Submitted 2 June 2025
Accepted 17 October 2025
Published 14 November 2025

Corresponding author
Abeer Alhuzali,
aalhathle@kau.edu.sa

Academic editor
Vicente Alarcon-Aquino

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.3371

() Copyright
2025 Alhuzali

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

LLM-powered threat intelligence: a
retrieval-augmented generation approach
for cyber attack investigation

Abeer Alhuzali

Department of Computer Science, Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah, Saudi Arabia

ABSTRACT

Threat intelligence involves collecting, analyzing, and disseminating information
about cyber threats to help organizations proactively defend against attacks.
However, manually investigating cyberattacks using Cyber Threat Intelligence (CTI)
data is challenging due to its heterogeneity, complexity, and volume. While Large
Language Models (LLMs) offer potential for automating attack investigation, they
suffer from hallucinations, outdated knowledge, and technical misinterpretations. To
address these limitations, we propose a Retrieval-Augmented Generation (RAG)-
based LLM system called RAGIntel, which enhances accuracy by retrieving and
leveraging structured threat intelligence from MITRE ATT&CK. Our approach
employs a hybrid retrieval algorithm with reranking and compression strategies to
provide precise, context-aware responses. We evaluated RAGIntel on 339 attack
investigation queries drawn from diverse benchmarks, using multiple evaluation
metrics, and found that it delivers performance comparable to that of standalone
LLMs. This study advances automated attack investigation by leveraging RAG-based
LLMs, providing a scalable, accurate, and up-to-date solution for cybersecurity
analysts.

Subjects Artificial Intelligence, Cryptography, Security and Privacy
Keywords Retrieval-augmented generation (RAG), Large language models, Attack investigation,
Cyber threat intelligence

INTRODUCTION

Threat intelligence is a systematic process of collecting, evaluating, and sharing actionable
information about current, emerging, or potential cyber threats that can impact an
organization’s assets, operations, or reputation. The intelligence information could be
specific about planned attacks or campaigns, such as IoCs and attack vectors, or detailed
technical data about tools and techniques used in the attacks, including malware signatures
and phishing email characteristics. This intelligence provides actionable insights into
adversarial Tactics, Techniques, and Procedures (TTPs), enabling organizations to
anticipate and mitigate attacks before they cause harm. It is a proactive approach that
transforms raw data into meaningful information, empowering decision-makers to protect
their systems effectively. Cyber Threat Intelligence (CTI) data comes from diverse sources
such as Open-Source Intelligence (OSINT), intelligence collected from publicly available
resources (e.g., industry blogs, security advisories, and social media platforms), the MITRE
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ATT&CK knowledge base, and Common Vulnerabilities and Exposures (CVE), a publicly
accessible reference for known security vulnerabilities, etc.

Attack investigation involves analyzing these CTI data and inferring several key points,
such as the attacker’s tools, tactics, techniques, and procedures (TTPs). In addition,
identifying the individual or organization behind the attack, known as attack attribution, is
a crucial and challenging aspect in the attack investigation process. Gathering,
synthesizing, and analyzing the CTT data for attack investigation is not trivial due to data
heterogeneity, complexity, size, and time-dependability. Manual procedures are ineffective
and time-consuming. Therefore, several automated approaches are proposed in the
literature to tackle this problem, such as Gao et al. (2023a), Liao et al. (2016), and Arikkat
et al. (2024). With recent advancements in Artificial Intelligence (AI) and particularly
Large Language Models (LLMs), innovative solutions for knowledge extraction and
reasoning problems, such as attack investigation using CTI data, can be achieved
(Divakaran ¢ Peddinti, 2024; Clairoux-Trepanier et al., 2024). LLMs can employ CTI data
and enhance the attack investigation by improving the processing, analysis, and reasoning
of massive volumes of unstructured threat data. This enables security analysts to leverage
more CTI sources and perform attack investigations effectively. However, LLMs are
susceptible to generating hallucinations (Martino, lannelli & Truong, 2023; Perkovic,
Drobnjak ¢ Boticki, 2024), irrelevant and made-up content to the input data. In addition,
LLMs might produce outdated data as LLMs are trained during a particular time, while
cyberattacks are consistently evolving. Retraining LLMs more frequently is a complex task.
Lastly, LLMs could misinterpret technical texts, resulting in inaccurate or untrustworthy
outputs (Liu et al., 2023; Kim et al., 2024). Given these limitations, using LLMs for attack
investigation requires caution, as their tendency to produce false or unreliable intelligence
could have severe consequences if applied to real-world cyberattack investigations.

A Retrieval-Augmented Generation (RAG) approach can be used in attack investigation
and similar domains to tackle these issues and enhance LLMs’ accuracy by incorporating
external knowledge bases such as internal organizational data or specialized datasets. For
any given user query, RAG-based LLM retrieves the most similar contexts to the user query
from the knowledge base. Then, the query and the relevant contexts are supplied to the
LLM to generate a response. The system can construct more accurate domain-specific
content without further training by integrating relevant information into the generation
process. RAG systems offer key benefits. (1) They can improve accuracy and reduce
hallucinations by retrieving relevant, up-to-date information from trusted external sources
(e.g., threat databases, security reports). (2) Unlike static LLMs, RAG can fetch the latest
threat intelligence content from its knowledge base, ensuring responses reflect recent cyber
threats, vulnerabilities, and TTPs. This eliminates the need for constant model retraining
by leveraging real-time or frequently updated threat data sources. (3) Enhance contextual
understanding due to RAG’s architecture, combining generative Artificial Intelligence (AI)
with retrieval-based search, allowing the model to access domain-specific knowledge
(e.g., malware signatures, attack patterns) beyond its pre-trained data. This is particularly
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useful in technical domains like cyber attack investigation, where precision and correctness
are critical. RAG systems are a powerful solution; however, their effectiveness depends on a
high-quality retrieval strategy, knowledge sources, and proper implementation.

Several studies utilized RAGs in the cybersecurity domain, such as Rajapaksha, Rani &
Karafili (2024), Kurniawan, Kiesling ¢» Ekelhart (2024), and Arikkat et al. (2024). However,
these studies either build a naive RAG system (Rajapaksha, Rani ¢» Karafili, 2024) or do
not perform a thorough evaluation on large datasets (Kurniawan, Kiesling & Ekelhart,
2024). We propose a RAG-based LLM system called RAGIntel to fill this gap. Our tool
builds an extensive knowledge database from MITRE ATT&CK, a public knowledge base
of known adversary tools, software, campaigns, tactics, techniques, and attack mitigation
based on real-world observations. Using a hybrid retrieval algorithm, our tool searches the
knowledge base to fetch relevant contexts. The retrieved documents are reranked using a
ranking algorithm, compressed using a compression strategy, and finally, the most similar
documents for a given query are returned. The generator component of our tool augments
the LLM’s prompt with the retrieved documents to generate accurate, context-grounded
responses. Our tool is evaluated extensively on 339 attack investigation-related queries
from various benchmarks (Alam et al., 2024) using RAGAS (Es et al., 2024). In addition,
we compare RAGIntel’s performance to standalone LLMs. This article has the following
contributions:

e An advanced RAG-based LLM approach to investigate cyber attacks using publicly
available cyber threat intelligence data.

o A hybrid retrieval algorithm that employs dense and sparse retrievals. The retrieved
contexts are then improved using post-retrieval strategies, namely reranking and
compression, to produce the most similar and relevant context to the attack investigation
queries.

e An implementation of the approach in a tool called RAGIntel that is publicly available at
https://github.com/AbeerAlhuthali/RAGIntel.

o Comprehensive evaluation of the proposed tool using several matrices. In addition, a
detailed comparison with standalone LLMs is provided.

