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ABSTRACT
In a tourism recommendation system, adaptive route optimisation is an essential
requirement for a cost-effective navigation system. When planning a tourism
destination, contextual features are essential for creating a model that selects the most
efficient route. The existing model fails to account for feature context when
determining the path and calculating the shortest distance. The famous Dijkstra
algorithm is static and cannot adapt to complex real-world factors such as climate,
traffic, and road closures. To automate route optimisation, this research employs
deep learning to identify patterns from existing datasets and adapt to the dynamic
environment by learning new patterns. Adaptive route optimisation is conducted
using an ant colony optimization (ACO) graph neural network (GNN) with a weight
factor. ACO operates with pheromone updates for path selection, while GNN
connects nodes based on pheromone and other weight factors. This model is less
complex and requires less computation time to determine the nearest route. The
performance of the model is evaluated, and the proposed model establishes the
shortest path in 1.92 s with a cost of 2,141, compared to ACO and ACO with
reinforcement learning (ACO-RL).

Subjects Agents and Multi-Agent Systems, Algorithms and Analysis of Algorithms, Data Mining
and Machine Learning, Optimization Theory and Computation, Neural Networks
Keywords ACO, GNN, Tourist route recommendation, Shortest path selection, Deep learning,
Optimization

INTRODUCTION
Tourism continually plays a vital role in promoting global economic growth, evident in the
increase in both inbound arrivals and revenue generation. India has shown resilient growth
in the tourist sector, with figures indicating 18.89 million international tourists and 2.51
billion domestic visits recorded in 2023. There has been a significant recovery from the
disruption caused by COVID-19. This expansion of tourism highlights the critical need for
optimising travel experiences through effective route planning strategies, which not only
enhance traveller satisfaction but also improve resource utilisation and support the
development of a sustainable ecosystem.

To address the problem of tourism route optimisation, several computational models
have been developed and deployed. Earlier methods developed smart recommendation
systems that incorporated artificial intelligence and Internet of Things (IoT) frameworks,
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utilizing algorithms such as Apriori for association rule mining to capture tourist
preferences (Song & He, 2023). To identify frequent itemsets, these methods are
computationally intensive due to the exponential growth in candidate generation, which
restricts their scalability for large and dynamic datasets. Subsequent efforts examined
adaptive PSO methods targeting multi-objective trip planning, balancing factors such as
cost, time, and satisfaction. Moreover, traditional PSO has limitations in terms of
premature convergence and suboptimal exploration-exploitation trade-offs, which can
decrease solution quality in complex, nonlinear search spaces. In previous work,
enhancements in ant colony optimization (ACO) methods were proposed by integrating
contextual awareness to dynamically adjust tourism routes (Liang et al., 2021). However,
traditional ACO often experiences slow convergence and is sensitive to parameter tuning,
which limits its capacity for real-time adaptability and responsiveness to rapidly changing
tourist demands and environmental conditions. These methods face challenges, including
limited scalability, inefficiency in computation, restricted dynamic adaptability, and
inadequate personalized route customization, all of which are vital for practical
deployment in smart tourism.

To overcome these challenges, this study proposes a robust and adaptive framework
that integrates ACO and graph neural networks (GNN). This ACO-GNN model leverages
GNN-generated node embeddings to incorporate both topological and connectivity
features of the local tourism network. These embeddings facilitate as data-driven heuristics
that inform pheromone updating dynamically, exceeding the static, distance-based
heuristics of traditional methods. The framework integrates rigorous data normalisation
and feature engineering to enhance the representation of city attributes, enabling efficient
multi-criteria decision-making during route planning. Amongst end-to-end training
pipelines, the GNN model consequently updates heuristic guidance, including both
synthetic and real-world datasets, promoting accelerated and more effective path
exploration and convergence. This approach ensures the model adapts to choose optimal
routes in real-time, reporting on external dynamic attributes such as traffic conditions and
user-specific preferences, thereby delivering a scalable, computationally effective, and
highly personalised smart tourism route optimisation solution.

The increasing demand for smart and tailored tourism systems suitable for adapting to
complex, dynamic environments support this research. The quick digital transformation in
the tourism industry requires harnessing advanced computational methods, particularly
the interaction of deep learning and swarm intelligence, to formulate optimised route
planning methods. Such solutions must robustly address diverse user preferences and
real-time environmental fluctuations to enhance the overall efficiency, adaptability, and
user-centricity of tourism services.

Evolving smart technologies and increasing complexity in the tourism field necessitate
the development and deployment of adaptive optimisation methods to manage diverse
traveller requirements and varying conditions, including traffic and environmental
fluctuations. The incorporation of deep learning methodologies, such as GNN and swarm
intelligence algorithms, introduces dynamic learning of spatial relationships and enables
real-time decision-making. This study proposes a hybrid ACO-GNN model which
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leverages learned node embeddings to ensure guidance for pheromone reinforcement and
path choosing processes, ensuring a scalable, data-driven solution that continuously adapts
to individualised traveller requirements and evolving contextual dynamics.

In this research, we define real-time environmental fluctuations as unpredictable
alterations in traffic density, road availability, meteorological events, and user-specific
route preferences, all of which jeopardise the stability of route optimisation. To counter
these variations, we advance the ACO-GNN architecture through the following synergistic
subsystems: (i) the GNN extracts high-dimensional embeddings that fuse the city’s static
topological scaffold with live, streaming context-specific data, thereby producing heuristic
signals directly responsive to real-time traffic and environmental states. Such embeddings
allow consecutive refinements of the heuristics to mirror the most relevant operational
reality. (ii) The ACO layer leverages the resultant heuristics to control the pheromone
density and trajectory choices, sustaining the algorithm’s reactivity to live state
perturbation by accentuating and propagating trails that continue to yield minimal
congestion under the prevailing context. The effective cogeneration of these modules
ensures that the framework trails and scales efficiently against emergent routing anomalies
in operational environments. In the context of this study, “adaptive” optimization refers to
the model’s ability to adjust the recommended routes in response to dynamic, real-world
conditions. For instance, if a user begins a trip from Lucknow to Goa, and a sudden traffic
jam is detected on the planned route near Delhi, the model can re-evaluate and
recommend an alternative path through Jaipur and Pune that minimises delay and cost.
This adaptivity is achieved by incorporating real-time data into the GNN embeddings,
which continuously update the heuristics guiding the ant colony’s decisions. Such
adaptability is crucial in practical tourism scenarios, where static, precomputed routes
often fail to reflect current travel conditions or individual preferences accurately.

