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ABSTRACT
Background: Older people’s falls are a global public health problem, leading to
injuries, disability, and fatalities. Using screening tools to measure predictive factors
is essential for assessing the risk of falls among older adults. The literature highlights
executive function tests as a way to assess this risk. They are also economical and
reliable tools. Therefore, a Machine Learning (ML) technique based on variables
obtained from cognitive domains could classify an older adult as at high or low risk
of falling.
Methodology: The study collected six variables from 50 community-dwelling older
adults. The variables included age, educational level, and Trail Making Test (TMT)
part B, Digital Span Backward, Stroop Color-Word Interference, and Mini Balance
Evaluation Systems Test (Mini-BESTest) tests. These variables fed three ML models
to predict if an older adult is at high or low risk of falling. Specifically, we considered
Logistic Regression (LR), Decision Trees, and K-Nearest Neighbors. The proposed
models were assessed using a bootstrapping sampling method and an aggregated
confusion matrix, from which typical performance metrics were derived. The input
variables in the best model were selected using a wrapper-based selection method.
Results: Of the three models, the LR classifiers were top-ranked based on accuracy,
with a maximum value of 71.4%. The best classifiers included the educational level or
the TMT part B as input variables. Thus, these variables were strong predictors of fall
events in the population study. We tested the input variables to ensure they were
significant for the best LR classifiers and assessed model performance, generalization,
and stability given the dataset sample size.
Discussion:We weighed the performance metric results with a clinical perspective to
select the best LR classifier. Thus, the more suitable model resulted in the classifier
with TMT part B and educational level as input variables. Besides presenting
competitive performance results, it enables us to consider a broader range of clinical
information and draw more informed conclusions. Comparing our proposed model
with four assessment tools, we observe it was second in Area Under the Receiver
Operating Characteristic Curve (AUC) and third in accuracy.
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Conclusions: In this work, we developed an LR classifier to identify older adults with
high or low risk of falling, using the TMT Part B test and the educational level as
features. In addition, we provided cut-off values to assess the risk of falling using only
the TMT part B test or the educational level. We found that, individually, 8 years or
more of schooling or a result of the TMT part B lower than 212 s are associated, on
average, with a low risk of falls. The Chilean health system can broadly implement
the best classifier since the input variables are easy to collect, and the classification
rule can be calculated using simple arithmetic operations.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Social Computing
Keywords Artificial intelligence, Cognition, Cognitive function tests, Pattern recognition, Postural
balance

INTRODUCTION
Older people’s falls are a global public health problem (Arkkukangas et al., 2019).
Approximately 30% of adults over the age of 65 experience a fall annually, and the
occurrence increases with age (Montero-Odasso et al., 2022). Moreover, falls are the
primary cause of injuries, disability, and fatalities within this population (Smith et al., 2014;
Vieira, Palmer & Chaves, 2016). In particular, falls accounted for roughly 80% of the
disabilities resulting from unintentional injuries (Smith et al., 2021).

Falls result from a mix of intrinsic, extrinsic, and behavioral factors (Jain, Schweighofer
& Finley, 2024; Patel & Hoque, 2025). Some examples of intrinsic factors include mobility
issues, a history of falls, cognitive problems, and balance difficulties (Sturnieks et al., 2025).
In this sense, balance allows individuals to position their center of mass within their base of
support and, in this way, achieve the necessary functionality to perform the tasks
associated with the different stages of life.

This work aimed to identify when an community-dwelling older adult is at high or low
risk of falling through a Machine Learning (ML) classifier based on the assessment of five
input variables, which were obtained from a previous study (Martínez-Carrasco et al.,
2025). The variables were age, educational level, and three executive function tests. As a
measure of the risk of falling, we employed the results of the Mini Balance Evaluation
Systems Test (Mini-BESTest), which we binarize to get a 0/1 variable, representing a high
or low risk of falling.

Cognitive functions play a critical role in falls in older people (Guo et al., 2023; Smith
et al., 2023). In particular, the educational level is among the cognitive protective factors
for preventing falls in older adults. Having less than 6 years of schooling significantly
increases the risk of future falls in community-dwelling older adults (Lee et al., 2021).

In relation to cognitive domains, executive function has a significant impact on postural
balance (Martínez-Carrasco et al., 2025; Davis et al., 2017; Mirelman et al., 2012). A good
executive function can compensate for age-related changes that increase the risk of falling
(Muir-Hunter et al., 2014). Thus, this relationship can be used to determine fall risk in
older adults through several widely known executive function tests.
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Currently, several tests and screening tools are used to assess the risk of falls in
community-dwelling older adults (Colón-Emeric et al., 2024; González-Castro et al., 2024;
Montero-Odasso et al., 2022; Ong et al., 2023). These tools usually focus on assessing motor
aspects related to falling, such as the Timed Up and Go (TUG) (Barry et al., 2014), Berg
Balance Scale (Berg et al., 1992), Tinetti (Tinetti, Williams & Mayewski, 1996), and
Unipodal Stance test (Mancilla, Valenzuela & Escobar, 2015). Even though we understand
that these tests are commonly used to assess the risk of falling, there may be some contexts
in which they are more complex to use, either because they require more time or space to
be administered (Eichler et al., 2022; Fong et al., 2023; Khatib et al., 2025). Furthermore,
some questionnaires or screening tools such as Activities-Specific Balance Confidence
Scale (ABC-16) (Powell & Myers, 1995), Short FES-I (Kempen et al., 2007) or STEADI
(Stevens & Phelan, 2013) may have “social desirability bias”, i.e., people may give answers
to make themselves appear healthier than they really are (Lensvelt-Mulders & Boeije, 2007),
and also some tests cannot be used in isolation as a screening tool to predict falls (Lima
et al., 2018; Montero-Odasso et al., 2021).

Considering the above, executive function assessment tests are a good alternative to
estimate the risk of falls (Mirelman et al., 2012; Newkirk et al., 2022; Smith et al., 2023).
Executive function tests have the advantage of being generally performed with paper and
pencil, requiring no major infrastructure or large physical space for their application. As
they are low-cost tools, they can be used by various health professionals for screening
purposes. For example, using an ML technique, Mateen et al. (2018) determined that the
Trail Making Test (TMT) was a good predictor of falls during the in-patient stay.

The main contributions of this work are:

. We developed an ML-based classifier that functions as a screening tool to identify when
a community-dwelling older adult is at high or low risk of falling based on the
educational level and the TMT part B results. The classifier employs the Logistic
Regression (LR) model and achieves an accuracy of 69.7%.

. We found that, when considering TMT part B (Mandonnet et al., 2020), Digital Span
Backward (DSB) (Rosas, Tenorio & Pizarro, 2012), and Stroop Color-Word Interference
(SCWI) (Scarpina & Tagini, 2017) executive function tests to assess the risk of falls, TMT
results include information of the other variables. Adding the other executive function
tests to the ML model did not improve accuracy. This result was consistent with our
previous work (Martínez-Carrasco et al., 2025).

. Besides the best model, we obtained two additional models that only consider the
educational level or the TMT part B result as input. These models allow for determining
cut-off values that separate individuals by their risk of falling. Considering these factors
separately, on average, 8 years or more of schooling or a result of the TMT part B lower
than 212 s are associated with a low risk of falls.

The rest of this work is organized as follows: in ‘Related Work’, we review related work.
Then, in ‘Materials and Methods’, we present the study design and the methodology used
to develop the ML classifier. In ‘Results’, we show the results obtained from the study.
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Next, in ‘Discussion’, we discuss our results, highlighting the main findings and their
practical implementations. Finally, the conclusions of this work are presented in
‘Conclusions’.

RELATED WORK
ML techniques have been previously used for fall risk assessment with different objectives,
such as predicting a person’s fall within a specific time frame (Allcock et al., 2009;
Deschamps et al., 2016; Lockhart et al., 2021; Makino et al., 2021; Mishra et al., 2022;
Oshiro et al., 2019; Ye et al., 2020), identifying patients with high fall risk (Ikeda et al., 2022;
Mateen et al., 2018; Panyakaew, Pornputtapong & Bhidayasiri, 2021; Shumway-Cook,
Brauer & Woollacott, 2000; Sun, Hsieh & Sosnoff, 2019; Zhou et al., 2024), and detecting a
person’s fall (Al-qaness et al., 2024; Liu, Sun & Ge, 2025; Lupión et al., 2025). The
techniques most frequently used are K-Nearest Neighbors (K-NN) (Mishra et al., 2022),
Decision Trees (DT) (Deschamps et al., 2016; Makino et al., 2021; Mishra et al., 2022),
eXtreme Gradient Boosting (XGBoost) (Ikeda et al., 2022; Panyakaew, Pornputtapong &
Bhidayasiri, 2021; Ye et al., 2020), Random Forest (RF) (Ikeda et al., 2022; Lockhart et al.,
2021;Mateen et al., 2018;Mishra et al., 2022; Sun, Hsieh & Sosnoff, 2019; Zhou et al., 2024),
Convolutional Network (CN) (Al-qaness et al., 2024; Liu, Sun & Ge, 2025; Lupión et al.,
2025), and LR (Mishra et al., 2022; Oshiro et al., 2019; Shumway-Cook, Brauer &
Woollacott, 2000; Zhou et al., 2024).

Deschamps et al. (2016) devised an ML model to predict if an older adult will fall for the
first time during the next year. At the beginning of this study, 73 input variables taken from
medical, demographical and physical data, were obtained from adults that had never fallen.
Falls were then recorded during the following year. The resulting DT classifier showed an
accuracy of 89%.

Ye et al.’s (2020) work seeks to forecast patients’ fall risk. To that end, Electronic Health
Records (EHR) from patients of more than 65 years of age were fed into a model. The
resulting algorithm identifies patients with low, medium, or high risk of falls during the
next year. Additionally, the model discovered that abnormalities of gait and balance, and
fall history are among the strongest predictors of future fall events.

