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ABSTRACT

Early detection of breast cancer by mammography scans is crucial for improving
treatment outcomes. However, low image resolutions, size, and location of lesions in
dense breast tissue prove to be challenges in mammography, underscoring the
importance of accurate and efficient computer-aided diagnostic systems. This article
introduces a novel classification framework that utilizes histogram of oriented
gradients (HOG) as a feature extractor and principal component analysis (PCA) for
dimensionality reduction. Classification is implemented using the persistent
homology classification algorithm (PHCA), which leverages persistent homology
(PH) to capture topological properties of mammography images. The framework was
evaluated on 7,632 images from the INbreast dataset with an extensive use of
grid-search cross-validation to optimize preprocessing parameters. Two optimal
combinations of HOG parameters and scaler were identified, with the best
configuration (16 x 16 pixels per cell, 3 x 3 cells per block, and Minmax scaler)
achieving strong performance. Validating on the test set, PHCA achieved an overall
accuracy, precision, recall, F1-score, and specificity of 97.31%, 96.86%, 97.09%,
96.97%, and 96.86%, respectively. Clinically, the high precision (98.23%) and high
recall (97.75%) for malignant cases highlight PHCA’s sensitivity in identifying
malignancies, ensuring that very few malignant cases go undetected with highly
trustworthy predictions. These results are shown to be competitive with existing
state-of-the-art models, even exceeding in some cases, while requiring lower
computational cost than deep learning-based approaches. Although the proposed
method trails advanced deep models by 3-4% in some metrics, it offers a
computationally efficient alternative and a potential for deployment in large-scale
screening systems, demonstrating the promise of topological data analysis for breast
cancer classification.

Subjects Computer Vision, Data Mining and Machine Learning
Keywords Breast cancer classification, Topological data analysis, Persistent homology,
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INTRODUCTION

Breast cancer remains one of the most widespread health problems in the world, with
millions of new cases diagnosed every year. According to the American Cancer Society,
over 310,720 women in the United States will be diagnosed with invasive breast cancer in
2024, and approximately 56,500 cases of ductal carcinoma in situ (DCIS) are

predicted (American Cancer Society, 2024). It accounts for nearly 30% of all new cancer
cases diagnosed in women each year. The incidence of breast cancer is highest in
middle-aged and older women, with an average age at diagnosis of 62. While breast
cancer is less common in younger women, a small percentage is diagnosed before the age
of 45.

Early detection remains the cornerstone of effective breast cancer treatment. Numerous
studies emphasize its importance in reducing mortality and improving survival rates
(Wang, 2017). Early detection usually involves screening procedures such as
mammography, which can detect breast cancer at a much earlier stage, before symptoms
appear. If the disease is detected before it metastasises, the prognosis improves significantly
(Wrubel, Natwick & Wright, 2020; Elmore et al., 2005).

Mammograms offer several advantages in detecting early signs of breast cancer, yet
radiologists face challenges such as low image resolution, lesion size and location, and
dense breast tissue (Ruza et al., 2023). These factors increase the risk of misdiagnosis,
underscoring the need for accurate and efficient computer-aided diagnosis (CAD) systems.
Persistent Homology (PH), a technique from Topological Data Analysis (TDA), has
emerged as a promising tool for addressing these challenges.

PH has been increasingly recognized for its potential in capturing the intrinsic
topological structures of complex datasets. By analyzing the shapes and structures of data
points in high-dimensional spaces, PH provides unique insights into patterns within
medical images. Applications span cardiovascular (Ren et al., 2023), musculoskeletal
(Yadav, Nisha ¢ Coskunuzer, 2023), neurology (Tan et al., 2023), ophthalmology (Chen
et al., 2023), and oncology (Hahn et al., 2021; Malek et al., 2023).

Related works
Persistent Homology (PH), a core method in TDA, has gained increasing attention in
medical imaging due to its ability to capture intrinsic structural features of complex data.
By encoding both local and global topological properties, PH has been applied across
diverse medical domains. For example, Ren et al. (2023) applied PH to ECG analysis,
Yadav, Nisha & Coskunuzer (2023) to musculoskeletal imaging, Tan et al. (2023) to brain
signals, and Chen et al. (2023) to retinal image analysis. In oncology, Hahn et al. (2021)
studied DNA repair in breast cancer cells, while Malek et al. (2023) applied PH to
mammography microcalcifications.

In breast cancer classification, Anjum et al. (2021) combined histogram of oriented
gradients (HOG) and Canny edge detection with support vector machine (SVM) achieving
94% accuracy. Similarly, Mu’jizah ¢ Novitasari (2021) integrated HOG, principal
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component analysis (PCA), and SVM, reporting 100% sensitivity and 97.5% specificity.
These works demonstrate that hybrid methods leveraging gradient-based and topological
features can enhance diagnostic performance.

Despite these advances, state-of-the-art approaches still rely heavily on convolutional
neural network (CNN)-based deep learning models (EI Houby ¢ Yassin, 2021; Karthiga,
Narasimhan & Amirtharajan, 2022; Jabeen et al., 2023; Yadav ¢ Kumar, 2025), with some
exploring ensemble-based learning (Shah et al., 2024; Haq et al., 2022; Batool ¢ Byun,
2024) which, although effective, require extensive preprocessing and computational
resources, limiting their scalability in real-world settings.