The remainder of this article is organized as follows: ‘Related Work” provides an
overview of related work. ‘Research Methodology’, Tmplementation Details’, and ‘Results’
describe the methodology employed, implementation details, and discuss the experimental
results. Finally, ‘Conclusion and Future Work’ concludes the study and highlights future
research directions.

RELATED WORK

This section reviews key studies on analyzing cyber threat intelligence (CTI) using
retrieval-augmented generation (RAG) systems. We categorize the literature into two
broad themes: (1) enhancements to RAG performance and (2) applications of RAG in the
cybersecurity domain.
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RAG performance enhancement studies

Gao et al. (2023b) and Fan et al. (2024) surveyed several research works on building and
optimizing RAG systems. For example, Cuconasu et al. (2024) studied the influence of the
retriever component on the overall performance of RAG systems. In particular, they have
conducted experiments to investigate the effects of the quality of the retrieved documents,
the number of retrieved contexts, and their position within the prompt. They concluded
that including random contexts (noise) in the prompt increases the accuracy of the LLM
responses. Additionally, they found that the context that contains the ground truth answer
should be placed near the query in the prompt. These authors counterintuitive results
suggest that further research is necessary in this area to gain a deeper understanding of
RAG behavior. A similar study by Liu et al. (2024) investigated how the position of the
retrieved contexts affects the performance of LLMs. The study concludes that the
performance of LLMs decreases significantly when the relevant content is placed in the
middle of the retrieved documents. They have also found that retrieving more context is
not always better. In our work, we build upon this approach and retrieve the top 10 most
similar documents. We then apply a post-retrieval strategy to further reduce the number of
relevant documents to three. Zhao et al. (2024) investigated the factors that affect the
performance of RAG systems. They performed several experiments utilizing three
Question-Answering (QA) datasets and two LLMs, with the aim of understanding the
impact of the following factors on RAG systems: retrieval document type, retriever recall,
document (context) selection, and prompt engineering techniques. Their study provides
suggestions for improving the performance of RAG systems. Our scope differs from that of
the abovementioned studies, which focused on understanding the factors that contribute
to improving the performance of RAG applications. Nonetheless, we have utilized some of
these findings.

The retriever in RAGs is a critical component, and its performance directly affects the
generated outcomes. In the following, we discuss key works that studied the role of the
retriever in RAG applications. RETRO (Borgeaud et al., 2022) is a system that uses a frozen
LLM with an external retrieval mechanism for each generation step. It scales to trillions of
tokens in the retrieval corpus. RETRO demonstrated high efficiency and performance
without increasing LLM size. REPLUG (Shi et al., 2023) is a framework that allows
plug-and-play retrieval augmentation for pretrained LLMs. This approach enhances
retrieval quality without requiring retraining of the generator or retriever. It made RAG
adoption more flexible in production settings. Several pre- and post-retrieval methods
have been introduced to optimize retrieval performance by enhancing both the input
queries and the algorithm’s output (Tan et al., 2024; Ma et al., 2023; Zhuang et al., 2023).
Query rewrite (Ma et al., 2023) is a system that focuses on improving the quality of a query
by asking the LLM to rewrite the query for the retriever. Their approach outperforms naive
RAG or generation models. Query2doc, proposed by Wang, Yang ¢» Wei (2023), is another
pre-retrieval strategy. Query2doc presents a query expansion approach that uses LLMs and
then generates pseudo-documents using few-shot prompts. These generated documents
are integrated with the queries and used by sparse or dense retrievers. Experimental results
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show that this approach is practical and can boost the performance of the retrievals. Their
approach outperforms naive RAG and generation models. Several articles have discussed
how the retrieval outcomes can be improved through post-retrieval strategies, including
re-ranking and context compression. Re-ranking the retrieved context aims to re-evaluate
the already retrieved contexts and reorder them based on their similarity to the problem.
Zhuang et al. (2023) introduced a ranking system that utilizes LLM-based Query
Likelihood Models (QLMs) and a hybrid zero-shot retriever, demonstrating effectiveness
on LLM responses. Xu, Shi & Choi (2024) introduced Retrieve, Compress, Prepend
(RECOMP), which compresses the retrieved contexts by summarizing them and feeds the
summaries to the LLM along with the query. Hofstditter et al. (2023) proposed an approach
that compresses the encoded vectors per retrieved context before aggregating them and
feeding them to the decoder based on a lighter version of Fusion-in-Decoder (FiD). Their
approach includes a re-ranking strategy that ranks the retrieved results before applying
them to the generator component. Another line of research has explored the concept and
impact of making RAG systems modular. Gao et al. (2024) introduced a modular RAG
framework to tackle the limitations of traditional linear RAG systems. They decomposed a
RAG system into independent modules for continued evolution and practical deployment.
Shi et al. (2024) developed another modular RAG system to enhance the overall response
accuracy. Our tool adopts retrieval enhancement strategies, such as context reranking and
compression.

Other studies have examined how dataset selection influences the evaluation of RAG
applications. For instance, CRAG (Yang et al., 2024) is a comprehensive benchmark
designed to evaluate RAG systems more effectively, than current benchmarks, which do
not fully capture real-world Question Answering (QA) tasks. De Lima et al. (2024) studied
the role of the datasets in RAG evaluation. They constructed synthetic datasets and
proposed strategies for generating such datasets based on the type of user interactions (e.g.,
reasoning, summarization) for evaluating RAG performance. Here, we selected datasets
explicitly designed for attack investigation.

RAG applications in cybersecurity

Rajapaksha, Rani & Karafili (2024) proposed a QA model designed to assist cybersecurity
analysts in investigating and attributing cyberattacks by leveraging RAGs and LLMs. Their
proposed approach outperforms stand-alone GPT-3.5 and GPT-40 by reducing
hallucinations and providing verifiable references. Yamin et al. (2024) explored using
LLMs and RAG to generate realistic cybersecurity exercise scenarios. Simoni et al. (2025)
developed the Morse framework, which uses two variations of the RAG architecture to
provide answers for cybersecurity questions. The framework incorporates parallel retrieval
algorithms to accelerate the retrieval process. CyKG-RAG (Kurniawan, Kiesling ¢
Ekelhart, 2024) is a RAG framework that utilizes Knowledge Graphs (KGs) built from
cybersecurity knowledge bases, such as MITRE, for cyber threat detection. The KGs
enhance the retriever, which captures the semantic relationships within the KGs. A similar
approach proposed by Jeon, Koo ¢ Kim (2024) that integrates graph models with RAG for
cyber threat tracing and investigation. Munir et al. (2024) explored using a multimodal
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RAG system to effectively predict cyberthreats in transportation systems. In a similar vein,
the RAG-based chatbot IntellBot (Arikkat et al., 2024), was designed for answering
cybersecurity questions, using a knowledge base built from diverse sources. Compared to
these systems, our work distinguishes itself in three key aspects: (1) We conduct a
comprehensive evaluation using 110 diverse queries, compared to IntellBot’s 5-query
assessment), (2) we incorporate hybrid retrieval strategies combining both semantic and
keyword-based search, and (3) we implement post-retrieval refinement techniques to
enhance answer quality. These methodological advancements enable a more rigorous and
scalable evaluation of RAG performance in cybersecurity applications.