Song et al. (2024) examined fall risk screening in primary care. They compared
traditional questionnaires with machine learning models trained on longitudinal EHR data
records from primary care practices of community-dwelling older adults. The
questionnaire-based method reached an Area Under the Curve (AUC) of 0.59, while the
best ML models achieved up to 0.76. Key predictors identified included age, history of fall
injuries, and issues related to gait or mobility.

A fall risk assessment tool for inpatients based on 6 years of hospital records is presented
in the work of Jahangiri et al. (2024). Thirteen variables were considered in this method,
which were divided into extrinsic (such as medication, hospital department, and work
shift) and intrinsic (such as age and mobility) factors. They tested four machine learning
algorithms. With an accuracy of 0.74 and an AUC of 0.72, the deep neural network
demonstrated the best predictive performance. The authors additionally showed that
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distinct models for morning, afternoon, and night shifts improved the prediction of fall
risk, taking into account variations in hospital schedules and care conditions.

In the work described inOshiro et al. (2019), 10 years of EHR data were used to predict a
fall within the following year. Individuals required 2 years with no record of falling to
participate in the study. Although the risk of falling is multi-factorial, this study reported
that comorbidities, walking issues, and poly-pharmacy were among the main factors.

Likewise, Mishra et al. (2022) proposed an ML-based model to predict a fall within the
next 6 months, using geriatric assessments, gait variables, and fall history. Similarly,
Makino et al. (2021) trained a DT classifier to predict falls within the next year by including
the TUG test in the baseline survey, in addition to data from demographics, gait variables,
medications, and fall history.

Mateen et al. (2018) studied if falls during the in-patient stay could be predicted using
cognitive and motor function tests, and demographics. The TMT part B was the only test
used to measure executive function, resulting in the best predictor of falls, and,
surprisingly, adding other variables to the model did not improve predictions. This result
suggests that TMT part B data collection alone may be sufficient for predicting falls. In our
work, we combined three executive function tests, which include TMT, as inputs to the ML
model. As a significant result, we obtained that, out of the three tests, only TMT part B
remained as an input variable of the optimal classifier after a wrapper-based feature
selection. In contrast to Mateen et al. (2018) in our case the population consisted of
community-dwelling older adults. In addition, Mateen et al. (2018) used different ML
methods, one of them being RF, which cannot provide simple cut-off scores for different
fall risk categories. In our work, the top-ranked classifiers used LR models. We found
cut-off values for TMT part B and educational level variables to predict the risk of falls.
Besides, the LR model allows assessing the impact of the input variables improvement in
the odds of the patient presenting a low risk of falling.

The TUG functional mobility test was studied by Shumway-Cook, Brauer & Woollacott
(2000) as a way to identify individuals prone to falls. The authors assessed 15 older
adults with a history of two or more falls in the previous 6 months and 15 with no history
of falls. An LR model determined a TUG cut-off value of 14 s to classify an older adult in
faller/non-faller, with 90% of accuracy. Similarly, Roshdibenam et al. (2021) used the TUG
test plus non-intrusive wearable sensors to measure the gait kinematics of the
participants. This study evaluated 100 older adults aged 65 years or older, and they
determined a TUG cut-off value of 14 s to classify an older adult in faller/non-faller, with
an accuracy of 71%. In our work, we determine cut-off values for the educational level and
the TMT part B that separate older adults at high/low risk of falls, with accuracies of 71.4%
and 64.7%, respectively. The normative values of TMT use an age distribution to assess
the risk of falling in percentiles (Groth-Marnat, 2003). In our study, a sample of
persons aged 61 to 86 was considered, so the cut-off score determined corresponds to this
age group.

Lockhart et al. (2021) proposed an RF classifier to detect older adults at risk of falls,
within the next 6 months. The classifier was trained using gait features, including
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variability, complexity, and smoothness, collected from a wearable sensor during a 10-m
walk test. The trained model achieved an overall 81% accuracy.

Panyakaew, Pornputtapong & Bhidayasiri (2021) proposed a classifier to differentiate
Parkinson’s disease patients into fallers or recurrent fallers. Input variables included
clinical demographics, medications, and the ABC-16. Their analysis revealed that specific
activities, including sweeping the floor, reaching on tiptoes, and walking in a crowded mall,
were significant predictors in the classifications. The identification of high-risk activities
enables physicians to implement effective fall prevention strategies, thereby reducing the
likelihood of future falls.

These studies show that ML techniques can predict fall risk in older adults across
various scenarios. We observed that different types of predictors are frequently used, such
as demographics, EHR, gait variables, fall history, and motor and cognitive tests. However,
the influence of cognitive tests is not widely studied, despite TMT resulting in a strongly
correlated predictor in the work of Mateen et al. (2018). For example, considering the
review of González-Castro et al. (2024), none of the studies in that review based their ML
models on data from cognitive tests, such as the TMT, DSB, or SCWI executive function
tests.

The works by Ikeda et al. (2022) and Zhou et al. (2024) considered the educational level
as a candidate predictor. The former used ML techniques such as RF to select predictors
and XGBoost for modeling, while the latter used techniques such as LR, RF, and naive
Bayes for modeling. However, the final model did not consider the educational level, as
other variables were selected as better predictors of falling. This finding contrasts with the
work of Lathouwers et al. (2022): they identified 24 risk factors for falls in older adults in
the community, using ML techniques, where one of the most relevant factors was the
educational level.

MATERIALS AND METHODS
Participants and criteria for data collection
Figure 1 presents the seven stages carried out in this study. The first six stages are related to
the participants’ description and data collection criteria. The last stage is related to the ML
technique development.

The first stage at the top corresponds to population recruitment. They were older adults
over 60 years of age who were participating in a community program aimed at promoting
independence for older adults, as part of a Centro de Salud Familiar (CESFAM, in English,
Family Health Center) initiative.

We conducted the second stage (screening), which consisted of determining who could
participate in the study, by applying the inclusion and exclusion criteria (third stage), with
those older adults who agreed to participate in the study.

The inclusion criteria were (1) age over 60 years, (2) with or without risk of loss of
functionality according to the Chilean Evaluación Funcional del Adulto Mayor (EFAM, in
English, Functional Assessment of Older Adults) (Thumala et al., 2017), (3)
hemodynamically stable, and (4) ability to achieve independent gait (no human assistance)
with or without technical aids. Meanwhile, the exclusion criteria were: (1) being illiterate or
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color-blind, (2) global cognitive impairment according to the Mini-Mental State
Examination test (score � 13 points), or (3) psychiatric pathology, vestibular disorders,
Parkinson’s disease, Alzheimer’s disease, stroke, or severe sensory disturbances such as
hearing or vision loss. The sample was non-probabilistic.

The study was approved by the Ethic Research Committee of the Talcahuano Health
Service (Protocol No.: 77/2016), and complies with the ethical standards as laid down in
the 1964 Declaration of Helsinki and its later amendments. Written informed consent was
obtained from all participants at an informative meeting to explain the nature of the study
(fourth stage).

We recorded the participants’ names, ages, previous relevant medical diagnoses,
commonly used medications, and their fall history considering the number of falls during
the previous year (fifth stage).

Two different test stations were established to administer the executive function and
postural balance tests for each older adult. In the first station, the following tests were
applied to assess executive function: the DSB test for evaluating updating, TMT part B for
shifting, and the SCWI test for evaluating inhibition. In the second station, a physical
therapist employed the Mini-BESTest (sixth stage) to assess the postural balance.

Figure 1 Study design overview. Full-size DOI: 10.7717/peerj-cs.3367/fig-1
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Methodology to obtain the optimal ML model
The development of the ML classifier (seventh stage) is composed of four steps:

. Analyzing the study data, which is divided into two tasks. First, defining the binary
fall-risk-level target variable to differentiate individuals with a high risk of falling from
those with a low risk of falling. Next, discovering which features are more influential in
predicting the risk of falling.

. Validating classifier models for a small and imbalanced data set. In ML, models and data
are hugely coupled due to the bias-variance tradeoff (Hastie, Tibshirani & Friedman,
2009; Kelleher, Mac Namee & D’arcy, 2020). Given a specific dataset, less complex
models (linear, with a small number of parameters) may suffer from underfitting;
meanwhile, more complex models (non-linear, with a large number of parameters) may
end up presenting overfitting. In general, determining the optimal model for a dataset is
carried out empirically. We proposed using classifiers with a low number of parameters,
such as LR, DT, and K-NN, which we assessed using a bootstrapping sampling method
and an aggregated confusion matrix (Kelleher, Mac Namee & D’arcy, 2020).

. Selecting the optimal model based on: (i) the result of different performance metrics
calculated from the aggregated confusion matrix, (ii) a clinical analysis of the best
models.

. Assessing dataset statistical implications on the optimal model performance,
generalization, and stability. Datasets should be representative enough of the studies so
that the trained models perform well and generalize outside datasets. Although there are
a few rules of thumb to determine the minimal sample size (Rajput, Wang & Chen, 2023;
Theodoridis & Koutroumbas, 2006), ensuring dataset sufficiency can be achieved by
measuring model performance, generalization, and stability (Rajput, Wang & Chen,
2023). We conducted a numerical experiment to evaluate the impact of the sample size
on model performance and generalization through a performance metric and the
Cohen’s d estimator. Moreover, we evaluate model robustness and stability through the
variation of the parameters as the sample size changes.

We performed experiments on a computer running Windows 11 on an Intel Core i7-
10510U processor and 16 GB of memory. All scripts were implemented in Python 3
Release 3.12.

RESULTS
The results of the proposed methodology are presented below. They are organized into
four sections for a better understanding.