Research gap

To date, limited studies have systematically explored the integration of PH with hybrid
feature extraction and dimensionality reduction methods for mammography classification.
Existing works either focus exclusively on deep architectures (Jabeen et al., 2023; Yadav ¢
Kumar, 2025) or apply PH in isolation without leveraging its synergy with descriptors
like HOG. This leaves a gap for computationally efficient yet accurate frameworks
that combine PH with conventional feature extraction to provide reliable alternatives
to deep networks. Addressing this gap, our study introduces a persistent homology
classification algorithm (PHCA)-based classification framework with HOG and PCA,
aiming to deliver strong diagnostic performance while maintaining efficiency and
scalability.

In summary, the combination of PH with hybrid feature extraction methods such as
HOG and dimensionality reduction techniques such as PCA is a promising approach for
breast cancer classification. These methods enable the extraction of rich topological
features from high-dimensional image data, contributing to more accurate and efficient
diagnostic tools. The major contribution of this study is the development of a novel breast
cancer classification framework that integrates HOG for feature extraction, PCA for
dimensionality reduction, and PHCA for classification. Unlike deep learning
approaches, the proposed method provides competitive performance while being
computationally efficient, making it suitable for large-scale screening applications. This
work further demonstrates the potential of topological methods in medical image analysis,
effectively bridging the gap between traditional feature-based and deep learning
approaches.

METHODOLOGY

This section outlines the detailed procedure of this study, including the preparation of the
dataset, feature extraction, dimensionality reduction, and the classification method used to
identify breast cancer tumors in mammography scans.

Dataset

The dataset used in this article is extracted from the INbreast database, the summarized
description of which is presented in Table 1. It consists of 7,632 mammogram images
categorized into two classes: 2,520 benign and 5,112 malignant images from Huang ¢ Lin
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Table 1 Summary of dataset used.

Dataset INbreast

Source Centro Hospitalar de S. Joao (CHSJ) Breast Center
Nature Mammography images

Case types Benign, Malignant

# Images 2,520 benign, 5,112 malignant

Dimension 224 x 224

(2020). The mammography images in the INbreast database were originally collected from
the Centro Hospitalar de S. Joao (CHSJ) Breast Center in Porto. The database contains
data collected from August 2008 to July 2010 and includes 115 cases with a total of 410
images (Moreira et al., 2012). Of these, 90 cases concern women with abnormalities in both
breasts. Four different types of breast disease are recorded in the database: Mass,
calcification, asymmetries and distortions. The mammograms are recorded from two
standard perspectives: Craniocaudal (CC) and Mediolateral Oblique (MLO). In addition,
breast density is classified into four categories based on the BI-RADS standards: Fully Fat
(Density 1), Scattered Fibrous-Landular Density (Density 2), Heterogeneously Dense
(Density 3) and Extremely Dense (Density 4). The images are stored in two resolutions:
3,328 x 4,084 pixels or 2,560 x 3,328 pixels, in DICOM format. A total of

106 mammograms depicting breast masses were selected from the INbreast database.

To enhance the dataset for model training, data augmentation techniques were applied.
Image preprocessing method using contrast limited adaptive histogram equalization
(CLAHE) was used to the 106 mammograph scans (Huang ¢ Lin, 2020), making the
lesions more detectable but may cause feature distortion. Then, multiple-angle rotation
(0 = 30° — 360° with 30° increments) and image flipping were then implemented,
imitating variations in breast orientation which helps the model to train on generalized
acquisition angles. From these steps, the dataset is increased from 106 to
7,632 mammography images.

Each image is preprocessed to ensure a uniform size and format. In particular, all images
are resized to 224 x 224 pixels to ensure uniformity across the dataset and converted to
grayscale to reduce the computational complexity associated with multi-channel (RGB)
data.

Grayscale conversion is particularly important in medical imaging. In this way, the
intensity values of the images are preserved while the color information, which is not
relevant for this classification task, is discarded. By focusing exclusively on the pixel
intensity, the computational effort is significantly reduced without losing important
information. In addition, data augmentation techniques, including image rotation, have
been applied to increase the variability of the dataset. The expansion helps to prevent
overfitting during model training by exposing the model to a wider range of image
variations.
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Feature extraction using histogram of oriented gradients

HOG is a feature descriptor used to define an image by the pixel intensity and intensities of
gradients of pixels (Madhuri ¢ Negi, 2023). It does so by computing for edges and shapes
on a dense grid of uniformly spaced cells and improves its performance by using
overlapping contrast normalization. Particularly, the method divides the image into a
small spatial region called cell. The combination of magnitude and angle derived from each
cell will be accumulated to develop the 1-dimensional histogram of gradients. Then, the
contrast normalization is performed on the local histogram by accumulating the derived 1-
dimensional histogram of gradients of each cell performed by relatively larger spatial
regions called blocks. In total, three parameters are usually set for HOG, namely:
dimension of a cell, dimension of a block, and number of orientations.