THREAT MODEL

Our system investigates cyberattacks documented in curated CTI sources, focusing on
extracting attack techniques and attributing threat actors from descriptive text. The
MITRE ATT&CK repository serves as the source of our knowledge base, covering a broad
spectrum of real-world threats, including malware campaigns, phishing, ransomware,
supply-chain compromises, cloud intrusions, and ICS-targeted attacks. Adversaries may
aim to exfiltrate data, disrupt services, gain persistence, or compromise systems. We
assume that the CTI records are accurate and complete, reflecting peer-reviewed threat
intelligence. Our system does not simulate live attacks; instead, all scenarios are grounded
in documented incidents.

The MITRE ATT&CK repository, which curated and peer-reviewed content,
significantly reduces the risk of incorporating maliciously crafted or misleading
information compared to unverified sources. Nonetheless, recent studies (Zhang et al.,
2025) have shown that RAG systems may be susceptible to knowledge poisoning attacks, in
which adversaries inject false or misleading information into the underlying knowledge
base to influence outputs. Although our reliance on MITRE ATT¢CK mitigates this threat
to some extent, it does not eliminate it. Future work will explore additional safeguards,
such as content verification pipelines, to further strengthen resilience against such attacks.

RESEARCH METHODOLOGY

System workflow

Our approach leverages the strengths of LLMs while mitigating some of their limitations,
such as hallucinations, through a RAG framework. As illustrated in Fig. 1, our RAG-based
cyber threat intelligence system operates in two key phases:

* Retriever: Searches external knowledge bases to fetch relevant context using a hybrid
retrieval algorithm (steps 1-5 in Fig. 1), ranking, compressing, and returning the most
similar documents for a given query.

o Generator: Augments the LLM’s prompt with the retrieved documents to generate
accurate, context-grounded responses (shown in the “Generator” section of the
workflow).

By integrating the retriever and the generator, the system ensures responses are both
informed by authoritative sources and refined by the LLM’s reasoning capabilities.
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Figure 1 Overall workflow of our approach implemented in RAGIntel.
Full-size K&l DOT: 10.7717/peerj-cs.3371/fig-1

Retriever component

Knowledge base

One essential step in any RAG-based system is building a knowledge base related to the
problem being investigated. In RAGIntel, we utilize the MITRE ATT&CK (MITRE
Corporation, 2025), a publicly accessible knowledge base of adversary behavior. It
documents common tactics, techniques, and procedures attackers use for various
platforms such as enterprises, mobile, cloud, Windows, macOS, and industrial control
systems (ICS). The content included in MITRE ATT&CK highlights emerging threats and
guides the development of effective defensive strategies. In our implementation, the
knowledge base includes detailed data about assets, attack techniques, tactics, mitigations,
known attack campaigns, software used in attacks, and attack groups. While the knowledge
base provides rich and extensive coverage of relevant CTI information, it is not intended to
encompass all possible categories or sources of CTI data.

All assets included in our knowledge base are related to the industrial control systems
domain (14 assets). Each asset is annotated with its name, description, and unique ID.
RAGIntel’s knowledge base contains a thorough set of attack techniques representing how
an adversary achieves a goal by performing an action. For example, the attacker may
perform a Denial of Service (DoS) attack to block the availability of a service. In RAGIntel,
there are a total of 203 techniques and 453 sub-techniques related to enterprises, 73
techniques and 46 sub-techniques pertaining to mobile, and 83 techniques related to
attacking ICSs are included. Similarly, we incorporate information about various attack
tactics used to attack enterprises, mobile systems, and ICSs extracted from MITRE
ATTe&CK. Tactics convey the attacker’s goal. Our knowledge base has 14 enterprise,

14 mobile, and 12 ICS tactics. In addition, many mitigation techniques that are used to
prevent the attack techniques from being successful are included in RAGIntel’s knowledge
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Example of ID Name Discription
asset A0014 Routers A computer that is a gateway between two networks at OSI layer 3
and that relays and directs data packets through that inter-network.
The most common form of router operates on IP packets.
Enterprise | T1136 Create Account Adversaries may create an account to maintain access to victim
Technique systems. With a sufficient level of access, creating such accounts
may be used to establish secondary credentialed access that do
not require persistent remote access tools to be deployed on the
system.
Sub- T1136.001 Local Account Adversaries may create a local account to maintain access to victim
technique systems. Local accounts are those configured by an organization
for use by users, remote support, services, or for administration on
a single system or service.
Mobile tactic | TA0O027 Initial Access The adversary is trying to get into your device.
ICS mitigation | M0948 Application Isolation  Restrict the execution of code to a virtual environment on or in-
and Sandboxing transit to an endpoint system.
Attack (0025 2016 Ukraine 2016 Ukraine Electric Power Attack was a Sandworm
campaign Electric Power Attack  Team campaign during which they used Industroyer malware to
target and disrupt distribution substations within the Ukrainian
power grid. This campaign was the second major public attack
conducted against Ukraine by Sandworm Team.
ID Name Associated Groups  Description
Example of | GO008 Carbanak Anunak Carbanak is a cybercriminal group that has
attack used Carbanak malware to target financial institutions
group since at least 2013. Carbanak may be linked to
groups tracked separately as Cobalt
Group and FIN7 that have also
used Carbanak malware.
ID Name Associated Description
Software
Example of | 50504 Anchor Anchor_DNS Anchor is one of a family of backdoor malware that
attack has been used in conjunction with TrickBot on
software selected high profile targets since at least 2018.

Figure 2 Examples of CTI types included in RAGIntel’s knowledge base.

Full-size K&l DOT: 10.7717/peerj-cs.3371/fig-2

base. Specifically, 44 enterprise mitigations, 13 mobile, and 52 ICS mitigations are
included. Furthermore, having information about attack groups is essential for conducting
thorough attack investigations. Therefore, we retain detailed information about known
attack groups, including a detailed description of 163 attack groups, in our knowledge base.
As shown in Fig. 2, each group has a name and possibly other known aliases of the same
group collected from public reports. We also have various known attack campaigns (36
instances) and software (826 instances) in our knowledge base. The list of software
represents known software names, IDs, and descriptions collected from public sources.
Some software has multiple names associated with the same instance. Lastly, the MITRE
ATT&CK uses the term campaign to describe a set of coordinated cyber intrusions
occurring within a particular period, directed at common targets and having common
objectives. Figure 2 illustrates representative examples of CTI types leveraged in our
system; it is not intended to be an exhaustive enumeration of all possible CTI categories.
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Each of the seven CTI types (i.e., assets, attack techniques, tactics, mitigations, software,
groups, and campaigns) is fed into RAGIntel as an HTML file extracted from MITRE
ATTe&CK repository.

