
Swarm algorithms for sustainable dynamic
flexible job shop rescheduling under
machine breakdown in smart
manufacturing plants
Nehal Tarek1,2, Samia Allaoua Chelloug3, Soha Alhelaly4, Nancy A.
El-Hefnawy5, Hatem Abdel-Kader1,2 and Amira Abdelatey1,2

1 Department of Information Systems, Faculty of Computers and Information, Menoufia
University, Shibin El Kom, Al Minufiyah, Egypt

2 Faculty of Computers and Artificial Intelligence, Menoufia National University, Tukh Tambisha,
Al Minufiyah, Egypt

3 Department of Information Technology, College of Computer and Information Sciences,
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

4 College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia
5 Information Systems Department, Faculty of Computers and Informatics, Tanta University,
Tanta, Egypt

ABSTRACT
Poultry manufacturing plants employing Dynamic Flexible Job Shop Scheduling
Problems (DFJSSP) face workflow disruptions due to unexpected machine failures.
Efficient rescheduling algorithms are essential to reallocate operations and minimize
disruptions. This study proposes two machine failure handling strategies utilizing
Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO)
techniques. Initially, the proposed algorithms generate a healthy state schedule that is
executed and monitored in the manufacturing plant. In the event of a machine
failure, the digital model of the system triggers a rescheduling process. In the first
scenario, the finished operations are excluded out of the schedule, and the remaining
operations are optimally rescheduled, excluding faulty machines. The results showed
that GWO emphasizes aggressive makespan reduction but at higher energy costs,
while PSO provides a more balanced trade-off with slightly longer makespan but
lower energy consumption. In the second scenario, an operation-shifting technique is
applied; disrupted operations are rescheduled on alternative machines, while
following operations retain their initial assignments but are delayed. Both scenarios
incorporate operational constraints and evaluate energy consumption to ensure
efficiency. Accordingly, an energy consumption analysis report is provided to the
decision makers to select the best scenario. The algorithm is implemented and tested
under varying failure conditions. Both scenarios, with the proposed optimization
algorithms, demonstrate effective rescheduling, with energy consumption analysis
confirming rational energy use. As a confirmative step, the proposed GWO and PSO
algorithms have been applied to the standard Brandimarte benchmark test cases with
different problem sizes. The results proved the validity of the algorithms. Then, the
system’s performance has been investigated under different disruption times and
failure scenarios. The proposed rescheduling algorithm proves robust and superior in
handling machine failures. It minimizes workflow disruptions, ensures operational
feasibility, and optimizes energy consumption, making it a reliable solution for
poultry manufacturing plants. Finally, to validate the efficiency and effectiveness of

How to cite this article Tarek N, Chelloug SA, Alhelaly S, El-Hefnawy NA, Abdel-Kader H, Abdelatey A. 2025. Swarm algorithms for
sustainable dynamic flexible job shop rescheduling under machine breakdown in smart manufacturing plants. PeerJ Comput. Sci. 11:e3379
DOI 10.7717/peerj-cs.3379

Submitted 21 March 2025
Accepted 21 October 2025
Published 8 December 2025

Corresponding author
Nehal Tarek,
nehaltarek@ci.menofia.edu.eg

Academic editor
Siddhartha Bhattacharyya

Additional Information and
Declarations can be found on
page 44

DOI 10.7717/peerj-cs.3379

Copyright
2025 Tarek et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3379
mailto:nehaltarek@�ci.�menofia.�edu.�eg
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3379
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

the proposed algorithm, we compare the outcomes of the two scenarios by applying
them to the same problem and analyzing the behavior of each rescheduling strategy.
Two powerful optimization techniques, GWO and PSO, were employed to assess the
robustness of the rescheduling plan. Both techniques produced very similar results,
demonstrating the consistency and reliability of the proposed approach.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Optimization Theory and Computation
Keywords Dynamic flexible job shop scheduling problem, Makespan, Operation reschedule,
Machine failure, Digital twin, Grey wolf optimization, Particle swarm optimization

INTRODUCTION
State-of-the art
In the context of smart manufacturing and in alignment with the “Artificial Intelligence
and Localization of Industry in Egypt” strategy, enterprises strive for intelligent and precise
production. Job shop scheduling problem (JSSP) is a control technology that can optimize
production processes. By leveraging intelligent algorithms, production resources can be
utilized efficiently despite operational constraints, resulting in significant cost reductions
and a naturally shortened manufacturing cycle.

A digital twin (DT) is widely recognized as a virtual counterpart of a physical asset that
replicates its behavior in real-time or near real-time. This virtual representation can
encompass diverse entities such as vehicles, buildings, individuals, cities, organizations, or
entire systems. Depending on its purpose, a DT may highlight specific dimensions like
financial metrics or provide a comprehensive perspective that includes geographical
configuration, human capital, asset inventory, and the interactions between various
components. In recent years, the implementation of DT technology has accelerated, largely
due to the rapid evolution of foundational technologies including big data, the Internet of
Things (IoT), artificial intelligence and machine learning (AI-ML), and cloud computing.
These technologies are vital for the precise acquisition, transmission, storage, and
interpretation of the massive datasets generated by IoT devices. Consequently, DT has seen
expansive deployment across various domains, with particularly notable impact in smart
manufacturing (Rosen et al., 2015; Xu et al., 2019; Qi & Tao, 2018).

In real-world production systems, various dynamic events such as machine breakdowns
(Xiong, Xing & Chen, 2013), uncertain processing times (Chang & Liu, 2017), order
insertions (Luo et al., 2020), and operation inspections (Zhu et al., 2023) have been
extensively studied by researchers. However, one of the most common dynamic events—
order-related machine breakdowns—has not yet been thoroughly investigated, despite its
significant impact on production scheduling. In Zhu et al. (2023), a modified memetic
algorithm was proposed for manufacturing systems that account for rework and scrap
states of products. This approach integrates a hybrid scheduling method incorporating
three distinct rescheduling strategies.

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 2/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Over the past decade, several studies have explored anomaly detection algorithms in
JSSP. InHu et al. (2023), an improved genetic algorithm (GA) with dynamic neighborhood
search was introduced to address JSSP, focusing on minimizing the makespan. The authors
of Zheng et al. (2024) examined the flexible JSSP (FJSSP) under uncertain processing times
and proposed a robust optimization model utilizing a two-individual-based master–
apprentice evolutionary algorithm. In Li et al. (2023), an anomaly detection and dynamic
scheduling framework based on DT technology was developed for flexible job shops,
recognizing that sudden anomalies can cause scheduling deviations. To address this issue,
the authors proposed a DT-based anomaly detection and dynamic scheduling method.
Leveraging a rolling window mechanism, which extends heuristic algorithms to the
dynamic scheduling domain, they introduced a time-window-nested multi-layer coding
GA to optimize scheduling outcomes.

The FJSSP, first defined by Brandimarte (1993), involves processing each operation on
any machine within a specified subset of the total set of machines. When machine
flexibility is high—meaning operations can be performed on multiple machines—finding
high-quality or even optimal solutions become easier. As reviewed in Dauzère-Pérès et al.
(2024), various versions of the JSSP exist. In the basic JSSP, each job consists of a sequence
of operations that have to be executed in a predetermined order, with each operation
assigned to a specific machine. In the FJSSP variant, each operation of a job can be
executed on a set of available machines. Further variations of the FJSSP include the partial
FJSSP and the total FJSSP.

In the Dynamic FJSSP (DFJSSP), Jobs do not enter the workshop simultaneously at the
start of the scheduling period; instead, they arrive at varying times throughout the process.
Additionally, authors in Dauzère-Pérès et al. (2024) provided comprehensive insights into
DFJSSP, covering criteria, constraints, additional problem characteristics, and solution
methodologies. The DFJSSP extends the traditional job shop problem by introducing
greater scheduling flexibility, but this also increases computational complexity, making it
an NP-hard problem (Xie et al., 2019; Zhong et al., 2020).

Sun, Cheng & Liang (2010) proposed a GA with a penalty function for solving the JSSP.
In Gen, Tsujimura & Kubota (1994), the objective was to develop a GA-based approach for
JSSP, demonstrating that even a relatively simple GA can effectively handle job shop
scheduling. The research study in Sun et al. (2019) addressed FJSSP with uncertain
processing times, represented by fuzzy numbers, and introduced a hybrid cooperative
evolutionary algorithm to minimize the maximum fuzzy completion time. Zhu et al. (2019)
applied an FJSSP model with combined processing constraints to the assembly
manufacturing industry. In their study, the concepts of ‘combined processing constraint’
and ‘virtual operation’ were introduced to simplify and transform an FJSSP with combined
processing constraints into a standard FJSSP. In Stastny et al. (2021), a novel graph-based
algorithm was proposed for optimizing scheduling problems. However, none of these
studies specifically addressed anomaly operations.

In the DFJSSP, various constraints must be considered. In many cases, jobs are allowed
to wait for only a limited time, as seen in semiconductor manufacturing, where excessive
waiting can lead to product contamination, scrapping, or rework (Mönch et al., 2011).

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 3/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Additionally, a minimum waiting time between two operations may be required, for
example, to account for transportation delays between machines or to model processing
times of operations that either do not require resources or rely on non-bottleneck
machines (Tamssaouet et al., 2022). Instead of explicitly representing unavailability
periods in the disjunctive graph, these periods can be incorporated by adjusting operation
start times to prevent overlaps between processing and unavailability periods. This
approach, as demonstrated in Tamssaouet et al. (2022), effectively handles scheduling
problems with fixed unavailability periods. In that study, operations were considered
resumable under two scenarios; they could resume processing after being interrupted by an
unavailability period.

The multiple resource-constrained JSSP is widely recognized as a typical NP-hard
problem. To address this challenge, researchers frequently employ metaheuristic
algorithms, including GA algorithms (Tan et al., 2021), Grey Wolf Optimization (GWO)
algorithms (Zhu et al., 2022), Particle Swarm Optimization (PSO) (Fontes, Homayouni &
Gonçalves, 2023), and differential evolution algorithms (Wang, Gao & Pedrycz, 2022). Liu
et al. (2023) conducted an extensive study on the application of evolutionary algorithms to
the fuzzy FJSSP with uncertain processing times. Their research focused on optimizing key
performance metrics, such as maximum completion time, total machine load, and
maximum machine load. To further enhance efficiency, they proposed a non-dominated
sorting teaching-learning-based optimization algorithm aimed at minimizing both energy
consumption and makespan.

Research gap and motivations
In conclusion, while previous research has largely concentrated on minimizing machine
energy consumption and makespan through multiobjective evolutionary algorithms, it has
often neglected the inverse proportional relationship between time and energy. This
oversight leads to a less realistic portrayal of actual production environments, where
optimizing one objective often comes at the expense of the other, making it impractical to
achieve simultaneous optimal minimization. Moreover, anomalous operations have
frequently been ignored, limiting the applicability of these approaches in dynamic
manufacturing contexts. A significant gap also remains in the literature regarding the use
of GWO and PSO within DT-based DFJSSP, highlighting an important area for future
exploration.

In this article, we propose a novel DFJSSP model that considers operation sequencing
and timing while simultaneously addressing machine failure and redistribution scenarios.
The key innovative contributions are as follows:

. A mathematical model for DFJSSP has been formulated in a DT system.

. GWO and PSO algorithms have been applied to minimize the maximum completion
time (makespan).

. The dynamic rescheduling problem under machine breakdowns has been investigated,
focusing on minimizing order completion time (makespan).

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 4/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

. Two breakdown handling scenarios have been proposed to ensure production
continuity.

. Energy consumption has been analyzed and compared across three states: healthy state,
failure state handled by Scenario 1, and failure state handled by Scenario 2, and then
decide which scenario is better in terms of both makespan and rational use of energy.

. In the context of a DT system, sustainability is primarily reflected through continuous
system monitoring, which enables early detection of machine failures and facilitates
dynamic rescheduling. This ensures the stability and resilience of the production
process, thereby reducing downtime, improving resource utilization, and minimizing
waste—key factors contributing to a sustainable manufacturing environment.

The rest of this article is organized as follows. ‘Related Work’ summarizes the relevant
literature in recent years. A description and the mathematical models of the system studied
are presented in ‘Industrial Manufacturing Plant Under Healthy and Failure States’. In
‘Sustainable Dynamic Job Shop Rescheduling Problem Using GWO and PSO
Optimization Algorithms’, the two proposed DFJJSP scenarios are presented in detail via
the proposed GWO and PSO algorithms. The simulation results and analysis are provided
in ‘Simulations and Analysis’. Finally, summary, limitations of the work, and prospects of
the study are given in ‘Conclusions’.

