
Multi-objective simulated annealing for
hyper-parameter optimization in
convolutional neural networks
Ayla Gülcü and Zeki Kuş
Computer Science, Fatih Sultan Mehmet University, Istanbul, Turkey

ABSTRACT
In this study, we model a CNN hyper-parameter optimization problem as a
bi-criteria optimization problem, where the first objective being the classification
accuracy and the second objective being the computational complexity which is
measured in terms of the number of floating point operations. For this bi-criteria
optimization problem, we develop a Multi-Objective Simulated Annealing (MOSA)
algorithm for obtaining high-quality solutions in terms of both objectives. CIFAR-10
is selected as the benchmark dataset, and the MOSA trade-off fronts obtained for
this dataset are compared to the fronts generated by a single-objective Simulated
Annealing (SA) algorithm with respect to several front evaluation metrics such
as generational distance, spacing and spread. The comparison results suggest that the
MOSA algorithm is able to search the objective space more effectively than the SA
method. For each of these methods, some front solutions are selected for longer
training in order to see their actual performance on the original test set. Again, the
results state that the MOSA performs better than the SA under multi-objective
setting. The performance of the MOSA configurations are also compared to other
search generated and human designed state-of-the-art architectures. It is shown that
the network configurations generated by the MOSA are not dominated by those
architectures, and the proposed method can be of great use when the computational
complexity is as important as the test accuracy.

Subjects Artificial Intelligence, Computer Vision
Keywords Multi-objective, Simulated annealing, Convolutional neural networks,
Hyper-parameter optimization

INTRODUCTION
Convolutional Neural Networks (CNNs) differ from multi-layer perceptron models with
the use of convolution operators instead of matrix multiplications in at least one of its
layers (LeCun et al., 1990; LeCun et al., 1998; Goodfellow, Bengio & Courville, 2016).
Excellent results obtained for object classification problems in ILSVRC (IMAGENET
Large Scale Vision Recognition Competition) accelerated the use of these networks in
other vision related problems like face and activity recognition (Russakovsky et al., 2015).
With the availability of increasing computational resources, winning architectures of
the competition, aka state-of-the-art models, became deeper and deeper resulting in very
high classification accuracy rates. In 2014, ILSVRC winner model, VGGNet (Simonyan &
Zisserman, 2014), had 19 layers, but the following years’ state-of-the-art models, for
example, ResNet (He et al., 2016) and DenseNet (Huang et al., 2017) had over 100 layers.

How to cite this article Gülcü A, Kuş Z. 2021. Multi-objective simulated annealing for hyper-parameter optimization in convolutional
neural networks. PeerJ Comput. Sci. 7:e338 DOI 10.7717/peerj-cs.338

Submitted 19 June 2020
Accepted 26 November 2020
Published 4 January 2021

Corresponding author
Ayla Gülcü, agulcu@fsm.edu.tr

Academic editor
Andrea Schaerf

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.338

Copyright
2021 Gülcü and Kuş

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.338
mailto:agulcu@�fsm.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.338
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Finding a CNN architecture that generates high quality results for a given problem is a
challenging process which requires a systematic approach rather than by trial and error.
Moreover, trying all possible parameter combinations is infeasible due to the size of
the parameter space. The problem of automatically designing CNN architectures and
selecting the best set of hyper-parameters for the network has drawn attention of many
researchers over many years. It is shown in many studies that using algorithmic
approaches rather than manual tuning process results in simpler networks with improved
classification performance (Bergstra & Bengio, 2012; Real et al., 2017; Ma et al., 2020).
This automated neural architecture search (NAS) and hyper-parameter optimization is not
only limited to CNNs, but also applicable for both feed-forward and Recurrent Neural
Networks (RNNs). For example, the architectures and the hyper-parameters of Long
Short-Term Memory networks which are the most widely-used variants of RNNs can be
optimized with the proposed approaches.

Hyper-parameter optimization (HPO) is the most basic task in automated machine
learning (AutoML) which reduces the human effort by automatizing the labor intensive
hyper-parameter tuning process. With HPO, a wider solution space can be searched,
which in turn may yield in better performing configurations for the problem at hand
(for a detailed view on HPO, please refer to Feurer & Hutter, 2019). On the other hand,
NAS is a specialized hyper-parameter optimization problem which involves discrete
hyper-parameters as in HPO, but with an additional structure that can be captured with a
directed acyclic graph (DAG) (Li & Talwalkar, 2020). In NAS methods, the search space
for designing an entire architecture contains too many nodes and edges; therefore it is
usually defined over smaller building blocks called cells which drastically reduce the
search space. A new architecture is then built by stacking these cells in a predefined
manner. The number of the cells and the types of those cells along with the types of
connections allowed among those cells are among important design decisions in NAS
studies (Elsken, Metzen & Hutter, 2019).

Random Search (RS) (Bergstra & Bengio, 2012), Bayesian Optimization (BO)
approaches (Hoffman & Shahriari, 2014) and population-based optimization algorithms
such as Genetic Algorithms (GAs) (Holland, 1992), Evolutionary Algorithms (EAs) (Back,
1996) and Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995) have been
successfully used to select the best CNN hyper-parameters. Especially, EAs are among the
most widely used techniques for HPO. In (Real et al., 2017; Suganuma, Shirakawa &
Nagao, 2017; Elsken, Metzen & Hutter, 2018) EAs have been used for optimizing the
network architecture and gradient-based methods have been used for optimizing the
network weights. Single-stage algorithms like Simulated Annealing (SA) and its variants
have also proven to be effective for CNN HPO problems (Gülcü & Kuş, 2020).

NAS has become a very important research topic especially after it has obtained
competitive performance on the CIFAR-10 and Penn Treebank benchmarks with a
search strategy based on reinforcement learning (Zoph & Le, 2016). However, the
computational cost of this approach led the researchers to seek other methods with less
computational requirement but with higher classification performance. Relaxation-based
methods (Liu, Simonyan & Yang, 2018) try to improve the computational efficiency of

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 2/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

NAS approaches, but these approaches still require huge computational resources. EAs
provide a good alternative for NAS, but they still suffer from the large computational
requirement (Liu et al., 2018). On the other hand, it is shown that EA-based NAS
methods that use limited search budgets result in poor classification performance (Xie &
Yuille, 2017; Sun et al., 2019a). Therefore, recent HPO and NAS approaches not only
consider the error rate, but also the complexity brought by the proposed configuration or
architecture.

A single-objective optimization problem involves a single objective function, and
usually results in a single solution. However, in many real-life problems, there are
multiple objectives to be considered, and these objectives usually conflict with each other.
Optimizing a solution with respect to one objective often results in unacceptable results
with respect to the other objectives. For example, achieving a network with a low error
rate usually comes with a huge cost of computational complexity. Thus, a perfect multi-
objective solution that simultaneously optimizes each objective function is almost
impossible. A minimization multi-objective optimization problem with K objectives is
defined as follows (Konak, Coit & Smith, 2006): Given an n-dimensional decision variable
vector x ¼ x1;::;xnf g in the solution space X , find a vector x� that minimizes a given set of
K objective functions z x�ð Þ ¼ z1 x�ð Þ;::;zK x�ð Þf g. The solution space X is generally
restricted by a series of constraints and bounds on the decision variables. There are
two general solution approaches to Multi-Objective Optimization (MOO). One is to
combine all of the objective functions into a single composite function using methods
like weighted sum method, but in practice it is very difficult to select the proper weights
that will reflect the decision maker’s preferences. The second approach is to provide the
decision maker a set of solutions that are non-dominated with respect to each other
from which she/he can choose one. A reasonable solution to a multi-objective problem
is to find a set of solutions, each of which satisfies the objectives at an acceptable
level without being dominated by any other solution. A feasible solution x is said to
dominate another feasible solution y; x � y, if and only if, zi xð Þzi yð Þ for i ¼ 1;::;K
and zj xð Þ < zj yð Þ for at least one objective function j. A solution is said to be Pareto
optimal if it is not dominated by any other solution in the solution space. Improving a
Pareto optimal solution with respect to one objective is impossible without worsening at
least one of the other objectives. The set of all feasible non-dominated solutions in the
solution space is referred to as the Pareto-optimal set, and for a given Pareto-optimal set,
the corresponding objective function values in the objective space are called the Pareto-
front. In multi-objective optimization, there are two tasks to be completed, where the
first task being the optimization task for finding the Pareto-optimal set, and the second
task being a decision making task for choosing a single most preferred solution from
that set which involves a human interaction. Generating the Pareto-optimal set is often
infeasible, and the methods like evolutionary algorithms (EAs) usually do not guarantee to
identify the optimal front, but try to provide a good approximation; that is, a set of
solutions whose objective vectors are not too far away from the optimal objective vectors.
Since the Pareto-optimal set is unknown, comparing the approximations generated by

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 3/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

different methods is a difficult task requiring appropriate quality measures to be used.
There are several measures in the literature each of which reflects a different aspect of the
quality such as the closeness to the optimal front and the diversity of the solutions in the
front (please refer to Zitzler et al., 2003 for a detailed review on MOO performance
assessment).