Chunking and the embedding model

Before utilizing the embedding model, RAGIntel breaks down the files in the knowledge
base into chunks. Chunking files enables their use with embedding models, which have
specific input sizes. Moreover, without chunking, each file will contain only one
embedding, which fails to provide relevant context. The chunking strategy employed in
our work is hierarchical recursive splitting, which involves two levels of chunking to
capture different levels of contexts: parent and child splitting. The parent splitting creates
larger chunks of 2,000 characters to capture the broad context. Then, each chunk is further
split into 500-character chunks for increased granularity. The parent-child relationships
are maintained using metadata. Next, we generate embeddings from the text chunks,
converting them into numerical representations (vectors) and storing these in a vector
database. The embedding model maps each chunk into a multidimensional space,
arranging data points based on semantic similarity; thus, closely related content is
positioned closer to one another. Selecting the embedding model is crucial in RAG
systems, as their performance depends heavily on the quality of the context retrieved from
the vector database.

Vector store and hybrid retrieval algorithm

The embeddings generated in the previous step are transformed into vectors and stored in
the vector database, which serves as a repository for answering the user’s queries. The
vector database stores the generated vector embeddings, the original chunks, and their
associated metadata. The vector store can be updated later if additional information
becomes available. The process of vectorizing the data enables semantic vector search to
find data points in the store similar to an input. Upon receiving a query, the system
converts it into embeddings and searches the vector store for similar embeddings.
Therefore, the quality of the retrieval process affects the performance of RAGIntel in
general. We employ a hybrid retrieval approach that combines BM25 (Robertson ¢
Zaragoza, 2009) and dense embeddings. BM25 is a typical keyword-based retrieval
algorithm for sparse retrieval, while dense retrieval employs approximate nearest
neighbors. Results from both are merged by the hybrid retrieval algorithm,

duplicates are removed via content hashing, and the final list is returned. In addition,
this list of retrieved documents (i.e., 10 documents) is further reranked using
Langchain’s FlashrankRerank. Finally, we apply a compression strategy using
Langchain’s ContextualCompressionRetriever to compress the number of retrieved
documents to the top 3 most similar documents, which is considered the query’s final
retrieved context.

Generator component
The retrieved knowledge from the retrieval component is integrated with the pre-trained
LLMs to augment their contextual understanding. This synthesis enables the generation of
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higher-quality responses with improved accuracy, depth, and engagement. The following
sections present the LLMs and prompt components.

RAG queries and prompts
Prompts are used to interact and communicate with LLMs. Therefore, queries are
automatically sent to our RAG-based system through prompts. We adopted two datasets
from CTIBench (Alam et al., 2024), a public benchmark of datasets for evaluating LLMs in
the cyber threat intelligence domain, specifically CTI-ATE and CTI-TAA. The CTI-ATE
contains 60 queries while the other includes 50 prompts. Additionally, we utilize a third
dataset, CTI-ATTACK (dattaraj, 2025), which consists of 299 attack-related questions.
Generally, each of these queries and prompts represents an attack investigation question
that a cyber analyst must answer to investigate a cyberattack or evaluate a cyber threat.
Each of the prompts is automatically sent to the LLMs in addition to the most similar
context to the query retrieved from the vector store by our hybrid retrieval algorithm. The
LLM then responds to the provided query, taking into account the retrieved context. The
response is automatically recorded and outputted. Note that all prompts used in this work
are zero-shot prompts, meaning that responses are generated without any prior
task-specific examples or fine-tuning, relying solely on the LLM’s pre-trained knowledge,
the provided instructions, and retrieved context. The nature of the queries, examples, and
details of the datasets are provided in ‘Evaluation Datasets’.

Large language models (LLMs)

In our work, we employ various pre-trained LLMs to generate query responses. Two inputs
are needed for the LLM to work in RAGIntel: a threat intelligence investigation prompt
and the most similar context to the query retrieved from the vector store. Given this input,
each LLM will generate a response. The LLMs used in RAGIntel are OpenAI GPT-40 mini
(OpenAl 2025a) and GPT-3.5 turbo (OpenAl 2025b), Meta BART (Lewis et al., 2020), and
Google Flan-T5 (Chung et al., 2022; Sanh et al., 2019). We assess our RAG system using
more than one LLM to mitigate model-specific biases, leverage complementary strengths
(e.g., BART’s comprehension, Flan-T5’s instruction-following, GPT-40’s reasoning), and
ensure robustness across different architectures.

Evaluation datasets

We utilized three datasets focused on cyber attack investigation. Two are from the
CTIBench (Alam et al., 2024, 2025) benchmark (i.e., CTI-ATE and CTI-TAA), and the
third one is CTI-ATTACK (dattaraj, 2025). The CIT-ATE dataset contains 60 attack
descriptions collected from public sources. The dataset includes a prompt for each sample
text that asks LLM to identify attack techniques according to MITRE ATT&CK. It also has
ground truth answers and other labels. Figure 3 illustrates an example from the original
CTI-ATE dataset showing only the prompt and the corresponding ground truth. To utilize
this dataset for our work, we retained only the essential labels (i.e., text, prompt, and
ground truth). We then removed the technique IDs from all prompts, as they are already
included in our knowledge base. Most importantly, we aim to evaluate our RAG retrieval
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Prompt | Extract all MITRE Enterprise attack patterns from the following text and map them to
their corresponding MITRE technique IDs. Provide reasoning for each identification.
Ensure the final line contains only the IDs for the main techniques, separated by
commas, excluding any subtechnique IDs. MITRE Enterprise IDs are given below as
reference.
**Text:** 3PARA RAT is a remote access tool (RAT) developed in C++ and
associated with the group Putter Panda. It communicates with its command and
control (C2) servers via HTTP, with commands encrypted using the DES algorithm in
CBC mode. The encryption key is derived from the MD5 hash of the string
"HYF54&%9&jkMCXuiS." If the DES decryption fails, 3PARA RAT will attempt to
decode the commands using an 8-byte XOR key, also derived from the same string.
The tool includes commands to retrieve file metadata, list the current working
directory, and modify file attributes, such as creation and modification timestamps.
**|ist of All MITRE Enterprise technique IDs** ID : Name T1548 : Abuse Elevation
Control Mechanism T1134 : Access Token Manipulation T1531 : Account Access
Removal T1087 : Account Discovery T1098 : Account Manipulation (List truncated
for space)
Ground | T1071, T1573, 71083, T1070

Truth

Figure 3 Example taken from CTI-ATE dataset (without modifications).
Full-size 4] DOT: 10.7717/peerj-cs.3371/fig-3

Prompt | Extract all MITRE Enterprise attack patterns from the following text and map them to
their corresponding MITRE technique IDs. Provide reasoning for each identification.
Ensure the final line contains only the IDs for the main techniques, separated by
commas.
**Text:** 3PARA RAT is a remote access tool (RAT) developed in C++ and
associated with the group Putter Panda. It communicates with its command and
control (C2) servers via HTTP, with commands encrypted using the DES algorithm in
CBC mode. The encryption key is derived from the MD5 hash of the string
"HYF54&%9&jkMCXuiS." If the DES decryption fails, 3PARA RAT will attempt to
decode the commands using an 8-byte XOR key, also derived from the same string.
The tool includes commands to retrieve file metadata, list the current working
directory, and modify file attributes, such as creation and modification timestamps.
Ground | T1071, T1573, T1083, T1070

Truth

Figure 4 Sample of the modified dataset used in RAGIntel, corresponding to the example in Fig. 3,
with the highlighted sections removed. Full-size K&] DOTI: 10.7717/peerj-cs.3371/fig-4

component’s ability to retrieve the relevant contexts from the vector store. Figure 4
demonstrates these updates.