Data analysis
The data initially consisted of 50 samples, each containing five input variables and one
output variable. All variables are numerical. The input variables are the educational level,
the age, and results from the following cognitive tests: TMT part B, SCWI, and DSB. The
output variable is the result of the Mini-BESTest. Three samples were eliminated from the
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initial collection because their values in the TMT part B test were almost twice the
maximum of the Chilean normative values, which is 297.4 s (Arango-Lasprilla et al., 2015).
As this work focuses on studying individuals who comply with the Chilean standard, the
sample size was reduced to 47.

Output variable binarization

In this work, we employ the Mini-BESTest as a measure of an individual’s risk of falling
(Caronni et al., 2023; Di Carlo et al., 2016). We do not use it directly as the target variable
but as a means to get a binary variable that differentiates between individuals with a high
risk of falling from those with a low risk of falling.

We understand that the extreme values of Mini-BESTest are a good description of
the risk of falling. For example, an individual with a perfect balance, meaning
Mini-BESTest = 28, presents a low risk of falling. On the other hand, if Mini-BESTest = 0,
the individual presents a high risk of falling. Thus, we can divide the values of
Mini-BESTest into two sets: those from 0 to a threshold represent a high risk of fall, and
those from this threshold to 28 represent a low risk of fall.

This procedure generates an output binary variable, which replaces Mini-BESTest and
describes an individual’s fall risk level. To obtain the binarization threshold, we reviewed
the literature and determined a value of 22. This value was obtained by calculating the
weighted average of the cut-off values by age range presented in the work of Errera
(Magnani et al., 2020). We chose this study because the population is Latin American
(Brazil) and is similar to the one we expect to find in Chile. Moreover, the age range
coincides with the initial value that determines who is considered an older adult in Chile.
To the best of our knowledge, and based on the existing literature, there is no consensus on
a cut-off value for classifying older adults as fallers or non-fallers. This is because the
cut-off value depends on the country of origin of the population, comorbidities, and other
factors (Batistela, Rinaldi & Moraes, 2023; Di Carlo et al., 2016; Liao et al., 2022; O’Hoski
et al., 2014).

This approach divides the data into seven patterns that present a high risk of falls
and belong to class 0, and 40 patterns that present a low risk of falls and belong to class 1.
This poses another challenge to the prediction models: an imbalanced data set. If not
adequately addressed, the classifier trained with an imbalanced data set poorly detects the
least represented class, which in our case is the most important: “individuals with a high
risk of falling.” In our work, we employ a mechanism to mitigate the effects of class
imbalance.

Data analysis and features predictive power
Figure 2 depicts the histograms of the six variables in the study. As can be seen, most values
represent individuals with a healthy condition. For example, considering educational level
(Fig. 2A), about one-third of the sample (36%) had 12 years of schooling or more, and only
three subjects had more than 12 years of schooling. The average number of years of
schooling was 8.6 years. With regard to the age of the selected sample (Fig. 2B), it ranges
from 61 to 86 years, with an average of 72.5 years (SD:7.1).
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As for the TMT part B values (Fig. 2C), it is interesting to note that a large part of the
sample (85%) achieved times of less than 300 s. This is consistent with the normative
values for this test (Arango-Lasprilla et al., 2015). In the case of the DSB (Fig. 2D),
equivalent scores were considered, and 43 participants (91%) have values in the
range of 7 to 13 points, which is considered average for this test (Rosas, Tenorio &
Pizarro, 2012).

On the other hand, the SCWI test values (Fig. 2E) show that almost all samples (87%)
achieved times of less than 150 s. According to the scale’s normative values, these are still
low values considering that the times shown by the normative values are in a 50th
percentile with 82 and 79 s for women and men who have a low level of schooling,
respectively. Finally, Fig. 2F shows that the majority of people (74%) have values in the
Mini-BESTtest above 22 points, that is, they are above the cut-off value.

Next, we carried out two additional analyses to assess the input variables’ discriminative
power and the possible correlations among them. We calculated the Fisher discriminant
ratio (FDR) for each input variable and the correlation matrix between them, respectively.

In Eq. (1), FDRðiÞmeasures the discriminative power of the i-th feature for deciding if a
pattern belongs to a class or another. In this case, class 0 corresponds to a high risk of fall,
and class 1 corresponds to a low risk of fall. l0 and r

2
0 are the sample mean and variance of

the values of the i-th feature for the patterns that belong to class 0, correspondingly are l1
and r21. The farther the means and the smaller the variances, the easier it is to discriminate
between the classes, and FDR takes higher values. The results of FDR are depicted in

Figure 2 Histograms of the input and output variables. Full-size DOI: 10.7717/peerj-cs.3367/fig-2
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Table 1. As can be seen, TMT_part_B and the Educational level are the best features for
individually discriminating patterns into each class.

FDRðiÞ ¼ ðl0 � l1Þ2
r20 þ r21

: (1)

Table 2 depicts the correlation coefficients between the input variables. High values of
absolute correlation imply that some variables include statistical information about others
and might be redundant when predicting the output variable. We observe that three pairs
of variables present an absolute correlation higher than 0,4. These pairs are TMT_part_B
and SCWI_test, TMT_part_B and DSB_equivalent, and finally Educational_level and
SCWI_test.

As can be seen from Tables 1 and 2, some features are more important than others when
predicting the risk of falling. At this point, we still do not discard any variables since they
are few, but we use this insight to explore using different subsets of these features as input
to the models. Thus, we perform a wrapper-based feature selection when assessing the
classifier models.

Use of ML models with a small and imbalanced data set
Since the data set is small (47 samples), we propose using classifiers with a low number of
parameters. We begin by assessing the simplest model: LR, and then we try more complex,
nonlinear models like DT and K-NN. These three models are highly employed in the
literature as presented in ‘Related Work’. Moving from LR to DT and K-NN did not
improve models’ performance, thus we did not explore further into more complex models.
We implemented the models using the scikit-learn libraries. These libraries allow setting
key parameters for each classifier. The most relevant to this work is class weight, which is
set for each classifier as balanced. Using balanced class weights penalizes more heavily

Table 1 Fisher discriminant ratio for each input variable.

Variable FDR value

Educational_level 0.537

TMT_part_B 0.213

SCWI_test 0.091

DSB_equivalent 0.079

Age 0.058

Table 2 Correlation matrix between the input variables.

Educational_level Age TMT_part_B DSB_equivalent SCWI_test

Educational_level 1 −0.174 −0.393 0.062 −0.429

Age −0.174 1 0.199 0.217 0.148

TMT_part_B −0.393 0.199 1 −0.480 0.576

DSB_equivalent 0.062 0.217 −0.480 1 −0.258

SCWI_test −0.429 0.148 0.576 −0.258 1
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misclassifications of the least represented class (class C0). This mitigation mechanism
establishes the decision surfaces of the classifier so that a small number of samples that
belong to the least represented class are correctly classified, at the potential expense of a
larger number of samples that belong to the most represented class being misclassified.

Additionally, other specific parameters to the models were set according to the best
values that resulted from the classification metrics. For example, in the LR we set the
inverse of regularization strength, C, to 0:1 (we explored 10�4; 10�3; . . . ; 10); in the DT, we
set the minimum number of samples to split an internal node to 15 (we explored 3, 10, and
15); and in the K-NN we set the number of neighbors to 1 (we explored 1, 2,…, 5).

We assess the proposed models using a bootstrapping sampling method and an
aggregated confusion matrix to ensure the best model performs well outside of the training
data. We performed 100 evaluation experiments with different training and test sets each
time. For each iteration, 70% of the samples are randomly taken as the training set and the
rest is used as the test set. The latter set is employed to calculate a confusion matrix. The
confusion matrices calculated in every iteration are accumulated in an aggregated matrix,
representing the model’s overall performance. The structure of the confusion matrix is
depicted in Fig. 3, where a sample is labeled as True positive (TP)/True negative (TN) if it
belongs to the class C0=C1 and it is correctly classified as so. On the other hand, a sample is
labeled as False negative (FN)/False positive (FP) if it belongs to the class C0=C1 and it is
misclassified as C1=C0.

To assess the proposed models, we calculate typical performance metrics (Kelleher, Mac
Namee & D’arcy, 2020) on the aggregated confusion matrix. We use the accuracy and
average class accuracy as overall metrics, and also four additional metrics that specify the
behavior of the models predicting each class. In imbalanced data set scenarios, the average
class accuracy metric is more informative than the pure accuracy since the latter might
obscure the misclassifications of the least represented class. Recall-C0 informs the
percentage of all C0 class instances correctly classified as C0. Meanwhile, Precision-C0

informs the confidence that a sample classified as C0 actually belongs to that class.
Correspondingly, Recall-C1 and Precision-C1 convey the same information for C1.

Model selection
Table 3 depicts the best models obtained after assessing every combination of different sets
of features as input for the proposed models. Each row contains the classifier name, the

Figure 3 Structure of the confusion matrix. Full-size DOI: 10.7717/peerj-cs.3367/fig-3
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subset of features, the aggregated confusion matrix, and the metrics values. The three best
models were selected via the following steps:

1. For each set of features select the model that performs the best.

2. Keep only the best-ranked models that perform similarly well.

Table 3 shows that the LRmodels have the best overall performance. The LR model with
Educational_level as input achieved the best performance in every metric. A Recall-C0

value of approximately 0.75 means that almost 75% of all individuals at risk of fall can be
detected. Meanwhile, a Precision-C0 value of approximately 0.30 indicates that when the
model classifies an individual with high risk of falling, 70% of the times the individual is
healthy. Therefore, the LR classifier captures the unhealthy individuals well but a follow-up
might be necessary to eventually solve misclassifications. Additionally, the average class
accuracy metric aggregates the ability of this classifier to detect both classes. The results of
Table 3 confirm that Educational_level and TMT_part_B are the best features for
discriminating individuals regarding the risk of falls, as shown by the FDR in Table 1. Next,
we present a deeper analysis of the three classifiers to gain additional insight into the
relationship between the input variables and the risk of falls.