Multi-objective EA-based approaches are among the most widely-used methods for
CNN MOO problems. In these studies, high classification performance is considered as
the first objective, and the low computational requirement is considered as the second
objective. It is aimed to generate networks that are satisfactory with respect to both of these
objectives. (Kim et al., 2017) try to optimize the deep neural networks in terms of two
competing objectives, speed and accuracy using GAs. In their study, LeNet (LeCun et al.,
1998) is chosen as the initial architecture, and the performance of the initial solution is
improved considering two objectives. Test results based on the MNIST (LeCun et al.,
1998), CIFAR-10 (Krizhevsky & Hinton, 2009) and Drowsiness Recognition (Weng, Lai &
Lai, 2016) show that the proposed approach yields in models with better accuracy and
speed than the initial model. In Elsken, Metzen & Hutter (2018), Lamarckian Evolution
and multi-objective EA is used to generate computationally efficient CNNs with high
classification accuracy values. Based on the results on CIFAR-10 dataset, the proposed
approach achieves competitive results with other multi-objective approaches. Lu et al.
(2019a) present another multi-objective EA which they call NSGANet that try to optimize
both error rate and the number of Floating Point Operations (FLOPs). According to the
test results obtained using CIFAR-10, CIFAR-100 and human chest X-rays data sets,
the proposed approach increase the search efficiency. Same objectives are also adopted
in the study ofWang et al. (2019) in which PSO is used to fine tune the hyper-parameters.
In the study, best models are compared to DenseNet-121 in terms of both objectives.
The results based on CIFAR-10 dataset state that the models generated by the proposed
approach dominate the base model.

In this study, we present a single-stage HPO method to optimize the hyper-parameters
of CNNs for object recognition problems considering two competing objectives,
classification accuracy and the computational complexity which is best measured in
terms of FLOPs. For this bi-criteria optimization problem, we use a Multi-Objective
Simulated Annealing (MOSA) algorithm with the aim of generating high quality fronts.
CIFAR-10 dataset is selected as the benchmark, and the final fronts generated by the
proposed algorithm is compared to the fronts generated by a single-objective variant of
the same algorithm with respect to several front metrics such as generational distance,
spacing and spread. According to the results obtained using these front evaluation metrics,
it can be concluded that the MOSA algorithm is able to search the objective space
more effectively than the SA method. After performing longer training on the selected
configurations, the results again reveal that the MOSA performs better than the SA under
multi-objective setting. TheMOSA configurations are also compared to human engineered
and search generated configurations. When both test accuracy and the complexity are
taken into account, it is shown that the network configurations generated by the MOSA are

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 4/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

not dominated by those configurations, and the proposed method can be of great use when
the computational complexity is as important as the test accuracy.

MATERIALS AND METHODS
In “CNNs—An Overview”, we remind key concepts of CNNs and multi-objective aspects
of CNNs. In “SA Algorithm”, we first describe a single-objective SA algorithm, and
then in “MOSA Algorithm”, we give some details about the MOSA algorithm that
discriminate it from the SA such as the acceptance criterion and the archive maintenance
mechanism. In “Performance Evaluation Criteria” we elaborate the performance
evaluation metrics used in this study to compare different Pareto fronts in a quantitative
manner.

CNNs—an overview
Neural Networks (NNs) receive an input and transform it through a series of hidden layers
each of which is made up of a set of neurons that receives some inputs, performs a dot
product followed with a non-linearity. In any layer, each neuron is fully connected to all
neurons in the previous layer, that is why Regular NNs don’t scale well to inputs in the
form of images. Similarly, CNNs are made up of neurons that have learnable weights
and biases, and the whole network still expresses a single differentiable score function.
In general, CNNs assume that the inputs are images, and they constrain the architecture in
a more sensible way. There are three types of layers in CNNs: Convolution Layer, Pooling
Layer and Fully Connected Layer.

A convolution layer is a fundamental component of a CNN architecture that performs
feature extraction through a combination of linear and nonlinear operations, that is,
convolution operation and activation function. Convolution is specialized type of linear
operation used for feature extraction with the help of a small array of numbers called
filter or kernel navigating over the input tensor. At each location of the input tensor, an
element-wise product between the elements of the filter and the input is applied. These
products are then summed to obtain the output value in the corresponding position of the
output tensor which is called a feature map. This operation is repeated using multiple
kernels resulting in multiple number of feature maps at a single layer. Figure 1 illustrates
a CNN with two convolution layers each of which contains different number of filters
with differing size. In the figure, images of size 96 × 96 × 3 are fed into the CNN
where the first two dimensions denote the width and height of the image, and the third
dimension denotes the number of channels which is 3 for a color image. As can be seen in
Fig. 2 which illustrates the convolution process, the number of channels (depth) of the
filters always equals to the number of channels of the input image, but the size and the
number of those filters are among the hyper-parameters whose values should be selected
carefully. The convolution process can be speed up by using dimension reduction
adjusting the stride value. If the stride value takes a value other than 1, then the filter skips
the input by this amount. If input size reduction is not desired, padding is used. In the
pooling layer, size reduction is done in the same way as in the convolution layer with one
difference is that the number of channels remains unchanged. There are two main types of

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 5/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

pooling methods: max and average pooling. Pooling type, the size and the stride of the filter
are among the hyper-parameters in a given network. In the example CNN in Fig. 1, the first
convolution layer includes 32 filters each with a size of 5 × 5 × 5, and after the first
convolution operation, linear structure is transformed into a non-linear structure using
ReLU activation function. After the pooling layer, input weight and height is reduced to
22 × 22, but the depth is increased to 32. After the second convolution and pooling
operations, input width and height is reduced even more. Strive method is proposed as an
alternative to the pooling method (Springenberg et al., 2014). A strive layer is a kind of
convolution layer with 3 × 3 or 2 × 2 filter sizes with a stride of 2. Filters in this layer
do not have weights to learn, because, only size reduction is applied. After the convolution
and pooling operations, a flattening operation is applied to transform all the feature maps
in the final layer into a one-dimensional vector which is then fed to the fully connected

Figure 1 An example CNN architecture. Full-size DOI: 10.7717/peerj-cs.338/fig-1

Figure 2 Convolution process. Full-size DOI: 10.7717/peerj-cs.338/fig-2

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 6/27

http://dx.doi.org/10.7717/peerj-cs.338/fig-1
http://dx.doi.org/10.7717/peerj-cs.338/fig-2
http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

layer where classification results are obtained. There might be multiple fully connected
layers in a CNN; however, the output size of the last fully connected layer should match the
number of classes in the problem. For a given input, a classification score is computed for
each class and the input is assigned to the class with the highest score. Based on the
prediction accuracy, an error is computed which is then used to update the weights in the
network. This process is repeated until a desired error rate is achieved. For a detailed
review on the topic please refer to (Goodfellow, Bengio & Courville, 2016).

Hyper-parameters like the total number of layers, the number and size of the filters at
each layer along with filter related parameters like stride and padding define a CNN
configuration or an architecture. On the other hand, total number of weights in all of
the layers of a CNN defines the size or the number of parameters of that network. The size
of a CNN is calculated differently for convolution and fully connected layers. The number
of parameters in a convolution layer equals to d �m� nð Þ þ 1ð Þ � k , where d is the
number of input feature maps, and m and n are the filter width and height, respectively
(1 is added because of the bias term for each filter), and k is the number of output
feature maps. The number of parameters in a fully connected equals to cþ 1ð Þ � p, where
c is the number of input nodes and p is the number of output nodes.