The main contributions of this proposed research are

1. GNN-Node embeddings integrated with ACO for generating dynamic, context-aware
embeddings that notify pheromone updates and decision-making that leverages learned
node embeddings to ensure guidance for pheromone reinforcement and path choosing
processes, resulting in processes of ant colony optimization that are more efficient and
adaptable to changes in the environment.

2. For optimizing route, we implemented a continuous learning method where GNN
iteratively updates the heuristic predictions, improves routing efficiency and accuracy.

3. We incorporate data-driven insights from GNN embeddings for enhancing the
pheromone reinforcement.

4. We introduced metaheuristic approaches to ensure the dynamic route adjustments to
fluctuating conditions like traffic variations and user preference changes.

This research presents a new hybrid framework, ACO-GNN, that incorporates GNNs to
enhance the heuristic guidance of traditional ACO. The model learns routing graphs with
spatial and structural complexities, which facilitates quicker convergence, improved
computational efficiency, and scalable optimisation for large complex networks. The study
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demonstrates that ACO-GNN exhibits comparable computational complexity and
throughput, aligning with traditional benchmarks. The method shows a marked reduction
in the time required for scalability while significantly accelerating convergence. Although
there are certain instances where the routes are slightly less optimal, this approach offers a
beneficial compromise that boosts the feasibility of real-time, large-scale route
optimisation, far surpassing the capabilities of existing ACO and ACO-reinforcement
learning (RL) frameworks.

LITERATURE SURVEY
Early research introduced knowledge-based hybrid ACO models, integrating hierarchical
clustering and random sampling to optimize tourism routes by maximizing tourist
satisfaction and attraction income (Li et al., 2022). These methods incorporated
constraints such as tourist age, preferences, and route carrying capacity to reflect
real-world conditions. The inclusion of a bacterial foraging algorithm mechanism
enhanced the search process by reducing the risk of local optima and improving solution
quality. However, reliance on predefined knowledge models limited adaptability in highly
dynamic or large-scale tourism networks. To enhance adaptability and privacy, subsequent
studies explored swarm intelligence (SI) and distributed learning techniques. Hawk Fire
Optimization (HFO) with Federated Dropout Learning (FDL) was employed to enhance
autonomous vehicle decision-making and adaptability, where HFO dynamically optimized
parameters while FDL facilitated privacy-preserving distributed learning (Gupta et al.,
2024). Despite the model’s enhanced performance in simulations, its complexity and
challenges with federated synchronization hindered its real-time use under varying
network conditions.

To optimise performance, strategies or initialization schemes from related tasks may be
acquired through an optimisation strategy using meta learning, or learning to learn
(Xia et al., 2022; Wang et al., 2025). In prediction, the application of multi-view learning
enables the model to integrate different representations of molecules, thereby improving
the model’s understanding of complex features (Zhang et al., 2024; Zuo et al., 2025).
Additionally, surpassing state-of-the-art performance, even with the diverse datasets of
GNNs including those with strong heterophily, has demonstrated robust performance
(Huang et al., 2024; Wei et al., 2024). In robotics, sophisticated algorithms for path
planning can facilitate intelligent navigation in dangerous workplaces such as nuclear
facilities, where robots can prevent crossing high-radiation zones even if this means taking
longer routes (Zhang et al., 2025a, 2025b). The combination of adaptive learning,
multi-view representation, and context-sensitive optimization creates a unified
multidisciplinary framework essential for adaptive smart routing systems in modern
intelligent transportation, IoT infrastructures, autonomous mobile platforms, and systems
geared towards real-world applications (Zhou et al., 2025).

The next step involved AI-driven adaptive systems. The Tourism Recommendation
System (TRS) incorporated data collection, design, and real-time itinerary adjustments to
enhance tourist experiences (Yuan & Zheng, 2024). While effective in the Xiamen case
study, the method’s dependency on timely and accurate data limited its performance in
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regions with inadequate infrastructure. Scalability and integration with diverse platforms
also posed challenges. Advancements in hybrid metaheuristic algorithms further improved
optimization quality. PSO and ACO were applied to address premature convergence and
parameter sensitivity (Priyadarshi & Kumar, 2025). Techniques such as PF3SACO
combined PSO, fuzzy reasoning, and 3-Opt local search within an adaptive ACO
framework, demonstrating superior solution quality on large Traveling Salesman Problem
(TSP) instances (Zhou et al., 2022a). Similarly, ADACO integrated adaptive learning
within a reinforcement learning (RL) framework, enhancing convergence and stability on
routing problems (Zhou et al., 2022b). The H-RL-VaNSAS model focused on resilience,
sustainability, safety, and accessibility for urban bus routes, outperforming other
metaheuristics but with increased computational demands (Sriprateep et al., 2024). More
recently, deep learning and graph-based methods have emerged. Gao et al. (2022)
introduced a GNN-Enhanced ACO approach for urban route planning, achieving 94%
accuracy. Ziyue (2024) proposed a deep intelligent ant colony-based approach for
personalized and customized route optimization in smart tourism, demonstrating the
potential of combining swarm intelligence with deep learning for real-time, context-aware
decision-making. These studies illustrate the evolution of methods from static heuristics to
dynamic, learning-based systems, yet they highlight persisting gaps in scalability, dynamic
adaptability, and integration of contextual data. The proposed ACO-GNN model
addresses these challenges by leveraging GNN-learned node embeddings to inform
pheromone updates dynamically, providing an adaptive, context-aware, and
computationally efficient solution for real-time tourism route optimization.