RELATED WORK
Recently, considerable research interest has focused on the FJSSP when it accounts for
machine breakdowns and urgent rush orders. To address the multi-objective DFJSSP, the
authors in Shen & Yao (2015) proposed a proactive–reactive scheduling approach
grounded in a multi-objective evolutionary algorithm. They further developed a dynamic
decision-making framework to identify the optimal scheduling strategy. The research
study (Wang & Ding, 2020) introduced a multi-objective differential evolution algorithm
for dynamic FJSSP, considering both machine breakdowns and rush orders. Similarly, in
Baykasoğlu, Fatma & Alper (2020), the authors examined the dynamic FJSSP under
uncertain conditions, including the arrival of new orders and machine breakdowns. They
developed a constructive algorithm based on the greedy randomized adaptive search
procedure to effectively address these dynamic disruptions.

In practical production scheduling, unforeseen events such as information asymmetry
and abnormal disruptions often cause execution deviations, adversely affecting scheduling
efficiency and quality. To tackle this issue, Fang et al. (2019) proposed an innovative job
shop scheduling approach utilizing DT technology to better align scheduling plans with
actual execution outcomes, particularly in the presence of dynamic random disturbances
caused by uncertainties. They implemented a multi-objective optimization technique
based on the nondominated sorting genetic algorithm (NSGA-II) to enhance scheduling
performance. Nonetheless, the effectiveness of this method remains dependent on
continuous updates from real-time data collected in the physical workshop.

Similarly, Zhang, Tao & Nee (2021) presents a dynamic scheduling strategy powered by
DT technology. This approach uses a five-dimensional DT model tailored for a CNC

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 5/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

milling machine to predict machine availability, detect disturbances, and evaluate system
performance. Based on this analysis, it determines whether delays in production
(makespan) exceed a predefined threshold, prompting a rescheduling process. The main
goals of this method are to maintain efficiency by minimizing makespan and to preserve
stability by reducing shifts in operation start times.

While these studies focus on FJSSP under event-driven disruptions, they overlook the
critical aspects of energy conservation and emission reduction. To align with green and
sustainable development goals, energy consumption should be considered in future
research.

Mahmoodjanloo et al. (2021) addressed a distributed job shop rescheduling problem in
which facilities utilize reconfigurable machines. Initially, the problem was mathematically
formulated to minimize total weighted lateness in a static state. Subsequently, the dynamic
version was extended based on a conceptual rescheduling framework de-signed to update
the current schedule. Fu et al. (2024) focused on scheduling a distributed flexible job shop
with random job processing times to minimize both makespan and total tardiness. First, a
stochastic programming model was developed to formulate the problem. Then,
considering the dual-objective nature and inherent randomness, an evolutionary
algorithm incorporating an evaluation method was designed. In Cheng et al. (2024), the
authors emphasized that mold changeover is often over-looked in multi-objective
optimization and FJSSP. To address this issue, they designed an objective function that
accounts for mold changeover time, providing valuable insights for multi-objective
scheduling problems involving complex constraints. Rescheduling methods primarily
include left-right shift rescheduling, partial rescheduling, and complete rescheduling.
Fuladi & Kim (2024) presented a method for solving both static and dynamic FJSSP using a
hybrid algorithm that combines GA, simulated annealing (SA), and variable neighborhood
search. The method was tested on benchmark datasets and included a rescheduling
strategy to handle dynamic events like machine breakdowns and job arrivals.

Swarm algorithms methods primarily include PSO, GWO, and ant colony optimization.
For example, the work proposed in Sha & Hsu (2006) applied PSO combined with tabu
search to solve the JSSP. In research focused on improving evolutionary algorithm
performance, efforts have been directed toward enhancing exploration and exploitation
capabilities. Gao et al. (2020) proposed an improved Jaya algorithm for the FJSSP with
machine breakdowns and recovery, effectively addressing both constrained and
unconstrained optimization problems. InHe et al. (2021), a dynamic integrated scheduling
problem was investigated, considering breakdowns, order insertions, and the battery
consumption of robots, with the objective of minimizing order completion time
(makespan). Regarding FJSSP with rush orders, scholars have developed various
metaheuristic optimization algorithms to enhance scheduling efficiency. Gao et al. (2016)
proposed an improved artificial bee colony algorithm for the FJSSP with rush orders,
considering fuzzy processing times. On the other hand, Zhang et al. (2022) introduced a
hybrid approach combining variable neighbor-hood search and gene expression
programming, incorporating four effective neighborhood structures. In Zhu et al. (2024),
the authors proposed a modified memetic algorithm to address job cancellations in

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 6/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

distributed FJSSP and examined solutions for job cancellations at various stages of job
processing.

The GWO algorithm is a population-based intelligence algorithm originally designed to
solve continuous optimization problems. It is inspired by the social hierarchy and hunting
behaviors of grey wolves. Studies have demonstrated that GWO yields competitive results
compared to well-known metaheuristic algorithms. A more advanced implementation of
the GWO algorithm has been developed for the FJSSP, incorporating job redistribution
and machine reassignment following machine breakdowns. GWO has been widely applied
across various fields, including optimization, classification, economic and power dispatch,
and capacitated vehicle routing (Jiang & Zhang, 2018). Jiang et al. (2018) applied an
improved GWO algorithm with two search modes to solve the JSSP. Lu et al. (2017)
tackled a complex and practical problem of dynamic scheduling in a real-world welding
industry. Their study accounted for key dynamic events such as machine breakdowns, job
quality issues, and job release delays. To address the resulting multi-objective dynamic
scheduling problem, they proposed a hybrid multi-objective GWO aimed at minimizing
makespan, machine load, and schedule instability. Their approach demonstrated strong
applicability to dynamic industrial environments, highlighting the potential of
GWO-based algorithms in practical scheduling contexts. A tri-objective hybrid flowshop
scheduling problem (HFSP) with controllable processing times was investigated by
authors of Lu et al. (2019) to minimize the makespan, noise pollution and energy
consumption.

In Chen, Chou & Chou (2020), a multi-objective evolutionary approach was proposed to
handle integrated airline scheduling and rescheduling problems under disruption
conditions. To manage disturbances in FJSSP involving automated guided vehicle
transportation, a mixed-integer linear programming model was developed (Zhang et al.,
2023). Based on the characteristics of this model, an improved NSGA-II algorithm was
designed to minimize makespan, energy consumption, and machine workload deviation.
Kong et al. (2022) proposed a discrete improved GWO algorithm specifically designed for
FJSSP, incorporating hybrid initialization strategies and adaptive convergence factors. In
Li et al. (2022), novel encoding and decoding schemes were introduced to represent
subproblems and transform them into feasible schedules, thereby enhancing the
effectiveness of the GWO algorithm. Additionally, Zhou et al. (2024) developed an
adaptive GWO algorithm that dynamically selects between global and local search
strategies based on the degree of individual agglomeration, improving optimization
precision and convergence speed.

The PSO is a population-based optimization algorithm inspired by the social behavior
of birds or fish. It uses a group of candidate solutions, called particles, which move through
the search space to find the optimal solution. Each particle adjusts its position based on its
own experience and the experience of the best-performing particle in the swarm. Over
time, particles converge toward the best solution found. PSO is widely used for solving
optimization problems due to its simplicity, efficiency, and ability to handle complex,
nonlinear search spaces.

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 7/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Kong & Wang (2024) proposed discrete particle swarm algorithm to consider handling
and setup time. First, a multi-objective optimization model was developed, focusing on
minimizing the maximum completion time, the total number of machine adjustments, the
total number of workpiece handlings, and the overall machine load. Then, an enhanced
discrete particle swarm optimization algorithm was proposed, incorporating Pareto-based
selection and an adaptive nonlinear strategy for adjusting inertia weight. Xu et al. (2025)
explored the use of Quantum Particle Swarm Optimization (QPSO) enhanced with chaotic
encoding schemes to solve the FJSSP. Fourteen chaotic maps were evaluated within the
QPSO framework, showing improved solution quality and faster convergence. The
findings highlight the potential of combining quantum and chaos theories for more
effective scheduling optimization.

Ngwu, Liu & Wu (2025) reviewed AI-based methods for DJSSP, focusing on how
reinforcement learning (RL) adapts to unpredictable events like job arrivals and machine
failures. It highlighted RL’s strengths in managing complex, real-time scheduling
environments and identifies current challenges such as scalability and data limitations. The
study in Wu, Zheng & Yin (2025) proposed a dual-objective deep reinforcement learning
approach using Double Deep Q-Networks (DDQN) with attention mechanisms to handle
DFJSSP under machine breakdowns. Additionally, Chang, Liu & You (2024) addressed the
DFJSSP by proposing an improved learning-to-dispatch model using graph neural
networks and RL. It formulated scheduling as a disjunctive graph to handle changing
machine availability. Albayrak & Onuet (2024) addressed sustainable manufacturing by
tackling the multi-objective FJSSP with a focus on energy efficiency, machine
workload, and makespan. It incorporated dynamic events like new job arrivals and
rework processes to reduce scrap. An enhanced NSGA-II algorithm was used to solve the
problem.

Table 1 summarizes a comparison between all the above-mentioned research efforts.
The first column indicates the reference number, the second column specifies the type
of problem studied, the third column defines the objectives to be minimized. Finally,
in the last column, the optimization algorithm, that is used in relevant works, is presented.

INDUSTRIAL MANUFACTURING PLANT UNDER HEALTHY
AND FAILURE STATES
System framework architecture
This manuscript is an extension of the work presented in reference Tarek et al. (2025). The
proposed system framework is designed to be compatible with small- to medium-sized
manufacturing plants. The case study focuses on a poultry manufacturing plant
comprising three production lines. Each line includes seven machines that manage the
production process—from receiving raw material containers to delivering the final product
in sewed packages. Further details are available in Tarek et al. (2025). The architecture of
the proposed framework, including the rescheduling optimization component, is
illustrated in Fig. 1. It consists of three main modules: the input data module, the digital
twin module, and the optimization module. The input data module initializes the system
using machine data (historical and real time sensor data), objectives, constraints, available

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 8/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

resources, and a comprehensive list of jobs and operations needed to fulfill product
requirements. The digital twin module integrates machine availability, machine state
(healthy or in breakdown), and the simulation module. Then, send all data to the
optimization module. The initial schedule is optimized using the GWO and then send the
resulting schedule back to DT.

The next phase is starting the execution of the production process; if a machine fails, DT
module sends a failure report and then the system triggers rescheduling based on one of
two predefined scenarios (Scenario 1 or Scenario 2). Table 2 provides a summary of the

Table 1 An overview of the literature review.

Reference number Job shop type Objective function Optimization algorithm

Shen & Yao (2015) DFJSSP Makespan, machine workload balance, total
tardiness

Multi-objective evolutionary
algorithms (MOEAs)

Wang & Ding (2020) DFJSSP Makespan, total tardiness, machine load balance. Improved GA

Baykasoğlu, Fatma & Alper (2020) DFJSSP Mean tardiness, schedule instability, makespan,
mean flow time.

Greedy randomized adaptive search
procedure

Fang et al. (2019) DT based JSSP Makespan, scheduling robustness, resource
utilization

NSGA-II

Zhang, Tao & Nee (2021) DT based DJSSP Makespan, changes of starting time of each
operation in the rescheduling

Neural network

Fu et al. (2024) FJSSP Makespan, total tardiness MOEA

Cheng et al. (2024) FJSSP Makespan, setup time Improved GA

Fuladi & Kim (2024) DFJSSP Makespan GA integrated with SA

Sha & Hsu (2006) JSSP Makespan PSO, Tabu search

Gao et al. (2020) FJSSRP Makespan, instability Improved jaya algorithm

Gao et al. (2016) FJSSP Makespan Artificial bee colony

Zhang et al. (2022) FJSSP Makespan GA

Zhu et al. (2024) FJSSP Makespan, energy consumption Reformative memetic algorithm

Jiang & Zhang (2018) FJSSP Makespan GWO

Jiang et al. (2018) JSSP No-load energy consumption cost, the total
tardiness cost

GWO

Lu et al. (2017) DJSSP Makespan, penalty of machine load, instability Hybrid multi-objective GWO

Lu et al. (2019) Flow shop scheduling
problem

Makespan, noise pollution, energy consumption Cellular GWO

Zhang et al. (2023) FJSSP Makespan, energy consumption, sum of workload
deviation

Improved NSGA-II

Kong et al. (2022) FJSSP Makespan, workload GWO

Zhou et al. (2024) FJSSP Makespan GWO

Kong & Wang (2024) FJSSP Makespan, machine adjustments, workpiece
handlings, load of the machine

PSO

Xu et al. (2025) FJSSP Makespan PSO

Wu, Zheng & Yin (2025) DFJSSP Total tardiness,machine offset Double deep Q-network

Chang, Liu & You (2024) DFJSSP Makespan Learning-to-dispatch reinforcement
learning

Albayrak & Onuet (2024) DFJSSP Makespan, energy consumption, machine
workload.