LR classifier with Educational_level as input variable
First, we carried out a Wald test (Wasserman, 2013; Hastie, Tibshirani & Friedman, 2009),
Eq. (2), to determine if an input variable can be dropped from the model. We tested if the
mean value of the LR parameter is zero, assuming l̂ is Normal.

W ¼ l̂� 0
ŝe

� Nð0; 1Þ; (2)

where l̂ is the sample mean, bse ¼ ffiffiffiffi
r̂2

n

q
is the estimated standard error, r̂2 is the sample

variance, and n ¼ 100 is the number of samples. If Wj j > za=2, where a is the test size, we do
not drop the parameter. A Z score greater than 1.96 in absolute value is significant at 5%
level.

As seen from Table 4, in the average classifier, the Educational_level is significant.
Among the 100 classifiers obtained in the experiments, we looked for the classifier that is
closer to the average, obtaining Eq. (3):

ln
PðC1Þ
PðC0Þ

� �
¼ �1:96þ 0:26� Educational level: (3)

Table 3 Evaluation metric results for the best models.

Model Features Agg. conf. matrix Acc. Ave. Acc. Rec. C0 Rec. C1 Prec. C0 Prec. C1

LR Educational_level 164 56
373 907

� �
0.714 0.727 0.745 0.709 0.305 0.942

LR TMT_part_B 120 99
431 850

� �
0.647 0.606 0.548 0.664 0.218 0.896

LR TMT_part_B, Educational_level 155 85
370 890

� �
0.697 0.676 0.646 0.706 0.295 0.913
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From this classifier, we can derive two conclusions. First, by increasing 1 year of
education, the individual increases the odds of presenting a low risk of falls by 30% (exp
(0.26) = 1.297). Next, when Eq. (3) is positive, the model classifies an individual as C1,
otherwise as C0. Therefore, we can obtain a threshold value for the Educational_level that
separates individuals with low risk of falls from those with a high risk of fall by solving
�1:96þ 0:26� Educational level ¼ 0, which results in a threshold value of
approximately 7.5 years of education.

LR classifier with TMT_part_B as input variable
Using the Wald test for this classifier, we obtained the results depicted in Table 5. As seen
in the average classifier, the TMT_part_B is significant.

Among the 100 classifiers obtained in the experiments, we looked for the classifier that
is closer to the average, obtaining Eq. (4):

ln
PðC1Þ
PðC0Þ

� �
¼ 1:76� 0:0083� TMT part B: (4)

From this classifier, we can derive two conclusions. First, a 1-s decrement from
the TMT_part_B value increases the odds of presenting a low risk of falls by 1%
(exp(0.01) = 1.010). Next, when Eq. (4) is positive, the model classifies an individual as C1,
otherwise as C0. Therefore, we can obtain a threshold value of TMT_part_B that separates
individuals with low risk of falls from those with a high risk of fall by solving
1:76� 0:0083� TMT part B ¼ 0, which results a threshold value of approximately
212 s.

LR classifier with educational_level and TMT_part_B as input variables
Using the Wald test for this classifier, we obtained the results shown in Table 6. As seen in
the average classifier, both variables are significant.

Among the 100 classifiers obtained in the experiments, we looked for the classifier that
is closer to the average, obtaining Eq. (5):

ln
PðC1Þ
PðC0Þ

� �
¼ �0:392þ 0:221� Educational level � 0:006� TMT part B: (5)

From this classifier, we observe that, by holding TMT_part_B at a fixed value, the odds
of presenting a low risk of falls increase by 25% (exp(0.221) = 1.247) if the years of

Table 4 Results from wald test.

l̂ r̂ ŝe Wj j
Educational_level 0.28 0.13 0.013 21.5

Intercept −2.01 0.75 0.075 26.8

Table 5 Results from Wald test.

l̂ r̂ ŝe Wj j
TMT_part_B −0.01 0.01 0.001 10.0

Intercept 1.77 1.28 0.128 13.8
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education increase in 1 year. On the other hand, by holding the Educational_level at a fixed
value, the odds of presenting a low risk of falls increases 0.6% (exp(0.006) = 1.006), if the
TMT_part_B value decreases by 1 s. As the classifier presents two inputs, we cannot obtain
a threshold value as in ‘LR Classifier with Educational Level as Input Variable’ and ‘LR
Classifier with TMT Part B as Input Variable’. Nonetheless, in Fig. 4, we depict the
classifier from Eq. (5) and its classification over all the study samples. Each point in Fig. 4
represents a sample from the study, where the coordinates are the collected values of
TMT_part_B and Educational_level. The color of each point reflects its class: yellow points
depict individuals with a low risk of falling (class 1), while purple points depict individuals
with a high risk (class 0). The classifier separates the TMT_part_B, Educational_level plane
into two half-planes. The purple half-plane is composed of points that the model classifies
as class 0, and the yellow half-plane is composed of points that the model classifies as class
1. Therefore, when a sample and the half-plane it belongs to have the same color, that
sample is correctly classified. Otherwise, it is misclassified.

Assessing the statistical implications of the dataset sample size on the
optimal model
To explore whether the couple “sample size/model complexity” of the proposed solution is
good enough for the study, we have conducted a numerical experiment. From the original

Table 6 Results from Wald test.

l̂ r̂ ŝe Wj j
Educational_level 0.26 0.15 0.015 17.3

TMT_part_B −0.01 0.01 0.001 10.0

Intercept −0.37 1.78 0.178 2.1

Figure 4 Classification of all study samples using the classifier from Eq. (5). The samples are depicted
using a scatter plot of the TMT_part_B and Educational_level variables.

Full-size DOI: 10.7717/peerj-cs.3367/fig-4
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dataset, we extracted smaller datasets of 16, 24, 32, and 40 samples. Each dataset was
produced 100 times using a bootstrapping sampling method. The 100 datasets of the same
size were used to fit 100 LR models with TMT part B and Educational level as inputs,
randomly selecting 70% of the samples for training and the remaining 30% for testing.
We added the original dataset to this experiment (47 samples) by generating 100 different
training and testing sets by bootstrapping.

We evaluate the impact of the sample size using three analyses. Firstly, we calculated the
model’s average class accuracy and its 95% confidence interval on training and testing sets.
We chose this performance metric because it measures the model’s ability to detect both
classes and penalizes the result if one of the classes is highly misclassified. Secondly, we
obtained the average effect size and its 95% confidence interval. The effect size was
calculated using the values of the log odds from Eq. (5), which compares the C0 and C1

populations. We employed the Cohen’s d measure, which is based on the difference
between means, normalized by a pooled standard deviation (Cohen, 2013). Finally, we
checked the average value of the model parameters and their 95% confidence intervals.

Figure 5 The impact of sample size on model performance, generalization, and stability for five
different sample sizes. For each data point, we present the average value and its 95% confidence
interval. Performance and generalization are discussed through the average class accuracy (A) and
Cohen’s d effect size estimator behavior (B). Meanwhile, model stability is discussed through the LR
model parameters’ behavior (C). The coefficient values of the Educational_level and TMT_part_B
variables are zoomed to ease their verification. Full-size DOI: 10.7717/peerj-cs.3367/fig-5
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Figure 5A depicts the average behavior of the average class accuracy for the LR model as
the sample size increases from 16 to 47. The average class accuracy on the training set
decreases from 0.84 to 0.77 as the number of samples increases. Meanwhile, the average
class accuracy on the test set decreases when the number of samples increases from 16 to
24, and then increases from 24 to 47 samples, reaching a maximum of 0.65. In both sets,
the length of the confidence intervals decreases as the sample size increases. The models
trained with smaller datasets end up overfitted due to the reduced data they were exposed
to and cannot generalize well. As more samples are included during the training stage, it
becomes increasingly challenging to separate the classes; however, the model can better
capture the underlying statistics of the data. Therefore, improving the model performance
on the unseen data. Furthermore, it appears that the curves tend to values that lie between
0.77 and 0.65, which reduces possible improvements to the model to that gap, even with
the addition of more data.

Figure 5B depicts the average effect size and its 95% confidence interval as the sample
size increases. We observe that the effect size increases as the sample size increases,
reaching a maximum value of 0.51. According to Cohen (2013), an effect size of 0.5 is
considered moderate, indicating a medium resolving power between the two classes.
Specifically, it indicates that the difference between classes means equals half a standard
deviation. Additionally, we observe that increasing the sample size from 40 to 47 results in
a gain of only 0.01 in the effect size.

Figure 5C shows the average value of the LR model parameters as the sample size
increases. We observe that the average values present a tendency towards specific numbers,
which appear to stabilize after 40 samples. Additionally, for the three parameters, the
length of the confidence intervals decreases as the sample size increases. Just as in the
average class accuracy analysis, including more samples during the training stage allows
the model to better capture the underlying statistics of the data, resulting in more robust
parameters.

DISCUSSION
So far, our results show that TMT_part_B and Educational_level can be used to identify
community-dwelling older adults at high risk of falls. Next, we discuss our results and
point out the findings’ reach and limitations.

The first hint to identify the strongest predictors for the risk of falls was obtained by the
data analysis carried out in ‘Output Variable Binarization’. Table 1 shows that,
individually, TMT_part_B and Educational_level are the best features for
discriminating individuals with high risk of falls. This result is supported by the top-ranked
ML models presented in Table 3, which included one or both features as inputs. While
other studies have recognized the potential of the TMT as a tool for detecting fall risk
(Sturnieks et al., 2025), most of the evidence comes from traditional statistical
analyses (Kang et al., 2017) and focuses mainly on motor or demographic predictors
(Ikeda et al., 2022; Jehu et al., 2021).