In addition, CTI-TAA contains 50 entries, each representing a publicly available threat
report labeled as text, source of the report labeled as URL, and prompt, which asks LLM to
identify the attributing threat actors or malware families from each attack described in the
text. The ground truth answer for each query is crucial for evaluating any RAG-based
system. Since the original dataset did not include this label, we added the ground truth
answers after reviewing each original attack description from its corresponding URL.
Figure 5 illustrates a sample of this updated dataset, showing a prompt and the
corresponding ground truth.

CTI-ATTACK dataset originally contains 281 short attack descriptions along with their
ground truth answers, which are the MITRE technique IDs. The dataset has no prompts
(unlike CTIBench), no description of how the data was collected and verified, and it is in
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Prompt | You are given a threat report that describes a cyber incident. Any direct mentions
of threat actor groups, campaign names, or malware names have been replaced
with [PLACEHOLDER].
Your task is to attribute the incident to a known threat actor or malware. Map it to
relevant MITRE ATT&CK threat groups (e.g., APT36) or Software/Tools (e.g.,
Crimson RAT - S0334)
Threat Report: [PLACEHOLDER], a notorious name in the realm of cyber threats, has
loomed large over the digital landscape since its inception in 2014. Originally
identified as a banking Trojan focused on financial data theft, [PLACEHOLDER] has
evolved into a highly adaptable and multifaceted malware, capable of causing
widespread disruption to both individuals and organizations alike. In this
comprehensive analysis, we embark on a journey into the intricate workings of
[PLACEHOLDER], meticulously dissecting its tactics, functionalities, and the
imminent dangers it presents. (truncated for space)
URL | https://medium.com/@zyadlzyatsoc/comprehensive-analysis-of-emotet-malware-
part-1-by-zyad-elzyat-35d5cf33a3c0
Ground | Emotet

Truth

Figure 5 Example from the updated CTI-TAA dataset. Full-size Kal DOI: 10.7717/peerj-cs.3371/fig-5

Prompt | Extract all MITRE attack patterns from the following text and map them to their
corresponding MITRE technique IDs. Provide reasoning for each identification.
Ensure the final line contains only the IDs for the main techniques, separated by
commas, excluding any subtechnique IDs.

**Text:** Detected a suspicious PowerShell script execution on one of our
workstations. The script seems to be collecting system information and attempting
to establish an outbound connection.

Ground | T1059.001, T1082, T1571
Truth

Figure 6 Example from the updated CTI-ATTACK dataset.
Full-size K&] DOT: 10.7717/peerj-cs.3371/fig-6

JSON format. Therefore, we perform a preprocessing step in which we convert it to a CSV
format, add a prompt to each attack description, and remove duplicate entries. The final
dataset after the preprocessing has 229 attack descriptions. Figure 6 illustrates an example
from the updated CTI-ATTACK dataset.

In summary, these updated datasets will help in assessing the effectiveness of our
RAG-based system in performing threat investigations, as we will explain in ‘Results’.

IMPLEMENTATION DETAILS

RAGIntel was built using Python with 400 total lines of code, and we have utilized several
libraries. Specifically, HTML files in our Knowledge base are fetched from the MITRE
ATT&CK website and stored locally. RAGIntel automatically retrieves these files and
breaks them down into chunks using Langchain’s RecursiveCharacter TextSplitter
function. Our parent chunk size is set to 2,000, and an overlap of 200. The child split
size is set to 500, and an overlap of 50 characters. Next, the embedding model

creates the embedding vectors from the chunks. For the embedding model, we utilized the
nomic-ai/nomic-embed-text-v1.5 model from the Hugging Face (Face, 2025). Then, the
resulting vectors are stored in the vector store. We used FAISS (Faiss, 2025), a library that

Alhuzali (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3371 12/25


http://dx.doi.org/10.7717/peerj-cs.3371/fig-5
http://dx.doi.org/10.7717/peerj-cs.3371/fig-6
http://dx.doi.org/10.7717/peerj-cs.3371
https://peerj.com/computer-science/

PeerJ Computer Science

enables storing and searching similar documents, as a vector store. LangChain’s BM25
(LangChain, 2025a) retriever was utilized in our hybrid retrieval algorithm. The reranker is
Langchain’s FlashrankRerank (LangChain, 2025¢), and the compression strategy is done
through Langchain’s ContextualCompressionRetriever (LangChain, 2025b) to compress
the number of retrieved documents. We incorporated four different LLMs: OpenAI GPT-
40 mini and GPT-3.5 turbo, Meta BART base model, and Google Flan-T5 small model. All
prompts used in this work are zero-shot prompts in which LLMs are instructed to act as
cybersecurity experts. For evaluating RAGIntel, we used a well-known evaluation metric
called RAGAS version 0.2.13 (Es et al., 2024). In ‘Results’, we provide detailed information
related to RAGAS.

RESULTS

Experimental setup

We implemented and evaluated our system using Google Colab (Google, 2017) connected
to Python 3 Google Compute Engine backend (TPU) and a total of 334.56 GB of memory.
Each of the updated datasets is processed and evaluated individually. We assessed each
dataset using the four LLMs: OpenAI GPT-40 mini and GPT-3.5 turbo, BART base model,
and Flan-T5 small model. The temperature for all the models was set to zero for
deterministic responses. The experiments were conducted and reported over a 5-day
period from April 22, 2025.

Evaluation metrics

To evaluate all tasks, we use RAGAS, a library for evaluating LLMs’ applications. RAGAS
requires four main pieces of information: the prompt, the LLM’s response to the prompt,
the retrieved contexts, and the ground truth answer to the prompt. Our updated datasets
include a list of prompts and their corresponding ground truth answers. The retriever
component of RAGIntel retrieves the relevant contexts for each prompt. The LLMs’
responses are acquired and recorded for each prompt and the three most similar contexts,
as illustrated in Fig. 1. RAGAS provides a set of evaluation metrics specifically designed to
measure the performance of RAG-based systems. These metrics aim to measure the
performance of various aspects of RAG applications objectively. We have used six metrics
to measure the retriever and generator components. Specifically, these include context
precision, context recall, noise sensitivity, response relevancy, factual correctness, and
faithfulness. Below, we provide a brief explanation of each.