NSGA-II

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 9/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

processing times for all operations across the corresponding machine set. Processing time
is measured in time units, where each unit corresponds to 5 min. This case study considers
ten jobs, each comprising seven operations, with each operation executable on the
corresponding machine within any of the three production lines.

Simulation environment with failure state
The simulation environment in case of failure in the three production lines poultry factory,
as defined in Tarek et al. (2025), is illustrated in Fig. 2. This figure demonstrates the core
concept of rescheduling job shop operations when certain machines are turned off. When a
machine fails, its operations are redistributed among alternative healthy machines to
maintain workflow continuity.

. Line 1: Machine M1 is in a failure state, and its operations are reassigned to M8 andM15.

. Line 2: Machine M10 experiences a failure, with its operations redistributed between M3
and M17.

. Line 3: Machine M19 is in a failure state, and its operations are reassigned to M5 and
M12.

Digital Twin Module

Optimization Module

Input Data Module

Machine Availability Module:

Healthy Machines Ready to Load

Machine Failure Module: Scenario

Selection

Simulation Module: Factory

Instance

GWO Optimization

Module

List of jobs and operations

Production objectives, resources, and

constraints

Machine Data

(Historical data, Real time sensor data)

Scenario 1 (Rescheduling with

optimized makespan)

Scenario 2 (Rescheduling

with extended makespan)

Figure 1 DT-based framework architecture. Full-size DOI: 10.7717/peerj-cs.3379/fig-1

Table 2 The production operations and the corresponding processing machines and processing time.

Operation number First production line time Second production line machine time Third production line machine time

Machine Time Machine Time Machine Time

Oj1 Milling M1 18 M8 6 M15 4

Oj2 Mixing M2 24 M9 18 M16 12

Oj3 Adding liquid M3 8 M10 6 M17 4

Oj4 Pelletizer M4 12 M11 4 M18 3

Oj5 Cooler M5 6 M12 2 M19 2

Oj6 Scaling M6 2 M13 1 M20 1

Oj7 Sewing M7 2 M14 2 M21 1

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 10/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-1
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Operations assigned to failed machines (marked in red in Fig. 2) are referred to as
disrupted operations. These operations are followed by subsequent operations, which are
called following operations and may require different rescheduling strategies. The specific
redistribution scenarios for disrupted and following operations are detailed in the next
section.

DFJSSP problem formulation
To effectively address the DFJSSP, the following key assumptions, objectives, and
constraints are considered:

Solving a DFJSSP involves three primary decisions

. Machine assignment—determining which machine will process each operation.

. Operation sequencing—defining the order of operations within a job.

. Operation timing—scheduling the start and end times of operations.

Key assumptions

. The sequence of operations within the same job is fixed, while there are no sequence
constraints between different jobs.

. Each machine is designated for a specific type of machining process and can handle only
one task at a time.

. Once the operation starts, it must run to completion unless interrupted by special
circumstances such as machine breakdowns or order cancellations.

Additional assumptions are detailed in Tarek et al. (2025). For clarity, the notations
used in the mathematical model are listed in Table 3.

The fitness function for the scheduling problem aims to minimize the makespan—the
maximum completion time Max1�j�n CTj

� �
for all jobs, as defined in Eq. (1). This

optimization is subject to the following constraints: Constraint (2) (Eq. (2)) ensures that
each operation is assigned to only one machine from the available set. Constraint (3)
(Eq. (3)) guarantees that at any given time t, a machine can process only one operation.

M1

Failed

Milling

M2

Dosing and

Mixing

M3

Add Liquid

M4

Pelletizer

M5

Cooler

M6

Scale

M7

Sewing

M8

Milling

M9

Dosing and

Mixing

M10

Failed

Add Liquid

M11

Pelletizer

M12

Cooler

M13

Scale

M14

Sewing

M15

Milling

M16

Dosing and

Mixing

M17

Add Liquid

M18

Pelletizer

M19

Failed

Cooler

M20

Scale

M21

Sewing

Figure 2 Smart poultry feed planet (SPFP) graph with three failed machines.
Full-size DOI: 10.7717/peerj-cs.3379/fig-2

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 11/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-2
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Table 3 Notations used in the mathematical model.

Notation Description

n Number of jobs

m Number of machines

l Number of operations in a single job

Jj the jth job where 1 � j � n

Oji The ith operation of the Jj where 1 � i � l

Ojid Disrupted operation

Ojif Finished operation

Ojie Executing operation

Oj iþ1ð Þfl Following operation for disrupted operation Ojid

Mk The kth machine where 1 � k � m

FM List of failure machines

AMi List of alternative machines for operation i, 1 � i � l

DO List of disrupted operations

FO List of finished operations

EO List of executing operations

RO List of remaining operations

TF Failure time

Pji The processing time of Oji

Pjik The processing time of Oji on machine k

ECk The energy consumption of machine k where 1 � k � m

STji The starting time of operation Oji

ETOji The ending time of operation Oji

STOj ið Þkfl The start time of the following operation Oj ið Þ on machine k

NSTOj ið Þkd The new start time of the disrupted operation Oj ið Þd on machine k

NETOj ið Þkd The new end time of the disrupted operation Oj ið Þd on machine k

BMOj ið Þd The selected machine to process the disrupted operation Oj ið Þ
CTj The completion time of the Jj

CTk The completion time of the Mk

Pavk The average power for a machine k

RTk The running time for a machine k

ECk The energy consumption for a machine k

TEC The total energy consumption in the production cycle

xjik ¼ 1 if operation Oji is assigned to machine k
0 otherwise

�

xjikt
¼

1 if operation Oji is assigned to
machine k on time t

0 otherwise

8<
:

xojidk
¼

1 if disrupted operation Ojid is assigned to
machine k

0 otherwise

8<
:

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 12/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Constraint (4) (Eq. (4)) enforces the precedence rule, ensuring that operations within the
same job follow the correct sequence.

Min Max CTj
� �� �

for 1 � j � n: (1)

Subject to

Xm
k¼1

xjik ¼ 1 8 j 2 1; 2; . . . ; nf g; 8 i 2 1; 2; . . . ; lf g: (2)

Xn
j¼1

Xl

i¼1

xjikt � 1 8 k 2 1; 2; . . . ;mf g: (3)

STji þ Pji � STj iþ1ð Þ 8 j 2 1; 2; . . . ; nf g; 8 i 2 1; 2; . . . ; lf g: (4)

SUSTAINABLE DYNAMIC JOB SHOP RESCHEDULING
PROBLEM USING GWO AND PSO OPTIMIZATION
ALGORITHMS
In this work, our primary objective is to minimize the makespan, as it is a critical
performance indicator in many real-world scheduling scenarios. Incorporating additional
objectives, such as stability or robustness, could provide a more comprehensive
optimization approach. However, incorporating multiple objectives would inevitably
involve trade-offs and may reduce the degree of optimality achievable for makespan
minimization due to the required weighting and balancing among objectives. To partially
address this concern, we evaluated, at the end of this section, the energy consumption
associated with both the GWO and PSO under various scheduling scenarios. This
evaluation is intended to demonstrate that the solutions obtained not only achieve
minimized makespan but also remain within acceptable operational limits for energy
usage.

Scheduling and rescheduling strategy
Emergencies such as machine breakdowns and rush orders significantly impact the
production activities of manufacturing enterprises. The dynamic scheduling strategy
employs an event-based rescheduling approach, focusing on assessing the state of all
operations at the time of failure. It then modifies these states to ensure production
continuity by determining job positions, identifying unprocessed tasks, and calculating the
earliest available time for machines. This article specifically examines one type of dynamic
event: machine breakdowns, which can occur at any point during the production process.
When a machine breaks down, the operation being processed on the faulty machine is
scrapped.

The extended makespan time varies depending on the severity of the fault, as
production lines differ in terms of machine capacity and power. The same operation can be
processed on alternative machines, but with varying processing times, as illustrated in
Table 2. Normal machines that remain operational are rescheduled either immediately or
after the completion of their current processes. To address disruptions in DFJSSP with

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 13/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

automated guided production lines, a GWO and PSO model is developed to minimize the
makespan.

The dynamic scheduling of the production flow, based on operation inspection, is
illustrated in Fig. 3. The flowchart outlines a process starting with data acquisition,
followed by GWO and PSO optimization. Afterward, a model or rule execution step is
performed. The next decision point checks whether the production process is finalized. If
yes, the process ends. If not, another decision checks if a DT failure report has been
received. If no report is received, the process continues with the initial schedule. But if a
failure report is received, a scenario selection step is performed which leads to two possible
scenarios:

Scenario 1

. Operations until the time of failure are classified as: Finished, Executing, and Disrupted
operations. Where finished operations are the operations whose end time is before the
failure time. Executing operations are the operations whose start time is before failure
time and its end time is after failure time. Considering that executing operations are on
healthy machines only. Disrupted operations are the operations whose start time is
before failure time and its end time is after failure time, but only if it was assigned to a
failed machine.

. Machine options are filtered to exclude the failed machines from the set of alternatives.

Start

Data Acquisition

Generate Healthy

Schedule with GWO /

PSO

Monitor Schedule

Execution

Yes

No

No

Yes

Operations

Classification (Finished-

Executing – Remaining)

Identify Remaining

Operations

Run GWO / PSO for

Remaining Operations

Generate New Schedule
Failure Handling

Scenario Selection

Machine Option Filter

Optimize Makespan

Scenario 1

Production

Process

Finished?

DT Failure

Report

Received?

End

Operations

Classification (Finished-

Executing – Disrupted)

Identify Following

Operations

Redistribute Disrupted

Operations

Generate New Schedule

Machine Option Filter

Following Operations

Time Extension

Scenario 2

Figure 3 Flow chart for the production process with dynamic scheduling to handle machine failure.
Full-size DOI: 10.7717/peerj-cs.3379/fig-3

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 14/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-3
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

. Remaining operations are identified in this step, and it is defined by the operations which
are not finished operations neither executing operations.

. The GWO optimization is applied to the remaining operations.

. The model is optimized.

. Generate new schedule.

Scenario 2

. Operations until the time of failure are classified (the same as Scenario 1).

. Machine options are filtered (the same as Scenario 1).

. Following operations are identified and removed from the initial schedule. If a disrupted
operation is determined, assuming it is the fifth operation in a certain job, then the sixth
and seventh operations within the same job are identified as following operations. And
this is repeated for all disrupted operations.

. Redistribute disrupted operations on the other two alternative machines.

. The following operations are reassigned to the same machines originally assigned to
them, but their start times are delayed aligning with either the machine’s next available
time (after completing all initially scheduled operations) or the end time of the preceding
operation.

. Generate new schedule.

Finally, after completing either of the scenarios, the new schedule is fed back to the DT
module to resume the production process and continue monitoring the plant.

Initial scheduling
In this step, the scheduling of the operations is distributed according to the proposed
GWO optimization, as shown in Fig. 3. Here, the machine availability will be recorded to
be used in the after-failure scenarios. The steps involved in this algorithm can be
summarized as follows:

Problem setup

This step involves acquiring data related to jobs and operations, available machines
for each operation, machine processing times, and GWO optimization parameters
(i.e., number of wolves and number of iterations). It also stores fitness functions and
system constraints.

Initialization

1. Population initialization:

The population of wolves (solutions) is initialized. Each wolf represents a schedule, which
is a list of operations with assigned machines and processing times in the following form
(job number, operation number, assigned machine, processing time, start time, end time).

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 15/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

2. Alpha, Beta, Delta wolves:

The alpha, beta, and delta wolves (representing the top three solutions) are initialized to
none.

Scheduling optimizer
A) Grey Wolf Optimization

The algorithm runs for 100 iterations, in each iteration:

1. Fitness evaluation:

• The fitness (makespan) of all wolves is evaluated as in equation Max1�j�n CTj
� �

in
Eq. (1).

• The fitness values and modified schedules are stored.

2. Sort volves by fitness:

• Wolves are sorted by their fitness values (lower makespan is better).

• The alpha, beta, and delta wolves are updated to the top three wolves in the sorted list.

3. Update positions of wolves:

• For each wolf, the distances between the wolf and the top three wolves (alpha, beta,
and delta) are calculated according to the next Eqs. (5) through (7).