Additionally, Table 2 depicts the correlation coefficients between the features. The high
correlation between the variables associated with the cognitive tests indicates that some of
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them could be redundant for the ML model. In the literature, other authors have defined
multiple subdomains (Laakso et al., 2019) and a series of tests to assess them (Goldstein &
Naglieri, 2014).Miyake et al. (2000) have focused their studies on the assessment of three of
them, i.e., shifting, inhibition, and updating, which can be fully assessed by the TMT part
B, SCWI, and DSB tests, respectively. Nonetheless, we observed through the correlation
analysis that the variable TMT_part_B includes much of the information that the
DSB_equivalent and SCWI_test provide. This conclusion can also be verified by the results
obtained when using these cognitive tests to identify the risk of falls through ML models in
‘Model Selection’.

In ‘Model Selection’, we present the best ML models to identify older adults with a high
risk of falls. Table 3 depicts the top-ranked models obtained in our study and their
performance. In our work, we employed balanced class weights to mitigate class
imbalance. Such a mechanism affects some performance metrics positively, and others
negatively. Its effect is larger the more mixed the classes are in the feature space (see Fig. 4).
Using balanced class weights compared to not using them increases the number of TP
samples a little, while TN samples decrease by a larger amount. The latter causes FN
samples to decrease, and FP samples to increase. Therefore, Recall-C0, Precision-C1, and
the average class accuracy metrics increase, while the accuracy, Recall-C1, and Precision-C0

decrease. Furthermore, using balanced class weights might potentially increase the chances
of overfitting, particularly given the number and distribution of samples of the least
represented class in the feature space. If there are few samples and they are too spread out,
the model during the training stage could establish decision surfaces based on a
distribution of samples that would be too different from the unseen samples at the test
stage.

According to the metrics in Table 3, the LR model with the educational level as input is
the best classifier. Nonetheless, such a model is very coarse-grained. From a clinical
perspective, it is incorrect to use the educational level as the sole factor in keeping a good
balance in older people (Lathouwers et al., 2022; Lee et al., 2021). A more suitable model is
the LR model, with TMT_part_B and Educational_level as inputs. The performance of this
classifier is slightly lower, but it allows us to consider a broader range of clinical
information and derive more conclusions than the first mentioned. For example, in Fig. 4,
we can observe that for a specific Educational_level, lower values of the TMT_part_B test
are associated with individuals who present a lower risk of falling. Meanwhile, high values
of TMT_part_B indicate that an individual presents a higher risk of falling. On the other
hand, for a specific value of the TMT part B test, more years of education are associated
with a lower risk of falling. The above is consistent with the results of Voos, Custódio &
Malaquias (2021), who describe an association between the occurrence of falls, years of
education, and executive function.

The LR model described in Eq. (5) delivers additional insights into the relationship
between the features and the risk of falls. If different treatments improve TMT_part_B or
Educational_level differently and there is a way to quantify this improvement, then one of
those treatments can be selected to maximize the value of Eq. (5), thus maximizing the
odds of presenting a low risk of falls. Therefore, besides detecting the current medical
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condition of individuals, the model could be used to improve such conditions by selecting
a more suitable treatment.

Regarding the sample size of the study, we acknowledge that it is small compared with
typical ML scenarios. Nonetheless, the quality of a dataset should be assessed by its impact
on model performance, generalization, and stability, rather than the number of samples it
contains. According to Figs. 5A and 5B, the model stabilizes after 40 samples, and little
improvement in effect size is observed by moving forward to 47 samples. In a similar study
to ours, Rajput, Wang & Chen (2023) proposed two criteria for selecting a suitable sample
size. Firstly, the average effect size should be equal to or more than 0.5, according to
Cohen’s scale. Secondly, the change in the performance metric should be smaller than 10%,
from the assessed sample size to the next. For 40 samples, the average effect size is 0.5, and
the change in average class accuracy is 4%. For 47 samples, the average effect size is equal
to 0.51. Supposing that, for a larger sample size, the average class accuracy on the test set
would be around 0.71, which is in the middle of 0.77 and 0.65 (gap between training and
testing, see ‘Assessing the Statistical Implications of the Dataset Sample Size on the
Optimal Model’). Then, the change in average class accuracy would be 8%. Therefore, both
sample sizes are statistically significant to build the LR model. Including more data might
benefit the model, but only to a limited extent.

Table 7 compares, in terms of ML performance metrics, four assessment tools reported
by Yingyongyudha et al. (2016), with the proposed model obtained in our work (LR
described in ‘LR Classifier with Educational Level and TMT Part B as Input Variables’).
Older adults were recruited in the aforementioned study from an urban community,
similar to our study. As can be seen, our classifier is the second in AUC and Recall-C1, only
behind Mini-BESTest. Meanwhile, it is the third in accuracy, and fourth in Recall-C0. In
general, its performance is closer to BESTest.

From a practical point of view, it is reported that BBS is known for having ceiling effects,
and TUG only measures one sequential task of walking and turning, ruling out other
factors involved in falls (Yingyongyudha et al., 2016). On the other hand, the primary
disadvantage of BESTest is that it requires 20 to 30 min to administer (Horak, Wrisley &
Frank, 2009), whereas Mini-BESTest requires about 15 min (Godi et al., 2013). Our model,
which considers TMT part B together with educational level, can be a relevant tool for
assessing the risk of falling in non-specialized contexts, given that it achieves adequate
values in predictive performance indicators such as accuracy and AUC. Furthermore,
TMT part B takes less than 6 min to complete (Waggestad et al., 2025) and only requires a
pencil and paper, without needing additional physical space or specialized equipment.

Table 7 Comparison between standard tools and our proposed model for assessing falling risk.

Assessment tool AUC Recall-C0 (Sensitivity) Recall-C1 (Specificity) Accuracy

Mini-BESTest 0.84 0.85 0.75 0.85

BESTest 0.74 0.76 0.50 0.76

Our work 0.78 0.65 0.71 0.70

BBS 0.69 0.77 0.42 0.60

TUG 0.32 0.40 0.34 0.65
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Our study presents some limitations that will be covered in future work, and we
mention them below. First, our results are focused on the community-dwelling older adult
population. To generalize our results beyond this population, we need to recruit older
adults from diverse socio-demographic characteristics, as these characteristics are strongly
correlated with the risk of falls in this age group (Lathouwers et al., 2022). Second, the
study had a small number of participants. We note that some works in the state-of-the-art
also analyze small datasets (Roshdibenam et al., 2021; Shumway-Cook, Brauer &
Woollacott, 2000). Nonetheless, we understand that a larger dataset would allow to train
more complex ML models and employ more robust methodologies such as cross-
validation. Third, the number of features considered in the study design was small: only
five. In future work, we plan to add more cognitive tests to our model to search for
additional relationships between cognitive functions and falling risk. Also, we plan to
include variables related to sociodemographic characteristics, comorbidities, and different
medical conditions to assess how much they improve model performance when combined
with cognitive functionality.

CONCLUSIONS
In this work, we developed an LR classifier to identify older adults with high or low risk of
falling, using TMT part B test and the educational level as features. The study followed a
typical ML methodology, which included the following steps: First, data collection,
cleaning, and analysis. Second, setting up ML models of different nature, such as LR, DT,
and K-NN using a small and imbalanced data set. Finally, we trade off performance
metrics and clinical analysis to select the best model.

The study initially considered five input variables: the educational level, age, TMT part
B, DSB, and SCWI, which underwent a wrapper-based feature selection. Only TMT part B
and the educational level remained in the best model. The correlation and FDR analyses
foresaw this result. Thereby, out of the three executive function tests, TMT part B is
enough to assess the risk of falls. We weigh the performance metrics results with a clinical
perspective to determine the best model. Even though the LR with TMT_part_B and
Educational_level as inputs presents slightly lower performance metrics than the top-
ranked, it offers a broader range of clinical information and allows for more conclusions.
Finally, we mention that the best LR classifier allows us to quantify how changes in the
input variables improve the detection of adults with a risk of falls. Suppose a set of
treatments exists, and we can measure how they improve the TMT_part_B and
Educational_level variables. In that case, we can use the classifier to select the treatment
that maximizes the odds of presenting a low risk of falls after applying the treatments. We
analyzed two more classifiers that only consider one input variable. These models allow
determining a cut-off value for the input variable to identify older adults at risk of falling.
We found that, individually, 8 years or more of schooling or a result of the TMT part B
lower than 212 s are associated, on average, with a low risk of falls.

The study expands the state-of-the-art in fall-risk assessment and confirms that
education level and TMT part B are strong predictors of fall events. Furthermore,
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data-driven models can capture the relationship between cognitive domain factors and the
risk of falls in older adults.

Future efforts to improve the proposed model include increasing the number of
participants in our study and generalizing our results to populations beyond the
community-dwelling older adult population. A larger dataset would allow to employ more
robust methodologies such as cross-validation and more advanced models. We plan to
include more variables in the study, such as socio-demographic characteristics, cognitive
tests, physical well-being, and medical conditions.

ACKNOWLEDGEMENTS
The authors thank Bruno A. Rossel for his insightful discussions about the use of the ML
techniques in our problem.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Vicerrectoría de Investigación y Doctorados de la Universidad
San Sebastián-Fondo USS-FIN-25-APCS-47. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Vicerrectoría de Investigación y Doctorados de la Universidad San Sebastián-Fondo
USS-FIN-25-APCS-47.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Yasmany Prieto conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Pedro O. Rossel conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

. Claudia Martínez-Carrasco conceived and designed the experiments, performed the
experiments, analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The study was approved by the Ethic Research Committee of the Talcahuano Health
Service (Protocol No.: 77/2016).