SA algorithm
Simulated Annealing (SA) uses an adaptation of the Metropolis algorithm to accept
non-improving moves based on a probability (Kirkpatrick, Gelatt & Vecchi, 1983). In a
single-objective SA, a new solution, X′, is selected within the neighborhood of current
solution X, where the neighborhood of X is defined as all the solutions that can be reached
by a single move from X. The moves that can be performed in a SA are defined based
on the representation used to encode a feasible solution. Solution representation, on
the other hand, is highly dependent on the problem domain. If the objective function
value of X′ is smaller than X (for a minimization problem), then X′ is accepted.
If X′ is worse than X, then it is accepted with a probability, pacc,which is calculated
based on the worsening amount and the current temperature of the system as,
pacc ¼ min 1; exp �DF=Tcurð Þf g where DF is the worsening amount in the objective
function and Tcur is the current temperature. If the temperature is high, then the
probability of accepting a worsening move would be higher than the probability with a
lower temperature. In general, the system is initiated with a high temperature to allow
exploration during initial steps. As shown in the SA pseudo-code below, after a certain
number of solutions are visited at the current temperature level which is defined by the
parameter nbr inner iter, the temperature is lowered gradually according to a predefined
annealing scheme. Geometric cooling that uses a decay factor smaller than 1 is the
most widely used cooling scheme in SA. At each outer iteration, Tcur is reduced to
ensure the convergence of the algorithm, because the probability of accepting worsening
moves drops as Tcur reduces. The total number of solutions visited during a run of a SA
is defined as nbr out iter � nbr inner iter. However, the number of outer iterations is
not always fixed before the start of the algorithm. A minimum temperature level, or a
minimum objective function value can be defined as the stopping criterion. Initial

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 7/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

temperature, Tinit , cooling rate (if geometric cooling is employed) and the final
temperature, Tfinal are important parameters that should be selected carefully.

In this study, the SA algorithm considers only one objective which is the error rate,
and it accepts a new solution X′ only if it is better than current solution X with respect to
this single objective value. However, if X and X′ have the same error rate, then the SA
selects the one with the smaller number of FLOPs. The composite move used to generate
X′ is defined in “Local Moves”. In order to define Tinit , we use a real time initial
temperature selection strategy (Smith, Everson & Fieldsend, 2004). In this strategy, pacc is
not calculated using the formula pacc ¼ min 1; exp �DF=Tcurð Þf g. Instead, a fixed initial
probability value which is recommended as 0.5 is defined for accepting the worsening
moves. Then, Tinit is calculated as � DFave= ln paccð Þð Þð Þ, where DFave is the average
worsening penalty amount which is calculated executing a short “burn-in” period.
A similar real time temperature adjustment approach is also used to define Tfinal. In this
study, the total iteration budget defines the SA stopping criterion, and the number of
inner and outer iterations are defined according to this iteration budget and the cooling
scheme.

MOSA algorithm
There are many types of MOSA algorithms in the literature, and basically, there are two
main differences between multi-objective and single-objective SA algorithms. The first
difference is the design of the acceptance rule, and second one is the maintenance of
an external archive of non-dominated solutions which will eventually yield an
approximation of the Pareto front. Let zk Xð Þ for k 2 1; 2; ::;Kf g be the value of the
kth objective function of a solution X. If a new solution X0 yields in objective function
values that are superior to X in terms of all of the objectives; that is, Dzk ¼ zk X0ð Þ � zk Xð Þ

Algorithm 1 SA

init sa params Tinit ; nbr out iter; nbr inner iterð Þ
Tcur Tinit

for counter 0 to nbr out iter do

for inner counter 0 to nbr inner iter do

X0 SelectFromNeighbor Xð Þ
if DF ¼ F X0ð Þ � F Xð Þð Þ � 0 then

X X0

else if prnd � exp �DF=Tcurð Þthen
X X0

else

continue with X

end

end

Tcur Tcur�cool ratio
end

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 8/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

and Dzk � 0; k 2 1; 2f g assuming the two objectives are to be minimized, then it is always
accepted. Otherwise, probabilistic acceptance rules as discussed in “SA Algorithm”. are
used, but before this, multiple objective values should be combined into a single objective
value. There are several approaches to combine all objective function values into a
single value. (Ulungu et al., 1999) use a criterion scalarizing function which takes the
weighted sum of the objective functions. Czyzżak & Jaszkiewicz (1998) use a diversified set
of weights to obtain a diverse set of solutions in the final front in their SA-based algorithm
which they call Pareto Simulated Annealing (PSA). Suppapitnarm et al. (2000) propose
another MOSA, which they call SMOSA that suggests maintaining different temperatures,
one for each objective. In the study a “return-to-base” strategy which restarts the
search from a random archive solution is introduced. In dominance-based acceptance
rules, X and X0 are compared with respect to the dominance relation. X is said to dominate
X0 which is denoted as X � X0,if it is better than X0 in at least one objective and it is
not worse than X0 in all of the other objectives. If at any iteration, X � X0 then, X0 is
accepted with a probability which is also computed according to the domination status of
the solutions. Suman (2004) proposes a Pareto Domination-Based MOSA which uses the

Algorithm 2 MOSA

init mosa params Tinit ; nbr out iter; nbr inner iterð Þ
Tcur Tinit

for counter 0 to nbr out iter do

for inner counter 0 to nbr inner iter do

X0 SelectFromNeighbor Xð Þ
if X � X0 // current dominates new

then

if prnd � exp �DF=Tcurð Þthen X X0

else

if X0 � a; a 2 A then // an archive solution is dominated by new

X X0

updateArchive X0ð Þ
elseif a � X0; a 2 A then

== an archive solution dominates new

a� selectRandomArchiveSolutionðÞ
X select a�;X0;Xð Þ == ða � and X0Þ or ða � and XÞ competes

else

==new does not dominate or is not dominated by any archive solution

X X0

updateArchive X0ð Þ
end

end

Tcur Tcur�cool ratio
end

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 9/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

current domination status of a solution to compute its acceptance probability. The
acceptance probability of a solution is determined by the number of solutions in the
current front dominating it. Bandyopadhyay et al. (2008) proposes Archive-based
Multi-objective Simulated Annealing (AMOSA) which again uses a dominance-based
acceptance rule. A detailed survey on single-objective and multi-objective SA can be found
in Suman & Kumar (2006).

The MOSA algorithm proposed in this study iterates in a similar fashion as the
single-objective SA algorithm. However, there are now two objective values to take into
consideration while moving from X to X0, where the first objective being the number of
FLOPs required by the network, and the second being the error rate achieved by the
network. Criterion scalarizing rules can be used to combine the two objective values into
one, but this method requires both objective values to be in the same scale and proper
weights to be defined for each objective. On the other hand, probability scalarizing
rules calculate the acceptance probability of X0 for each objective individually, then a
decision rule is applied to aggregate these probabilities such as taking the minimum,
maximum or the product of these probabilities. As different probabilities are evaluated for
each objective, a different temperature should be maintained for each objective in this
approach. Due to the difficulties mentioned above, we adopt the Smith’s Pareto dominance
rule (Smith et al., 2008) in our MOSA algorithm. Starting from the first iteration, all
non-dominated solutions encountered during the search are collected in an external
archive, A, which is updated whenever a new solution is accepted. The state of A is
expected to improve as the algorithm iterates, and archive solutions in the final
iteration form the Pareto front which is presented to the decision maker. As shown in the
MOSA pseudo-code below, as the algorithm iterates from X to X0, if X � X0 (X dominates
X0), then X0 is accepted based on Smith’s Pareto dominance rule which calculates the
acceptance probability of a given solution by comparing it with the current archive
which contains potentially Pareto-optimal set of solutions. Smith’s rule uses a difference in
the energy level, DF, to compare two solutions with respect to all objectives as follows:
Let A denote the current potentially Pareto optimal set and ~A denote the union of this set
and two competing solutions, ~A ¼ A [X [X0, then DF ¼ f1= ~A