Da ¼ C1 Xa � X tð Þ
�� ��: (5)

Db ¼ C2 Xb � X tð Þ
�� ��: (6)

Dd ¼ C3 Xd � X tð Þ
�� ��: (7)

Here, Da, Db, and Dd represent the distances between the current wolf and the top three
solutions (alpha, beta, and delta). The coefficients C1, C2, and C3 are randomly
generated using the formula C ¼ 2r1, where r1 is a random vector that can take values of
either 0 or 1. Xa, Xb, and Xd denote the machine assignments for the alpha, beta, and
delta wolves, respectively, while X tð Þ represents the machine assignment for the wolf in
the current iteration.

• The GWO equations are used to calculate the new position of each wolf as in Eq. (8).

• The new position is clamped to the nearest available machine option.

X tþ1ð Þ ¼ 1
3

Xa � A1 Dað Þ þ Xb � A2 Db
� �þ Xd � A3 Ddð Þ� �

: (8)

Here, X tþ1ð Þ represents the updated position of the wolf, calculated as the average of its
movements toward the alpha, beta, and delta wolves. The coefficients A1, A2, and A3 are
randomly determined using the formula A ¼ 2r2a� a, where aa is a parameter that
decreases linearly from 2 to 0 over the course of iterations (facilitating the transition
from exploration to exploitation), and r2 is a random value that can be either 0 or 1. This
equation determines the new machine assignment X tþ1ð Þ for the wolf by averaging the
three directional movements based on its distances to the alpha, beta, and delta wolves.

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 16/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

4. Update best makespan:

• The list of solutions is sorted and the first top three are assigned to alpha, beta, and
delta.

• The makespan of the alpha wolf (best solution) is updated.

• The makespan of this iteration is compared with the previous one to store the
minimum of them.

B) Particle Swarm Optimization
The PSO optimization algorithm can be described in the following steps:

1. Particle initialization

• Each particle represents a potential schedule (position) using a list of job-operation-
machine-time.

• Machines are randomly selected from the options for each operation.

• A velocity is assigned to each operation, initialized randomly in a range.

2. PSO initialization

• A swarm of particles is created.

• Global best position and makespan are initialized with infinite makespan.

• PSO parameters (w, c1, c2) are defined to control exploration and exploitation.

3. Iterative optimization loop

The algorithm runs for 100 iterations, in each iteration:

a. Evaluate each particle

• For each particle, calculate the makespan of its current position as in equation

Max1�j�n CTj
� �

in Eq. (1).

• Update the particle’s personal best if the current makespan is better.

• Update the global best if this particle’s makespan is better than the current global best.

b. Update velocity

• For each particle:

○ Determine the current, personal best, and global best machine indices.

○ Compute new velocity based on inertia, personal influence, and social influence as
in Eq. (9).

○ Clamp velocity within a fixed range to ensure stable updates.

vi ¼ xvi þ c1r1 pi � xið Þ þ c2r2 gi � xið Þ (9)

where

x inertia weight

c1 cognitive coefficient

c2 social coefficient

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 17/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

vi the current velocity for operation i

xi current machine index,

pi personal best machine index

gi global best machine index

r1; r2 generated random numbers ∈[0,1]
c. Update position

• Based on the new velocity, update the particle’s machine choices for each operation
according to Eq. (10).

xi new machine indexð Þ ¼ xi current machine indexð Þ þ vi: (10)

Generating Gantt chart
In this step, the system generates Gantt chart for the best optimized schedule after the
GWO and the PSO algorithms terminate and then send it to the DT module for
monitoring.

Monitor schedule execution
At this stage, the DT module continuously tracks the progress of the execution of the
optimized schedule and sensing for any machine anomaly behavior inside the
manufacturing plant. It also Identifies the current state of operations (e.g., finished,
executing, or yet to start).

Scenario 1: dynamic flexible rescheduling with optimized makespan
This scenario focuses on addressing machine failure during the execution of the optimized
schedule generated by the optimization algorithm. This dynamic event is triggered when a
machine failure situation is detected at a certain time, as reported by the DT monitoring
module, which provides also a list of failed machines. The steps of the machine failure
handling involved in this scenario are illustrated in this section. The algorithm in this
scenario works as follows:

1. Classifying operations:

At the time of failure, Adding each operation to one of the following categories:

• Finished operations (operations completed before the failure time).

• Executing operations (ongoing operations at the failure time).

• Disrupted operations (ongoing operations on failed machines at failure time).

2. Filtering machine options:

• This step removes failed machines from the alternative machine set for each
operation. And adjust the corresponding processing time.

3. Filter remaining operations:

• This step removes both finished operations and executing operations from the total
operations.

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 18/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

4. Redistribute remaining operations using both GWO and PSO:

• Sending the remaining operations as input dataset for the GWO and the PSO
algorithm considering the start time is the machine failure time. And check the
availability of machines to see if one of the executive operations is still running.

5. New schedule and makespan:

• The new schedule and its makespan are calculated and stored.

6. Visualize the updated schedule:

• Generate a Gantt chart to visualize the updated schedule, highlighting the changes
caused by the machine failure and the redistribution process.

This information is fed back to DT module to update and start monitoring the
execution of the updated schedule. The pseudocode for GWO and PSO algorithms are
presented in Figs. 4 and 5, respectively.

Figure 6 provides an example illustrating how disrupted operations can be rescheduled
using Scenario 1 approach. In this scenario, machine M10 is assumed to fail, requiring the
redistribution of operations op(1-3), op(3-3), op(4-3), op(6-3), and op(8-3) to alternative
machines. According to Fig. 2, M3 and M17 serve as alternatives for M10. Before the
machine failure, the optimizers generated the scheduling using all machines (M1–M21).
Once M10 experiences a breakdown, the optimizer identifies and manages the disrupted
operations after filtering out the faulty machine. The remaining operations are then
optimally rescheduled among the functional machines.

For instance, as illustrated in Fig. 6, machine M10 fails at time 20. The disrupted
operation op(1-3) is reassigned to M17 by the optimizer, while op(3-3) is executed by M3
after the completion of op(2-3). Similarly, op(4-3) is moved to M17, op(6-3) to M3, and op
(8-3) also to M3. Following the failure, the optimization algorithm—whether using GWO
or PSO—redistributes operations from the functioning machines to suitable alternatives,
ensuring minimal disruption and maintaining scheduling efficiency.

Scenario 2: dynamic flexible rescheduling with extended makespan
Scenario 2 focuses on addressing machine failures during the execution of the optimized
schedule generated by the optimization module. During the machine failure handling, the
dynamic event is triggered when a machine failure situation is detected at a certain time, as
reported by the DT monitoring module, which provides also a list of failed machines. The
algorithm in this scenario works as follows:

1. Classifying operations:

At the failure time, adding each operation to one of the following categories:

• Finished operations (operations completed before the failure time).

• Executing operations (ongoing operations at failure time).

• Disrupted operations (ongoing operations on failed machines at failure time).

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 19/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

2. Filtering machine options:

• This step removes failed machines from the alternative machine set for each
operation.

3. Identifying following operations:

• This step identifies all operations that follow disrupted operations in the same job. For
example, if operation number 4 is marked as disrupted operation, so operations
number 5, 6 and 7 are all marked as following operations within the same job.

Initialize variables

GWO

Initialize wolves

for each iteration:

for each Wolf:

calculate makespan:

initialize: machine_available_time, job_available_time

for each operation in each job:

check precedence constraint

calculate: start time, end time

update machine and job availability

makespan = max of job_available_time

end for
end for
sort wolves by fitness (lower is better)

update Alpha, Beta, Delta wolves

for each wolf:

for each job:

for each operation:

calculate coefficients A and C

retrieve machine assignments

calculate new position

clamp to available machine options

end for
end for

end for
calculate current best makespan

update best makespan if current is better

return final best schedule and makespan

if failure:

get finished_operations, executing_operations, disrupted_operations

get new_machine_options, new_processing_times

get remaining_operations

go to GWO

Figure 4 The Pseudo code for GWO of healthy case and Scenario 1.
Full-size DOI: 10.7717/peerj-cs.3379/fig-4

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 20/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-4
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

4. Redistribute disrupted operations:

• At this point, the algorithm reassigns disrupted operations to alternative machines
while respecting precedence constraints and machine availability time according to
Eq. (11).

Initialize variables

PSO

Initialize particles

for each iteration:

for each particle:

calculate makespan:

if makespan < particle.best_makespan:

update particle best makespan

update particle best schedule

if makespan < global_best_makespan:

update global best makespan

update global best schedule

end for
for each particle:

calculate cognitive coefficient

calculate social coefficient

update velocity

update position

return final best schedule and makespan

if failure:

get finished_operations, executing_operations, disrupted_operations

get new_machine_options, new_processing_times

get remaining_operations

go to PSO

Figure 5 The pseudocode for PSO of healthy case and Scenario 1.
Full-size DOI: 10.7717/peerj-cs.3379/fig-5

M 10

M 17

M 3

20 30 40 50 60 70 80 90

4-3

5-3

1-3 3-3 8-3

7-3

10-3

1-3

2-3

Failed

9-3

Scheduled

Rescheduled

4-3 6-3

5-3

3-3 6-3 10-38-3

7-3

9-3

Machine

Time

Figure 6 Rescheduled distribution of jobs and operations in Scenario 1.
Full-size DOI: 10.7717/peerj-cs.3379/fig-6

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 21/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-5
http://dx.doi.org/10.7717/peerj-cs.3379/fig-6
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Xm
k¼1

xojidk ¼ 1 8 ojid 2 DOf g; 8 k 2 AMif g and k =2 FMf g: (11)

5. Reassign following operations:

• After redistributing all disrupted machines to the alternative machines, the following
operations are reassigned to their initial assigned machines but after extending the
start time of the operation to the maximum of either the machine’s availability time or
the completion time of the precedence operation within the same job. This expressed
in Eq. (12).

STOj ið Þkfl ¼ Max ETOj i�1ð Þ;CTk
� �

(12)

where STOj ið Þkfl is the start time of operation Oj ið Þ, which is originally assigned to
machine k and follows a disrupted operation. ETOj i�1ð Þ is the end time of the preceding
operation within the same job, and CTk is the availability time of machine k.

6. New schedule and makespan:

• The new schedule and its makespan are calculated and stored.

7. Visualize the updated schedule:

• Generate a Gantt chart to visualize the updated schedule, highlighting the changes
caused by the machine failure and the redistribution process.

• This information is fed back to DT module to update and start monitoring the
execution of the updated schedule

Scenario 2 does not involve the use of optimization techniques. Instead, it relies on a
shifting mechanism to reassign the disrupted operation to one of the available alternative
machines. Subsequently, all the following operations are shifted accordingly to maintain
the precedence constraints. As a result, Scenario 2 does not require the application of
GWO or PSO. The pseudocode, illustrating the implementation of Scenario 2 and the shift
methodology, is presented in Fig. 7.

First, as a case study, we explain here the operation of shifting algorithm after machine
M10 fails. First, the disrupted operations, that were executed by the failed machine
(op(1-3), op(2-3), and op(9-3)), are rescheduled on the related alternative machines M3
and M17. To decide which machine to select, the algorithm tests the two alternative
machines. The machine with the earliest end time is chosen. Figure 8 shows the
rescheduling process for these three disrupted operations. The new start time of the
disrupted operation op(1-3) is selected as the maximum value between the end time of the
previous operation, failure time, and machine availability time as in Eq. (13).

NSTOj ið Þkd ¼ Max ETOj i�1ð Þ;TF;CTk
� �

(13)

where NSTOj ið Þkd is the new start time of the disrupted operation Oj ið Þ on machine k,
selected from the alternative machine set. TF is the machine failure time.

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 22/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

For a given processing time Pjik for the rescheduled operation, the new end time
NETOj ið Þkd is found by Eq. (14).

NETOj ið Þkd ¼ NSTOj ið Þkd þ Pjik (14)

where NETOj ið Þkd is the new end time of the disrupted operation Oj ið Þ, and Pjik is the
processing time of that operation on machine k.

According to the last step, the best executive selected machine is the machine with the
earliest end time following Eq. (15).