Future work must validate performance under varying traffic conditions and tourist
demand. Table 1 provides a survey on adaptive route optimisation. Table 2 shows the
accuracy performance of the various GNN model in route optimisation. The significant

Table 1 Adaptive tourism route optimization.

Author Dataset Method Research gap Challenges Result

Liang et al.
(2021)

Hybrid ACO-GNN
on Indian city
travel data

Ant colony optimization enhanced
with graph neural networks
(ACO-GNN)

Slow convergence in
traditional ACO

Complexity of
integrating GNN
with ACO

Speed compared to
ACO and ACO-RL

Li et al. (2022) Travel agency tourist
data

Hybrid ant colony optimization +
Bacterial foraging

Lack of adaptability Limited
generalizability

Higher efficiency in
route planning

Gupta et al.
(2024)

Autonomous vehicle
decision datasets

Hybrid swarm intelligence +
Federated learning

Handling dynamic
environments

Computational
overhead

Accuracy
improvement

Song & He
(2023)

Tourist behavioural
data from Xiamen

AI-driven adaptive itinerary design
and adjustment

Adapting to uncertain
environments

Data accuracy Improved tourist
experience

Zhou et al.
(2022a)

15 TSP instances (42
to 783 cities)

ACO + PSO + Fuzzy Logic + 3-Opt
local search

Limited in local
search in ACO

Algorithm
complexity

Superior solution
quality on large TSP

Sriprateep et al.
(2024)

Real-world tourism
itinerary data

Mixed-integer programming +
AMIS

Lack of integrated
sustainability

Applicability to
diverse regions

Increased
socio-cultural
benefits

Akhand,
Rahman &
Siddique (2022)

Benchmark datasets
for KP, TSP, VRP,
UCSP

Adapted Particle Swarm
Optimization

Transitioning PSO
from continuous to
discrete

Position update
adaptations

Effective adaptations
for varied discrete
problems
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research gap in existing studies is the dynamic working of model and model
generalizability. This challenge is overcome by using the proposed ACO-optimised GNN.

OVERALL SYSTEM ARCHITECTURE
The diagram describes the overall workflow of the hybrid ACO-GNN route optimization
process. It begins with an input dataset containing city pairs (Origin, Destination) and
their corresponding travel distances, which forms a weighted graph representing the
transportation network. The data undergoes preprocessing where invalid entries are
removed, cities are encoded into numerical indices, and a cost matrix and initial
pheromone matrix are created to represent distances and ant trail intensities, respectively.
The ACO module simulates multiple ants constructing candidate routes. Each ant
probabilistically chooses the next city based on pheromone concentration and heuristic
information. The heuristic in traditional ACO is typically the inverse of the travel distance.
Ants traverse the network building complete routes, after which the path costs are
evaluated. Figure 1 shows the model overview.

The GNN module processes the graph structure by learning embeddings (low-
dimensional representations) of cities that capture their relationships beyond just physical
distance. These embeddings serve as dynamic, learned heuristics that inform ant decision-
making. The integration step combines both: ant decisions now depend on pheromone
levels and GNN-learned embeddings. Pheromone updates are adjusted based on route
quality and these embeddings, allowing context-aware reinforcement. The ants iteratively
explore routes, and the pheromone matrix evolves to emphasize promising paths. The
GNN continues to refine embeddings through training, improving heuristic guidance over
time. The optimal or near-optimal route is identified and output. This route is validated by
comparing it with baseline shortest-path algorithms like Dijkstra’s. The diagram effectively
captures the cyclical feedback loop where ACO exploration and GNN learning inform
each other to enhance route optimization performance.

Dataset overview
Indian Cities Network Analysis The dataset employed is sourced from Kaggle and
encapsulates a detailed representation of inter-city road connectivity within India. It is
structured in a tabular format comprising three principal columns: Origin, Destination,
and Distance. Each record in the dataset specifies a pair of cities that has an origin and a
destination alongside the measured road distance expressed in kilometres. For instance, as
shown in the sample extract, cities such as Agra and Delhi are connected by a road distance
of 240 km. In comparison, Agra to Lucknow spans 334 km, highlighting the variation in
travel distances within the network. This dataset constructs a weighted undirected graph,

Table 2 Route optimization prediction.

References Methodology Accuracy

Li (2024) RippleNet and a knowledge-graph-based framework above 90%

Song & He (2023) On artificial intelligence and IoT using Apriori algorithm. 94.3%

Gao et al. (2022) CNN + PSO 96.47%
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where nodes represent cities and edges denote road connections, weighted by their
corresponding distances.

The undirected nature of the graph is inferred from the bidirectional travel possibilities
between cities, implying symmetrical graph edges. This dataset is ideal for use with the A�

(A-star) search algorithm, an effective optimisation and path-finding algorithm. The
weights of the edges, such as the distances, serve as critical cost metrics by enabling
computational modelling of the shortest paths, optimising routes, and conducting
network analysis. This describes advanced algorithmic applications such as route
planning and network efficiency research, which depend heavily on accurate distance
metrics. The dataset’s comprehensive expansion of multiple city pairs across
geographically diverse regions ensures its utility in simulating realistic travel scenarios
throughout India.

Data preprocessing
Let the dataset be C ¼ c1; c2; . . . ; cnf g, where n is the total number of unique cities. The
data preprocessing phase starts with cleaning for the elimination of any missing or invalid

Figure 1 Model overview. Full-size DOI: 10.7717/peerj-cs.3366/fig-1
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entries, particularly within the crucial columns representing the Origin, Destination and
Distance. Formally, this describes the validation of the set of city connections. The set of
valid city connections is defined in Eq. (1).

E ¼ fðci; cjÞ j dij 6¼ [; dij > 0g (1)

where dij depicts the travel distance between the cities ci and cj. This method ensures data
integrity and accuracy for modeling. A city index mapping function f : C ! f1; 2; . . . ; ng
is defined, assigning each city ci a unique numerical index such that f ðciÞ ¼ i. This
mapping replaces textual city identifiers with integer indices to facilitate efficient
computation and matrix operations.