�� ��g � F X0ð Þj j � F Xð Þj jf g,
where F Xð Þ denotes the solutions in A that dominate X plus 1. The probability of
accepting X0 is then computed as pacc ¼ exp �DF=Tcurð Þ, where the only difference with a
single-objective version is the calculation of DF. In this approach, only one temperature is
maintained regardless of the number of objectives. In a multi-objective version of SA
algorithm, archive maintenance related rules should also be defined. If X 6�X0 (X does
not dominate X0), then X0 becomes a candidate for being a member of the archive. This is
determined as follows: If X0 dominates any solution in A, then X0 is accepted and the
archive is updated by inserting X0 and removing all the solutions dominated by it. If X 6�X0
but there is a solution a 2 A dominating X0, then no archive update is performed and
the current iteration is completed either by accepting X0, a or X as the current solution.
If X0 � X, then a and X0 compete for being selected as the current solution according to the
probability calculated with the same rule described above. Here, a represents a random

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 10/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

archive solution dominating X0. Continuing the search process with a previously visited
archive solution is known as return-to-base strategy. If X 6�X0 and X0 6�X, then first
these two solutions compete, and then the winning solution competes with a according to
the same probabilistic acceptance rule. If X 6�X0 and there is no solution a 2 A that
dominates X0, and X0 does not dominate any solution a 2 A, then X0 is accepted and
inserted into the archive. As the archive is updated by removing all dominated solutions,
the size of the archive does not grow very large. Selection of other MOSA parameters
such as Tinit , Tfinal, cooling rate and also the number of inner and outer iterations are given
in detail in Section “MOSA parameter tuning”.

Performance evaluation criteria
In multi-objective optimization problems, final fronts are evaluated according to two
performance criteria: (i) Closeness to the Pareto-optimal front and, (ii) Diversity of the
solutions along the front (Zitzler, Deb & Thiele, 2000; Deb, 2001). Generational Distance
(GD) is the most-widely used metric to examine the closeness of the final front to
Pareto-optimal front (Van Veldhuizen & Lamont, 2000). In order to measure the diversity
which is comprised of two components, namely distribution and spread, two metrics,
spacing and maximum spread are used. Spacing evaluates the relative distance among the
solutions, whereas spread evaluates the range of the objective function values.

GD metric requires a Pareto-optimal front in order to compare any two fronts.
Since this optimal front is not known in advance, it is approximated by an aggregate front,
A�, which is formed by combining all solutions in the two fronts. Then, the amount of
improvement achieved in each front is measured with respect to this aggregate front.
GD for a given front is calculated as given in Eq. (1), where di is the Euclidean distance
between the solution i 2 A and the closest solution k 2 A�. In Eq. (2), Pmax and Emax

denote the maximum objective values, whereas P� and E� denote the minimum objective
function values observed in A�. For this GD metric, smaller the better.

GD Að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2A d
2
i

p
Aj j (1)

di ¼ min
k2A�

ffi
1
2

Pi � Pk
Pmax � P�

� �2

þ Ei � Ek
Emax � E�

� �2
 !vuut (2)

Zitzler’s spread metric which is computed as in Eq. (3) is used to measure the extent of the
fronts. This metric simply calculates Euclidean distance between the extreme solutions in a
given front. If a front A includes all the extreme solutions in A�, then this front takes a
value of 1 according to this metric.

S Að Þ ¼

ffi
1
2

max
i2A

Pi �min
i2A

Pi

Pmax � P�

 !2

þ
max
i2A

Ei �min
i2A

Ei

Emax � E�

 !2
0
@

1
A

vuuut (3)

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 11/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

Spacing metric (Schott, 1995) is used to measure the diversity along a given front. For each
solution, distance to its closest neighbor is calculated as shown in Eq. (4). Then, the
spacing metric is calculated as the standard deviation of these distances as shown in
Eq. (5), where �d is the average distance value. If the distance between the closest solutions
are distributed equally, then the value of this metric approaches to zero which is the desired
condition.

di ¼ min
k2A^k6¼i

Pi � Pkj j
max
j2A

Pj �min
j2A

Pj
þ Ei � Ekj j
max
j2A

Ej �min
j2A

Ej

0
@

1
A; for i 2 A (4)

Sp Að Þ ¼
ffi
1
Aj j
X
i2A

di � �d
� �2s

(5)

RESULTS
Implementation details
Solution representation and the search space
Solutions can be represented with either block (Ma et al., 2020) or layer structure
(Yamasaki, Honma & Aizawa, 2017; Sun et al., 2019b). In this study, we adopted the block
structure with variable length representation; where the solutions are allowed to expand
or shrink dynamically. A new solution is generated by repeating a certain number of
convolution and fully connected blocks. A convolution block is composed of a convolution
layer (CONV), activation function (ACT), batch normalization (BN), subsampling
method (SUBS) and a dropout function (DROP). A fully connected block is composed
of a fully connected layer (FC), activation function, batch normalization and a dropout
function. This structure can be represented as: CONV ! ACT ! BNð Þ � NC !½
SUBS! DROPð Þ� � NCB ! FC ! ACT ! BN ! DROPð Þ½ � � NFB, where #Conv denotes
the number of number of convolution layers in a convolution block, NCB denotes the
number of convolution blocks, and NFB denotes and the number of fully connected blocks.
We adopted the same dictionary structure given in (Ma et al., 2020) to represent a solution
which is given below:

Conv : ks; kc; p; s; af g#ConvN¼1 ;Pool : ksp; sp; pt; dp
� 	� 	NCB

M¼1þ uf ; df ; af
� 	NFB

K¼1
n o
We adopted the same hyper-parameters as in (Gülcü & Kuş, 2020), and the full name of the
hyper-parameters whose abbreviations are given in the dictionary representation are given
in Table 1 along with their type and value ranges. An example solution that uses the
dictionary representation is given below (please refer to Table 1 for the abbreviations):

{{NCB: 2, NFB: 1},
{"Conv_Block_1": {"Conv" : {#Conv: 2, ks: 5, kc: 32, p: SAME, s : 1, a: relu}, "Pool" : {ksp:

3, sp: 2, pt: MAX, dp 0.2 }}, "Conv_Block_2" : {"Conv" : {#Conv: 3, ks: 3, kc: 64, p: SAME, s :
1, a: relu}, "Pool" : {ksp: 3, sp: 2, pt: MAX, dp: 0.4}}} + "Fully_Block_1" : {uf: 128, df: 0.5, af:
relu}}.

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 12/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

Local moves
MOSA algorithm starts by taking VGGNet (Simonyan & Zisserman, 2015) as the initial
solution, and at any iteration, a new solution is created from the current solution by
modifying the convolution and fully connected block hyper-parameters as follows:

Step1: add a new convolution block with a probability p which takes a value of 0.0625
initially, and increases by 1.4 times at every 50 iterations. A newly added block inherits all
the hyper-parameters from the preceding block.

Step 2: select the subsampling method, pooling or strive, with equal probabilities.
Step 3: start from the first convolution block, modify each block as follows:

	 if #Conv <maximum allowed layer count, then, add a new convolution layer with a
p of 0.8; otherwise, delete the last convolution layer with a p of 0.2

	 modify the convolution layer hyper-parameters with a p of 0.5. If it is decided
to be modified, then only one hyper-parameter which is selected randomly is
modified. Since the same layer hyper-parameters are used within the same block
(as in the VGGNet architecture), this selection affects all the layers in that block.

Step 4: add a new fully connected block in a similar fashion to adding a new convolution
block.

Table 1 Hyper-parameters to be optimized, their value types and ranges.

Hyper-parameter Abbreviation Value types Value ranges

Convolution (Conv) Filter size ks Numeric 3, 5, 7

Filter count kc Numeric 32, 64, 96, 128,
160, 192, 224, 256

Padding p Categorical SAME**

Stride s Numeric 1**

Activation function f Categorical ReLU, Leaky-ReLU, Elu

Subsampling method – Categorical Pooling, Strive

Pooling (Pool)* Filter Size ksp Numeric 2, 3

Stride sp Numeric 2**

Type pt Categorical MAX, AVG

Dropout rate dp Numeric 0.3, 0.4, 0.5

Strive* Strive Filter Size kss Numeric 2, 3

Padding ps Categorical Valid**

Stride ss Numeric 2**

Fully Connected Number of units uf Numeric 128, 256, 512

Dropout rate df Numeric 0.3, 0.4, 0.5

Activation function af Categorical ReLU, Leaky-ReLU, Elu

#Convolutional layers #Conv Numeric 2, 3, 4

#Convolutional blocks NCB Numeric 2, 4

#Fully connected layers NFB Numeric 0, 2

Notes:
* Conditioned on subsampling method.
** Fixed values.