Prieto et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3367 21/27

http://dx.doi.org/10.7717/peerj-cs.3367
https://peerj.com/computer-science/


Data Availability
The following information was supplied regarding data availability:

The raw data is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3367#supplemental-information.

REFERENCES
Al-qaness MA, Dahou A, Abd Elaziz M, Helmi AM. 2024. Human activity recognition and fall

detection using convolutional neural network and transformer-based architecture. Biomedical
Signal Processing and Control 95(3):106412 DOI 10.1016/j.bspc.2024.106412.

Allcock LM, Rowan EN, Steen IN, Wesnes KA, Kenny RA, Burn DJ. 2009. Impaired attention
predicts falling in Parkinson’s disease. Parkinsonism & Related Disorders 15(2):110–115
DOI 10.1016/j.parkreldis.2008.03.010.

Arango-Lasprilla J, Rivera D, Aguayo A, Rodríguez W, Garza M, Saracho C,
Rodríguez-Agudelo Y, Aliaga A, Weiler G, Luna M, Longoni M, Ocampo-Barba N,
Galarza-Del-Angel J, Panyavin I, Guerra A, Esenarro L, García de la Cadena P, Martínez C,
Perrin P. 2015. Trail Making Test: normative data for the Latin American Spanish speaking
adult population. NeuroRehabilitation 37(4):639–661 DOI 10.3233/nre-151284.

Arkkukangas M, Söderlund A, Eriksson S, Johansson A-C. 2019. Fall preventive exercise with or
without behavior change support for community-dwelling older adults: a randomized controlled
trial with short-term follow-up. Journal of Geriatric Physical Therapy 42(1):9–17
DOI 10.1519/jpt.0000000000000129.

Barry E, Galvin R, Keogh C, Horgan F, Fahey T. 2014. Is the Timed Up and Go test a useful
predictor of risk of falls in community dwelling older adults: a systematic review and
meta-analysis. BMC Geriatrics 14(1):14 DOI 10.1186/1471-2318-14-14.

Batistela RA, Rinaldi NM, Moraes R. 2023. Mini-BESTest cutoff points for classifying fallers and
non-fallers female older adults. Brazilian Journal of Motor Behavior 17(4):126–133
DOI 10.20338/bjmb.v17i4.354.

Berg KO, Wood-Dauphinée SL, Williams JI, Maki BE. 1992. Measuring balance in the elderly:
validation of an instrument. Canadian Journal of Public Health 83(Suppl 2):S7–11.

Caronni A, Picardi M, Scarano S, Malloggi C, Tropea P, Gilardone G, Aristidou E, Pintavalle G,
Redaelli V, Antoniotti P, Corbo M. 2023. Pay attention: you can fall! The Mini-BESTest scale
and the turning duration of the TUG test provide valid balance measures in neurological
patients: a prospective study with falls as the balance criterion. Frontiers in Neurology
14:1228302 DOI 10.3389/fneur.2023.1228302.

Cohen J. 2013. Statistical power analysis for the behavioral sciences. Second Edition. Oxfordshire:
Routledge.

Colón-Emeric CS, McDermott CL, Lee DS, Berry SD. 2024. Risk assessment and prevention of
falls in older community-dwelling adults: a review. The Journal of the American Medical
Association 331(16):1397–1406 DOI 10.1001/jama.2024.1416.

Davis JC, Best JR, Khan KM, Dian L, Lord S, Delbaere K, Hsu CL, Cheung W, Chan W,
Liu-Ambrose T. 2017. Slow processing speed predicts falls in older adults with a falls history:
1-year prospective cohort study. Journal of the American Geriatrics Society 65(5):916–923
DOI 10.1111/jgs.14830.

Prieto et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3367 22/27

http://dx.doi.org/10.7717/peerj-cs.3367#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3367#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3367#supplemental-information
http://dx.doi.org/10.1016/j.bspc.2024.106412
http://dx.doi.org/10.1016/j.parkreldis.2008.03.010
http://dx.doi.org/10.3233/nre-151284
http://dx.doi.org/10.1519/jpt.0000000000000129
http://dx.doi.org/10.1186/1471-2318-14-14
http://dx.doi.org/10.20338/bjmb.v17i4.354
http://dx.doi.org/10.3389/fneur.2023.1228302
http://dx.doi.org/10.1001/jama.2024.1416
http://dx.doi.org/10.1111/jgs.14830
http://dx.doi.org/10.7717/peerj-cs.3367
https://peerj.com/computer-science/


Deschamps T, Le Goff CG, Berrut G, Cornu C, Mignardot J-B. 2016. A decision model to predict
the risk of the first fall onset. Experimental Gerontology 81(15):51–55
DOI 10.1016/j.exger.2016.04.016.

Di Carlo S, Bravini E, Vercelli S, Massazza G, Ferriero G. 2016. The mini-BESTest: a review of
psychometric properties. International Journal of Rehabilitation Research 39(2):97–105
DOI 10.1097/mrr.0000000000000153.

Eichler N, Raz S, Toledano-Shubi A, Livne D, Shimshoni I, Hel-Or H. 2022. Automatic and
efficient fall risk assessment based on machine learning. Sensors 22(4):1557
DOI 10.3390/s22041557.

Fong KNK, Chung RCK, Sze PPC, NG CKM. 2023. Factors associated with fall risk of
community-dwelling older people: a decision tree analysis. Digital Health 9:25
DOI 10.1177/20552076231181202.

Godi M, Franchignoni F, Caligari M, Giordano A, Turcato AM, Nardone A. 2013. Comparison
of reliability, validity, and responsiveness of the mini-BESTest and Berg Balance Scale in patients
with balance disorders. Physical Therapy 93(2):158–167 DOI 10.2522/ptj.20120171.

Goldstein S, Naglieri JA editors. 2014. Handbook of executive functioning. Cham: Springer-
Verlag.

González-Castro A, Leirós-Rodríguez R, Prada-García C, Benítez-Andrades JA. 2024. The
applications of artificial intelligence for assessing fall risk: systematic review. Journal of Medical
Internet Research 26:e54934 DOI 10.2196/54934.

Groth-Marnat G editors. 2003. Handbook of psychological assessment. Fourth Edition. Hoboken,
NJ: John Wiley & Sons, Inc.

Guo X, Pei J, Ma Y, Cui Y, Guo J, Wei Y, Han L. 2023. Cognitive frailty as a predictor of future
falls in older adults: a systematic review and meta-analysis. Journal of the American Medical
Directors Association 24(1):38–47 DOI 10.1016/j.jamda.2022.10.011.

Hastie T, Tibshirani R, Friedman J. 2009. The Elements of statistical learning: data mining,
inference, and prediction. Second Edition. Cham: Springer.

Horak FB, Wrisley DM, Frank J. 2009. The balance evaluation systems test (BESTest) to
differentiate balance deficits. Physical Therapy 89(5):484–498 DOI 10.2522/ptj.20080071.

Ikeda T, Cooray U, Hariyama M, Aida J, Kondo K, Murakami M, Osaka K. 2022. An
interpretable machine learning approach to predict fall risk among community-dwelling older
adults: a three-year longitudinal study. Journal of General Internal Medicine 37(11):2727–2735
DOI 10.1007/s11606-022-07394-8.

Jahangiri S, Abdollahi M, Patil R, Rashedi E, Azadeh-Fard N. 2024. An inpatient fall risk
assessment tool: application of machine learning models on intrinsic and extrinsic risk factors.
Machine Learning with Applications 15(3):100519 DOI 10.1016/j.mlwa.2023.100519.

Jain S, Schweighofer N, Finley JM. 2024. Aberrant decision-making as a risk factor for falls in
aging. Frontiers in Aging Neuroscience 16:1384242 DOI 10.3389/fnagi.2024.1384242.

Jehu DA, Davis JC, Falck RS, Bennett KJ, Tai D, Souza MF, Cavalcante BR, Zhao M, Liu-
Ambrose T. 2021. Risk factors for recurrent falls in older adults: a systematic review with meta-
analysis. Maturitas 144(3):23–28 DOI 10.1016/j.maturitas.2020.10.021.

Kang L, Han P,Wang J, Ma Y, Jia L, Fu L, Yu H, Chen X, Niu K, Guo Q. 2017. Timed Up and Go
Test can predict recurrent falls: a longitudinal study of the community-dwelling elderly in China.
Clinical Interventions in Aging 12:2009–2016 DOI 10.2147/cia.s138287.

Kelleher JD, Mac Namee B, D’arcy A. 2020. Fundamentals of machine learning for
predictive data analytics: algorithms, worked examples, and case studies. Second Edition.
Cambridge, MA: MIT Press.

Prieto et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3367 23/27

http://dx.doi.org/10.1016/j.exger.2016.04.016
http://dx.doi.org/10.1097/mrr.0000000000000153
http://dx.doi.org/10.3390/s22041557
http://dx.doi.org/10.1177/20552076231181202
http://dx.doi.org/10.2522/ptj.20120171
http://dx.doi.org/10.2196/54934
http://dx.doi.org/10.1016/j.jamda.2022.10.011
http://dx.doi.org/10.2522/ptj.20080071
http://dx.doi.org/10.1007/s11606-022-07394-8
http://dx.doi.org/10.1016/j.mlwa.2023.100519
http://dx.doi.org/10.3389/fnagi.2024.1384242
http://dx.doi.org/10.1016/j.maturitas.2020.10.021
http://dx.doi.org/10.2147/cia.s138287
http://dx.doi.org/10.7717/peerj-cs.3367
https://peerj.com/computer-science/


Kempen GIJM, Yardley L, Van Haastregt JCM, Zijlstra GAR, Beyer N, Hauer K, Todd C. 2007.
The short FES-I: a shortened version of the falls efficacy scale-international to assess fear of
falling. Age and Ageing 37(1):45–50 DOI 10.1093/ageing/afm157.