One of HOG’s main advantages is its robust nature in capturing local edge and shape
information, effective for distinguishing structural patterns from subtle texture variations.
This makes it useful specific to identifying tumors where boundary and margin details are
crucial diagnostic features. However, despite HOG being easy to implement and more
computationally efficient than deep learning approaches, its performance is sensitive to
parameter selection. It also results with high-dimensional descriptors, requiring the need
for dimensionality-reduction methods.

Algorithm of HOG

1. Gradient computation
For each pixel of an image, HOG descriptor is applied. This is done by computing the
horizontal and vertical gradients using the 1-dimensional [—1, 0, 1] kernel. Let x;; be the
ith-row and jth-column pixel of the image. For each pixel, the horizontal G, and vertical
gradients G, are computed as

Gy = [~1,0,1][xij1, %1, Xij1]" W
G, = [—17 0, 1][xi+1Jaxivai—1J]T' )

From this, the magnitude G and direction 0 of the gradient of each pixel are respectively
computed as

G=,/G+G (3)
tan ! (Gy> .
Gy

2. Orientation binning

0= (4)

After computing the gradient magnitude and direction for each pixel in the image, the
image is divided over a local spatial region called cell. Suppose that the specified

dimension of a cell is n x m (note that a cell can also be a square). This means that each
cell consists of n rows and m columns of pixels. For each cell, the gradient pixel gives a
weighted vote by allocating its corresponding magnitude to bins that correspond to the
direction. The vote are assigned to the center of each neighboring direction bins that are
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evenly spaced over 0° to 180° through bilinear interpolation. Increasing the direction
bins provide significant increase in its performance until up to nine bins.

3. Normalization and descriptor blocks
Cells will then be grouped into a larger spatial region called blocks. Local contrast
normalization is implemented for each block to account for local variation in
illumination and foreground-background contrast. Let v be the non-normalized vector,
||v|| be its k-norm, and € be a small constant. In this article, the L2-norm is used which
implies that the normalized vector is computed as

V

VIl + €

The final descriptor of the image is then represented as the concatenated vector
components corresponding to each normalized block. This is then used as the feature
vector for each image.

VY —

(5)

Dimension reduction using principal component analysis

Principal component analysis (PCA) aims to take high-dimensional dataset to a
lower-dimensional form while minimizing loss of information. It aims to find uncorrelated
variables of features derived from the original dataset that successively maximize the
variance. New variables or principal components are derived similar to the
eigenvalue/eigenvector problem. Its theoretical root is elaborated by Jolliffe & Cadima
(2016). Tts essence lies in the fact that reducing the number of dimensions which provides
the best separation between classes will improve the classification process. By retaining the
principal components that capture most of the variance in the data, PCA ensures that the
model remains both robust and accurate even with complex, high-dimensional inputs
(Bakar et al., 2023).

In breast cancer recognition, PCA can help improve HOG-extracted descriptors by
reducing it to lower-dimensional features. In this process, classification becomes less prone
to overfitting while still preserving most of the explained variance of the original data.
However, due to its process, PCA may remove clinically relevant low-variance descriptors
which may affect classification performance, requiring a caution in the parameter (% of
explained variance) used.

Feature scaling

Feature scaling is a technique under data normalization. Its relevance is already established
and its impact have been validated to improve classification performance in various fields,
such as medical data classification, multimodal biometrics systems, vehicle classification,
faulty motor detection, predicting stock market, leaf classification, credit approval data
classification, genomics, and some other application areas (Singh ¢ Singh, 2020). In this
article, the Standard, Minmax, and Robust scalers were compared as feature scaling
methods.
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The standard scaler follows from the standard normal distribution which makes the
mean across instances of each feature to be 0 and scales the data to unit variance. That is,
for each feature i, the updated ith feature values of all instances are calculated as

X = Xi — Xy

=" ©)

where X; are the original feature values, and X, and X, are the mean and standard
deviation of X;, respectively. Meanwhile, the minmax scaler translates each individual
feature in such a way that the range of the translated values falls within 0 and 1. This is
computed as

X =g )
Xmax - Xmin

where X; are the original feature values, and X,,,;, and X, are the minimum and

maximum of Xj, respectively. Finally, the robust scaler was used to scale the features using

statistics that are robust to outliers. This does so by removing the median of each feature,

scaling the features according to the quartile ranges, and centering independently on each

feature.

Persistent homology classification algorithm

PHCA, a supervised classification algorithm that utilizes algebraic topology in analyzing
the shape or topological properties of data, was used to classify the breast cancer tumor
images to either benign or malignant. De Lara (2023) presented a comprehensive
discussion of the theoretical basis behind PHCA. Detailed here is a brief breakdown of how
the algorithm works.

a. Input: Training data

o The training data X consists of points in (n + 1)-dimensional space, where the first n
dimensions represent attributes and the (n + 1)-th dimension gives the class label.

o The data is divided into k-classes X;, X, ..., Xk, with each class being a point cloud.
For this study, there are only two classes or values for k, benign or malignant.

b. Computing persistent homology

« For each class Xj, the persistent homology is computed which captures the topological
features, particularly the connected components, of the point cloud at different
resolutions.

o The persistent homology of a point cloud is represented by a matrix 2(X;) where each
row records a topological feature, including:

— The dimension of the feature (0 for connected components, 1 for loops, 2 for voids,
etc.).