By index mapping, a cost matrix D 2 Rn�n is constructed, every element Dij corresponds
to the travel distance dij between ci and cj. The cost matrix is described in Eq. (2).

D ¼ Dij
� � ¼ dij; if ðci; cjÞ 2 E;

1; otherwise:

�
(2)

This matrix consolidates all pairwise distances and provides a foundational structure for
computing travel costs across various route optimisation models.

ACO-GNN preprocessing
Let X ¼ fxig represent the city feature vectors. Data normalization is performed using
Eq. (3):

~xi ¼ xi � l
r

; (3)

where l and r denote the feature-wise mean and standard deviation, respectively.
The synthetic training dataset is represented in Eq. (4).

S ¼ fðci; cj; dijÞg; (4)

where ci and cj are city indices and dij is the distance between them. Thus, S represents the
set of synthetic training samples, each consisting of a pair of cities and the corresponding
distance, which is generated to facilitate heuristic learning. Feature embeddings are defined
in Eq. (5).

E ¼ feig; (5)

Which captures the connectivity and relationships between cities based on distance.
The pheromone update in ACO-GNN integrates both path cost and embedding

influence, formulated as, The pheromone update in ACO-GNN is formulated in Eq. (6)

Pijðt þ 1Þ ¼ PijðtÞ þ 1
Costþ 10�6 þ b � Eij; (6)

where b controls the contribution of the embedding influence Eij.
The total path cost for a route p ¼ ðc1; . . . ; cnÞ is defined in Eq. (7).

CostðpÞ ¼
Xn�1

k¼1

Dckckþ1 ; (7)

with Dckckþ1 denoting the cost between cities ck and ckþ1 from the cost matrix D.
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Workflow
The diagram illustrates an overall workflow for optimising city connectivity using
advanced ACO methods. The process begins with a raw dataset that includes essential
information such as the origin and destination cities along with the distances. This dataset
serves as the foundation for all subsequent computations and model operations. During
the preprocessing phase, the data undergoes several crucial steps to ensure quality and
suitability for algorithm optimisation. Missing or null values in the dataset are eliminated
to maintain the integrity of the analysis. Subsequently, a cost matrix is introduced by
representing the distances between all pairs of cities, which serves as the fundamental input
for the path-finding process. Consequently, the pheromone matrix is initialised by
assigning baseline values that enhance the attractiveness of various paths in the network.

The heuristic matrix is described as the inverse of the cost matrix, calculated next.
Artificial agents are guided by indicating preferable routes based on distance metrics.
Probabilities for path selection are calculated by incorporating both pheromone intensities
and heuristic information by ensuring a probabilistic and adaptive exploration of possible
paths. This overall workflow then diverges into three algorithmic variants like ACO-Only,
ACO combined with RL (ACO-RL), and ACO integrated with GNN (ACO-GNN). The
ACO-only approach succeeds in the classic framework where artificial ants are started and
traverse the graph by estimating possible paths. ACO-RL enhances this process by
integrating RL principles, enabling the update of dynamic pheromone values driven by
learning signals that balance exploration and exploitation during path selection. This
variant includes additional steps, such as RL, signal processing, and pheromone update
strategies, which enhance the adaptability and efficiency of optimising the model. Box 1
illustrates the workflow of the overall process.

The ACO-GNN algorithm advances the approach by GNNs embedded into the
optimisation pipeline. Node embeddings and feature creation enable a sophisticated
representation of the city network, allowing the model to identify complex structural
details. The GNN component performs training for learning the effective embeddings that
perform better in path evaluation and selection, thereby refining the optimisation method.
Dijkstra’s algorithm is implemented to perform cross-validation, verifying the optimality
of the identified paths against a well-established shortest path model. Several evaluation
metrics are calculated to measure model performance by path quality and computational
efficiency. The results are then undergo visualisation to provide an intuitive understanding
of the comparative effectiveness of the three approaches.

MATERIALS AND METHODS
Evaluation method
The proposed model was built in the Google Colab environment using Python 3.11. It
creates a graph from a dataset of Indian cities, with cities as nodes and distances between
cities as edge costs. The graph is processed with a GNN, and routing optimization is done
with an ACO algorithm that updates pheromones at every iteration.

To assess the efficacy of the ACO-GNN model, we employed five-fold cross-validation
using a real-world dataset containing information from cities in India. The dataset was
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divided into five equal parts. In each iteration, one part was kept aside for validation while
the other four were used for training the model. This technique guarantees that every data
sample is utilized in both training and testing phases, minimizing overfitting and providing
a more accurate measure of the model’s performance. This process was consistently
applied to all other competing models ACO-Only, ACO with RL (ACO-RL), and
ACO-GNN to ensure a fair assessment across different settings. ACO-GNN model was
evaluated based on the routing cost, convergence rate, scalability, and optimality of the
routes taken for each fold. Such a structured approach strengthens the claims regarding the

BOX 1 Workflow diagram.
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versatility and efficiency of ACO-GNN compared to other models in adjustable routing
tasks.

The benchmarks were completed on a device equipped with an Intel i7 processor and
128 GB RAM. A five-fold cross-validation was conducted using four methods: Dijkstra,
ACO, ACO with RL, and ACO integrated with GNN (ACO-GNN).

Key Findings:

. Dijkstra’s algorithm continues to be the most effective method for finding the
lowest-cost routes.

. Scalability and rate of convergence with respect to city count exhibited a knee-point
phenomenon for ACO-GNN. Performance was measured at 1.92 s for 40 cities, with a
cost of –10.23 per iteration.

. ACO-RL, rather than ACO-GNN, garnered consensus regarding pathfinding accuracy
in previously unobstructed routes alongside the slower convergence.

. ACO-GNN was considered optimal for near-optimum routing performance, flexibility,
and adaptive responsiveness to changing conditions.