Evaluating the retriever component. RAGAS provides several metrics to assess the
performance of the retriever. We have evaluated RAGIntel’s retriever using:

 Context precision conveys the quality of the retrieval pipeline. Therefore, it is a metric
that calculates the relevance of the parts in the retrieved contexts. It is derived from
rewarding systems that rank relevant chunks higher by averaging precision at each step,
weighted by their relevance. It is calculated using the query, ground truth, and contexts,
with values ranging from 0 to 1.
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o Context recall calculates how much relevant information is successfully retrieved in
response to a query compared to a ground truth. This score ranges from 0 to 1, where a
higher score indicates fewer relevant contexts were not retrieved. In our implementation,
we used LLM-based context recall measured using the following equation:

Number of claims in the ground truth supported by the retrieved context
Context Recall = .

(1)

Total number of claims in the ground truth

* Noise sensitivity of relevant context quantifies how often a system produces wrong
answers when working with relevant contexts. Score ranges from 0 (best) to 1 (worst). To
compute noise sensitivity, RAGAS verifies each response generated by an LLM for two
key aspects: (a) factual accuracy against the ground truth, and (b) drivability from the
provided context. An ideal response contains only claims satisfying both conditions.

Total number of incorrect claims in response

Noise Sensitivity = (2)

Total number of claims in the response

Evaluating the generator component. RAGAS provides a set of metrics designed to assess
the quality of the generator. We incorporated several of them as explained below.

o Faithfulness metric assesses how relevant a generated response by LLM is to the
retrieved context. This is measured by verifying whether the retrieved context supports
the statements made in the responses

) Number of claims in the response supported by the retrieved context
Faithfulness = .

(3)

Total number of claims in the response

» Response relevancy measures how relevant a generated response is to a query, without
evaluating the factual accuracy of the response itself. The score increases when the
response more accurately reflects the query, while it penalizes responses that are lacking
key details or include unnecessary information.

* Factual correctness measures the alignment between a generated response and a ground
truth, scoring factual accuracy on a normalized scale (0-1). Higher values denote
stronger agreement with the ground truth. It can be calculated using the precision, recall,
or F1 formulas below. Our calculations of this metric are based on the F1-score.

Precisi TP @
recision = —————
CION = TP 1 Fp)
TP
Recall = —— 5
TP+ EN) ®)

2 X Precision X Recall
F1-score = — (6)
(Precision + Recall)

where True Positive (TP) denotes the number of claims in response that are present in
the ground truth, False Positive (FP) indicates the number of claims in response that are
not present in the ground truth, and False Negative (FN) indicates the number of claims
in the ground truth that are not present in the response.
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Table 1 Models’ performance across datasets and metrics.

Dataset Model FC RR NS F CR CP
CTI-ATE GPT-3.5 0.150 0.669 0.065 0.140 0.465 0.790
GPT-40 0.153 0.843 0.078 0.145
BART 0.063 0.000 0.224 0.345
Flan T5 0.005 0.595 0.173 0.256
CTI-TAA GPT-3.5 0.037 0.791 0.011 0.036 0.344 0.091
GPT-40 0.057 0.826 0.000 0.070
BART 0.000 0.413 0.000 0.140
Flan T5 0.094 0.441 0.000 0.283
CTI-ATTACK GPT-3.5 0.115 0.713 0.029 0.118 0.418 0.340
GPT-40 0.186 0.684 0.023 0.069
BART 0.023 0.481 0.035 0.169
Flan T5 0.017 0.074 0.027 0.100
Note:
FC, fz_lctual correctness; RR, response relevancy; NS, noise sensitivity; F, faithfulness; CR, context recall; CP, context
precision.

Results summary

Table 1 below summarizes the evaluation results of RAGIntel across all datasets. For the
CTI-ATE dataset, GPT-40 was the best-performing model across all models in terms of
factual correctness and response relevancy. This indicates that it is the best model in
generating responses relevant to the ground truths and queries. The average context recall
and context precision for all 60 queries are relatively high, at 0.465 and 0.790, respectively.
This implies that the retrieval algorithm was effective. Note, context recall and context
precision are computed based on the queries and the ground truths; therefore, they are
irrelevant to the LLMs’ responses. As a result, these metrics are calculated globally to reflect
the overall retrieval accuracy across all queries.

On the CTI-TAA dataset, GPT-40 leads in response relevancy and noise sensitivity,
while Flan-T5 excels in factual correctness and faithfulness. The average context recall and
context precision for all 50 queries are low, at 0.344 and 0.091, respectively. These low
scores suggest that the retriever frequently retrieved irrelevant passages, which likely
degraded downstream task performance. We provide further discussion on the results in
‘CTI-TAA Results’.

The CTI-ATTACK dataset contains relatively concise attack descriptions compared to
the CTI-ATE and CTI-TAA datasets. The results of this dataset indicate that GPT-3.5
provides a trade-off among accuracy, relevance, and faithfulness. In contrast, GPT-40
performs well in terms of factual correctness, although this comes at the cost of adhering to
the context.

The total runtime of RAGIntel across all datasets was 6 h 0 m 33 s. The majority of this
time was consumed by LLM response generation and subsequent RAGAS evaluation. The
time required for constructing the knowledge store and initializing the retriever for all
datasets was 11 m 40 s. LLM response generation took 1 h 10 m 40 s for CTI-ATE, 50 m 9 s
for CTT-TAA, and 1 h 35 m 17 s for CTI-ATTACK. RAGAS evaluation required 45 m 3 s,
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37 m 10 s, and 50 m 34 s for CTI-ATE, CTI-TAA, and CTI-ATTACK, respectively. The
difference in LLM generation times is partly due to the length and complexity of the attack
descriptions in the query sets. The CTI-ATE and CTI-TAA datasets contain significantly
longer and more detailed attack descriptions (i.e., more tokens per query) compared to the
CTI-ATTACK dataset. This observation underscores that the runtime of RAGIntel is
influenced by the number of queries and the verbosity and complexity of their content.

CTI-ATE results

As shown in Table 1, GPT-4o scores the best among all other models in response relevancy
(0.843) and factual correctness (0.153). This indicates that it generates answers closely
aligned with the queries themselves (response relevancy) and with the ground truths
(factual correctness). Additionally, it handles noise effectively, as its low score indicates
that it does not produce incorrect responses when having relevant contexts. Although the
factual correctness score is the highest compared to the other models, it is generally
considered low, as the value of factual correctness ranges from 0 to 1. Similarly, its
faithfulness score is low, implying that the responses deviate from the retrieved contexts.
To understand the reasons behind the low scores in factual correctness and faithfulness, we
examined the model-generated responses in comparison to both the ground truth answers
and the retrieved contexts for each query. Our analysis revealed that the responses were
generally of high quality. The low scores stem from two main factors: (1) the ground truth
answers are very brief, consisting only of lists of technique IDs without any reasoning (as
illustrated in Fig. 4), whereas the LLM-generated responses include both the technique IDs
and explanatory reasoning; (2) the relevant techniques are not explicitly mentioned in the
queries and must be inferred. The retriever component is designed to select contexts most
similar to the query, which RAGIntel successfully achieves.