Khatib L, Toledano-Shubi A, Bahat HS, Hel-Or H. 2025. Using machine learning to shorten and
adapt fall risk assessments for older adults. Applied Sciences 15(4):1690
DOI 10.3390/app15041690.

Laakso HM, Hietanen M, Melkas S, Sibolt G, Curtze S, Virta M, Ylikoski R, Pohjasvaara T,
Kaste M, Erkinjuntti T, Jokinen H. 2019. Executive function subdomains are associated with
post-stroke functional outcome and permanent institutionalization. European Journal of
Neurology 26(3):546–552 DOI 10.1111/ene.13854.

Lathouwers E, Dillen A, Díaz MA, Tassignon B, Verschueren J, Verté D, De Witte N, De Pauw
K. 2022. Characterizing fall risk factors in Belgian older adults through machine learning: a
data-driven approach. BMC Public Health 22(1):2210 DOI 10.1186/s12889-022-14694-5.

Lee Y-Y, Chen C-L, Lee I-C, Lee I-C, Chen N-C. 2021. History of falls, dementia, lower education
levels, mobility limitations, and aging are risk factors for falls among the community-dwelling
elderly: a cohort study. International Journal of Environmental Research and Public Health
18(17):9356 DOI 10.3390/ijerph18179356.

Lensvelt-Mulders GJ, Boeije HR. 2007. Evaluating compliance with a computer assisted
randomized response technique: a qualitative study into the origins of lying and cheating.
Computers in Human Behavior 23(1):591–608 DOI 10.1016/j.chb.2004.11.001.

Liao W-Y, Chu Y-H, Liu F-Y, Chang K-M, Chou L-W. 2022. Cutoff point of mini-balance
evaluation systems test scores for elderly estimated by center of pressure measurements by linear
regression and decision tree classification. Life 12(12):2133 DOI 10.3390/life12122133.

Lima C, Ricci N, Nogueira E, Perracini M. 2018. The Berg Balance Scale as a clinical screening
tool to predict fall risk in older adults: a systematic review. Physiotherapy 104(4):383–394
DOI 10.1016/j.physio.2018.02.002.

Liu L, Sun Y, Ge X. 2025. A hybrid multi-person fall detection scheme based on optimized YOLO
and ST-GCN. International Journal of Interactive Multimedia and Artificial Intelligence
9(2):26–38 DOI 10.9781/ijimai.2024.09.003.

Lockhart TE, Soangra R, Yoon H, Wu T, Frames CW, Weaver R, Roberto KA. 2021. Prediction
of fall risk among community-dwelling older adults using a wearable system. Scientific Reports
11(1):20976 DOI 10.21203/rs.3.rs-142249/v1.

Lupión M, González-Ruiz V, Sanjuan JF, Ortigosa PM. 2025. Privacy-aware fall detection and
alert management in smart environments using multimodal devices. Internet of Things
30(1):101526 DOI 10.1016/j.iot.2025.101526.

Magnani PE, Genovez MB, Porto JM, Zanellato NFG, Alvarenga IC, Freire RC, de Abreu DCC.
2020. Use of the BESTest and the mini-BESTest for fall risk prediction in community-dwelling
older adults between 60 and 102 years of age. Journal of Geriatric Physical Therapy 4(3):179–184
DOI 10.1519/jpt.0000000000000236.

Makino K, Lee S, Bae S, Chiba I, Harada K, Katayama O, Tomida K, Morikawa M, Shimada H.
2021. Simplified decision-tree algorithm to predict falls for community-dwelling older adults.
Journal of Clinical Medicine 10(21):5184 DOI 10.3390/jcm10215184.

Mancilla SE, Valenzuela HJ, Escobar CM. 2015. Timed Up and Go right and left unipodal stance
results in Chilean older people with different degrees of disability. Revista Médica de Chile
143(1):39–46 DOI 10.4067/S0034-98872015000100005.

Mandonnet E, Vincent M, Valero-Cabré A, Facque V, Barberis M, Bonnetblanc F, Rheault F,
Volle E, Descoteaux M, Margulies DS. 2020. Network-level causal analysis of set-shifting

Prieto et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3367 24/27

http://dx.doi.org/10.1093/ageing/afm157
http://dx.doi.org/10.3390/app15041690
http://dx.doi.org/10.1111/ene.13854
http://dx.doi.org/10.1186/s12889-022-14694-5
http://dx.doi.org/10.3390/ijerph18179356
http://dx.doi.org/10.1016/j.chb.2004.11.001
http://dx.doi.org/10.3390/life12122133
http://dx.doi.org/10.1016/j.physio.2018.02.002
http://dx.doi.org/10.9781/ijimai.2024.09.003
http://dx.doi.org/10.21203/rs.3.rs-142249/v1
http://dx.doi.org/10.1016/j.iot.2025.101526
http://dx.doi.org/10.1519/jpt.0000000000000236
http://dx.doi.org/10.3390/jcm10215184
http://dx.doi.org/10.4067/S0034-98872015000100005
http://dx.doi.org/10.7717/peerj-cs.3367
https://peerj.com/computer-science/


during Trail Making Test part B: a multimodal analysis of a glioma surgery case. Cortex
132(6):238–249 DOI 10.1016/j.cortex.2020.08.021.

Martínez-Carrasco C, Cid-Navarrete F, Rossel PO, Fuentes J, Zamunér AR, Méndez-Rebolledo
G, Cabrera-Aguilera I. 2025. Relationship between executive function subdomains and postural
balance in community-dwelling older adults. Journal of Aging and Physical Activity 33(1):1–9
DOI 10.1123/japa.2023-0323.

Mateen BA, Bussas M, Doogan C, Waller D, Saverino A, Király FJ, Playford ED. 2018. The trail
making test: a study of its ability to predict falls in the acute neurological in-patient population.
Clinical Rehabilitation 32(10):1396–1405 DOI 10.1177/0269215518771127.

Mirelman A, Herman T, Brozgol M, DorfmanM, Sprecher E, Schweiger A, Giladi N, Hausdorff
JM. 2012. Executive function and falls in older adults: new findings from a five-year prospective
study link fall risk to cognition. PLOS ONE 7(6):e40297 DOI 10.1371/journal.pone.0040297.

Mishra AK, Skubic M, Despins LA, Popescu M, Keller J, Rantz M, Abbott C, Enayati M, Shalini
S, Miller S. 2022. Explainable fall risk prediction in older adults using gait and geriatric
assessments. Frontiers in Digital Health 4:869812 DOI 10.3389/fdgth.2022.869812.

Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. 2000. The unity and
diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent
variable analysis. Cognitive Psychology 41(1):49–100 DOI 10.1006/cogp.1999.0734.

Montero-Odasso M, van der Velde N, Alexander NB, Becker C, Blain H, Camicioli R, Close J,
Duan L, Duque G, Ganz DA, Gómez F, Hausdorff JM, Hogan DB, Jauregui JR, Kenny RA,
Lipsitz LA, Logan PA, Lord SR, Mallet L, Marsh DR, Martin FC, Milisen K, Nieuwboer A,
Petrovic M, Ryg J, Sejdic E, Sherrington C, Skelton DA, Speechley M, Tan MP, Todd C, van
der Cammen T, Verghese J, Kamkar N, Sarquis-Adamson Y, Masud T, The Task Force on
Global Guidelines for Falls in Older Adults. 2021. Evaluation of clinical practice guidelines on
fall prevention and management for older adults: a systematic review. JAMA Network Open
4(12):e2138911 DOI 10.1001/jamanetworkopen.2021.38911.

Montero-Odasso M, van der Velde N, Martin FC, Petrovic M, Tan MP, Ryg J, Aguilar-Navarro
S, Alexander NB, Becker C, Blain H, Bourke R, Cameron ID, Camicioli R, Clemson L, Close
J, Delbaere K, Duan L, Duque G, Dyer SM, Freiberger E, Ganz DA, Gómez F, Hausdorff JM,
Hogan DB, Hunter SMW, Jauregui JR, Kamkar N, Kenny R-A, Lamb SE, Latham NK,
Lipsitz LA, Liu-Ambrose T, Logan P, Lord SR, Mallet L, Marsh D, Milisen K, Moctezuma-
Gallegos R, Morris ME, Nieuwboer A, Perracini MR, Pieruccini-Faria F, Pighills A, Said C,
Sejdic E, Sherrington C, Skelton DA, Dsouza S, Speechley M, Stark S, Todd C, Troen BR, van
der Cammen T, Verghese J, Vlaeyen E, Watt JA, Masud T, The Task Force on Global
Guidelines for Falls in Older Adults. 2022. World guidelines for falls prevention and
management for older adults: a global initiative. Age and Ageing 51:afac205
DOI 10.1093/ageing/afac205.

Muir-Hunter SW, Clark J, McLean S, Pedlow S, Van Hemmen A, Odasso MM, Overend T.
2014. Identifying balance and fall risk in community-dwelling older women: the effect of
executive function on postural control. Physiotherapy Canada 66(2):179–186
DOI 10.3138/ptc.2013-16.

Newkirk E, Green J, Feldman S, Crotty S, Miller W. 2022. Executive function assessment
and fall prevention: a prospective study. MEDSURG Nursing 31(1):37–43
DOI 10.62116/MSJ.2022.31.1.37.

Ong MF, Soh KL, Saimon R, Myint WW, Pawi S, Saidi HI. 2023. Falls risk screening tools
intended to reduce fall risk among independent community-dwelling older adults: a systematic
review. International Journal of Nursing Practice 29(4):e13083 DOI 10.1111/ijn.13083.