. ACO-GNN was visually described as most efficient by figures detailing convergence
trends, time required for routing, and segmentation of real-world designed maps,
applying large-scale routing tasks.

Assessment metrics
To analyze the accuracy of the developed ACO-GNN model and its corresponding
variants, the following metrics were applied:

. Total Cost: Refers to the cumulative distance (or travel cost) of the selected route.

. Shortest Path: Considers the order of the cities visited from the starting point to the
ending point. Evaluates if the path minimizes movement through extraneous nodes
while optimizing resource expenditure.

. Throughput: Refers to the number of ants completing the route in a given duration.
Represents the model’s ability to optimize search efficiency.

. Computational Complexity: Theoretical estimate of algorithmic cost, expressed in Eq. (8)

Oð50� N2 � 100Þ (8)

where 50 = number of ants, N = number of cities, and 100 = number of iterations.

. Rate of Convergence: Records how fast the algorithm gets to the precise solution.
Determined as the average reduction in cost per iteration.

. Scalability: Describes the time it takes to deal with vast datasets, for example, a 40-city
graph. Better scalability and computational efficiency are implied by lower execution
time.

. Route Optimality: Evaluates the best cost observed in different tests. Underlines the
stability and quality of the solution executed in diverse test cases.
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PROPOSED SYSTEM USING ACO-GNN
Figure 2 describes the architecture of a hybrid ACO model improved by GNNs, designed
to leverage the strengths of both methods for effective route optimization. The process
starts with the initialisation of the pheromone matrix, where every edge between nodes
(cities) is assigned a uniform initial pheromone value. This depicts a baseline for the ant
agents’ research in the graph. Input features represent the nodes that are then fed into the
GNN input layer, which is designed to identify the complex relational structure inherent in
the city network. These inputs are processed through sequential, fully connected layers,
integrating nonlinear transformations via rectified linear unit (ReLU) activation functions
to learn meaningful embeddings that summarise the structural and contextual properties
of the graph.

The output layer of the GNN yields learned node embeddings, which serve as adaptive
heuristics to inform the path selection process of ACO. Unlike traditional ACO, which
relies on static heuristics such as inverse distances, this hybrid model dynamically updates
heuristics based on the learned relationships captured by the GNN. Path selection
probabilities are calculated by combining pheromone intensities and these learned
heuristics, raised to specified powers to balance exploitation and exploration during the
search. The GNN-generated embeddings also influence pheromone updates in the system.
Instead of updating pheromone levels solely based on path costs, this approach integrates
learned contextual information, making pheromone reinforcement more adaptive and
sensitive to the underlying graph structure. This results in a more informed updating
mechanism that reflects both the cost efficiency and the relational importance of the paths.

Through this integration, the hybrid ACO-GNN model achieves an adaptive path
selection mechanism, where ants’ decisions are guided not just by pheromone trails and
distance but also by richer, data-driven node representations. The embedding generation
effectively reduces the complexity of the city network into lower-dimensional vectors that
capture salient features, enabling ants to navigate the graph with enhanced situational
awareness. Moreover, the GNN component allows for dynamic heuristic updates during
the optimization process, continuously refining the guidance as learning progresses.

Figure 2 Ant colony optimization-graph neural networks architecture.
Full-size DOI: 10.7717/peerj-cs.3366/fig-2
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This adaptability facilitates better decision-making in complex and large-scale networks,
addressing scalability challenges inherent in traditional ACO models. The model
incorporates a dedicated training phase where the GNN learns to predict optimal
heuristics from the city network structure, enabling continual improvement in routing
decisions over iterations. Overall, this hybrid architecture synergises the exploratory
strengths of ACO with the representational power of GNNs, leading to more efficient,
scalable, and context-aware route optimization in complex urban networks.

Pheromone intialization is critical for unbiased exploration at the start of the
optimization process in Eq. (9).

Tij ¼ 1; 8i; j (9)

where the initial pheromone level equally for all edges between nodes i and j. This
probabilistic decision-making balances exploitation of known good paths (high
pheromone) and exploration guided by heuristics in Eq. (10).

Pij ¼
ðTijÞa:ðgijÞbP

k2unvisited ðTikÞa:ðgikÞb
(10)

where Tij is the pheromone intensity on edge i ! j, gij is the heuristic value between nodes
i and j, a and b are the parameters controlling the relative influence of pheromone. This
enables the model to adjust its pathfinding strategy based on data-driven insights rather
than relying on static metrics in Eq. (11).

gij ¼ Similarityðhi; hjÞ (11)

where hi and hj are the node embeddings learned by the GNN for nodes i and j. The
similarity gij is used as the heuristic value in the pseudo-code to guide path selection,
ensuring that the algorithm retains informative connections while encouraging
exploration.

For each ant k, the next node j is selected based on a probability proportional to Eq. (12).

saij � gbij; (12)

where sij is the pheromone level on edge ði; jÞ, gij is the similarity between nodes i and j,
and a and b control the relative influence of pheromone and similarity in Eq. (13)
respectively.

Tijðt þ 1Þ ¼ ð1� qÞTijðtÞ þ DTij (13)

where q is the pheromone evaporation rate and DTij is the pheromone deposited on edge
i ! j. In the ACO-GNN model, the path cost can integrate traditional distance measures
as well as penalties or rewards derived from GNN embeddings in Eq. (14), further refining
the pheromone updates to be context-sensitive.

DTij ¼ 1
path costþ 2 (14)

where 2 is the small constant to prevent division by zero.
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The computational complexity of the proposed ACO-GNN algorithm can be analyzed
as follows. In each iteration, each of the M ants constructs a complete path over N cities.
For each decision step, the ant must compute probabilities considering OðNÞ unvisited
nodes, repeated N times per ant, resulting in OðN2Þ per ant per iteration. OverM ants and
T iterations, the total complexity becomes OðM � T � N2Þ. In our implementation,M ¼ 50
and T ¼ 100, but these constants do not appear in asymptotic notation. Therefore, the
algorithm has a time complexity of OðN2Þ per ant per iteration. We choose as the basic
operations those that dominate the runtime: the computation of transition probabilities
and pheromone updates over N2 edges.