BART performed well regarding faithfulness (0.345), indicating a better correlation
between the ground truths and the retrieved context. However, it struggles severely with
response relevancy (0.00), meaning its responses are often irrelevant to the queries. In
addition, its factual correctness (0.063) is low, similar to Flan T5 (0.016), indicating that it
frequently generates incorrect facts compared to the ground truths. However, FLAN-T5’s
performance degrades with noisy inputs (i.e., noise sensitivity is 0.224). GPT-3.5 balances
all metrics except for faithfulness (0.140).

CTI-TAA results

Table 1 demonstrates that Flan-T5 and GPT-4o are the best-performing models on the
TAA dataset. The noise sensitivity and response relevancy evaluation results were
acceptable for all models. To assess the retrieval strategy on this dataset, we examine the
context precision, recall, and noise sensitivity. The context precision and recall are low,
averaging at 0.344 and 0.091, respectively. The retrieved context is more closely aligned
with the ground truth (context recall 0.344) than with the query (precision 0.091). We
argue that this is not surprising for the nature of the queries in this dataset, which are
different than the ones in CTI-ATE dataset. Queries in the CTI-TAA dataset require
implicit inference of attack attribution (e.g., linking attack patterns to groups not explicitly
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Table 2 Evaluation results of the sample query from the CTI-TAA dataset.

Metric GPT-3.5 GPT-40 BART Flan T5
Faithfulness 0.125 0.188 0.776 0
Factual correctness 0 0 0 0
Response relevancy 0.821 0.849 0.715 0.816
Noise sensitivity 0 0 0 0
Context recall 1

Context precision 0

named in the context). The knowledge base, from which the contexts are retrieved, has
various attack groups and a high-level description of their activities. In addition, attack
groups commonly have multiple aliases, and MITRE ATT&CK might not have the name
that matches the one in the ground truth (e.g., “Fancy Bear” vs “APT28”). In addition, it is
common to have different attack groups that have activity overlaps (e.g., ransomware
deployment by both APT29 and APT41), which may create retrieval ambiguity. Regarding
the generation assessment of our RAG system, the response relevance is very high in the
GPT models (~0.8) and moderately high in BART and Flan-T5 (= 0.4).

On the other hand, generally, all models underperform in faithfulness and factual
correctness, indicating that models’ responses deviate from the contexts and the ground
truth. Two factors might cause the low scores. First, there is a possibility of hallucinations.
Second, the context retrieved for a query does not have the ground truth answer. It is worth
mentioning that a small change between the response and the context or ground truth
causes changes in the overall value of these metrics, as explained in Egs. (3) and (6). The
first case is handled by setting the temperature for all models to 0 for deterministic
responses.

The following example demonstrates this behavior on a sample query from the dataset
and its evaluation results (refer to Table 2).

e Prompt: You are given a threat report that describes a cyber incident. Any direct
mentions of threat actor groups, campaign names, or malware names have been replaced
with [PLACEHOLDER]. Your task is to attribute the incident to a known threat actor or
malware. Map it to relevant MITRE ATT&CK threat groups (e.g., APT36) or Software/
Tools (e.g., Crimson RAT—S0334).

Threat Report: “Prolific Iranian advanced persistent threat group (APT)
[PLACEHOLDER] has repeatedly targeted several Israeli organizations throughout 2022
in cyberattacks that were notable for leveraging a series of custom downloaders that use
legitimate Microsoft cloud services to conduct attacker communications and exfiltrate
data. [PLACEHOLDER] in the attacks deployed four specific new downloaders,
SampleCheck5000 (SC5k v1-v3), ODAgent, OilCheck, and OilBooster, that were
developed in the last year, adding the tools to the groups already large arsenal of custom
malware, ESET researchers revealed in a blog post published Dec. 14. Unique to the way
the downloaders work vs other [PLACEHOLDER] tools is that they use various
legitimate cloud services, including Microsoft OneDrive, Microsoft Graph OneDrive
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API, Microsoft Graph Outlook API, and Microsoft Office EWS AP], for
command-and-control communications (C2) and data exfiltration, the researchers said.
Attack targets so far have included a healthcare organization, a manufacturing company,
a local governmental organization, and several other unidentified organizations, all in
Israel and most of them previous targets for the APT. The downloaders themselves are
not particularly sophisticated, noted ESET researcher Zuzana Hromcov, who analyzed
the malware along with ESET researcher Adam Burgher. However, there are other
reasons that the group is evolving into a formidable adversary for targeted organizations,
she said. The continuous development and testing of new variants, experimentation with
various cloud services and different programming languages, and the dedication to
re-compromise the same targets over and over again, make [PLACEHOLDER] a group
to watch out for, Hromcov said in a press statement.” (Truncated for space).

e Retrieved contexts:

1. Falcone, R. and Lee, B. (2016, May 26). The OilRig Campaign: Attacks on Saudi
Arabian Organizations Deliver Helminth Backdoor. Retrieved May 3, 2017. Sardiwal,
M, et al. (2017, December 7). New Targeted Attack in the Middle East by APT34, a
Suspected Iranian Threat Group, Using CVE-2017-11882 Exploit. Retrieved
December 20, 2017. Threat Hunter Team. (2023, April 20). Daggerfly: APT Actor
Targets Telecoms Company in Africa. Retrieved July 25, 2024.

2. Sardiwal, M, et al. (2017, December 7). New Targeted Attack in the Middle East by
APT34, a Suspected Iranian Threat Group, Using CVE-2017-11882 Exploit.
Retrieved December 20, 2017. Sherstobitoff, R., Malhotra, A. (2018, April 24).
Analyzing Operation GhostSecret: Attack Seeks to Steal Data Worldwide. Retrieved
May 16, 2018. Lee, B., Falcone, R. (2018, July 25). OilRig Targets Technology Service
Provider and Government Agency with QUADAGENT. Retrieved August 9, 2018.

3. Sardiwal, M, et al. (2017, December 7). New Targeted Attack in the Middle East by
APT34, a Suspected Iranian Threat Group, Using CVE-2017-11882 Exploit.
Retrieved December 20, 2017. Lee, B., Falcone, R. (2018, February 23). OopsIE!
OilRig Uses ThreeDollars to Deliver New Trojan. Retrieved July 16, 2018.
Crowdstrike. (2020, March 2). 2020 Global Threat Report. Retrieved December 11,
2020.

e Ground Truth: OilRig.

» GPT-3.5 Response: The incident described in the threat report can be attributed to the
Iranian advanced persistent threat group APT34. APT34 has been active since 2014 and
primarily operates in the Middle East, targeting organizations in various industries. The
group is known for cyber espionage activities and has been linked to multiple incidents
in the past. The custom downloaders mentioned in the report, including
SampleCheck5000 (SC5k v1-v3), ODAgent, OilCheck, and OilBooster, are part of
APT34’s arsenal of custom malware. These downloaders leverage legitimate Microsoft
cloud services for command-and-control communications and data exfiltration, making
them more evasive and difficult to detect. (Truncated for space).
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» GPT-40 Response: The cyber incident described in the threat report can be attributed to
the Iranian advanced persistent threat (APT) group known as **APT34"*. This group
has been active since around 2014 and is known for targeting organizations in the
Middle East, particularly in Israel, across various sectors including healthcare,
manufacturing, and government. The specific malware mentioned in the report includes
several custom downloaders: **SampleCheck5000 (SC5k v1-v3)**, **ODAgent**,
**QilCheck**, and **OilBooster**. These tools are designed to leverage legitimate
Microsoft cloud services for command-and-control (C2) communications and data
exfiltration, which aligns with the tactics used by APT34. In terms of MITRE ATT&CK
attribution, the following mappings can be made: - **Threat Group**: APT34 (also
known as OILRIG). (Truncated for space).

