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ABSTRACT
The increasing global prevalence of diabetes highlights the need for accurate
diagnostic tools to improve early detection and effective treatment planning.
Traditional classification models often struggle to achieve optimal performance due
to limitations in parameter tuning and adaptability to complex datasets. To address
these limitations, this article introduces PROAnt, an innovative learning approach
designed to enhance the robustness and efficiency of the PROAFTN multicriteria
classification method. PROAnt leverages the computational power of ant colony
optimization (ACO) to dynamically fine-tune and optimize the key parameters, such
as intervals and weights, at the core of the PROAFTN classification process. This
learning methodology is crucial because PROAFTN depends on these parameters for
classification. ACO, inspired by the foraging behavior of ants, achieves rapid and
accurate convergence with minimal parameters, outperforming many traditional
optimization techniques. This study demonstrates how ACO can inductively infer
PROAFTN’s parameters from data, leading to high accuracy and precision.
Evaluations were conducted on a publicly available diabetes dataset containing
100,000 samples, sourced from Kaggle’s 2023 machine learning competition. This
dataset includes demographic and clinical features, providing a robust basis for
model benchmarking. The model achieved a classification accuracy of 98.42%, along
with a weighted precision of 83.73%, a weighted recall of 0.789, and a weighted kappa
of 0.789 ± 0.008, outperforming other baseline classifiers such as a feedforward deep
neural network (three hidden layers: 128, 64, 32), decision trees, k-Nearest Neighbors
(k-NN) and logistic regression. These findings underscore the transformative
potential of integrating ACO with PROAFTN, not only in advancing diabetes
detection but also in the broader application of artificial intelligence.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Optimization Theory and Computation, Neural Networks
Keywords Fuzzy classification, Ant colony optimization, Multicriteria classification, Machine
learning, Metaheuristics

INTRODUCTION
Classification is a fundamental aspect of machine learning (ML) and artificial intelligence
(AI), focusing on building reliable models to uncover complex patterns in data. The
ultimate goal is to accurately assign unseen instances to predefined categories, which
makes classification a vital tool for automating the decision-making process and effectively
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managing data (Bishop, 2006; Friedman, Hastie & Tibshirani, 2001; Kotsiantis, Zaharakis
& Pintelas, 2007). An example of a classification application includes image recognition,
where algorithms can classify images into different categories, such as identifying objects
or recognizing facial expressions. In natural language processing (NLP), text classification
algorithms can categorize documents into various topics or sentiment categories, aiding in
spam detection, sentiment analysis, and document organization. Various classification
algorithms have been developed over the years, ranging from symbolic methods like
decision trees (Quinlan, 1993) and rule-based systems (One-R) (Holte, 1993) to statistical
models such as Naive Bayes (Mitchell, 1997) and logistic regression, as well as neural
networks (Mitchell, 1997) and instance-based learning approaches like k-Nearest
Neighbors (k-NN) (Mitchell, 1997). These models, while effective in many scenarios, often
struggle when dealing with vague or uncertain common characteristics of real-world
medical datasets (Friedman, Hastie & Tibshirani, 2001; Mitchell, 1997).

In addition, classification is crucial in medical diagnosis, fraud detection, and customer
segmentation. In medical diagnosis, machine learning models can analyze patient data,
such as symptoms, medical history, and test results, to classify individuals into specific
disease categories. In fraud detection (du Preez et al., 2025), classification algorithms
analyze patterns in financial transactions to identify potentially fraudulent activities.
Customer segmentation involves classifying customers into distinct groups based on their
behaviour, preferences, or demographics to tailor marketing strategies (Amin, Adnan &
Anwar, 2023).