Prieto et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3367 25/27

http://dx.doi.org/10.1016/j.cortex.2020.08.021
http://dx.doi.org/10.1123/japa.2023-0323
http://dx.doi.org/10.1177/0269215518771127
http://dx.doi.org/10.1371/journal.pone.0040297
http://dx.doi.org/10.3389/fdgth.2022.869812
http://dx.doi.org/10.1006/cogp.1999.0734
http://dx.doi.org/10.1001/jamanetworkopen.2021.38911
http://dx.doi.org/10.1093/ageing/afac205
http://dx.doi.org/10.3138/ptc.2013-16
http://dx.doi.org/10.62116/MSJ.2022.31.1.37
http://dx.doi.org/10.1111/ijn.13083
http://dx.doi.org/10.7717/peerj-cs.3367
https://peerj.com/computer-science/


Oshiro CE, Frankland TB, Rosales AG, Perrin NA, Bell CL, Lo SH, Trinacty CM. 2019. Fall
ascertainment and development of a risk prediction model using electronic medical records.
Journal of the American Geriatrics Society 67(7):1417–1422 DOI 10.1111/jgs.15872.

O’Hoski S, Winship B, Herridge L, Agha T, Brooks D, Beauchamp MK, Sibley KM. 2014.
Increasing the clinical utility of the BESTest, mini-BESTest, and Brief-BESTest: normative values
in canadian adults who are healthy and aged 50 years or older. Physical Therapy 94(3):334–342
DOI 10.2522/ptj.20130104.

Panyakaew P, Pornputtapong N, Bhidayasiri R. 2021. Using machine learning-based analytics of
daily activities to identify modifiable risk factors for falling in Parkinson’s disease. Parkinsonism
& Related Disorders 82:77–83 DOI 10.1016/j.parkreldis.2020.11.014.

Patel A, Hoque F. 2025. Inpatient falls: risk factors and prevention strategies in healthcare. Journal
of Integrated Health 4(1):373–376 DOI 10.51219/JIH/farzana-hoque/62.

Powell LE, Myers AM. 1995. The Activities-Specific Balance Confidence (ABC) scale. The Journals
of Gerontology: Series A 50A(1):M28–M34 DOI 10.1093/gerona/50a.1.m28.

Rajput D, Wang W-J, Chen C-C. 2023. Evaluation of a decided sample size in machine learning
applications. BMC Bioinformatics 24(1):48 DOI 10.1186/s12859-023-05156-9.

Rosas R, Tenorio M, Pizarro M. 2012. WAIS-IV. Manual de administración y corrección. Versión
estandarizada en Chile. Second Edition. Bloomington: NCS Pearson, Inc.

Roshdibenam V, Jogerst GJ, Butler NR, Baek S. 2021. Machine learning prediction of fall risk in
older adults using Timed Up and Go test kinematics. Sensors 21(10):3481
DOI 10.3390/s21103481.

Scarpina F, Tagini S. 2017. The stroop color and word test. Frontiers in Psychology 8:557
DOI 10.3389/fpsyg.2017.00557.

Shumway-Cook A, Brauer S, Woollacott M. 2000. Predicting the probability for falls in
community-dwelling older adults using the Timed Up & Go test. Physical Therapy
80(9):896–903 DOI 10.1093/ptj/80.9.896.

Smith MA, Else JE, Paul L, Foster JK, Walker M, Wesnes KA, Riby LM. 2014. Functional living
in older adults with type 2 diabetes. Journal of Aging and Health 26(5):841–859
DOI 10.1177/0898264314534896.

Smith L, Jacob L, Kostev K, Butler L, Barnett Y, Pfeifer B, Soysal P, Grabovac I, López-Sánchez
GF, Veronese N, Yang L, Oh H, Koyanagi A. 2021. Mild cognitive impairment is associated
with fall-related injury among adults aged ≥65 years in low- and middle-income countries.
Experimental Gerontology 146(3):111222 DOI 10.1016/j.exger.2020.111222.

Smith C, Seematter-Bagnoud L, Santos-Eggimann B, Krief H, Bula CJ. 2023. Executive function
and prospective falls: a 6-year longitudinal study in community-dwelling older adults. BMC
Geriatrics 23(1):140 DOI 10.1186/s12877-023-03790-9.

Song W, Latham NK, Liu L, Rice HE, Sainlaire M, Min L, Zhang L, Thai T, Kang M-J, Li S,
Tejeda C, Lipsitz S, Samal L, Carroll DL, Adkison L, Herlihy L, Ryan V, Bates DW, Dykes
PC. 2024. Improved accuracy and efficiency of primary care fall risk screening of older adults
using a machine learning approach. Journal of the American Geriatrics Society 72(4):1145–1154
DOI 10.1111/jgs.18776.

Stevens JA, Phelan EA. 2013. Development of STEADI: a fall prevention resource for health care
providers. Health Promotion Practice 14(5):706–714 DOI 10.1177/1524839912463576.

Sturnieks DL, Chan LL, Espinoza Cerda MT, Herrera Arbona C, Herrero Pinilla B, Santiago
Martinez P, Seng NW, Smith N, Menant JC, Lord SR. 2025. Cognitive functioning and falls in
older people: a systematic review and meta-analysis. Archives of Gerontology and Geriatrics
128:105638 DOI 10.1016/j.archger.2024.105638.

Prieto et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3367 26/27

http://dx.doi.org/10.1111/jgs.15872
http://dx.doi.org/10.2522/ptj.20130104
http://dx.doi.org/10.1016/j.parkreldis.2020.11.014
http://dx.doi.org/10.51219/JIH/farzana-hoque/62
http://dx.doi.org/10.1093/gerona/50a.1.m28
http://dx.doi.org/10.1186/s12859-023-05156-9
http://dx.doi.org/10.3390/s21103481
http://dx.doi.org/10.3389/fpsyg.2017.00557
http://dx.doi.org/10.1093/ptj/80.9.896
http://dx.doi.org/10.1177/0898264314534896
http://dx.doi.org/10.1016/j.exger.2020.111222
http://dx.doi.org/10.1186/s12877-023-03790-9
http://dx.doi.org/10.1111/jgs.18776
http://dx.doi.org/10.1177/1524839912463576
http://dx.doi.org/10.1016/j.archger.2024.105638
http://dx.doi.org/10.7717/peerj-cs.3367
https://peerj.com/computer-science/


Sun R, Hsieh KL, Sosnoff JJ. 2019. Fall risk prediction in multiple sclerosis using postural
sway measures: a machine learning approach. Scientific Reports 9(1):16154
DOI 10.1038/s41598-019-52697-2.

Theodoridis S, Koutroumbas K. 2006. Pattern recognition. Third Edition. Amsterdam,
Netherlands: Elsevier.

Thumala D, Kennedy BK, Calvo E, Gonzalez-Billault C, Zitko P, Lillo P, Villagra R, Ibáñez A,
Assar R, Andrade M, Slachevsky A. 2017. Aging and health policies in Chile: new agendas for
research. Health Systems & Reform 3(4):253–260 DOI 10.1080/23288604.2017.1353844.

Tinetti ME, Williams TF, Mayewski R. 1996. Fall risk index for elderly patients based on number
of chronic disabilities. The American Journal of Medicine 80(3):429–434
DOI 10.1016/0002-9343(86)90717-5.

Vieira ER, Palmer RC, Chaves PHM. 2016. Prevention of falls in older people living in the
community. BMJ 353:i1419 DOI 10.1136/bmj.i1419.

Voos MC, Custódio EB, Malaquias J Jr. 2021. Relationship of executive function and educational
status with functional balance in older adults. Journal of Geriatric Physical Therapy 34(1):11–18.

Waggestad TH, Kirsebom B-E, Strobel C, Gjøra L, Selbæk G, Bekkhus-Wetterberg P, Aga O,
Egeland J. 2025. New regression-based norms for the trail making test on Norwegian older
adults: understanding the effect of education. The Clinical Neuropsychologist 39(7):2033–2056
DOI 10.1080/13854046.2025.2469940.

Wasserman L. 2013. All of statistics: a concise course in statistical inference. Cham: Springer Science
& Business Media.

Ye C, Li J, Hao S, Liu M, Jin H, Zheng L, Xia M, Jin B, Zhu C, Alfreds ST, Stearns F, Kanov L,
Sylvester KG, Widen E, McElhinney D, Ling XB. 2020. Identification of elders at higher risk
for fall with statewide electronic health records and a machine learning algorithm. International
Journal of Medical Informatics 137:104105 DOI 10.1016/j.ijmedinf.2020.104105.

Yingyongyudha A, Saengsirisuwan V, Panichaporn W, Boonsinsukh R. 2016. The mini-balance
evaluation systems test (Mini-BESTest) demonstrates higher accuracy in identifying older adult
participants with history of falls than do the BESTest, Berg Balance Scale, or Timed Up and Go
test. Journal of Geriatric Physical Therapy 39(2):64–70 DOI 10.1519/jpt.0000000000000050.

Zhou Z, Wang D, Sun J, Zhu M, Teng L. 2024. A machine learning–based prediction model for
the probability of fall risk among Chinese community-dwelling older adults. Computers,
Informatics, Nursing 42(12):913–921 DOI 10.1097/cin.0000000000001202.

Prieto et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3367 27/27

http://dx.doi.org/10.1038/s41598-019-52697-2
http://dx.doi.org/10.1080/23288604.2017.1353844
http://dx.doi.org/10.1016/0002-9343(86)90717-5
http://dx.doi.org/10.1136/bmj.i1419
http://dx.doi.org/10.1080/13854046.2025.2469940
http://dx.doi.org/10.1016/j.ijmedinf.2020.104105
http://dx.doi.org/10.1519/jpt.0000000000000050
http://dx.doi.org/10.1097/cin.0000000000001202
http://dx.doi.org/10.7717/peerj-cs.3367
https://peerj.com/computer-science/

	Assessing the risk of falling in community-dwelling older adults through cognitive domains and machine learning techniques
	Introduction
	Related work
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink7
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