» BART Response: Context,,,, [Falcone, R. and Lee, B. (2016, May 26). The OilRig
Campaign: Attacks on Saudi Arabian Organizations Deliver Helminth Backdoor.
Retrieved May 3, 2017. Sardiwal, M, et al. (2017, December 7). New Targeted Attack in
the Middle East by APT34, a Suspected Iranian Threat Group, Using CVE-2017-11882
Exploit. Retrieved December 20, 2017. Threat Hunter Team. (2023, April 20). Daggerfly:
APT Actor Targets Telecoms Company in Africa. Retrieved July 25, 2024., ’Sardiwal, M,
et al. (2017, December 7). New Targeted Attack in the Middle East by APT34, a
Suspected Iranian Threat Group, Using CVE-2017-11882 Exploit. Retrieved December
20, 2017. Sherstobitoff, R., Malhotra, A. (2018, April 24). Analyzing Operation
GhostSecret: Attack Seeks to Steal Data Worldwide. Retrieved May 16, 2018. Lee, B.,
Falcone, R. (2018, July 25). OilRig Targets Technology Service Provider and Government
Agency with QUADAGENT. Retrieved August 9, 2018. (Truncated for space).

o Flan-T5 Response: [PLACEHOLDER] has repeatedly targeted several Israeli
organizations throughout 2022 in cyberattacks that were notable for leveraging a series
of custom downloaders that use legitimate Microsoft cloud services to conduct attacker
communications and exfiltrate data.

From the example and the evaluation results demonstrated above, we highlight a few
points related to this example and for the entire dataset in general. First, the context
precision is calculated in RAGAS based on the similarity between contexts and query, and
context precision in this example and in the entire dataset is low. This does not imply that
the RAGIntel’s retriever is ineffective because the prompt does not mention the correct
answer (right attack group). At the same time, a good context should have the correct
answer that is not included in the query. This is the case for all queries in the dataset.
Second, the faithfulness measures the correlation between the contexts and the generated
responses. BART has the highest score because the generated response has the context
itself. Third, the factual correctness is 0 for all models. However, GPT responses have the
correct alias of the answer (APT34 alias of OilRig). This provides an example of the attack
group aliases issue above.

Generally, attack attribution is a challenging task to automate as it requires powerful
reasoning and inference strategies. This dataset and its evaluation results demonstrate this.
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CTI-ATTACK results

As shown in Table 1, GPT-40 achieves the highest factual correctness score (0.186) among
all evaluated models on the CTI-ATTACK dataset, indicating that its responses are more
factually accurate compared to the ground truths. GPT-40 and GPT-3.5 have low noise
sensitivity (0.023 and 0.029, respectively), indicating robustness to irrelevant context.
However, GPT-40’s faithfulness score is low (0.069), which implies that its answers often
deviate from the retrieved contexts. In contrast, GPT-3.5 demonstrates a balanced factual
correctness (0.115), faithfulness (0.118), and high response relevancy (0.713) scores. It is
generally more consistent in producing query-aligned and contextually faithful answers,
with slightly lower factual accuracy compared to GPT-40. BART achieves the highest
faithfulness score (0.169); however, its factual correctness (0.023) and response relevancy
(0.481) are lower than GPT-3.5 and GPT-4o, indicating that while it often stays close to the
retrieved documents, it struggles to provide accurate and relevant information to the
query. Flan-T5 shows the weakest performance overall, with both factual correctness
(0.017) and response relevancy (0.074) being very low. This indicates that it frequently
produces factually incorrect and irrelevant answers. Overall, the results suggest that for the
CTI-ATTACK dataset, which features relatively concise attack descriptions compared to
CTI-ATE and CTI-TAA datasets, GPT-3.5 offers a strong trade-off between accuracy,
relevance, and faithfulness. At the same time, GPT-40 excels in factual correctness but at
the expense of context adherence.

Comparison with standalone LLMs

For fair comparison with related work, an article must meet two criteria: (1) a RAG-based
approach, and (2) the use of the same or part of the datasets and LLMs. None of the
available related works satisfied these criteria. Therefore, we compare the performance of
RAGlIntel to standalone LLMs. This assesses the value of the retrieval phase in the overall
quality of the generated responses. Table 3 summarizes the F1-score of the LLMs across all
datasets. F1- scores of the standalone LLMs can be compared to the factual correctness
metric results in Table 1. Note that the datasets include content from before, after, or
undetermined periods relative to the models’ knowledge cutoff dates. The comparison with
the standalone LLM results in Table 3 reveals that RAGIntel does not consistently achieve
higher factual correctness scores across the datasets. For example, GPT-3.5 attains an
F1-score of 0.474 on CTI-ATE, 0.210 on CTI-TAA, and 0.339 on CTI-ATTACK,
compared to RAGIntel’s factual correctness score of 0.150, 0.037, and 0.115 on the same
datasets. This observation highlights a critical trade-off. While RAGIntel’s retrieval
mechanism is designed to ground responses, thereby reducing hallucinations, its overall
factual correctness depends on multiple factors, such as the precision of retrieval, the
coverage of the knowledge base relative to the evaluation data, and the alignment between
retrieved contexts and the answer space. Consequently, pre-trained LLMs on data that
closely matches the evaluation set may achieve higher F1-scores despite having a higher
risk of producing unsupported claims. This underlines the importance of evaluating both
factual correctness and hallucination rates when assessing RAG systems.
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Table 3 Standalone LLM performance comparison for all datasets.

LLM F1-score (CTI-ATE) Fl1-score (CTI-TAA) F1-score (CTI-ATTACK)
GPT-3.5 0.474 0.210 0.339
GPT-40 0.217 0.208 0.226
BART 0.144 0.049 0.095
Flan T5 0.119 0.140 0.061

CONCLUSION AND FUTURE WORK

Analyzing cyber threat intelligence data is critical for proactive defense, yet its manual
analysis for attack investigation is inefficient. While LLMs present a promising solution,
their limitations, such as hallucinations and outdated knowledge, hinder their reliability in
cybersecurity applications. Our work introduces RAGIntel, a RAG-based LLM system that
integrates MITRE ATT&CK as a knowledge base to enhance attack investigation accuracy.
By combining dense and sparse retrieval with reranking and compression, our system
retrieves the most relevant threat intelligence content, improving response quality. We
extensively evaluated RAGIntel using 339 attack investigation queries, demonstrating its
effectiveness comparable to standalone LLMs. Our results highlight the benefits of
integrating structured threat intelligence with advanced retrieval strategies, reducing
hallucinations and improving contextual understanding. RAGIntel is publicly available,
enabling further research and adoption in cybersecurity defense strategies. Future work
includes expanding the knowledge base with additional CTI sources and refining the

retrieval mechanism for real-time threat analysis.
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