On the other hand, multiple-criterion decision analysis (MCDA) (Triantaphyllou, 2000)
has gained popularity as an alternative approach to decision-making (Triantaphyllou,
2000) and classification tasks. Initially conceived in operations research, social psychology,
and business management, MCDA techniques are gaining momentum in healthcare, data
mining, and business (Belton & Stewart, 2002). The classification problem within the
MCDA framework involves using prototypes to assign objects to classes, with each
prototype representing a distinct class based on a set of attributes (Belacel, Wang &
Richard, 2005; Hwang & Yoon, 1995). On the other hand, PROAFTN was introduced and
developed in original form by Belacel (1999, 2000), as a multicriteria assignment/
classification method with fuzzy interval prototypes; later works extended learning
procedures and applied PROAFTN in diverse domains such as education (Al-Obeidat
et al., 2018), and e-health (Belacel, Wang & Richard, 2005). It utilizes the MCDA paradigm
to enhance understanding of the problem domain and provides direct techniques that
enable a decision maker (DM) to adjust its parameters. As a transparent classification
method, the fuzzy approach of PROAFTN allows for detailed insights into the
classification decision (Al-Obeidat & El-Alfy, 2019). However, PROAFTN requires the
prior determination of multiple parameters, such as interval boundaries, weights, and
preference thresholds. The decision problem is formulated using prototypes, each
representing a distinct class, to categorize each object into its appropriate category. In an
MCDA framework, these parameters largely depend on the DM’s judgment, which sets the
’boundaries’ of the attributes and the weights based on their evaluation. Moreover, the
manual adjustment of the PROAFTN parameters limits its adaptability and scalability,
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especially in complex datasets such as those used for diabetes detection. Although several
previous studies (Al-Obeidat et al., 2009, 2010, 2011) have investigated the use of
metaheuristic algorithms such as Genetic Algorithm (GA), Differential Evolution (DE),
and Particle Swarm Optimization (PSO) to optimize PROAFTN, comparatively limited
attention has been devoted to ant colony optimization (ACO) (Dorigo, Maniezzo &
Colorni, 1996)—a powerful bio-inspired technique renowned for its ability to efficiently
explore large search spaces and avoid premature convergence to local minima. To my
knowledge, this is the first fuzzy classification framework based on ACO that dynamically
learns the PROAFTN parameters for medical diagnosis (Dorigo & Blum, 2006; Dorigo &
Stützle, 2004). ACO has found significant applications in the training of neural networks
(NN) (Kaya et al., 2023; Blum & Li, 2008). Traditional NN training techniques, such as
gradient descent, often suffer from local minima problems. ACO offers an alternative,
effective means to traverse the solution space and escape local minima, resulting in
potentially better network parameters and improved performance. ACO has also been
applied in decision-making and game-playing scenarios. For example, ACO is used in
reinforcement learning environments for strategies in game playing (Sharma, Kobti &
Goodwin, 2008; Liao, Wang & He, 2018).

Several notable studies have explored classification through interval learning and
feature representation. Dayanik (2010) proposed algorithms based on feature interval
learning that provide robust classification by handling uncertainty in input features.
De Chazal, O’Dwyer & Reilly (2004) used interval features in electrocardiogram (ECG)
morphology for heartbeat classification, demonstrating strong performance in medical
diagnostics. Demiröz & Güvenir (1997) introduced a voting mechanism over feature
intervals, which inspired more interpretable classifiers. In a related medical application,
Güvenir & Emeksiz (2000) built an expert system based on feature intervals for disease
diagnosis. Recently, Belacel (2025) proposed a Closest Similarity Classifier using
classification and interval learning, showing improved performance in classification tasks.
These prior studies reinforce the value of interval-based learning, which our proposed
PROAnt model builds upon by using fuzzy intervals and metaheuristic optimization
through ACO.

Recent studies have explored the use of bio-inspired algorithms for medical
classification problems. Recent advancements in intelligent classification systems have
explored the integration of deep learning with metaheuristic optimization to enhance
performance. Abgeena & Garg (2023) proposed a hybrid S-LSTM-ATT model combined
with Firefly Optimization for emotion recognition from EEG signals, achieving high
classification accuracy on complex biomedical data. Their work highlights the potential of
combining deep temporal models with optimized feature selection to address nonlinear
and noisy datasets in health informatics. In contrast, our study focuses on a transparent,
interpretable fuzzy multicriteria classification framework enhanced by ACO, offering an
alternative approach for accurate and explainable medical diagnosis, particularly for
diabetes detection.