— The birth and death times, indicating when the feature appears and disappears
during the filtration process.
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c. Filtration and parameter setting

« A filtration is a process that analyzes the point cloud at various scales, where smaller
scales capture finer details, and larger scales capture broader structure.

o The maximum scale maxsc is chosen based on the data, often as half the maximum
distance between any two points in the cloud.

d. Classifying a new point

« Given a new point p that needs to be classified, the algorithm computes the persistent
homology of the augmented point clouds Y; = X; U {p} for each class i.

o The algorithm then measures the change in topological features between #(X;) and
2(Y)).

e. Score function

« For each class i, a score is computed based on the difference in the lifespan of the
topological features before and after introducing p to the point cloud.

« The score is calculated as

Score(X;) = | > l(a,1) = > (b, 1) (8)

acy; beX;

where [ is the map that sends a basis element with birth index of 1 to its death index.
f. Classification decision

o The class that is least impacted by the addition of the new point (i.e., the class with the
smallest change in lifespan of the topological features) is selected as the predicted class
for p.

+ Mathematically, p is classified under class j if Score(X;) < Score(X;) for all
ie{l... k}.

In summary, PHCA uses persistent homology to analyze the topological structure of
different classes in the training data. By evaluating how much the persistent homology
changes when a new point is added to each class, the algorithm determines which class the
point most likely belongs to. The class with the least topological disturbance due to the
addition of the point is the predicted class for the new observation. Algorithm 1 shows the
pseudocode for PHCA.

Performance evaluation
To evaluate the performance of PHCA, five metrics are obtained. The values of these
metrics rely on the confusion matrix corresponding to the predicted classes.

Confusion matrix

The confusion matrix is a square matrix representing the true and predicted labels or class
of the validation or test set. For each element a;; of the matrix, this represents the total
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Algorithm 1 Persistent homology classification algorithm.
Require: X, ..., Xk, maxd, maxsc,and p
Ensure: Class(p)
1: procedure
2: fori=1...,kdo
3 P(X;) — n; X 3 matrix, a result of computing PH of X;
4 P(Y; = X; U{p}) < n; x 3 matrix, a result of computing PH of Y;
5: Compute Score(X;)
6 end for
7 Class(p) «— arg miny;{Score(X;)}
8: end procedure

number of instances that belongs to class i and are predicted to be in class j. From this
matrix, the following terms are defined.

e True positive (TP)—number of instances where the classifier predicts observation under
class k to belong to class k.

e True negative (TN)—number of instances where the classifier predicts observation not
under class k to not belong to class k.

o False positive (FP)—number of instances where the classifier predicts observation not
under class k to belong to class k.

» False negative (FN)—number of instances where the classifier predicts observation
under class k to not belong to class k.

Classification metrics
From these values, we obtain the five metrics, namely, precision, recall, F1-score,
specificity, and accuracy. The descriptions of which are provided in Table 2.

Overall framework

The framework of the implementation is presented in Fig. 1. All 7,632 grayscale images
(Fig. 1A) are split into 80:20 training/validation and test sets (Fig. 1B). Using the
training/validation set, the goal is to determine which combination of HOG parameters
and scaler produces the best result (Fig. 1C). In this way, the experiment guarantees the
best features extracted from the images. To do this, a grid search cross-validation with five
folds is employed. This allows the comparison of different combinations of parameters and
scaler shown in Table 3.

As an example, the first combination of parameters and scaler is 4 x 4 pixels per cell
(PPC), 2 x 2 cells per block (CPB), and Standard scaler. Using 5-fold cross-validation, the
training and validation folds undergoes feature extraction using HOG with 4 x 4 PPC,

2 x 2 CPB, and nine orientations. Then, the extracted HOG descriptors is reduced using
PCA with a standard 95% parameter. Finally, the reduced features are scaled using

Standard scaler and the output of which is used to train the PHCA model. For each fold,
the F1-score is calculated and the average F1-score across the five folds is obtained. This
serves as the “score” of the HOG parameter and scaler combination in the tuning process.
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Table 2 Metrics used for evaluating PHCA, their description, and corresponding formula.

Metric Description Formula
o . fio TP
Precision Describes exactness precision = 7575
. _ TP
Recall Describes completeness recall = PN
F1-score Harmonic mean of Precision and Recall fl-score = 2 x precision x recall
precision + recall
s . s . i TN
Specificity ~ Describes ability of the classifier to specificity = NP
predict observations not belonging to a class
i icti icti — TP + TN
Accuracy  Describes correct predictions rate over all predictions made  accuracy = wpry rp v

The parameter and scaler combination having the best average F1-score is then used to
predict the 20% training set. The corresponding HOG parameters of this combination are
used to extract the HOG descriptors (Fig. 1D). Then, using PCA with 95% parameter and
the corresponding scaler in the best combination, the final features are obtained (Fig. 1E).
Finally, classification is implemented using PHCA on these features (Fig. 1F). The output
of PHCA is a vector of binary values (0 or 1) representing the predicted class of each test
data. The performance of PHCA is then quantified using five evaluation metrics: precision,
recall, F1-score, specificity, and overall accuracy.