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 13/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

Step 5: start from the first fully connected block, modify only one random hyper-
parameter with a p of 0.5 as in the convolution block.

We have observed during the preliminary experiments that the approach of adding a
new convolution block with an initial probability of 0.0625, and increasing this probability
by 1.4 times at every 50 iterations, enabled the search reach 4-block networks around
iteration number 325. With this approach, the probability of adding a new block is
increased to 0.24 at the end of the 200th iteration; and at the end of 300th iteration, it
became 0.46 allowing the network to grow with roughly 50% probability. If we had kept
this probability constant, 4-block networks would have been explored for only a few
iterations towards the end of the search process.

Experimental setup
MOSA parameter tuning
In our study, the MOSA algorithm adopts a real time initial temperature selection strategy
in which the worsening moves are accepted with an initial probability, pacc, of 0.5. Tinit

is then calculated as Tinit ¼ � DFave= ln paccð Þð Þð Þ. Average initial worsening penalty
amount, DFave, is approximated executing a short “burn-in” period in which worsening
moves as well as improving ones are all accepted. We run a burn-in period with 100
iterations and 39 of them resulted in worsening solutions. In Table 2, some information
regarding only a few of those iterations are given. In the table, F Xð Þ denotes the solutions
in A that dominate X plus 1, Aj j denotes the size of the archive, F X0ð Þ � F Xð Þ denotes
the worsening amount in terms of domination count and DF denotes the objective
value calculated as DF ¼ f1= ~A

�� ��g � F X0ð Þj j � F Xð Þj jf g, where ~A
�� �� equals Aj j þ 2.

The average Aj j value obtained in this burn-in period is used to calculate DFave. This period
results in a DFave value of 0.40 which also gives a Tinit value of 0.577. We adopt a
similar temperature adjustment approach to determine Tfinal value, where in this case
we assumed a F X0ð Þ � F Xð Þ value of at most 1 to be accepted with the same probability.
In order to calculate Tfinal, final front size needs to be approximated, and a value of 10 for
the final front size seemed to be reasonable according to preliminary experiments, and
Tfinal is calculated as 0.12.

In this study, the MOSA algorithm is allowed to run for a number of iterations
defined by the iteration budget of 500, which means that at most 500 solutions are created
during a single run. The amount of this total iteration budget to be allocated in outer
and inner iterations is determined by the cooling rate parameter. We tested for several
cooling rate values keeping the total number of iterations at 250 due to large computational
times. Table 3 shows the number of outer and inner iterations calculated for different
cooling rate values under the same budget and temperature values. Based on these iteration
numbers, we selected cooling rate values of 0.95, 0.90 and 0.85 for the parameter tuning
process. We allowed the MOSA algorithm run for 3 times for each of those cooling
rate values using different random number seeds. The fronts obtained under each cooling
rate value for three runs are given in Fig. 3. As can be seen in the figure, three Pareto
fronts are obtained for each cooling rate value. Although one can notice that there is no
difference among the fronts formed with different cooling rate values visually, we applied

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 14/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

Kruskal–Wallis h-test to determine whether there are significant differences. This test is
applied separately for GD, Spread and the front size metrics, but none of those metrics
proved a significant difference among the fronts. Therefore, we selected a cooling rate of
0.85 arbitrarily.

Cifar10 dataset
In this study, CIFAR-10 dataset (Krizhevsky & Hinton, 2009) which is the most widely-
used natural object classification benchmark dataset used in HPO and NAS studies is
selected as the benchmark dataset. Considering the computational cost and the hardware
requirement to run the experiments, the selected dataset should be simple, yet complex
enough to reveal the differences among different methods or the network configurations.
Many studies consider this dataset as the only benchmark dataset (Lu et al., 2019a;
Wang et al., 2019; Elsken, Metzen &Hutter, 2018) due to the fact that it is simpler than very
large-scale ImageNet dataset (Russakovsky et al., 2015), but still difficult enough to be used
to evaluate the performance of different approaches.

CIFAR-10 dataset consists of 60,000 32 × 32 color images in 10 classes, and each class
contains 6,000 images. The whole dataset is divided into training and test datasets of
50,000 and 10,000 images, respectively. In most of the studies, CIFAR-10 original training
set is split into two sets (80–20%) to create training and validation sets which are used
during the search process. We follow a similar approach with only difference is that, only
half of the original training dataset is used during a MOSA search process. In order to
speed up the search process, a reduced sample of 50% of the original training samples are

Table 3 The number of outer and inner iterations calculated for different cooling rate values under
the same budget and temperature values.

Iteration budget Tinit Tfinal Cooling rate #Outer iterations #Inner iterations

250 0.577 0.12 0.99 156.2 1.6

250 0.577 0.12 0.95 30.6 8.1

250 0.577 0.12 0.9 14.9 16.7

250 0.577 0.12 0.85 9.6 25.8

250 0.577 0.12 0.8 7.0 35.5

Table 2 Worsening moves encountered during burn-in period.

Iteration no F(X) F(X′) |A| F(X′)–F(X) ΔF

3 1 4 3 3 0.600

5 5 4 4 4 0.667

9 1 2 5 1 0.143

11 1 6 6 5 0.625

13 1 7 7 6 0.667

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Average 2.69 5.94 6.02 3.25 0.40

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 15/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

selected randomly; and 10% of this reduced sample is used as the reduced validation
set. Although this approach might have some negative effects on the performance
evaluation of a given configuration; we believe this effect is minimal due to the fact
that the aim of the search process is not to accurately measure the error rate of a
configuration, but to perform a fair comparison to discriminate good and bad
configurations. The original CIFAR-10 test set is never used during the MOSA search
process, and it is only used to obtain the actual test accuracy values of the selected
configurations on the final trade-off front. Other image classification datasets such as
MNIST (LeCun et al., 1998), FashionMNIST (Xiao, Rasul & Vollgraf, 2017) and
EMNIST-Balanced (Cohen et al., 2017) are being criticized for having reached their limits
and failing to reveal the differences between the algorithms (Lu et al., 2019a).

Training and evaluation during the search process
During the search process, the classification performance of a generated network
configuration is approximated by following the early stopping approach. Early stopping is
used as a popular method to prevent over-fitting in classical machine learning; however, in

Figure 3 Comparison of MOSA fronts under different cooling rates with (A) random seed: 10, (B) random seed: 20, (C) random seed: 30.
Full-size DOI: 10.7717/peerj-cs.338/fig-3

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 16/27

http://dx.doi.org/10.7717/peerj-cs.338/fig-3
http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

the context of AutoML, and in particular for HPO, it is usually used to cut down the
training time for unpromising configurations. Based on the evaluations on the validation
set, if a poor early-stage performance is observed, then the training process is terminated,
and the search moves to a new configuration. This approach not only cuts down total
running time of the HPO method, but also introduces noise and bias to the estimation, as
some configurations with bad early-stage performance may eventually turn out to be good
after sufficient training (Yao et al., 2019). At each MOSA iteration, a newly generated
configuration is trained using the training split of the original training set and it is
evaluated on the validation set which is the test split of the original training set. Xavier
weight initializer and Adam optimizer with a learning rate of 0.001 is used, and the
batch size is selected as 32. For a given configuration, if the best loss achieved on the
validation set is not improved after three consecutive epochs, then the training process
is terminated. A configuration is allowed to be trained at most 100 epochs. In a MOSA run
with 500 iterations, we observe that the average number of epochs is 23.166. This epoch
count seems to be reasonable considering the epoch count used in similar studies:
minimum of 36 epochs in (Lu et al., 2019a) and 20 epochs in Elsken, Metzen & Hutter
(2018). All experiments are performed on a single Nvidia 2080 Ti GPU using Keras
(Chollet et al., 2015), and the code and the raw evaluation results are available at
https://github.com/zekikus/MOSA-cnn-hyperparams-optimization.