BMOj ið Þd ¼ Min NETOj ið Þdk
� � 8 k 2 AMif g and k =2 FMf g (15)

if failure:
get finished_operations, executing_operations, disrupted_operations

get new_machine_options, new_processing_times

get following_operations
get_machine_availability

for each disrupted_operation:

for each alternate_machine:
get previous_operation

if previous_operation:

new_start_time = max(previous_operation, time_unit,machine_availability)
else:

new_start_time = max(time_unit, machine_availability)

new_end_time = new_start_time + processing_time
end for
select minimum end_time

update operation info
end for
for each following_operation:

get previous_operation
if previous_operation:

start_time = max(prev_op, machine_availability)

end_time = start_time + processing_time
machine_availability = end_time

calculate makespan

return final schedule and makespan
end

Figure 7 The pseudocode for Scenario 2. Full-size DOI: 10.7717/peerj-cs.3379/fig-7

M 10

M 17

M 3

10 20 30 40 50 60 70 80 90

4-3 5-3 8-3

1-3 2-3 9-3

3-3 6-3 7-3 10-3

1-3

2-3

Failed

9-3

Scheduled

Rescheduled

Time

Machines

Figure 8 Rescheduled disrupted operations in Scenario 2.
Full-size DOI: 10.7717/peerj-cs.3379/fig-8

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 23/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-7
http://dx.doi.org/10.7717/peerj-cs.3379/fig-8
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

where BMOj ið Þd is the selected machine to process the disrupted operation Oj ið Þ.
NETOj ið Þdk
� �

is the list of new end times for this operation calculated for each alternative

machine. AMi is the set of alternative machines for operation i, and FM is the set of failed
machines.

Then, the machine availability of the selected machine is updated accordingly.
Second, an explanation of the following operations is configured in Fig. 9 to clarify the

rescheduling process of the following operation. Table 4 shows the disrupted operations in
M10 and their following operations according to Fig. 2. In this case, the new start and end
times are calculated from Eqs. (13) to (15). For the same machine, the machine’s
availability is then adjusted according to the new end time (Eq. (14)). As a result, we
examine the reassign of the following operations of the disrupted operation op(1-3) which
are op(1-4), op(1-5), op(1-6) and op(1-7). As shown in Fig. 9, all the following operations
are assigned to the same machine that was assigned to before, but there is an extension in
the start time of the following operation and the start time can be calculated as in Eq. (12).
We will explain a numerical example for op(1-4). The machine M11 is available at the time
of 64 after op(8-4) whereas its preceding operation of op(1-3) ends at time of 68.
Therefore, operation op(1-4) has been rescheduled at the time of 68. According to Eq. (12),
the operation op(1-4) starts at a time of 68. Operation op(1-5) starts as soon as operation
op(1-4) ends at the time of 72. For operation op(1-6), the condition of machine availability
is the dominant. So, this operation starts after operation op(8-6) ends at the time of 75.
Operation op(1-7) will start instantaneously after operation op(1-6) ends, at time 77.

Energy consumption calculation
To validate the algorithm for calculating energy consumption, we utilized a dataset from
IEEE (2020), which contains measurements from a Brazilian poultry feed factory. This

M 11

M 19

M 6

45 50 55 60 65 70 75 80 85

3-6

Scheduled

Rescheduled

M 21

7-6 8-6

40

1-6 2-6 1-6 2-6

1-4

35

3-4 4-4 6-45-4 8-4 9-4 1-4 9-4

1-5 5-5 7-5 1-5

1-7 4-7 5-7
10-7

9-7 1-7

90

9-7

Time

Machines

Figure 9 Rescheduled for the following operations in Scenario 2.
Full-size DOI: 10.7717/peerj-cs.3379/fig-9

Table 4 Disrupted operations in M10 and following operations.

Disrupted operation/ Following operations

1� 3½ � !
1� 4
1� 5
1� 6
1� 7

2
64

3
75 2� 3½ � !

2� 4
2� 5
2� 6
2� 7

2
64

3
75 9� 3½ � !

9� 4
9� 5
9� 6
9� 7

2
64

3
75

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 24/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-9
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

dataset includes readings of active power, reactive power, apparent power, current, and
voltage for milling machines, pelletizers, and other factory equipment. The algorithm uses
the optimization algorithm results as input to compute the total energy consumption of all
machines in the optimal solution. For this evaluation, data was specifically considered for
three milling machines, three pelletizers, and three exhaust fans (coolers). Energy
consumption was calculated for all production lines, assuming that other machines of the
same type (e.g., mixing, liquid addition, scaling, and sewing machines) consume the same
amount of energy. Additionally, standby energy consumption for idle machines was
disregarded.

For a given dataset of nine machines across three production lines, the total energy
consumption of the factory is calculated through the following steps:

• Calculate the average power Pavk for each machine over one working day. The average
power is derived from the machine’s measured power as in Eq. (16).

Pt ¼ VIt cos’ (16)

where Pt is the power at time t, V is the voltage on the machine, It is the current withdrawn
at time t, and cos’ is the power factor.

• Determine the current schedule and count the running time of each machine RTk.

• Compute individual machine energy consumption ECk by multiplying each machine’s
average power by its running time according to Eq. (17).

ECk ¼ Pavk � RTk: (17)

• Calculate total energy consumption TEC by summing up the energy consumption of all
machines.

TEC ¼
X

ECk where k 2 1; 4; 5; 8; 11; 12; 15; 18; 19ð Þ: (18)

SIMULATIONS AND ANALYSIS
The parameter values for the GWO and PSO have been presented in Table 5. All
parameters were selected based on standard practices in literature and preliminary
experimentation to ensure reasonable performance.

Generalizability of the proposed GWO and PSO algorithms
Before applying the proposed GWO and PSO algorithms to the poultry factory dataset,
their validity and effectiveness have been first evaluated using a well-established
benchmark. Specifically, the Brandimarte dataset (BRdata), originally introduced in
Brandimarte (1993), is employed. This benchmark comprises ten standard test problems,
labeled MK01 through MK10, representing a diverse range of FJSSP scenarios. These
instances vary in complexity, with the number of jobs ranging from 10 to 20, machines
from four to 15, and operations per job ranging from five to 15. The performance of the
proposed algorithms is evaluated over 30 independent computational runs. The numerical
results of the proposed GWO and PSO approaches are listed in Table 6 with a comparison

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 25/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

to the outcomes from prior studies (Zhou et al., 2024) and (Naimi, Nouiri & Cardin, 2021;
Sun et al., 2023; Li & Zhou, 2025) that utilized alternative optimization techniques to assess
the competitiveness and generalizability.

The experimental results highlight the effectiveness of both PSO and GWO algorithms
in solving the Brandimarte benchmark set MK01–MK10 (in Table 6). Across the ten test
cases, both approaches deliver competitive makespans that align closely with, and in some
instances match, the best-known results reported in recent literature. For example, in
MK01 and MK03, both PSO and GWO achieve makespans near or equal to the global
optima, demonstrating their reliability on standard instances. In more complex problems
such as MK06, MK09, and MK10, the algorithms maintain strong performance, producing
makespans within a narrow margin of the best reference values in Li & Zhou (2025). While
PSO often requires slightly more execution time, it consistently delivers quality results
across problem sizes. The GWO, on the other hand, shows a tendency for faster
convergence in some cases. Overall, both algorithms can handle a wide range of flexible job
shop configurations, validating the proposed algorithm’s adaptability and robustness in
addressing real-world scheduling challenges.

Table 5 Optimization algorithms parameters.

PSO parameter Value GWO parameter Range/Value

Number of iterations 100 Number of iterations 100

Population size (number of particles) 15 Population size (Number of Wolves) 100

Inertia weight 0.7 Convergence parameter (a) Decrease [2-0]

Cognitive coefficient (Personal learning factor) 1.5 Distance factor (A) [−2:2]

Social coefficient (Global learning factor) 1.5 Distance factor (C) Random in [0, 2]

Table 6 Results in terms of makespan of the Brandimarte instances for different algorithms.

Test
case

n � m GA by (Naimi,
Nouiri &
Cardin, 2021)

Hybrid GA
by (Sun
et al., 2023)

SS-
GWO
By
(Zhou
et al.,
2024)

LHS by
(Li &
Zhou,
2025)

Proposed PSO Proposed GWO

Makespan Average
makespan

Average
execution
time
(seconds)

Makespan Average
makespan

Average
execution
time
(seconds)

Mk01 10� 6 42 40 39 40 41 42.27 14.98 40 41.9 7.77

MK02 10� 6 32 26 36 26 28 28.36 16.46 27 28.1 11.6

MK03 15� 8 206 204 228 204 204 204 50.58 204 204 37.21

MK04 15� 8 67 60 72 60 66 66.9 17.43 64 66.9 13.29

MK05 15� 4 179 173 179 171 177 179.9 30.33 173 177.1 21.99

MK06 10� 15 86 61 84 55 65 66.96 54.21 63 66.2 36.83

MK07 20� 5 164 140 173 141 146 149.03 32.11 143 146.13 24.19

MK08 20� 10 523 523 541 523 523 523 74.69 523 523 42.57

MK09 20� 10 342 307 378 301 313 316.76 105.91 307 313.76 63.46

MK10 20� 15 292 214 282 205 231 234.36 112 221 227.4 67.04

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 26/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Generating the healthy scheduling plan
Generating the healthy scheduling plan is the foundational step in job-shop scheduling, as
it represents the optimal sequence and machine assignments for all operations under
normal operating conditions, i.e., without any disturbances such as machine failures. In
this stage, metaheuristic optimization algorithms including both GWO and PSO are
employed to explore the solution space and determine a schedule that minimizes the
makespan while satisfying all precedence and resource constraints. The healthy schedule
not only ensures that operations are allocated to machines in a manner that avoids
conflicts and idle times but also forms the baseline against which any rescheduling
strategies are evaluated in the event of disruptions. It reflects the best-case scenario in
terms of efficiency and serves as a reference for assessing the impact of failure scenarios on
production performance.

For GWO, the healthy schedule is generated as shown in Fig. 10 with minimum
makespan = 76, achieved at the 44th iteration. While For PSO, the healthy schedule is
generated as shown in Fig. 11 with minimummakespan = 76, achieved at the 47th iteration.

Figure 10 Gantt chart for healthy state using GWO with makespan = 76 time units. Full-size DOI: 10.7717/peerj-cs.3379/fig-10

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 27/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-10
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

From Figs. 10 and 11, it can be noticed that both algorithms achieved the same minimum
makespan. The difference is in the distribution of operations on the machines.

Optimizing the completion time
In this section, we present a comprehensive numerical analysis to evaluate the
performance of our proposed algorithm across several examples. For each case study, the
analysis begins with the evaluation of the healthy schedule, which is generated using either
GWO or PSO. Since both algorithms yield identical makespan values in the healthy state,
the distinction lies solely in the distribution of operations across the machines.
Subsequently, we examine the results under Scenario 1 using both GWO and PSO. While
the outcomes are generally consistent, minor variations may occur due to algorithmic
differences. Lastly, we assess Scenario 2, which does not involve any optimization
algorithm but instead relies solely on a shifting mechanism to reschedule operations.

Three case studies are explored to demonstrate the impact of key parameters—namely,
the failure time and the identity of the failed machines—on scheduling performance. These
case studies were carefully selected to highlight the influence of these primary factors. As

Figure 11 Gantt chart for healthy state using PSO with makespan = 76 time units. Full-size DOI: 10.7717/peerj-cs.3379/fig-11

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 28/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-11
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

expected, failures occurring later in the schedule lead to smaller increases in makespan,
since a larger portion of operations have already been completed, leaving fewer to be
rescheduled. Additionally, the criticality of the failed machine significantly affects the
results: failures in major machines, such as milling or pelletizing units, have a more
substantial impact on the scheduling outcome compared to failures in less critical
equipment like sewing machines, packing units, or coolers.

In the first case study, the failure occurs at time unit 20, affecting two critical machines:
M1 and M10. In the second case study, although the failure time remains the same at 20,
the failed machines are different—M8 and M18—which alters the rescheduling dynamics
and potentially reduces the impact on the overall schedule depending on the roles of these
machines. The third case study maintains the same failed machines as the second one (M8
and M18), but shifts the failure time to 30. This adjustment allows more operations to be
completed before the disruption, leading to a less pronounced effect on the makespan.

These variations across the case studies were purposefully designed to demonstrate the
sensitivity of the schedule to both the timing and the location of machine failures. The next
section provides a focused analysis of energy consumption using these same three case
studies, allowing for a comparative evaluation not only of scheduling efficiency but also of
operational sustainability.

A) Case study (1)
In this case study, the failure occurs at time 20, affecting machines M1 andM10. Prior to

the anomaly, the optimal makespan is 76, achieved at the 10th iteration. Following the
failure event, both the GWO and PSO algorithms optimally redistribute operations among
the remaining healthy machines. Under Scenario 1, the optimal makespan after the failure
is 80 when using GWO and 83 when using PSO. The convergence curves are presented in
Fig. 12. It is notable that the fitness curves after the anomaly are nearly horizontal, as the

Figure 12 Convergence curves: fitness function for: the healthy state before failure, GWO and PSO
after the failure for Scenario 1. Full-size DOI: 10.7717/peerj-cs.3379/fig-12

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 29/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-12
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

optimization process is initialized using the pre-anomaly optimal schedule, allowing for
faster convergence.