The specified combinations in Table 3 are declared based on studies that used HOG for
similar application. The PCA is used with a standard 95% parameter to preserve at least
95% of total variance of the dataset. This is set based on common practice on use of the
algorithm. In this way, dimension reduction capability of PCA is maximized while
minimizing the information loss. Similar strategy is set for the orientations parameter of
HOG, using a standard of nine in the experiment.

The implementation in this article is done on a computer with the following
configurations: 3,401 MHz AMD Ryzen 9 5950X 16-core processor, NVIDIA GeForce
RTX 3080 graphics cards, 64 GB 3,200 MHz RAM, and a 1 TB solid-state drive. For
reproducibility, the repository code is available at https://doi.org/10.5281/zenodo.
14862036 (Jetomo, 2025).

RESULTS AND DISCUSSION

HOG parameter and scaler tuning

The 80% training/validation set is used to identify the best combination of HOG
parameters (PPC and CPB) and scaler in terms of average F1-score. Table 4 shows the
implementation result on this tuning stage. The table shows that the average F1-score
ranges from 90.58% to 95.74% which indicates good overall performance of the data
preprocessing algorithms used. On average, the combinations having 8 x 8 PPC with
variations in CPB and scaler resulted in the least average F1-scores (90.82%). Meanwhile,
the combinations with 4 x 4 and 16 x 16 PPC obtained at least 95% average F1-scores,
considering the margin of errors. For CPB, the 3 x 3 parameter obtained a better overall
average F1-score of 93.94% than 2 X 2 having 93.64%. Additionally, the standard,
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Figure 1 Illustration of the framework of the breast cancer classification scheme. (A) Each image is grayscaled. (B) HOG is implemented to
obtain its corresponding descriptors with 54,756 dimension. (C) The dataset is then prepared by first dividing into training and testing with 80:20
ratio. After which, the data are normalized using Standard Scaler. (D) Then, PCA is performed to reduce the dimensions of the features. (E) Reduced
features are scaled using best scaler obtained in the tuning stage. (F) Finally, the scaled features are used to predict benign and malignant mam-
mography scans using PHCA. Full-size K&l DOI: 10.7717/peerj-cs.3374/fig-1
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Table 3 Parameter and scaler combinations applied and compared in the hyperparameter tuning

stage.
HOG parameters Scalers
Pixels per cell Cells per block
4 x 4,8 x 8,16 x 16 2%x2,3x%x3 Standard, Minmax, Robust

Table 4 Average F1-scores obtained by each HOG parameter and scaler combination in the five-fold
cross validation implementation on the training/validation sets.

Pixels per cell Cells per block Scaler
2x2 3x3

4 x4 95.39 £ 0.63 95.74 £ 0.49 Standard
95.32 + 0.64 95.40 £+ 0.72 Minmax
95.32 £ 0.71 95.20 & 0.63 Robust

8 x 8 90.58 & 0.87 90.69 & 0.93 Standard
91.09 + 1.08 91.10 + 1.18 Minmax
90.68 £+ 0.96 90.75 + 0.88 Robust

16 x16 94.71 £ 0.93 95.40 £ 0.82 Standard
94.94 & 0.82 95.74 £ 0.71 Minmax
94.79 £ 0.79 95.40 + 0.82 Robust

Note:

The best results are shown in bold.

minmax, and robust scalers obtained an average F1-score of 93.75%, 93.93%, and 93.70%,
respectively, indicating no significant differences in their contribution to the result.

Comparing all combinations altogether, both 4 x 4,3 x 3, standard and 16 x 16,3 x 3,
minmax combinations obtained the highest average F1-score of 95.74%, with the former
being more robust due to its smaller margin of error. Due to this result, we use both
combinations in classifying the test set and compare their performance in terms of the
various classification metrics and computational efficiency.

Classifying the test set

In the final classification stage, the PHCA model is trained using the 80% or 6,105 training
images used for tuning the HOG and scaler. Then, the 20% or 1,527 test images were
predicted using the trained PHCA model. In the test set, 504 images are benign while 1,023
images are malignant, capturing the distribution of the classes in the entire dataset. The
results of this classification is shown in Table 5. The table highlights the final classification
result of the two best HOG parameter and scaler combinations in the tuning stage:
combination A represents the 4 x 4 PPC and standard scaler and combination B
represents the 16 x 16 PPC and minmax scaler, both of which has 3 x 3 CPB.

For combination A, the number of HOG descriptors obtained are 236,196. Reducing
this using PCA, the final feature vector size is 2,432. On the other hand for combination B,
the HOG descriptors has dimension 11,664 while the final feature vector size is 739,
significantly smaller than the first (see Table 6). Table 5 shows that the classification scores
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Table 5 Classification result of the two HOG paramater and scaler combinations, A (4 x 4 PPC, 3 x 3
CPB, standard) and B (16 x 16 PPC, 3 x 3 CPB, minmax) on the test set. Pre, Rec, F1, Spec, and Acc
corresponds to precision, recall, F1-score, specificity, and accuracy, respectively. Class 0 and Class 1
represents benign and malignant classes, respectively. Results are presented in %.