To bridge this gap, we propose PROAnt, a novel classification framework that integrates
ACO with the PROAFTN classifier. In PROAnt, ACO serves as an inductive learning

Al-Obeidat (2026), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3363 3/37

http://dx.doi.org/10.7717/peerj-cs.3363
https://peerj.com/computer-science/


mechanism that automatically infers the key fuzzy parameters—intervals and
weights—from data. This eliminates the need for manual configuration and significantly
enhances the model’s robustness, adaptability, and performance. Unlike conventional
optimization strategies, ACO simulates the pheromone-guided behavior of ants to explore
the solution space efficiently, allowing the model to discover high-quality classification
rules through an iterative learning process. The learned prototypes and associated rules are
then used to classify unseen instances with greater precision and interpretability.

The propose PROAnt, a novel methodology that uses ACO as an inductive learning
mechanism to optimize PROAFTN parameters directly from data. PROAnt, leverages
ACO’s capabilities to train and enhance the PROAFTN classifier. This approach uses ACO
as an inductive learning mechanism to extrapolate the optimal PROAFTN parameters
from the training dataset. These derived parameters are subsequently used to form the
classification model prototypes. We propose PROAnt, a novel methodology that uses ACO
as an inductive learning mechanism to optimize PROAFTN parameters directly from data.
These derived parameters are subsequently used to form the classification model
prototypes. The novel objectives of this study are: (i) introducing ACO as an inductive
mechanism for optimizing PROAFTN parameters, (ii) evaluating PROAnt on a large-scale
diabetes dataset, and (iii) benchmarking against multiple classifiers to validate
improvements in accuracy and interpretability. Despite the use of metaheuristics such as
GAs and PSO to enhance PROAFTN, no prior study has integrated ACO to dynamically
learn fuzzy intervals and attribute weights for medical diagnosis. Furthermore, limited
attention has been paid to balancing interpretability and accuracy in PROAFTN-based
classifiers. These gaps motivate this proposed PROAnt framework.

The structure of the remainder of this article is as follows: ‘PROAFTNMethod’ provides
a brief overview of the PROAFTN method and the ACO algorithm. ‘Meta-Heuristic
Algorithms Developed for Enhancing Proaftn Learning’ introduces the proposed PROAnt
approach for learning PROAFTN-based ACO. ‘Application and a Comparative Study’
describes the data sets, the experimental results, and the comparative numerical studies.
Finally, ‘Conclusions and Future Work’ discusses the conclusions drawn and proposes
directions for future research.

PROAFTN METHOD
This section details the PROAFTN classification method, which is grounded in the
principles of supervised learning algorithms and is notably distinguished by its reliance on
fuzzy approaches to address classification tasks. PROAFTN operates by establishing fuzzy
relations between classified objects and prototype classes to determine a degree of
membership linking these objects to the problem classes (Belacel, 2000).

PROAFTN’s fuzzy-based methodology augments its classification precision and fosters
a deeper understanding of the problem domain, crucial in numerous real-world
applications. Among these, it has been used to solve complex problems in various fields
such as medical diagnostics (Belacel & Boulassel, 2001), asthma treatment (Sobrado et al.,
2004), cervical tumor segmentation (Resende Monteiro et al., 2014), Alzheimer’s diagnosis
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(Brasil Filho et al., 2009), e-Health (Belacel, Wang & Richard, 2005), and even in the
intricate domain of optical fiber design (Sassi, Belacel & Bouslimani, 2011).

Furthermore, PROAFTN has been adopted in cybersecurity, effectively used for
intrusion detection and analysis of cyberattacks (El-Alfy & Al-Obeidat, 2015, 2014). In
particular, the work of Singh & Arora (2015) stands out, where PROAFTN was applied to
detect network intrusion. Their results attest to the superior performance of PROAFTN
compared to the well-established SVM classifier (Singh & Arora, 2015).

Recently, Al-Obeidat et al. (2015) successfully used PROAFTN in image processing and
classification. This underscores PROAFTN’s versatility and robustness, cementing its
position as an effective solution to various classification problems that demand high
accuracy and interpretability. This article elucidates the parameters required for the
PROAFTN classification methodology and delineates the process and procedure that
PROAFTN adopts for its classification tasks.

PROAFTN notations
Table 1 summarizes the PROAFTN notations used in this study, clearly understanding the
mathematical symbols and variables integral to the PROAFTN method.