The ACO-GNN model is designed to adaptively update route recommendations in
response to real-time changes in the environment. The GNN module learns node
embeddings that capture both static structural features and dynamic contextual signals,
which are then used to adjust the heuristic desirability in the ACO component, enabling
adaptive path selection.

Graph neural network
GNNs are a class of deep learning models designed to operate on graph-structured data
where the relationships between entities (nodes) are as important as the entities
themselves. Unlike traditional neural networks that handle fixed-size inputs like images or
sequences, GNNs learn to capture and propagate information along the edges of a graph,
effectively modelling dependencies and interactions among nodes. The ACO-GNN model
integrates GNNs to enhance route optimization by learning dynamic, data-driven
heuristics from the city network. GNNs process graph-structured data by generating node
embeddings that capture complex relationships between cities. These embeddings replace
traditional static heuristics, guiding ants in path selection with richer contextual
information. Figure 3 shows the GNN.

Additionally, GNN-informed embeddings influence pheromone updates, making the
optimization process more adaptive and context-aware. This combination improves
scalability, accuracy, and adaptability in complex urban routing scenarios. Take as input
the feature matrix in Eq. (15).

X 2 RN�F (15)

where N is the number of nodes and F is the number of features per node. The adjacent
matrix represents the connection between the nodes in Eq. (16).

A 2 RN�N: (16)

Each layer updates node embeddings by aggregating feature information from
neighbouring nodes in Eq. (17).

Hðlþ1Þ ¼ sðD��1
2A�D��1

2HðlÞWðlÞÞ (17)

where A� ¼ Aþ I is the adjacency matrix, D� is the degree matrix, WðlÞ is the learnable
weight matrix and HðlÞ is the node embedding matrix at layer l.
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After several graph convolution layers, node embeddingsHðlÞ are passed through one or
more fully connected layers for further transformation and dimensionality reduction in
Eq. (18).

z ¼ rðHðLÞWfc þ bfcÞ (18)

where Wfc and bfc are weights and bias of the fully connected layer. Algorithm 1 provided
ACO with GNN Embeddings.

Figure 3 Graph neural network. Full-size DOI: 10.7717/peerj-cs.3366/fig-3

Algorithm 1 Ant colony optimization with graph neural network embeddings.

Require: Graph G ¼ ðV ; EÞ with nodes V ¼ f1; . . . ;Ng
Ensure: Optimized route P�

1: Initialize pheromone matrix uniformly: Tijð0Þ ¼ t0 > 0; 8ði; jÞ 2 E
2: Compute heuristic values: gij ¼ 1

dij þ e ; 8ði; jÞ 2 E
3: for t ¼ 1 to T do
4: Compute node embeddings via Graph Neural Network
5: end for
6: for k ¼ 1 to m do
7: Initialize path PðtÞ

k starting at a chosen node
8:

Pk;ðtÞ
ij ¼ ½Tðt�1Þ

ij �a ½gij �b½SðtÞij �c

�u2Ni ½T
ðt�1Þ
iu �a ½giu�b ½SðtÞiu �c

9: end for
10: Select next node j according to Pk;ðtÞ

ij and add it to PðtÞ
k

11: Compute path length: LðtÞk ¼ �ði;jÞ2PðtÞk
dij

12: Update pheromone matrix:

TðtÞ
ij ¼ ð1� qÞTðt�1Þ

ij þ Pm
k¼1

DTk;ðtÞ
ij

13: After all iterations, select P� ¼ argmink;tL
ðtÞ
k

14: return best route found
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RESULT AND DISCUSSION
This section discuss about experiments, results and proposed comparisons for
performance evaluation. The proposed model is developed in Python 3.11 version in
Google Colab environment. Based on the starting point and destination point, a graph with
nodes is formalised. Distances are shown as the cost of routes. Experiments are conducted
using a PC with an Intel i7 core processor and 128 GB of RAM.

In this experiment, the Kaggle dataset of Indian cities, including origin, destination,
and distances of tourist places, is tabulated in a CSV file. This dataset is used to
generate a graph with nodes and edges by representing position and Euclidean distance.
Graphs are formed using geometric PyTorch libraries, which include nodes and edge
indices. Our model consists of a GNN with ant colony initialisation parameters. GNN
layers work in conjunction with the ACO optimisation strategy by updating the
pheromone at each epoch (iteration) to find the best route. Ultimately, the model
determines the shortest route between the source and destination nodes, taking into
account both cost and time.

The given Table 3 shows the routing costs acquired from four algorithms: Dijkstra’s
algorithm, ACO, ACO enhanced with RL (ACO-RL), and ACO boosted with GNNs
(ACO-GNN) within five different folds. In Fold 1, there is a performance alignment
among all algorithms, as the cost value of 2,574.0 was recorded across the board. This
shows that these algorithms function reliably on this dataset or problem. Differences
among the techniques begin to appear from Fold 2 onwards.

Dijkstra’s algorithm reported a cost of 2,043.0, which is lower than both ACO (2,646.0)
and ACO-GNN (2,141.0), although it significantly outperforms ACO-RL which recorded a
much higher cost of 6,532.0. In Fold 3, the ACO-RL algorithm incurred a cost of 1,720.0,
outperforming both ACO and ACO-GNN which had costs of 2,494.0 and 3,066.0
respectively. Dijkstra always obtains the route with the lowest cost of 1,531.0. In Fold 4,
both Dijkstra and ACO-GNN recorded the same cost of 2,494.0 while ACO-RL was stuck
with a cost of 5,153.0, well above the other two. In Fold 5, Dijkstra and ACO-GNN
achieved an exact travelling cost of 1,733.0, outperforming ACO and, in particular, ACO-
RL, which showed a notably high cost of 6,671.0. While Dijkstra tends to provide
competitive or lower costs throughout most folds, ACO and its variants offer inconsistent
performance, with ACO-RL generally incurring higher costs except for Fold 3. This
indicates that more complex hybrid approaches, such as ACO-RL, that employ advanced

Table 3 Cross validation report of different ACO optimized model with Dijikstra.