Combination Pre Rec F1 Spec Acc
0 1 0 1 0 1 0 1
97.03 95.64 90.87 98.63 93.85 97.11 95.64 97.03 96.07
B 95.48 98.23 96.43 97.75 95.95 97.99 98.23 95.48 97.31

of the two combinations are consistently high, both for class 0 (benign) and class 1
(malignant) images.

Initial analysis on the scores shows that combination A and B have variations in
performance per metric. For precision, combination A obtained a higher value for class 0
(97.03%) than class 1 (95.64%) whereas combination B obtained higher for class 1
(98.23%) than class 0 (95.48%). Recall scores reflect a different observation. Here, both
combinations A and B obtained higher values for class 1. However, the difference in recall
score of combination A for benign and malignant images is ~ 8% whereas the same
quantity for combination B is 2%. This indicates robustness of combination B’s precision
against data imbalance as noted that there are twice as much malignant than benign test
images. The same observation is true for F1-score. Combination A still resulted with a
higher difference in F1-scores for class 0 and 1 than combination B. This additionally
indicates that robustness is more observed in combination B in terms of F1-score, a metric
that incorporates both precision and recall.

Specificity tells a different story. For combination A, a higher specificity score is
obtained for class 1 while combination B scored higher for class 0. However, in class 0,
combination B still obtained higher specificity scores than combination A. The overall
accuracy value further highlights how combination B outperforms combination A by
scoring 97.31%, 1.24% better than the other. From these analyses, we’ll dig further our
discussion on the result of combination B. The confusion matrix of which is provided in
Fig. 2.

Deep dive on combination B results

The precision score obtained by PHCA for class 0 and class 1 are ~95% and ~ 98%,
respectively. This means that approx. 95% of the images classified as benign were correctly
identified as such, while approx. 98% of the images classified as malignant were correctly
identified. High precision values for both classes imply that the model makes very few
misclassifications of benign images as malignant images, or vice versa, which is crucial for
minimizing unnecessary treatments or misdiagnosis. Furthermore, using combination B,
the recall values of the two classes were 96.43% for benign and 97.75% for malignant cases.
This means that 96.43% of benign and 97.75% of malignant tumors in the test group were
correctly classified by the model. The slight discrepancy between the recall values for
benign and malignant tumors could be a result of the great imbalance between the number
of benign and malignant images in the test set.
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Figure 2 Classification report of the PHCA model. The result shows that obtained precision, recall, F1-
score, specificity per class and the overall accuracy of the PHCA model.
Full-size K&l DOT: 10.7717/peerj-cs.3374/fig-2

The high precision and recall values of PHCA with combination B, especially for the
malignant case, highlights the strong potential of the model as a medical decision-support
tool. In practice, the high recall value for malignant tumors is important as it indicates that
the model is very sensitive to the presence of malignancy and ensures that very few
malignant cases go undetected. Also, the high precision value shows that the model makes
highly trustworthy predictions since the malignancy diagnosis is said to be correct 98% of
the time. Together, the model ensures that malignant tumors are detected while limiting
false positive on the benign tumors. At the same time, the model guarantees that malignant
tumor diagnosis are trustworthy, suggesting its effectiveness in detecting malignant tumors
from the mammography scans. This could be of great benefit in a real-life medical
screening context where false negative results (missed malignant tumors) are highly
undesirable.

The F1-scores, 95.95% for benign and 97.99% for malignant, also confirm the strong
performance of the model. These values show that the model strikes an excellent balance
between precision and recall and provides comprehensive measure of its ability to correctly
classify both tumor types. The higher F1-score for malignant cases shows that the model is
particularly good at discriminating malignancies—a crucial ability to reduce the risk of
misclassifications in a diagnostic setting.

Specificity, another important metric, measures the model’s ability to correctly identify
images that do not belong to a particular class. Specificity scores of 98.23% for benign and
95.48% for malignant indicate that the model is good at classifying images that do not
belong to a particular class. High specificity means that the model effectively avoid false
positives, important in medical diagnosis to avoid unnecessary stress for patients or the
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Table 6 Feature dimensions and recorded computation times in seconds of the two HOG parameter
and scaler combinations across the three major segments of the classification: data preparation,
training, and predicting. Data preparation involved all 7,632 images, training involved 6,105 images,
while predicting involved 1,527 images.

Dimensions Combination

A B
No. of HOG descriptors 236,196 11,664
Final feature vector size 2,432 739

Computation time

Segment A B

Data preparation 1,078.0335 128.5180
Training 3.3858 3.4128
Predicting 4,837.6744 4,623.5121
Total 5,919.0937 4,755.4429

need for further invasive tests or interventions when there is no malignancy. The highly
balanced values for recall and specificity indicate also that the model is robust and well-
calibrated, minimizing the risk of both false negative and false positive results.

The overall accuracy of the model was 97.31%, reflecting the proportion of correct
predictions out of the total number of classifications made. This accuracy is significant and
demonstrates that the proposed method, which combines persistent homology with PCA
and HOG, provides a reliable framework for classifying mammography scans. An accuracy
of at least 97% on a task as sensitive and complex as breast cancer diagnosis emphasizes the
robustness of the model and its potential for real-world application in early detection
systems.

