitable, scalable, and early diagnostic support for larger human disabilities
spectrum. Facial features and expressions offer a rich source of diagnostic signs for
neurological or developmental disorders, such as autism spectrum disorder, and genetic
disorders likeWilliams syndrome (Bellugi, Sabo & Vaid, 2022). The technical methods that
can be used to extract facial features are the 68’s point face landmark combined with
convolutional neural network model, trained on autism spectrum disorder datasets with
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labeled face images, and leverage temporal dynamics to assess involuntary movements,
blinking patterns, or expression deficits.

In addition, hearing disabilities detection techniques are behavioral and interaction
techniques that can offer alternative solutions to individuals who repeatedly fail to respond
to auditory indicators or show excessive use of visual scanning or lip reading. These
techniques can be integrated into actual clinical workflows by collecting in-clinic data,
developing facial and behavioral models using the collected datasets, assessing the facial
and behavioral models’ performance across different deaf persons, embedding the tested
models into electronic health record platform, deploying on local GPUs or secure edge
devices, and enhancing the models according to the outcomes. These models will empower
health leaders, reduce diagnostic delays, and offer meaningful support to deaf individuals
who are often underdiagnosed, underserved, or overlooked in traditional healthcare
systems.
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