Training after the search process
The MOSA algorithm is run for 500 iterations, and each run is repeated for three
times using different random seeds. From each of three trade-off fronts, some
non-dominated configurations are selected and then trained for longer epochs on the
original CIFAR-10 training dataset in order to measure their actual classification
performance. From each front, three configurations with the lowest error rates are selected
and each solution is trained for 400 epochs with a batch size of 128 using standard
stochastic gradient descent (SGD) back-propagation algorithm with the following
parameter values: learning rate = 0.08, decay = 5E−4 and momentum = 0.9 (default values
in Keras). As mentioned earlier, the original test set is never used during training; it is only
used at this stage to test the performance of the selected networks. To improve the test
performance, we only utilized an online augmentation routine that is used in many
peer studies. This process which is also called augmentation on the fly is especially
preferred for larger datasets where an increase in size cannot be afforded. Sequential
transformations of padding, random crop and horizontal flip are applied on the mini-
batches during training (He et al., 2016; Huang et al., 2017). In some studies, training
performance is further improved by some additional operations. For example, (Lu et al.,
2019b) appends an auxiliary head classifier to the architecture, but we did not follow these
approaches that require manual intervention after the search process.

Results analysis
We first present the objective space distribution of all configurations obtained during each
independent run of the MOSA. In order to show the search ability of the proposed

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 17/27

https://github.com/zekikus/MOSA-cnn-hyperparams-optimization
http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

algorithm, the MOSA search space is compared to the search space generated by the
single-objective SA method also to the search space generated by Random Search (RS)
method in which all solutions are accepted regardless of their objective values. Final fronts
are also compared in terms of the front metrics given in “Performance Evaluation
Criteria”. Then, some solutions in the final front are selected to be trained for longer
epochs in order to perform post search analysis. The configurations generated by the
MOSA are compared to both human designed state-of-the-art configurations and the
configurations generated by other search methods like evolutionary algorithms in terms of
the test error, the number of FLOPs, the number of parameters and also the search cost
which is reported as GPU-days.

Fronts analysis

A MOSA search is repeated three times with different initial random seeds, and the
objective space distribution of all configurations encountered during each of those search
processes are illustrated in Fig. 4. In all of those runs, SA especially focuses on the areas
with small classification error but with large number of FLOPs, es expected. In order to
show the search ability of the MOSA over the SA, we compare the final fronts generated by
each method in terms of closeness to the Pareto-optimal front and the diversity of the

Figure 4 Comparison of MOSA and SA search ability in terms of objective space distribution and the Pareto fronts with (A) random seed: 10,
(B) random seed: 20, (C) random seed: 30. Full-size DOI: 10.7717/peerj-cs.338/fig-4

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 18/27

http://dx.doi.org/10.7717/peerj-cs.338/fig-4
http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

solutions along the fronts. The configurations generated by the SA seem to be much
complex than the configurations generated by the MOSA which also takes into account the
complexity as the other objective. Due to the large computational time requirement
(at least 2 × longer), SA is run only once. As there is no archive mechanism in the SA,
the final SA front is formed by selecting all non-dominated configurations encountered
during a single run. The MOSA and the SA fronts are also shown in Fig. 4 along with the
objective space distributions of those algorithms. In addition to making comparison
using graphical plots, we used the metrics given in “Performance Evaluation Criteria” to
compare the fronts generated by each approach in a quantitative manner. These metrics
are as follows: Generational Distance (GD), Spread (S) and Spacing (Sp) metrics.
The comparison results using these metrics are given in Table 4. In the table, MOSA_01
represents the MOSA front obtained at the first run, and MOSA_02 represents the
MOSA front obtained at the second run and so on. GD of each front is calculated with
respect to A� which is formed by combining all four fronts. S of each front is calculated
with respect to the extreme points considering again all four fronts. Sp metric is calculated
for each front separately, because it measures within front distribution quality of a
given front.

The search ability of the proposed method is also validated by comparing it to the RS
method. The same comparisons performed between the MOSA and the SA are applied to
compare the MOSA and the RS methods. When the MOSA and the RS solutions are
combined to create A�, none of the RS front solutions take place in A� as in the case of SA.
A� is composed of only the solutions coming from the MOSA which means that GD
calculations are made against the same reference front; therefore we decided to present all
these comparison results on the same table, Table 4. Figure 5 illustrates the objective space
distribution and the fronts obtained by the MOSA and the RS methods.

After search analysis
In order to measure the actual classification performance of the configurations generated
by the MOSA method, nine configurations are selected and subjected to longer training
using the original CIFAR-10 training dataset as detailed in “Training After the Search
Process”. Among these nine configurations, the networks with the lowest error rates are
selected for comparison with the networks reported in the literature. As the MOSA
algorithm considers two objectives, namely, error rate and the FLOPs, during the search
process, a multi-objective comparison with respect to the front evaluation metrics
should be performed for a fair comparison. Unfortunately, most of the studies do not

Table 4 Evaluation of the final fronts with respect to three metrics and the number of solutions.

MOSA_01 MOSA_02 MOSA_03 SA RS

GD 0.0011 0.0629 0.0387 0.0765 0.0286

S (spread) 0.7127 0.7944 0.5867 0.6681 0.4755

Sp (spacing) 0.0891 0.1483 0.1384 0.1519 0.1268

#Solutions 11 10 10 7 10

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 19/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

report the objective values of the solutions in the final frontiers, or they consider different
objective functions to estimate the complexity of the generated networks. In some studies,
computational complexity is measured as computational time in GPU-days. However,
a comparison with respect to computational time may not be reliable due to some external
factors such as the temperature in the computing environment, even if the same GPU
models are used for the experiments. Therefore, the number of FLOPs that a network
carries out during a forward pass is the most reliable complexity measure. In Table 5,
the final performance of three MOSA configurations in terms of both objectives are
presented. In addition, a graphical comparison is given in Fig. 6 where the dominance
relation between different configurations can be easily noticed. As in “Fronts Analysis”,
a comparison to the configurations found with the single objective SA algorithm is also
performed and the results are presented in the table in order to show the effect of
using a multi-objective solution approach for this bi-objective optimization problem.
From the SA trade-off front, three configurations with the lowest error rate are selected
for longer training, and the performance of each configuration is reported in the table.
The same approach is followed for the RS, as well. Other search generated architectures
are included in the second part of the table. In the table, the accuracy, the number of
FLOPs and the number of parameters columns all represent the values reported in the

Figure 5 Visual comparison of MOSA and RS search ability in terms of objective space distribution and the Pareto fronts with (A) random
seed: 10, (B) random seed: 20, (C) random seed:30. Full-size DOI: 10.7717/peerj-cs.338/fig-5

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 20/27

http://dx.doi.org/10.7717/peerj-cs.338/fig-5
http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

original papers. As stated before, we did not consider the search cost in terms of time in the
comparisons; however, in order to give an idea about the search cost of the MOSA
algorithm, we run one MOSA search on the same GPU as in NSGA-Net (Lu et al., 2019a).
We observe that MOSA takes 50 hours on a single NVIDIA 1080Ti GPU, which equals to
2.08 GPU-days, whereas it takes 8 GPU-days for NSGA-Net.

A comparison of the MOSA configurations to the human designed state-of-the-art
configurations are also performed. In order to be able to make a fair comparison, especially

Table 5 Comparison of MOSA architectures to other search generated architectures.