Computational complexity analysis

The computational times of the PHCA model together with two HOG parameters and
scaler combinations are monitored and summarized in Table 6. The corresponding feature
dimensions for each stage of the data preprocessing are also provided. From the result, it is
clear that the choice of data preprocessing technique, either of the two combinations, had a
major impact on the overall computational cost.

Combination A required 1,078.03 s or approx. 18 min to extract the features while
combination B did the same task in only 128.52 s or approx. 2.14 min. From these values, it
shows that data preparation takes at least 8 times longer for combination A than B. This
reflects the added computational complexity of a more granular PPC parameter of the
HOG algorithm—4 x 4 for combination A compared to 16 x 16 for B. Using smaller cell
size implies that gradient orientations are computed at a finer spatial resolution, producing
a larger number of descriptors—almost 240,000 for combination A while only 12,000 for
combination B.

On the other hand, the training time of both combinations required only ~3.4 s or
0.05 min. This indicates that the preprocessing approach, at least between combinations A
and B, does not significantly affect model training complexity even with the significant
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Table 7 Performance comparison of the proposed method and existing literature that used the same
dataset. The precision, recall, F1-score, and specificity values of the proposed work are taken as average
across the two classes, benign and malignant.

Reviewed works Model Results

Pre Rec F1 Spec  Acc

Proposed PHCA 96.86 97.09 96.97 96.86 97.31
El Houby ¢ Yassin (2021) CNN - 96.55 - 96.49 96.52
Karthiga, Narasimhan ¢ Amirtharajan (2022) CNN (RMS Prop) - - - - 96.53
Jabeen et al. (2023) MGSVM 99.60 99.55 99.57 - 99.60
Cubic SVM 99.40 99.40 99.40 - 99.40
Yadav & Kumar (2025) Frac-CNN - 99.00 - 98.20 99.35
ResNet50 - 98.30 - 97.00 96.86
DenseNet - 96.80 - 96.30 97.60
CNN-SVM - 95.80 - 95.20 96.50

difference in size of the final feature vectors of the two combinations. This suggests that the
information to distinguish between benign and malignant scans captured by the 2,432-
dimensional feature vectors of combination A is also captured by the more
memory-efficient 739-dimensional feature vectors of B.

Meanwhile, the predicting time of combination A took 4,837.67 s or 80.63 min to
predict 1,527 test images while combination B took 4,623.51 s or 77.06 min for the same
task, slightly faster than that of combination A. The ~200 s difference is also largely due to
the size difference of the final feature vector of the two combinations. The PHCA model
required fewer computations for a smaller-sized feature vector from combination B,
resulting with a smaller prediction time per image. This suggests that the lighter data
preprocessing of combination B may lead to marginally more efficient inference.

From the previous section, we highlighted how combination B outperformed
combination A in terms of overall classification performance. Despite the more detailed
representation of the images using combination A with the 4 x 4 PPC, the added
preprocessing time does not justify its results being similar or worse in some cases to that
of combination B. For practical applications, a breast cancer diagnostic tool requires
efficiency and trustworthy results. The faster overall classification runtime of combination
B and its demonstrated robustness and strong performance with the PHCA model further
justifies its reliability for the task.

Comparison with existing literature
In Table 7, we present the performance comparison of our proposed method with existing
literature that used the same INbreast dataset. Papers cited here have implemented varying
preparation techniques while some used the same 7,632 images as in this article. Majority
of the existing literature utilized deep networks, specifically CNN-inspired models, to
distinguish benign from malignant mammography scans.

El Houby & Yassin (2021) used 387 out of the 410 raw images where the INbreast
dataset originated. Noise removal, image enhancement using CLAHE, and region of
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interest (ROI) extraction has been used to obtain the features from the images. A
fine-tuned CNN model was trained which resulted with a recall, specificity, and accuracy
of 96.55%, 96.49%, and 96.52%, respectively. A similar approach is proposed by Karthiga,
Narasimhan ¢ Amirtharajan (2022) but using Polynomial Curve Fitting as their
segmentation technique to partition the input image into multiple regions that are easy to
isolate and analyze, and thus construct the ROI. Classifying their extracted features using
CNN with RMS Prop optimizer, the authors were able to obtain an accuracy of 96.53%.
The proposed work offers improvements to these results as reflected in the obtained
metrics shown in Table 5. Additionally, the proposed work did not require any noise
removal, ROI extraction, or a deep network like CNN to achieve a better result,
highlighting the capability of the HOG descriptors and PH-based model for the task.