Figures 13, 14, and 15 illustrate the healthy operation case, the GWO-optimized
schedule under Scenario 1, and the PSO-optimized schedule under Scenario 1,
respectively. Job operations are allocated across machines based on the results of the
optimization algorithm presented in Fig. 10. A dynamic event (machine failure) is detected
at the failure time TF ¼ 20, triggering the rescheduling process.

Machines M1 and M10 are identified as having anomalous operations. In this scenario,
all the completed operations remain unchanged, while the operations ongoing at TF ¼ 20
are treated in two distinct ways. For the healthy machines, the operations in progress at
TF ¼ 20 are termed executing operations and these operations remain intact, and they are
still assigned to their initial machines in order not to experience a delay in the makespan
completion time. For the failed machines at TF ¼ 20, the operations in progress are termed
disrupted operations. Furthermore, operations scheduled after TF ¼ 20 are all categorized
as remaining operations along with the disrupted operations. In this case, remaining
operations are redistributed in accordance with the adopted evolutionary optimization

Figure 13 Initial gantt chart for healthy state: case study (1). Full-size DOI: 10.7717/peerj-cs.3379/fig-13

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 30/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-13
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

algorithm. At the failure time TF ¼ 20, all remaining operations are redistributed using the
proposed GWO approach, based on Eqs. (5)–(8) in ‘Initial Scheduling’, and the proposed
PSO approach, based on Eqs. (9) and (10). It is important to note that the time required to
rerun the optimization algorithms is not included in the makespan calculation.

Figure 16 shows the Gantt chart when applying Scenario 2. The makespan in this case is
87, the disrupted operations are op(1-3) and op(2-3). Op(1-3) is reassigned to M3 and op
(2-3) is reassigned to M17. Consequently ops(1-4:7) and ops(2-4:7) are extended to be
processed on the same assigned machine as the healthy case but shifted in time until the
previous operation is done or the machine is available.

As a numerical case study for Scenario 1, Job 2 (illustrated in blue in Fig. 11) originally
follows a sequence of seven operations processed on seven different machines: M8, M9,
M10, M18, M12, M13, and M14. This operation sequence is determined in the healthy
state based on the predefined machine selection and scheduling plan. Specifically, op(2-1)
begins execution on M8 and is immediately followed by op(2-2) on M9, and then op(2-3)
on M10, reflecting a continuous and optimized workflow.

Figure 14 Gantt chart applying GWO with failure in M1 and M10 at disrupted time TF = 20: case study (1) of Scenario 1.
Full-size DOI: 10.7717/peerj-cs.3379/fig-14

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 31/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-14
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Upon the occurrence of a machine failure, ops(2-1) and (2-2) are left unchanged—(2-1)
is already completed, and (2-2) is in execution—thus, both are preserved in the new
schedule as finished and executing operations, respectively. However, op(2-3), which was
originally scheduled on the now-failed machine M10, is reassigned to an alternative
machine, M17. The remaining operations of Job 2 are subsequently redistributed while
maintaining their original order, adapting to the updated resource availability.

This rescheduling process successfully preserves the consistency of the job’s execution
and minimizes delays in the overall completion time. It demonstrates the robustness and
adaptability of the scheduling strategy under disruption, ensuring continuity and efficiency
even in the presence of machine failures.

B) Case study (2)
In this case study, the failure time equals 20 and the failed machines are M8 and M18.

The optimal makespan, prior to the anomaly, is 76 at the 46th iteration. However, once the
anomaly event occurred, the GWO and the PSO algorithms optimally redistribute the
operations among all healthy machines. After the failure and when running Scenario 1, the

Figure 15 Gantt chart applying PSO with failure in M1 and M10 at disrupted time TF = 20: case study (1) of Scenario 1.
Full-size DOI: 10.7717/peerj-cs.3379/fig-15

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 32/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-15
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

optimal makespan is 85 while with the PSO is also 86. The convergence curves are shown
in Fig. 17.

Figures 18, 19, and 20 illustrate the healthy operation case, the GWO-optimized
schedule under Scenario 1, and the PSO-optimized schedule under Scenario 1,
respectively, each depicting the system’s behaviour under anomaly conditions. While job
operations are allocated among the machines based on the results of the optimization
algorithm shown in Fig. 10, a dynamic event has been detected at the failure time of
TF ¼ 20. Machines M8 and M18 are identified as having anomalous operations. In this
scenario, all the completed operations remain unchanged, while the operations ongoing at
TF ¼ 20 are treated in two distinct ways. For the healthy machines, the operations in
progress at TF ¼ 20 are termed executing operations and these operations remain intact,
and they are still assigned to their initial machines in order not to experience a delay in the
makespan completion time. For the failed machines at TF ¼ 20, the operations in progress
are termed disrupted operations. Furthermore, operations scheduled after TF ¼ 20 are all
categorized as remaining operations along with the disrupted operations. In this case,

Figure 16 Gantt chart with failure in M1 and M10 at disrupted time TF = 20: case study (1) of Scenario 2.
Full-size DOI: 10.7717/peerj-cs.3379/fig-16

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 33/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-16
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Figure 17 Convergence curves: fitness function for: the healthy state before failure, GWO and PSO
after the failure: case study (2) of Scenario 1. Full-size DOI: 10.7717/peerj-cs.3379/fig-17

Figure 18 Initial Gantt chart for healthy state: case study (2). Full-size DOI: 10.7717/peerj-cs.3379/fig-18

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 34/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-17
http://dx.doi.org/10.7717/peerj-cs.3379/fig-18
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

remaining operations are redistributed in accordance with the adopted evolutionary
optimization algorithm.

At the failure time TF ¼ 20, all remaining operations are redistributed using the
proposed GWO approach, as defined by Eqs. (5)–(8), and the proposed PSO approach, as
defined by Eqs. (9) and (10), all in ‘Initial Scheduling’.

Figure 21 presents the Gantt chart corresponding to Scenario 2. In this case, the
makespan reaches 81. The disruption involves two operations: op(7-4) and op(9-4). Due to
the failure of their originally assigned machines, op(7-4) is reassigned to machine M4,
while op(9-4) is reassigned to machine M11. As a result of these reassignments, the
subsequent operations—ops(7-5) through (7-7) and ops(9-5) through (9-7)—maintain
their original machine assignments as defined in the healthy schedule. However, these
operations are shifted in time, ensuring they start only after their preceding operations are
completed and their respective machines become available. This time-shifting strategy
preserves operational precedence and resource feasibility, ensuring the continuity of job
execution with minimal additional delays.

Figure 19 Gantt chart applying GWO with failure in M8 and M18 at disrupted time TF = 20: case study (2) of Scenario 1.
Full-size DOI: 10.7717/peerj-cs.3379/fig-19

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 35/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-19
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

C) Case study (3)
In this case study, the failure occurs at time 30, affecting machines M8 andM18. Prior to

the anomaly, the optimal makespan is 76, achieved at the 32nd iteration. Following the
failure event, both the GWO and PSO algorithms optimally redistribute the remaining
operations among the healthy machines. Under Scenario 1, the optimal makespan after the
failure is 82 when using GWO, and 83 when using PSO. The corresponding convergence
curves are presented in Fig. 22.

Figures 23, 24, and 25 illustrate the healthy operation case, the GWO-optimized
schedule under Scenario 1, and the PSO-optimized schedule under Scenario 1,
respectively, all under anomaly conditions. While job operations are allocated among the
machines based on the results of the optimization algorithm shown in Fig. 10, a dynamic
event has been detected at the failure time of TF ¼ 30. Machines M8 and M18 are
identified as having anomalous operations.

Figure 26 shows the Gantt chart when applying Scenario 2. The makespan in this case is
88, the disrupted operations are op(4-4) ,op(5-4) and op(9-4). Op(4-4) is reassigned to

Figure 20 Gantt chart applying PSO with failure in M8 and M18 at disrupted time TF = 20: case study (2) of Scenario 1.
Full-size DOI: 10.7717/peerj-cs.3379/fig-20

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 36/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-20
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Figure 21 Gantt chart with failure in M8 and M18 at disrupted time TF = 20: case study (2) of Scenario 2.
Full-size DOI: 10.7717/peerj-cs.3379/fig-21

Figure 22 Convergence curves: fitness function for: the healthy state before failure, GWO and PSO
after the failure: case study (3) of Scenario 1. Full-size DOI: 10.7717/peerj-cs.3379/fig-22

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 37/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-21
http://dx.doi.org/10.7717/peerj-cs.3379/fig-22
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

M11 and op(5-4) is reassigned to M11, while op(9-4) is reassigned to M4. Consequently
ops(4-5:7), ops(5-5:7) and ops(9-5:7) are extended to be processed on the same assigned
machine as the healthy case but shifted in time until the previous operation is done or the
machine is available.

Table 7 presents the start and completion times for all jobs in the healthy state and after
the failure of machines M1 and M10 (case study 1), using both Scenario 1 and Scenario 2.
For Scenario 1, results are shown for both GWO and PSO implementations. It is observed
that most jobs begin at the same time across the healthy state, Scenario 1, and Scenario 2.
However, the key distinction lies in the jobs’ completion times. While some jobs
experience only minor delays, others are significantly affected, with completion time
extensions reaching up to 48 time units.

Table 8 provides a summary of the results from the three case studies, including the
healthy state, Scenario 1 using GWO, Scenario 1 using PSO, and Scenario 2.

In Fig. 27, a pairwise comparison is presented, illustrating the extended makespan
resulting from simulating failures in each of the alternative machines (one at a time) for
three specific operations: Operation 1 (milling) depicted in Fig. 27A, Operation 3

Figure 23 Initial Gantt chart for healthy state: case study (3). Full-size DOI: 10.7717/peerj-cs.3379/fig-23

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 38/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-23
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

(adding liquid) as shown in Fig. 27B, and Operation 5 (cooling) compared in Fig. 27C. The
comparison is done in both Scenario 1 and Scenario 2. For instance, the milling operation
can be completed by machine M1 in 18 time units, while machines M8 and M15 can
handle the same operation in 6 and 4 time units, respectively. This implies that if a fault
occurs in a high-power rating machine like M15, which is assigned to four or five
operations, the makespan extension could be significant.

Redistributing these operations to lower-power rating machines would result in
considerably longer processing times. But this is not the only factor to be weighed as there
is also the impact of the failure time and how busy the alternatives are. When M1 is
experiencing failure at time 10, the workload will be distributed upon both M8 and M15.
But due to its long processing time (18 units of time), it was not loaded with many
operations in the initial schedule. This led to only 12% makespan extension using Scenario
1 and 29% using Scenario 2.

When studying the add liquid operation, M3 can handle the operation in 8 time units,
while machines M10 and M17 can handle the same operation in 6 and 4 time units,

Figure 24 Gantt chart applying GWO with failure in M8 and M18 at disrupted time TF = 30: case study (3) of Scenario 1.
Full-size DOI: 10.7717/peerj-cs.3379/fig-24

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 39/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-24
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

respectively. If M10 fails at time 10, its scheduled operations will be distributed between
M3 and M17 leading to 10% makespan extension when rescheduling with Scenario 1 and
15% with Scenario 2.

Energy consumption before and after failure
In this subsection, the estimated energy consumption is recorded for three simulated
scenarios for both GWO and PSO optimization algorithms such as: (1) healthy operation
with GWO scheduling, (2) faulted operation handled using Scenario 1, and (3) faulted
operation handled using Scenario 2. Table 9 presents the estimated energy consumption
for these three operational states. As observed, energy consumption in the healthy state is
the lowest. When comparing the two fault-handling scenarios, Scenario 2 exhibits lower
energy consumption. This is because Scenario 2 applies GWO and PSO optimization only
once, followed by a machine break-down shifting technique. In contrast, Scenario 1 applies
the GWO and PSO both before and after the anomaly event, redistributing operations to
minimize the maximum makespan without explicitly considering energy consumption.

Figure 25 Gantt chart applying PSO with failure in M8 and M18 at disrupted time TF = 30: case study (3) of Scenario 1.
Full-size DOI: 10.7717/peerj-cs.3379/fig-25

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 40/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-25
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Figure 26 Gantt chart with failure in M8 and M18 at disrupted time TF = 30: case study (3) of Scenario 2.
Full-size DOI: 10.7717/peerj-cs.3379/fig-26

Table 7 Starting time and completion time for all jobs before and after the failure in M1 and M10 (case study 1).