Architecture Search
method

Test
accuracy (%)

FLOPs (M) Parameters
(M)

MOSA_soln1 MOSA 91.97 16.2 3.329

MOSA_soln2 MOSA 91.52 1.7 0.854

MOSA_soln3 MOSA 91.14 1.2 0.641

SA_soln1 SA 92.65 6.8 5.9

SA_soln2 SA 92.85 11.7 3.572

SA_soln3 SA 90.04 7.1 3.45

RS_soln1 RS 88.27 4.1 2.052

RS_soln2 RS 91.25 5.1 2.603

RS_soln3 RS 86.26 1.7 0.887

NSGA-Net (Lu et al., 2019b) EA 96.15 1290 3.3

PPP-Net (Dong et al., 2018) EA 95.64 1364 11.39

AmoebaNet-A + cutout (Real et al., 2019) EA 97.23 533 3.3

NASNet-A + cutout (Zoph et al., 2018) RL 97.09 532 3.2

Figure 6 Comparison of the final performance of the networks in terms of both the error rate and the
number of FLOPs. Full-size DOI: 10.7717/peerj-cs.338/fig-6

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 21/27

http://dx.doi.org/10.7717/peerj-cs.338/fig-6
http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

in terms of test accuracy, each of these state-of the-art architectures are rebuilt and trained
using the same augmentation techniques as in the MOSA training process. The results are
presented in Table 6.

DISCUSSION
The MOSA and the SA algorithms are allowed to run for the same number of iterations.
An archive is maintained to collect all non-dominated solutions that have been
encountered throughout the search process. The MOSA also incorporates a return-to-base
strategy which allows further exploitation of the archive solutions. Moreover, it uses a
dominance-based acceptance rule as the decision criterion. CIFAR-10 dataset which is
the most widely-used natural object classification benchmark dataset is used to compare
the performance of different approaches. We first compare the search ability of the
MOSA and the SA algorithms using the trade-off fronts obtained by each method.
Objective space distribution of all configurations encountered during a SA search process
is used to form the trade-off front consisting of only non-dominated solutions. The MOSA
and the SA fronts are then compared with respect to three multi-objective evaluation
metrics. According to the results based on generational distance, spread and spacing
metrics, the MOSA algorithm is able to generate better fronts than the SA method.
When the objective space distribution of the two methods are compared visually, one can
see that the single-objective SA focuses on the objective space with small error rates
regardless of the number of FLOPs, as expected. On the other hand, the MOSA focuses
on the objective space with both small error rates and small number of FLOPs. When the
two algorithms are compared in terms of font cardinality, one can see that the MOSA
is able generate more solutions. When the MOSA fronts are compared to the RS front,
it is observed that each of three MOSA front yields in better spread value than the RS front.
But for other metrics, while the best value is always achieved by a MOSA front, the RS
yields in competitive results. As this front analysis is important in terms of providing
some indications about the search ability of the algorithms, a more reliable comparison can
be made after training the solutions in the trade-off front for longer epochs in order to get
their accuracy on the original test set. However, due to the computational cost of this
training process, only the selected solutions are allowed to run for longer training epochs.
When the MOSA and the SA configurations are compared after this long training process,

Table 6 Comparison of MOSA architectures to human designed state of the art architectures.

Architecture Test accuracy (%) FLOPs (M) Parameters (M)

MOSA_soln1 91.97 16.2 3.329

MOSA_soln2 91.52 1.7 0.854

MOSA_soln3 91.14 1.2 0.641

LeNet-5 (LeCun et al., 1990) 71.86 0.162 0.081

VGGNet-16 (Simonyan & Zisserman, 2014) 86.38 67.251 33.638

ResNet-50 (He et al., 2016) 76.01 47.052 23.604

DenseNet-32 (Huang et al., 2017) 89.38 2.894 0.494

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 22/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

the results show that the SA performs slightly better than the MOSA under single-objective
setting. However, when the complexity in terms of both FLOPs count and the number
of parameters is considered, the MOSA solutions are superior to SA solutions. When it
comes to comparison to the RS solutions, the results suggest that all RS solutions are
dominated by at least one MOSA solution. The MOSA configurations are also compared to
the configurations obtained by other search methods like evolutionary algorithms and
reinforcement learning methods. Although the results might suggest a poor MOSA
performance in terms of test accuracy, the other objective, FLOPs, should also be taken
into account for a fair comparison. Moreover, most of these approaches include complex
augmentation strategies in order to boost the final test accuracy. When both the test
accuracy and the complexity are considered, it is shown that the MOSA configurations are
not dominated by any of those architectures, and the proposed method can be of great use
when the computational complexity is as important as the test accuracy. It can also be
concluded the MOSA which is a single-stage algorithm is able to generate high quality
solutions under limited computational resources.

CONCLUSIONS
In this study, we model a CNN hyper-parameter optimization problem as bi-objective
optimization problem considering two competing objectives, namely, the classification
accuracy and the computational complexity which is measured in terms of the number
of floating point operations. For this bi-criteria hyper-parameter optimization problem,
we develop a MOSA algorithm with the aim of obtaining high-quality configurations in
terms of both objectives. CIFAR-10 is selected as the benchmark dataset, and the MOSA
trade-off fronts obtained for this dataset are compared to the fronts generated by a
single-objective SA algorithm with respect to three front evaluation metrics. The results
show that the MOSA algorithm is able to search the objective space more effectively than
the SA method. Some non-dominated solutions generated by both the MOSA and the
SA search processes are selected for longer training in order to obtain their actual accuracy
values on the original test set. The results again suggest that the MOSA performs better
than SA under bi-objective setting. The MOSA configurations also compared to the
configurations obtained by other search methods like population-based algorithms and
reinforcement learning methods. It can be concluded that the MOSA which is a single
stage algorithm is able to generate high quality solutions under limited computational
resources, and it can be of great use when the computational complexity and time are as
important as the accuracy.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 23/27

http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

Author Contributions
	 Ayla Gülcü conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
	 Zeki Kuş conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Code and raw results are available at GitHub: https://github.com/zekikus/MOSA-cnn-
hyperparams-optimization.

REFERENCES
Back T. 1996. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary

programming, genetic algorithms (First Press). New York: Oxford University Press.

Bandyopadhyay S, Saha S, Maulik U, Deb K. 2008. A simulated annealing-based multiobjective
optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation
12(3):269–283.

Bergstra J, Bengio Y. 2012. Random search for hyper-parameter optimization. Journal of Machine
Learning Research 13:281–305.

Chollet F, Others. 2015. Keras. GitHub. Available at https://github.com/fchollet/keras.

Cohen G, Afshar S, Tapson J, Van Schaik A. 2017. EMNIST: extending MNIST to handwritten
letters. In: 2017 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE,
2921–2926.

Czyzżak P, Jaszkiewicz A. 1998. Pareto simulated annealing—a metaheuristic technique for
multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis
7(1):34–47 DOI 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6.

Deb K. 2001. Multi-objective optimization using evolutionary algorithms. Vol. 16. Hoboken:
John Wiley & Sons.

Dong JD, Cheng AC, Juan DC, Wei W, Sun M. 2018. Ppp-net: platform-aware progressive search
for pareto-optimal neural architectures. In: ICLR Workshop (2018). Available at
https://openreview.net/pdf?id=B1NT3TAIM.

Eberhart R, Kennedy J. 1995. Particle swarm optimization. In: Proceedings of the IEEE
International Conference on Neural Networks. Vol. 4. Piscataway: IEEE, 1942–1948.

Elsken T, Metzen JH, Hutter F. 2018. Efficient multi-objective neural architecture search via
lamarckian evolution. ArXiv arXiv:1804.09081.

Elsken T, Metzen JH, Hutter F. 2019. Neural architecture search: a survey.
ArXiv arXiv:1808.05377.

Feurer M, Hutter F. 2019. Hyperparameter optimization. In: Automated Machine Learning.
Cham: Springer, 3–33.

Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Vol. 1. Cambridge: MIT press.

Gülcü A, Kuş Z. 2020. Hyper-parameter selection in convolutional neural networks using
microcanonical optimization algorithm. IEEE Access 8:52528–52540
DOI 10.1109/ACCESS.2020.2981141.

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 24/27

https://github.com/zekikus/MOSA-cnn-hyperparams-optimization
https://github.com/zekikus/MOSA-cnn-hyperparams-optimization
https://github.com/fchollet/keras
http://dx.doi.org/10.1002/(SICI)1099-1360(199801)7:1%3C34::AID-MCDA161%3E3.0.CO;2-6
https://openreview.net/pdf?id=B1NT3TAIM
http://dx.doi.org/10.1109/ACCESS.2020.2981141
http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 770–778.

Hoffman MW, Shahriari B. 2014. Modular mechanisms for Bayesian optimization. In:
Proceedings NIPS Workshop Bayesian Optimization. 1–5.