Fold no. Dijkstra cost ACO cost ACO-RL cost ACO-GNN cost

Fold 1 2,574.0 2,574.0 2,574.0 2,574.0

Fold 2 2,043.0 2,646.0 6,532.0 2,141.0

Fold 3 1,531.0 2,494.0 1,720.0 3,066.0

Fold 4 2,494.0 2,494.0 5,153.0 2,494.0

Fold 5 1,733.0 2,494.0 6,671.0 1,733.0
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learning strategies may not always yield the best results relative to the particular dataset or
problem instance at hand. Alternatively, a lightweight model like ACO-GNN works
similarly to Dijkstra, making the system dynamically adaptable to all routes.

The adaptivity of the proposed ACO-GNN model is demonstrated in tests 3–5, where
the network is subject to dynamically changing conditions. In these scenarios, the model
consistently identifies near-optimal routes despite unpredictable changes, confirming its
ability to solve the adaptive optimization problem.

The performance metrics of the proposed route planning and optimisation are
evaluated and compared with those of the other two baseline approaches, ACO-Only and
ACO-RL, as well as the proposed ACO-GNN. A thorough comparison is provided in
Table 4. For the shortest path outcomes, in Test 1 all methods were able to produce routing
orders, which was interesting. ACO-Only routing order was through Lucknow, Kanpur,
Agra, Delhi, Jaipur, Pune and finally Goa. ACO-RL routed through different pathways,
including Mumbai, while ACO-GNN took a less circuitous route by skipping some
intermediate cities, but still maintaining the imitation of ACO-RL. In Test 2, ACO-Only
and ACO-GNN were directly routed from Pune to Mumbai and then Kolkata. Meanwhile,
ACO-RL offered a significantly longer and more elaborate route that included many of the
other cities along the way.

In terms of total cost, ACO-GNN achieves the lowest cost in Test 1, at 2,494.0, which is
slightly better than both ACO-Only (2,574.0) and ACO-RL (2,646.0). In Test 2, all
approaches provide comparable total costs, centred around 2,036, with ACO-GNN slightly
better than 2,022.0. Moreover, throughput, measured as ants per unit time, is nearly the
same for ACO-Only and ACO-RL (2.44), with ACO-GNN being slightly lower at 2.36. The
computational complexity is the same for all three approaches at OðM � T � N2Þ. The route
complexity is constant at three cities for all. In the evaluation of route optimality,
ACO-Only and ACO-RL share the best test 1 cost of 2,036.0, while ACO-GNN’s best cost
is higher at 2,494.0. In Test 2, ACO-Only demonstrates better optimality, with lower costs
compared to ACO-RL and ACO-GNN. The convergence rate shows more divergence;
ACO-GNN has the fastest convergence −10.23 per iteration, then ACO-Only −8.74,
ACO-RL −3.28. In a scalability test involving 40 cities, ACO-GNN achieves the quickest
completion time at 1.92 s, followed by ACO-RL at 3.86 s and ACO-Only at 11.68 s. In
general, ACO-GNN demonstrated the highest speed and convergence, while ACO-Only
showed improved route optimality, and ACO-RL had longer, more complex routes with
mixed performance. This highlights the trade-offs between computational efficiency,
solution quality, and route complexity for each method.

To further demonstrate the adaptivity and robustness of the proposed ACO-GNN
model, three additional test cases (Tests 3–5) were conducted under increasingly complex
and dynamic conditions. Test 3 simulated a high-congestion scenario with random road
closures in a significant metropolitan corridor. Test 4 evaluated the models on a
medium-sized network of 60 cities with a balanced load and moderate congestion. Test 5
stressed the models with a large-scale network of 100 cities under peak-season demand. In
all additional tests, the ACO-GNN consistently outperformed the baseline ACO-Only and

Ji and Shen (2026), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3366 17/24

http://dx.doi.org/10.7717/peerj-cs.3366
https://peerj.com/computer-science/


ACO-RL approaches. Specifically, in Test 3, ACO-GNN reduced the total route cost by
approximately 4% compared to ACO-Only and nearly 20% compared to ACO-RL. In the
larger network tests (Tests 4 and 5), ACO-GNN demonstrated superior adaptivity and
scalability, achieving significantly lower total costs and faster computation times.
Scalability tests showed that the computation time of ACO-GNN increased more slowly
than the baselines as the network size expanded, highlighting its suitability for large and
dynamic tourism networks. These results confirm the ability of ACO-GNN to adaptively

Table 4 Optimized model performance evaluation.