Healthy state Scenario 1 Scenario 2

Job Start
time

Completion
time

Job Start time
GWO

Completion time
GWO

Start time
PSO

Completion time
PSO

Job Start
time

Completion
time

1 0 39 1 0 31 0 36 1 0 87

2 0 41 2 0 41 0 45 2 0 85

3 4 53 3 4 49 4 57 3 4 53

4 8 66 4 8 57 8 58 4 8 66

5 12 59 5 12 65 12 61 5 12 59

6 6 64 6 6 67 6 64 6 6 54

7 12 73 7 12 75 12 72 7 12 73

8 18 69 8 18 76 18 81 8 18 69

9 24 75 9 24 76 24 83 9 24 75

10 30 76 10 20 80 20 83 10 30 76

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 41/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-26
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Table 9 is provided to the decision makers in the manufacturing plant through a user
dashboard, enabling them to evaluate the trade-off between time and energy consumption.
Then, they select a balanced scheduling strategy based on additional factors such as
product delivery deadlines, worker shift schedules, and the available budget.

The provided results illustrate the performance of different rescheduling strategies
under three case studies, focusing on makespan and energy consumption. In the healthy

Table 8 Comparison of the optimized makespan.

Case study Makespan time

Healthy Scenario 1 with GWO Scenario 1 with PSO Scenario 2

1 76 80 83 87

2 76 85 86 81

3 76 82 83 88

(a) (b) (c)

Figure 27 Makespan extension in the two scenarios comparing the fault in the alternatives, (A) the miller machine, (B) the adding liquid
machine, and (C) the cooler machine. Full-size DOI: 10.7717/peerj-cs.3379/fig-27

Table 9 Comparison of energy consumption before and after failure.

Example no. Operation mode Makespan Energy consumption

Case study 1 Healthy state 76 529:61 KwH

Scenario 1 GWO 80 691:04 KwH

Scenario 1 PSO 83 563:23 KwH

Scenario 2 87 529:61 KwH

Case study 2 Healthy state 76 580:59 KwH

Scenario 1 GWO 85 838:84 KwH

Scenario 1 PSO 86 625:03 KwH

Scenario 2 81 590:07KwH

Case study 3 Healthy state 76 560:67 KwH

Scenario 1 GWO 82 814:35 KwH

Scenario 1 PSO 83 523:93 KwH

Scenario 2 88 557:93 KwH

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 42/48

http://dx.doi.org/10.7717/peerj-cs.3379/fig-27
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

state across all three cases, the system consistently achieves the shortest makespan of
76-time units. This is expected, as a healthy state reflects normal operations without any
disruptions. Additionally, energy consumption in this state is relatively low, establishing a
baseline for evaluating the other scenarios.

When a machine breakdown occurs, Scenario 1 employs optimization techniques (GWO
and PSO) to reschedule the operations. These methods inevitably lead to an increase in
makespan due to the constraints imposed by the disrupted machine. In most instances,
GWO produces a slightly shorter makespan than PSO, suggesting that it is more effective in
minimizing total schedule time. However, this benefit comes with a cost: GWO tends to
consume significantly more energy compared to PSO. For instance, in Case Study 1, GWO
results in a makespan of 80 but with an energy consumption of 691.04 kWh, whereas PSO
yields a makespan of 83 with only 563.23 kWh. This trend is especially prominent in Case
Study 3, where GWO consumes 814.35 kWh, while PSO consumes just 523.93 kWh,
highlighting PSO’s superior energy efficiency despite slightly longer processing times.

Scenario 2 represents a simpler or more conservative rescheduling strategy. Although it
consistently results in the highest makespans across all case studies, its energy
consumption remains very close to that of the healthy state. This indicates that Scenario 2
likely involves minimal changes to the original schedule, thereby preserving energy
efficiency but at the expense of longer completion times.

In summary, GWO is more aggressive in minimizing makespan but consumes more
energy, while PSO strikes a better balance by controlling energy use at the cost of a
marginally higher makespan. Scenario 2, on the other hand, maintains energy efficiency by
limiting the extent of rescheduling, though this results in suboptimal makespan
performance. The choice of rescheduling strategy, therefore, depends on whether the
priority is to save time, reduce energy consumption, or maintain a balance between the two.

CONCLUSIONS
In this study, we proposed a dynamic flexible job shop rescheduling framework that
integrates two metaheuristic optimization algorithms—GWO and PSO—to efficiently
reschedule operations following unexpected breakdown events. The approach was
implemented within a digitally modelled industrial environment, aiming primarily to
minimize the makespan of the production process.

The performance of the GWO and PSO algorithms was validated using standard
benchmark datasets of varying sizes, demonstrating their effectiveness when compared to
existing solutions in the literature. Three operational states were considered: the healthy
state, Scenario 1 (optimized rescheduling using GWO or PSO), and Scenario 2 (rule-based
rescheduling). Quantitative results confirm that both GWO and PSO significantly reduce
the makespan in the healthy state. Furthermore, Scenario 1 consistently outperforms
Scenario 2 in terms of makespan reduction, except in specific instances where failures occur
on machines with short processing times, where Scenario 2 may yield slightly better results.

As anticipated, energy consumption was lowest in the healthy state. Between the two
fault-handling strategies, Scenario 2 generally resulted in lower energy consumption but at
the cost of a longer makespan.

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 43/48

http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

A comparative assessment indicates that GWO achieves stronger makespan reduction
but requires more energy, whereas PSO provides a compromise by lowering energy
consumption with only a marginally higher makespan.

A key limitation of the proposed framework is the increased computational burden
associated with scaling to larger problem instances. Additionally, the current energy
consumption estimation could be enhanced by incorporating a more comprehensive
model that includes all machines in the production environment.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2025R239), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia: PNURSP2025R239.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Nehal Tarek conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Samia Allaoua Chelloug conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

. Soha Alhelaly performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.

. Nancy A. El-Hefnawy conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

. Hatem Abdel-Kader analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

. Amira Abdelatey conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental File.

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 44/48

http://dx.doi.org/10.7717/peerj-cs.3379#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3379#supplemental-information.

REFERENCES
Albayrak E, Onuet S. 2024. Energy-efficient scheduling for a flexible job shop problem considering

rework processes and new job arrival. International Journal of Industrial Engineering
Computations 15(4):871–886 DOI 10.5267/j.ijiec.2024.7.004.

Baykasoğlu A, Fatma SM, Alper H. 2020.Greedy randomized adaptive search for dynamic flexible
job-shop scheduling. Journal of Manufacturing Systems 56:425–451
DOI 10.1016/j.jmsy.2020.06.005.

Brandimarte P. 1993. Routing and scheduling in a flexible job shop by tabu search. Annals of
Operations Research 41(3):157–183 DOI 10.1007/bf02023073.

Chang HC, Liu TK. 2017. Optimisation of distributed manufacturing flexible job shop scheduling
by using hybrid genetic algorithms. Journal of Intelligent Manufacturing 28(8):1973–1986
DOI 10.1007/s10845-015-1084-y.

Chang Y-H, Liu C-H, You SD. 2024. Scheduling for the flexible job-shop problem with a dynamic
number of machines using deep reinforcement learning. Information 15(2):82
DOI 10.3390/info15020082.

Chen CH, Chou FI, Chou JH. 2020. Multiobjective evolutionary scheduling and rescheduling of
integrated aircraft routing and crew pairing problems. IEEE Access 8:35018–35030
DOI 10.1109/ACCESS.2020.2974245.

Cheng Y, Xie Z, Xin Y, Chen K, Zarei R. 2024. Flexible job shop scheduling method for
optimizing mold resource setup time. IEEE Access 12:33486–33503
DOI 10.1109/ACCESS.2024.3372396.

Dauzère-Pérès S, Ding J, Shen L, Tamssaouet K. 2024. The flexible job shop scheduling problem:
a review. European Journal of Operational Research 314(2):409–432
DOI 10.1016/j.ejor.2023.05.017.

Fang Y, Peng C, Lou P, Zhou Z, Hu J, Yan J. 2019.Digital-twin-based job shop scheduling toward
smart manufacturing. IEEE Transactions on Industrial Informatics 15(12):6425–6435
DOI 10.1109/TII.2019.2938572.

Fontes DBMM, Homayouni SM, Gonçalves JF. 2023. A hybrid particle swarm optimization and
simulated annealing algorithm for the job shop scheduling problem with transport resources.
European Journal of Operational Research 306(3):1140–1157 DOI 10.1016/j.ejor.2022.09.006.

Fu Y, Gao K, Wang L, Huang M, Liang YC, Dong H. 2024. Scheduling stochastic distributed
flexible job shops using an multi-objective evolutionary algorithm with simulation evaluation.
International Journal of Production Research 63(1):86–103
DOI 10.1080/00207543.2024.2356628.

Fuladi SK, Kim C-S. 2024. Dynamic events in the flexible job-shop scheduling problem:
rescheduling with a hybrid metaheuristic algorithm. Algorithms 17(4):142
DOI 10.3390/a17040142.

Gao KZ, Ponnuthurai NS, Pan QK, Mehmet FT, Ali S. 2016. Artificial bee colony algorithm for
scheduling and rescheduling fuzzy flexible job shop problem with new job insertion. Knowledge-
Based Systems 109:1–16 DOI 10.1016/j.knosys.2016.06.014.

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 45/48

http://dx.doi.org/10.7717/peerj-cs.3379#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3379#supplemental-information
http://dx.doi.org/10.5267/j.ijiec.2024.7.004
http://dx.doi.org/10.1016/j.jmsy.2020.06.005
http://dx.doi.org/10.1007/bf02023073
http://dx.doi.org/10.1007/s10845-015-1084-y
http://dx.doi.org/10.3390/info15020082
http://dx.doi.org/10.1109/ACCESS.2020.2974245
http://dx.doi.org/10.1109/ACCESS.2024.3372396
http://dx.doi.org/10.1016/j.ejor.2023.05.017
http://dx.doi.org/10.1109/TII.2019.2938572
http://dx.doi.org/10.1016/j.ejor.2022.09.006
http://dx.doi.org/10.1080/00207543.2024.2356628
http://dx.doi.org/10.3390/a17040142
http://dx.doi.org/10.1016/j.knosys.2016.06.014
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Gao K, Yang F, Li J, Sang H, Luo J. 2020. Improved Jaya algorithm for flexible job shop
rescheduling problem. IEEE Access 8:86915–86922 DOI 10.1109/ACCESS.2020.2992478.

Gen M, Tsujimura Y, Kubota E. 1994. Solving job-shop scheduling problems by genetic
algorithm. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics,
San Antonio, TX, USA. Vol. 2, Piscataway: IEEE, 1577–1582.

He Y, Xin B, Lu S, Ding Y. 2021. Dynamic integrated flexible job shop scheduling with
transportation robot. In: 7th International Workshop on Advanced Computational Intelligence
and Intelligent Informatics. Beijing, China.

Hu K, Wang L, Cai J, Cheng L. 2023. An improved genetic algorithm with dynamic neighborhood
search for job shop scheduling problem. Mathematical Biosciences and Engineering
20(9):17407–17427 DOI 10.3934/mbe.2023774.

IEEE. 2020. Industrial machines dataset for electrical load disaggregation. Available at https://ieee-
dataport.org/open-access/industrial-machines-dataset-electrical-load-disaggregation#files.

Jiang T, Zhang C. 2018. Application of grey wolf optimization for solving combinatorial problems:
job shop and flexible job shop scheduling cases. IEEE Access 6:26231–26240
DOI 10.1109/ACCESS.2018.2833552.

Jiang T, Zhang C, Zhu H, Deng G. 2018. Energy-efficient scheduling for a job shop using grey wolf
optimization algorithm with double-searching mode. Mathematical Problems in Engineering
2018:1–12 DOI 10.1155/2018/8574892.

Kong J, Wang Z. 2024. Research on flexible job shop scheduling problem with handling and setup
time based on improved discrete particle swarm algorithm. Applied Sciences 14(6):2586
DOI 10.3390/app14062586.

Kong X, Yao Y, Yang W, Yang Z, Su J. 2022. Solving the flexible job shop scheduling problem
using a discrete improved grey wolf optimization algorithm. Machines 10(11):1100
DOI 10.3390/machines10111100.

Li Y, Tao Z, Wang L, Du B, Guo J, Pang S. 2023. Digital twin-based job shop anomaly detection
and dynamic scheduling. Robotics and Computer-Integrated Manufacturing 79:102443
DOI 10.1016/j.rcim.2022.102443.

Li XY, Xie J, Ma QJ, Gao L, Li PG. 2022. Improved gray wolf optimizer for distributed flexible job
shop scheduling problem. Science China Technological Sciences 65(9):2105–2115
DOI 10.1007/s11431-022-2096-6.

Li J, Zhou Y. 2025. Application of Levy flight-based harmony search algorithm for the flexible job
shop scheduling. Scientific Reports 15(1):18124 DOI 10.1038/s41598-025-01255-0.