Holland JH. 1992. Genetic algorithms. Scientific American 267(1):66–73
DOI 10.1038/scientificamerican0792-66.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017. Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Piscataway: IEEE, 4700–4708.

Kim YH, Reddy B, Yun S, Seo C. 2017. Nemo: neuro-evolution with multiobjective optimization
of deep neural network for speed and accuracy. In: JMLR: Workshop and Conference
Proceedings. Vol. 1. 1–8.

Kirkpatrick S, Gelatt CD, Vecchi MP. 1983. Optimization by simulated annealing. Science
220(4598):671–680 DOI 10.1126/science.220.4598.671.

Konak A, Coit DW, Smith AE. 2006. Multi-objective optimization using genetic algorithms: a
tutorial. Reliability Engineering & System Safety 91(9):992–1007 DOI 10.1016/j.ress.2005.11.018.

Krizhevsky A, Hinton G. 2009. Learning multiple layers of features from tiny images.
Technical Report. University of Toronto. Available at https://www.cs.toronto.edu/~kriz/learning-
features-2009-TR.pdf.

LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD. 1990.
Handwritten digit recognition with a back-propagation network. In: Advances in neural
information processing systems. Burlington: Morgan Kaufmann, 396–404.

LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11):2278–2324 DOI 10.1109/5.726791.

Li L, Talwalkar A. 2020. Random search and reproducibility for neural architecture search. In:
Uncertainty in Artificial Intelligence. Amsterdam: Elsevier, 367–377.

Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K. 2018. Hierarchical representations
for efficient architecture search. ArXiv arXiv:1711.00436.

Liu H, Simonyan K, Yang Y. 2018. Darts: differentiable architecture search. Available at
http://arxiv.org/abs/1806.09055.

Lu Z, Whalen I, Boddeti V, Dhebar Y, Deb K, Goodman E, Banzhaf W. 2019a. NSGA-net:
neural architecture search using multi-objective genetic algorithm. In: Proceedings of the Genetic
and Evolutionary Computation Conference. 419–427.

Lu Z, Whalen I, Dhebar Y, Deb K, Goodman E, Banzhaf W, Boddeti VN. 2019b.Multi-criterion
evolutionary design of deep convolutional neural networks. ArXiv arXiv:1912.01369.

Ma B, Li X, Xia Y, Zhang Y. 2020.Autonomous deep learning: a genetic DCNN designer for image
classification. Neurocomputing 379:152–161 DOI 10.1016/j.neucom.2019.10.007.

Real E, Aggarwal A, Huang Y, Le QV. 2019. Regularized evolution for image classifier architecture
search. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 4780–4789
DOI 10.1609/aaai.v33i01.33014780.

Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, Le Q, Kurakin A. 2017. Large-scale
evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine
Learning. Vol. 70. 2902–2911.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M, Berg AC, Fei-Fei L. 2015. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision 115(3):211–252.

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 25/27

http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/j.ress.2005.11.018
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://dx.doi.org/10.1109/5.726791
http://arxiv.org/abs/1806.09055
http://dx.doi.org/10.1016/j.neucom.2019.10.007
http://dx.doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

Schott JR. 1995. Fault tolerant design using single and multi-criteria genetic algorithms. Master’s
thesis, Boston, MA: Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology. Available at http://hdl.handle.net/1721.1/11582.

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image
recognition. Available at http://arxiv.org/abs/1409.1556.

Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image
recognition. ArXiv arXiv:1409.1556.

Smith KI, Everson RM, Fieldsend JE. 2004. Dominance measures for multi-objective simulated
annealing. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.
04TH8753). Vol. 1. Piscataway: IEEE, 23–30.

Smith KI, Everson RM, Fieldsend JE, Murphy C, Misra R. 2008. Dominance-based
multiobjective simulated annealing. IEEE Transactions on Evolutionary Computation
12(3):323–342 DOI 10.1109/TEVC.2007.904345.

Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. 2014. Striving for simplicity: the all
convolutional net. Available at http://arxiv.org/abs/1412.6806.

Suganuma M, Shirakawa S, Nagao T. 2017. A genetic programming approach to designing
convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary
Computation Conference. 497–504.

Suman B. 2004. Study of simulated annealing based algorithms for multiobjective optimization of a
constrained problem. Computers & Chemical Engineering 28(9):1849–1871
DOI 10.1016/j.compchemeng.2004.02.037.

Suman B, Kumar P. 2006. A survey of simulated annealing as a tool for single and multiobjective
optimization. Journal of the Operational Research Society 57(10):1143–1160
DOI 10.1057/palgrave.jors.2602068.

Sun Y, Xue B, Zhang M, Yen GG. 2019a. Evolving deep convolutional neural networks for image
classification. In: IEEE Transactions on Evolutionary Computation. Piscataway: IEEE.

Sun Y, Xue B, Zhang M, Yen GG. 2019b. Completely automated CNN architecture design based
on blocks. IEEE Transactions on Neural Networks and Learning Systems 31:1242–1254.

Suppapitnarm A, Seffen KA, Parks GT, Clarkson PJ. 2000. A simulated annealing algorithm for
multiobjective optimization. Engineering Optimization 33(1):59–85
DOI 10.1080/03052150008940911.

Ulungu EL, Teghem JFPH, Fortemps PH, Tuyttens D. 1999. MOSA method: a tool for solving
multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis
8(4):221–236 DOI 10.1002/(SICI)1099-1360(199907)8:4<221::AID-MCDA247>3.0.CO;2-O.

Van Veldhuizen DA, Lamont GB. 2000. Multiobjective evolutionary algorithms: Analyzing the
state-of-the-art. Evolutionary Computation 8(2):125–147.

Wang B, Sun Y, Xue B, Zhang M. 2019. Evolving deep neural networks by multi-objective particle
swarm optimization for image classification. In: Proceedings of the Genetic and Evolutionary
Computation Conference. 490–498.

Weng CH, Lai YH, Lai SH. 2016. Driver drowsiness detection via a hierarchical temporal deep
belief network. In: Asian Conference on Computer Vision. Cham: Springer, 117–133.

Xiao H, Rasul K, Vollgraf R. 2017. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. Available at http://arxiv.org/abs/1708.07747.

Xie L, Yuille A. 2017. Genetic cnn. In: Proceedings of the IEEE International Conference on
Computer Vision. Piscataway: IEEE, 1379–1388.

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 26/27

http://hdl.handle.net/1721.1/11582
http://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1109/TEVC.2007.904345
http://arxiv.org/abs/1412.6806
http://dx.doi.org/10.1016/j.compchemeng.2004.02.037
http://dx.doi.org/10.1057/palgrave.jors.2602068
http://dx.doi.org/10.1080/03052150008940911
http://dx.doi.org/10.1002/(SICI)1099-1360(199907)8:4%3C221::AID-MCDA247%3E3.0.CO;2-O
http://arxiv.org/abs/1708.07747
http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

Yamasaki T, Honma T, Aizawa K. 2017. Efficient optimization of convolutional neural networks
using particle swarm optimization. In: 2017 IEEE Third International Conference on Multimedia
Big Data. Piscataway: IEEE, 70–73.

Yao Q, Wang M, Chen Y, Dai W, Li Y-F, Tu W-W, Yang Q, Yang Y. 2019. Taking
human out of learning applications: a survey on automated machine learning.
ArXiv arXiv:1810.13306.

Zitzler E, Deb K, Thiele L. 2000. Comparison of multiobjective evolutionary algorithms: empirical
results. Evolutionary Computation 8(2):173–195 DOI 10.1162/106365600568202.

Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG. 2003. Performance assessment of
multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary
Computation 7(2):117–132 DOI 10.1109/TEVC.2003.810758.

Zoph B, Le QV. 2016. Neural architecture search with reinforcement learning.
ArXiv arXiv:1611.01578.

Zoph B, Vasudevan V, Shlens J, Le QV. 2018. Learning transferable architectures for scalable
image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 8697–8710.

Gülcü and Kuş (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.338 27/27

http://dx.doi.org/10.1162/106365600568202
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.7717/peerj-cs.338
https://peerj.com/computer-science/

	Multi-objective simulated annealing for hyper-parameter optimization in convolutional neural networks
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