Metric/Test case ACO-only ACO-RL ACO-GNN

Shortest path (Test 1) LKO ! KNP ! AGR !
DEL ! JPR ! PUN !
GOA

LKO ! AGR ! DEL
! JPR ! MUM !
PUN ! GOA

LKO!DEL! JPR
! PUN ! GOA

Shortest path (Test 2) PUN ! MUM ! CCU PUN!MUM! BLR
! COK !… !
CCU

PUN ! MUM !
CCU

Shortest path (Test 3) MUM ! SUR ! AMD !
JPR ! DEL ! LKO

MUM ! PUN !
GOA ! HYD !…
! DEL

MUM ! AMD !
JPR ! LKO !
DEL

Shortest path (Test 4) CHE ! BLR ! HYD !
NGP ! KNP ! LKO !
VNS

CHE ! CBE ! COK
! MLR !… !
VNS

CHE ! HYD !
NGP ! KNP !
VNS

Shortest path (Test 5) DEL ! JPR ! AMD !
MUM ! PUN ! GOA !
HYD !… ! CCU

DEL ! JPR ! UDR
! AMD !… !
CCU

DEL ! AMD !
MUM ! PUN !
HYD ! CCU

Total cost (Test 1) 2,574.0 2,646.0 2,494.0

Total cost (Test 2) 2,036.0 2,036.0 2,022.0

Total cost (Test 3) 3,120.0 3,750.0 2,988.0

Total cost (Test 4) 2,890.0 3,320.0 2,755.0

Total cost (Test 5) 4,825.0 5,890.0 4,510.0

Route optimality (Test 1) 96.2% 94.5% 98.3%

Route optimality (Test 2) 97.0% 96.0% 98.6%

Route optimality (Test 3) 93.5% 88.2% 95.8%

Route optimality (Test 4) 94.0% 89.5% 96.5%

Route optimality (Test 5) 91.2% 85.3% 94.7%

Scalability (Test 1: 40 cities) 11.68 s 3.86 s 1.92 s

Scalability (Test 2: 40 cities) 11.80 s 3.92 s 1.95 s

Scalability (Test 3: 60 cities) 28.32 s 9.45 s 5.22 s

Scalability (Test 4: 60 cities) 29.00 s 9.70 s 5.35 s

Scalability (Test 5: 100
cities)

75.80 s 24.10 s 11.80 s

Throughput (paths/s) 4.2 6.8 10.5

Computational complexity OðN2Þ per ant/iter OðN2Þ per ant/iter OðN2Þ per ant/iter
Route complexity (avg.
hops)

8.5 10.2 7.8

Convergence rate
(iterations)

120 80 55
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optimise routes in real time, even as environmental conditions and network scales become
more challenging.

In Fig. 4, the ACO-GNNmodel exhibits a noticeably higher initial cost compared to the
ACO-Only and ACO-RL models. This can be attributed to the embedding initialization
phase of the GNN component. At the start of training, node embeddings are randomly
initialized and do not yet capture the meaningful structural and contextual relationships
among cities. As a result, the heuristic guidance provided to the ant colony is initially less
practical, leading to suboptimal early path selections. However, as training progresses, the
embeddings become more refined, enabling the ACO-GNN model to reduce costs rapidly
and converge more quickly than other methods. This behaviour underscores the trade-off
between initial embedding learning and subsequent optimisation efficiency.

Figure 5 demonstrates the scalability of the models. ACO-GNN achieves the lowest
computation time despite the initial embedding learning overhead, its ability to leverage
learned structural patterns to guide route search more efficiently as the network size
increases. In contrast, ACO-Only requires more iterations due to its lack of contextual
awareness, while ACO-RL’s additional RL overhead places it between the two in terms of
scalability.

To validate the observed differences in total cost among the three models as shown in
Table 5, a one-way Analysis of Variance (ANOVA) was conducted for each test case.

Figure 4 Convergence rate of different deep learning models in route optimization.
Full-size DOI: 10.7717/peerj-cs.3366/fig-4
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Figure 5 Scalability of the models. Full-size DOI: 10.7717/peerj-cs.3366/fig-5

Table 5 Optional table of p-values.

Test case ANOVA p-value

Test 1 0.011

Test 2 0.008

Test 3 0.015

Test 4 0.013

Test 5 0.021

Figure 6 ACO-only route with costs. Full-size DOI: 10.7717/peerj-cs.3366/fig-6
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The null hypothesis tested was that the mean total costs of the three models are equal. In all
test cases, the ANOVA results yielded-values less than 0.05, indicating statistically
significant differences between the models. Post-hoc Tukey tests further confirmed that
ACO-GNN achieved significantly lower total costs compared to both ACO-Only and
ACO-RL.

In Figs. 6, 7 and 8, the graphical view highlights the path complexity and network
exploration behaviour of each model. ACO-GNN demonstrates fewer unnecessary
connections, suggesting that its learned embeddings effectively guide the search to avoid
redundant paths and prioritise promising routes. ACO-RL explores more diverse paths
due to its exploration-exploitation trade-off, whereas ACO-Only tends to settle on simpler
but less efficient routes due to its static heuristic.

Figure 7 ACO-RL route with costs. Full-size DOI: 10.7717/peerj-cs.3366/fig-7

Figure 8 ACO-GNN route with costs. Full-size DOI: 10.7717/peerj-cs.3366/fig-8
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Figures 6, 7, and 8 illustrate the network structures and paths generated by
ACO-Only, ACO-RL, and ACO-GNN, respectively, in Test 3. These graph-based
illustrations are intended to visually demonstrate how each model explores the
network and identifies optimal routes. For instance, Fig. 8 shows that ACO-GNN
produces a more streamlined path with fewer unnecessary connections, which is
consistent with its lower route complexity and higher route optimality, as reported in
Table 4. Such visualizations provide intuitive insight into model behaviour and
complement the quantitative metrics. While these figures alone do not fully capture the
comprehensiveness of the ACO-GNN testing, they serve to illustrate specific aspects of
path planning and network traversal, which are further quantified in the accompanying
tables and statistical analyses.

CONCLUSION
This study investigates the application of ACO combined with GNNs (ACO-GNN) for
solving route optimization problems. The results of the experiments suggest that
ACO-GNN performs significantly better in terms of computational efficiency and
convergence speed in comparison to both ACO and ACO combined with RL (ACO-RL).
Indeed, ACO-GNN achieved the highest convergence rate and the lowest scalability time
for the 40-city routing problem, demonstrating its efficacy on large and complex networks.
ACO-GNN can leverage graph-based learning to capture relationships between nodes at
different spatial scales, thereby enhancing the heuristic guidance provided to the ant
colony. This yields a more focused search process that minimises unproductive exploration
and shortens the time needed to reach a solution. Moreover, throughput and
computational complexity are maintained at levels comparable to other methods. This
research has a few limitations too. Although ACO-GNN proves faster computationally
when compared to other ACO algorithms, it occasionally provides solutions with a greater
cumulative cost, demonstrating a balance between speed and route optimality. Heuristic
optimization paired with deep graph learning makes ACO-GNN an encouraging
candidate for effective route optimization. A focal point for upcoming research is
developing a robust and high-quality solution provision, aided by parameter configuration
for the optimization tasks.
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