Liu Z, Liang X, Hou L, Yang D, Tong Q. 2023.Multi-strategy dynamic evolution-based improved
MOEA/D algorithm for solving multi-objective fuzzy flexible job shop scheduling problem.
IEEE Access 11:54596–54606 DOI 10.1109/ACCESS.2023.3281364.

Lu C, Gao L, Li X, Xiao S. 2017. A hybrid multi-objective grey wolf optimizer for dynamic
scheduling in a real-world welding industry. Engineering Applications of Artificial Intelligence
57:61–79 DOI 10.1016/j.engappai.2016.10.013.

Lu C, Gao L, Pan Q, Li X, Zheng J. 2019. A multi-objective cellular grey wolf optimizer for hybrid
flowshop scheduling problem considering noise pollution. Applied Soft Computing 75:728–749
DOI 10.1016/j.asoc.2018.11.043.

Luo Q, Deng Q, Gong G, Zhang L, Han W, Li K. 2020. An efficient memetic algorithm for
distributed flexible job shop scheduling problem with transfers. Expert Systems with Applications
160:113721 DOI 10.1016/j.eswa.2020.113721.

Mahmoodjanloo M, Tavakkoli-Moghaddama R, Baboli A, Bozorgi-Amiri A. 2021. Distributed
job-shop rescheduling problem considering reconfigurability of machines: a self-adaptive hybrid

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 46/48

http://dx.doi.org/10.1109/ACCESS.2020.2992478
http://dx.doi.org/10.3934/mbe.2023774
https://ieee-dataport.org/open-access/industrial-machines-dataset-electrical-load-disaggregation#files
https://ieee-dataport.org/open-access/industrial-machines-dataset-electrical-load-disaggregation#files
http://dx.doi.org/10.1109/ACCESS.2018.2833552
http://dx.doi.org/10.1155/2018/8574892
http://dx.doi.org/10.3390/app14062586
http://dx.doi.org/10.3390/machines10111100
http://dx.doi.org/10.1016/j.rcim.2022.102443
http://dx.doi.org/10.1007/s11431-022-2096-6
http://dx.doi.org/10.1038/s41598-025-01255-0
http://dx.doi.org/10.1109/ACCESS.2023.3281364
http://dx.doi.org/10.1016/j.engappai.2016.10.013
http://dx.doi.org/10.1016/j.asoc.2018.11.043
http://dx.doi.org/10.1016/j.eswa.2020.113721
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

equilibrium optimiser. International Journal of Production Research 60(16):4973–4994
DOI 10.1080/00207543.2021.1946193.

Mönch L, Fowler JW, Dauzère-Pérès S, Mason SJ, Rose O. 2011. A survey of problems, solution
techniques, and future challenges in scheduling semiconductor manufacturing operations.
Journal of Scheduling 14(6):583–599 DOI 10.1007/s10951-010-0222-9.

Naimi R, Nouiri M, Cardin O. 2021. A Q-learning rescheduling approach to the flexible job shop
problem combining energy and productivity objectives. Sustainability 13(23):13016
DOI 10.3390/su132313016.

Ngwu C, Liu Y, Wu R. 2025. Reinforcement learning in dynamic job shop scheduling: a
comprehensive review of AI-driven approaches in modern manufacturing. Journal of Intelligent
Manufacturing 33(2–3):559 DOI 10.1007/s10845-025-02585-6.

Qi Q, Tao F. 2018. Digital twin and big data towards smart manufacturing and industry 4.0: 360
degree comparison. IEEE Access 6:3585–3593 DOI 10.1109/access.2018.2793265.

Rosen R, von Wichert G, Lo G, Bettenhausen KD. 2015. About the importance of autonomy and
digital twins for the future of manufacturing. IFAC-PapersOnLine 48(3):567–572
DOI 10.1016/j.ifacol.2015.06.141.

Sha DY, Hsu C-Y. 2006. A hybrid particle swarm optimization for job shop scheduling problem.
Computers & Industrial Engineering 51(4):791–808 DOI 10.1016/j.cie.2006.09.002.

Shen XN, Yao X. 2015. Mathematical modeling and multi-objective evolutionary algorithms
applied to dynamic flexible job shop scheduling problems. Information Sciences
2015(298):198–224 DOI 10.1016/j.ins.2014.11.036.

Stastny J, Skorpil V, Balogh Z, Klein R. 2021. Job shop scheduling problem optimization by
means of graph-based algorithm. Applied Sciences 11(4):1921 DOI 10.3390/app11041921.

Sun L, Cheng X, Liang Y. 2010. Solving job shop scheduling problem using genetic algorithm with
penalty function. International Journal of Intelligent Information Processing 1:65–77.

Sun L, Lin L, Gen M, Li H. 2019. A hybrid cooperative coevolution algorithm for fuzzy flexible job
shop scheduling. IEEE Transactions on Fuzzy Systems 27(5):1008–1022
DOI 10.1109/TFUZZ.2019.2895562.

Sun K, Zheng D, Song H, Cheng Z, Lang X, Yuan W, Wang J. 2023. Hybrid genetic algorithm
with variable neighborhood search for flexible job shop scheduling problem in a machining
system. Expert Systems with Applications 215(3):119359 DOI 10.1016/j.eswa.2022.119359.

Tamssaouet K, Dauzère-Pérès S, Knopp S, Bitar A, Yugma C. 2022.Multiobjective optimization
for complex flexible job-shop scheduling problems. European Journal of Operational Research
296(1):87–100 DOI 10.1016/j.ejor.2021.03.069.

Tan W, Yuan X, Wang J, Zhang X. 2021. A fatigue-conscious dual resource constrained flexible
job shop scheduling problem by enhanced NSGA-II: an application from casting workshop.
Computers & Industrial Engineering 160:107557 DOI 10.1016/j.cie.2021.107557.

Tarek N, Algarni AD, El-Hefnawy NA, Abdel-Kader H, Abdelatey A. 2025. Knowledge
graph-enhanced digital twin framework for optimized job shop scheduling in smart
manufacturing. IEEE Access 13:19863–19887 DOI 10.1109/ACCESS.2025.3532600.

Wang Y, Ding Y. 2020. Optimal scheduling and decision-making method for dynamic flexible job
shop. Journal of System Simulation 32:2073–2083 DOI 10.16182/j.issn1004731x.joss.20-0732.

Wang G-G, Gao D, Pedrycz W. 2022. Solving multiobjective fuzzy job-shop scheduling problem
by a hybrid adaptive differential evolution algorithm. IEEE Transactions on Industrial
Informatics 18(12):8519–8528 DOI 10.1109/tii.2022.3165636.

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 47/48

http://dx.doi.org/10.1080/00207543.2021.1946193
http://dx.doi.org/10.1007/s10951-010-0222-9
http://dx.doi.org/10.3390/su132313016
http://dx.doi.org/10.1007/s10845-025-02585-6
http://dx.doi.org/10.1109/access.2018.2793265
http://dx.doi.org/10.1016/j.ifacol.2015.06.141
http://dx.doi.org/10.1016/j.cie.2006.09.002
http://dx.doi.org/10.1016/j.ins.2014.11.036
http://dx.doi.org/10.3390/app11041921
http://dx.doi.org/10.1109/TFUZZ.2019.2895562
http://dx.doi.org/10.1016/j.eswa.2022.119359
http://dx.doi.org/10.1016/j.ejor.2021.03.069
http://dx.doi.org/10.1016/j.cie.2021.107557
http://dx.doi.org/10.1109/ACCESS.2025.3532600
http://dx.doi.org/10.16182/j.issn1004731x.joss.20-0732
http://dx.doi.org/10.1109/tii.2022.3165636
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

Wu R, Zheng J, Yin X. 2025. Dynamic scheduling for multi-objective flexible job shops with
machine breakdown by deep reinforcement learning. Processes 13(4):1246
DOI 10.3390/pr13041246.

Xie J, Gao L, Peng K, Li X, Li H. 2019. Review on flexible job shop scheduling. IET Collaborative
Intelligent Manufacturing 1(3):67–77 DOI 10.1049/iet-cim.2018.0009.

Xiong J, Xing L-N, Chen Y-W. 2013. Robust scheduling for multi-objective flexible job-shop
problems with random machine breakdowns. International Journal of Production Economics
141(1):112–126 DOI 10.1016/j.ijpe.2012.04.015.

Xu Y, Sun Y, Liu X, Zheng Y. 2019. A digital-twin-assisted fault diagnosis using deep transfer
learning. IEEE Access 7:19990–19999 DOI 10.1109/access.2018.2890566.

Xu Y, Wang D, Zhang M, Yang M, Liang C. 2025. Quantum particle swarm optimization with
chaotic encoding schemes for flexible job-shop scheduling problem. Swarm and Evolutionary
Computation 93(3):101836 DOI 10.1016/j.swevo.2024.101836.

Zhang H, Qin C, Zhang W, Xu Z, Xu G, Gao Z. 2023. Energy-saving scheduling for flexible job
shop problem with AGV transportation considering emergencies. Systems 11(2):103
DOI 10.3390/systems11020103.

Zhang M, Tao T, Nee AYC. 2021. Digital twin enhanced dynamic job-shop scheduling. Journal of
Manufacturing Systems 58:146–156 DOI 10.1016/j.jmsy.2020.04.008.

Zhang CJ, Zhou Y, Peng KK, Li XY, Lian KL, Zhang SY. 2022. Dynamic flexible job shop
scheduling method based on improved gene expression programming. Measurement and
Control 54:1136–1146 DOI 10.1177/0020294020946352.

Zheng P, Xiao S, Zhang P, Lv Y. 2024. A two-individual-based evolutionary algorithm for flexible
assembly job shop scheduling problem with uncertain interval processing times. Applied Sciences
14(22):10304 DOI 10.3390/app142210304.

Zhong H, Liu J, Chen Q, Mao N, Yang X. 2020. Performance assessment of dynamic flexible
assembly job shop control methods. IEEE Access 8:226042–226058
DOI 10.1109/ACCESS.2020.3043880.

Zhou K, Tan C, Zhao Yi, Yu J, Zhang Z, Wu Y. 2024. Research on solving flexible job shop
scheduling problem based on improved GWO algorithm SS-GWO. Neural Processing Letters
56(1):26 DOI 10.1007/s11063-024-11488-1.

Zhu H, Chen M, Zhang Z, Tang D. 2019. An adaptive real-time scheduling method for flexible job
shop scheduling problem with combined processing constraint. IEEE Access 7:125113–125121
DOI 10.1109/ACCESS.2019.2938548.

Zhu N, Gong G, Lu D, Huang D, Peng N, Qi H. 2024. An effective reformative memetic algorithm
for distributed flexible job-shop scheduling problem with order cancellation. Expert Systems with
Applications 237:121205 DOI 10.1016/j.eswa.2023.121205.

Zhu K, Gong G, Peng N, Zhang L, Huang D, Luo Q, Li X. 2023. Dynamic distributed flexible
job-shop scheduling problem considering operation inspection. Expert Systems with
Applications 224(4):119840 DOI 10.1016/j.eswa.2023.119840.

Zhu Z, Zhou X, Cao D, Li M. 2022. A shuffled cellular evolutionary grey wolf optimizer for flexible
job shop scheduling problem with tree-structure job precedence constraints. Applied Soft
Computing 125:109235 DOI 10.1016/j.asoc.2022.109235.

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3379 48/48

http://dx.doi.org/10.3390/pr13041246
http://dx.doi.org/10.1049/iet-cim.2018.0009
http://dx.doi.org/10.1016/j.ijpe.2012.04.015
http://dx.doi.org/10.1109/access.2018.2890566
http://dx.doi.org/10.1016/j.swevo.2024.101836
http://dx.doi.org/10.3390/systems11020103
http://dx.doi.org/10.1016/j.jmsy.2020.04.008
http://dx.doi.org/10.1177/0020294020946352
http://dx.doi.org/10.3390/app142210304
http://dx.doi.org/10.1109/ACCESS.2020.3043880
http://dx.doi.org/10.1007/s11063-024-11488-1
http://dx.doi.org/10.1109/ACCESS.2019.2938548
http://dx.doi.org/10.1016/j.eswa.2023.121205
http://dx.doi.org/10.1016/j.eswa.2023.119840
http://dx.doi.org/10.1016/j.asoc.2022.109235
http://dx.doi.org/10.7717/peerj-cs.3379
https://peerj.com/computer-science/

	Swarm algorithms for sustainable dynamic flexible job shop rescheduling under machine breakdown in smart manufacturing plants
	Introduction
	Related work
	Industrial manufacturing plant under healthy and failure states
	Sustainable dynamic job shop rescheduling problem using gwo and pso optimization algorithms
	Simulations and analysis
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