More recent literature offers a more complex approach to the problem. jabeen et al.
(2023) proposes a hybrid framework to extract features from the INbreast images. The
authors used their haze-reduced local-global method for contrast enhancement, extracted
deep features using a pre-trained EfficientNet-b0 model, and applied feature selection
technique using their Equilibrium-Jaya controlled Regula Falsi. A feature fusion strategy is
applied by the authors which resulted with an accuracy of 99.60% using the Medium
Gaussian SVM (MGSVM) model. With the feature selection strategy, they obtained a
slightly lower accuracy (99.40%) using Cubic SVM but with a significant reduction in
computation time (2.20 s from 20.01 s of MGSVM). These results clearly outperformed
PHCA but the marginal performance gap of 3-4% can be clinically accepted. Also, Jabeen
et al. (2023) uses a 50:50 train-test ratio with a more balanced set of images (1,216 benign
and 1,120 malignant) whereas our proposed work still performed strongly on a 80:20
train-test ratio with a significantly imbalanced dataset (2,520 benign and 5,112 malignant).
The proposed feature selection strategy, however, clearly outperforms the proposed work
since the PHCA model predicts an image for about 3.03 s whereas that of Jabeen et al.
(2023) takes 0.018 s, indicating an area of improvement for PHCA.

In Yadav & Kumar (2025), the authors proposes an advanced image-filtering method
through adaptive mean filtering which enhances the quality of the mammography scans.
They used the Particle Swarm Optimization algorithm to optimize a Fractional CNN
(Frac-CNN) and compared this with state-of-the-art models like ResNet50, DenseNet, and
CNN-SVM using the same data preparation framework. With a 70:30 train-test on the
INbreast dataset identical to this article, the authors achieved 99.00% recall, 98.20%
specificity, and 99.35% accuracy using the fine-tuned Frac-CNN model, outperforming the
state-of-the-art models and the proposed work. The authors highlighted that the training
time of Frac-CNN is 7 h on 7,632 images (or approx. 3.30 s per image), about 5-10%
increase compared to standard CNNs. Comparing this with the training time of our
proposed work which is 3.41 s on 6,105 images (or approx. 0.0006 s per image), indicating
less complexity of the PHCA model in terms of training capability. Moreover, from the
result of Yadav ¢ Kumar (2025) on the state-of-the-art models, we can also see how the
proposed work performed at par, if not better, in some of the metrics. PHCA is shown to
outperform DenseNet and CNN-SVM in recall and specificity which are priority metrics
for breast cancer diagnosis. The model also exceeded ResNet50 in terms of accuracy, a
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good indicator for a model’s classification power. This further highlights how PHCA can
offer strong results with fewer parameter configurations and less complexity than deep
networks.

CONCLUSIONS

The proposed work introduces the use of PHCA to overcome the challenges in breast
tumor misdiagnosis and delayed treatment. PH, a core technique in topological data
analysis, was used to capture topological features from complex medical data. The
advantage of PH lies in its ability to extract significant topological structures such as
connected components, loops, and gaps, enabling medical images to be analyzed at
multiple levels. This capability allows PH to distinguish between benign and malignant
tumors with greater precision and provides a powerful solution to the limitations of
conventional imaging techniques.

Several preprocessing steps were implemented, including the use of HOG for feature
extraction and PCA for dimensionality reduction. With a fine-tuned HOG algorithm and
scaler, the PHCA model achieved an impressive 97.31% accuracy. In addition, the
precision and recall values of 96.86% and 97.09% were respectively obtained,
demonstrating the effectiveness of the model in minimizing false positives and false
negatives. The F1-score and specificity also confirmed the consistent performance of the
model in both classes, indicating its robustness and reliability.

The proposed method shows significant potential for improving breast cancer screening
programs. While it is not the best in the literature, it offers at par, sometimes better,
performance than more computationally expensive state-of-the-art models even for highly
imbalanced datasets. By identifying topological features that reflect crucial information
about tumor structure, a more accurate differentiation between benign and malignant
tumors can be achieved. In addition, the scalability of PH enables its application to larger
data sets and more complex imaging tasks beyond breast cancer diagnosis, e.g., ultrasound,
magnetic resonance imaging (MRI), or digital breast tomosynthesis (DBT). Integration of
PH into existing computer-aided diagnosis systems could lead to significant improvements
in early detection and diagnosis, ultimately contributing to better patient outcomes.

Limitations and future directions

It is noted that the proposed work is constrained in terms of the preprocessing algorithms
used, limited comparison with state-of-the art models, and application to only one dataset.
The following future steps could be done to address these limitations.

o Further refinements of the approach can be done by exploring other parameters for the
preprocessing techniques. A more exhaustive search algorithm can be implemented, e.g.,
random search cross validation, Bayesian optimization, or metaheuristic approaches like
particle swarm optimization and Genetic Algorithm to identify best parameters. Other
preprocessing algorithms can also be explored to identify which works best with the
topology-based classifier.
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e While PHCA is compared with existing literature, benchmarking PHCA with baseline
methods (e.g., SVM, ensemble-based models, neural networks, efc.) using the same
preprocessing approach can be implemented to have a one-to-one comparison. This
comparison may focus on classification performance, computation time, and resources
consumption.

¢ Use PHCA and the proposed approach to other datasets such as the CBIS-DDSM
(Sawyer-Lee et al., 2016) and MIAS (Suckling et al., 2015) database. This can offer a more
comprehensive performance evaluation and help identify which breast cancer data
structures is more applicable for the model.

¢ The authors also aim to coordinate with radiologists or medical institutions to deploy
and evaluate the proposed approach in a clinical setting. This will provide additional
insights on the model’s performance in real-world diagnostic systems.
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