In the context of the PROAFTN method, these notations quantitatively represent the
objects to be classified, the defining attributes, the prototypes for each class, and the
preference thresholds and attribute weights within each category. Together, these elements
form the mathematical framework that underpins the PROAFTN classifier and allows its
effective operation.

Fuzzy intervals
Fuzzy intervals are crucial in data mining, particularly in the rule-induction process.
Standard data mining systems, such as those for rule induction and decision tree
construction, discretize numerical domains into intervals when dealing with both
numerical and nominal attributes. The resultant discretized intervals are then processed
like nominal values during the rule induction phase. This document introduces a type of
fuzzy interval used in the HCV version 2.0 rule-induction software, which helps

Table 1 Notations in PROAFTN framework.

A Set of objects fa1; a2; . . . ; ang for classification
m Set of attributes: fg1; g2; . . . ; gmg
� Set of k classes: � ¼ fC1;C2; . . . ;Ckg; k � 2

Bh Prototype set for hth category: Bh ¼ fbhi jh ¼ 1; . . . ; k; i ¼ 1; . . . ; Lhg
B Set of all prototypes: B ¼ Sk

h¼1 B
h

½S1j ðbhi Þ, S2j ðbhi Þ� Interval of bhi for gj in Ch, j ¼ 1; 2; . . . ;m

d1j ðbhi Þ, d2j ðbhi Þ Preference thresholds for bhi for gj in Ch

wjh Weight for gj in Ch
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interpret rule-induction outcomes when rules with sharply defined intervals cannot
provide a precise application path for a given test example. The utility of these fuzzy
intervals is underscored by a series of experimental results obtained through the
application of HCV.

Assuming a set of n objects, denoted as a training set, we consider an object a 2 n that is
yet to be classified. This object a is characterized by a set of m attributes fg1; g2; . . . ; gmg,
and is to be classified into one of k classes fC1;C2; . . . ;Ckg. The procedure is broken down
into the following steps:

For each class Ch, a set of Lh prototypes is identified. For every prototype bhi and each
attribute gj, an interval ½S1j ðbhi Þ, S2j ðbhi Þ� is specified such that S2j ðbhi Þ � S1j ðbhi Þ. The
introduction of two thresholds, d1j ðbhi Þ and d2j ðbhi Þ, allows us to define the fuzzy intervals:
the pessimistic interval ½S1j ðbhi Þ; S2j ðbhi Þ� and the optimistic interval ½S1j ðbhi Þ � d1j ðbhi Þ;
S2j ðbhi Þ þ d2j ðbhi Þ�. Optimistic assessments reduce the strictness of the interval boundaries,
thereby narrowing the gap between the borderline and typical cases. For example, a slightly
elevated glucose level can still contribute to positive membership in the diabetic class under
the optimistic view, improving sensitivity.

Figure 1 visually presents the interval representation within PROAFTN. For the
implementation of PROAFTN, both the pessimistic interval ½S1jh; S2jh� and the optimistic
interval ½q1jh; q2jh� (Belacel, Raval & Punnen, 2007) for each attribute in each class. Figure 1
also underscores the importance of avoiding extreme cases in evaluating specific measures
or quantities with a crisp interval, namely, overestimating or underestimating the interval.
Using crisp intervals risks excluding borderline patients or overfitting to outliers. By
avoiding extreme cases and employing fuzzy intervals, PROAFTN ensures a balance
between conservative and optimistic assessments, enabling more robust medical
predictions.

In contrast, a pessimistic evaluation can widen the interval, leading to a conservative
estimate that might overlook some potentially significant observations. However, an overly

Figure 1 Graphical representation of the partial indifference concordance index between object a
and the prototype bhi represented by intervals. Full-size DOI: 10.7717/peerj-cs.3363/fig-1
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optimistic assessment can narrow the gap, potentially managing outliers and leading to
excessively narrow generalizations.

Therefore, PROAFTN employs fuzzy intervals to balance pessimistic and optimistic
extremes. This allows for a more nuanced evaluation that can effectively handle the
uncertainty and vagueness present in the data. The adoption of fuzzy intervals in
PROAFTN accommodates a broader range of values, enhancing its applicability and
flexibility in different contexts. In addition, these intervals are determined based on expert
knowledge or data-driven methods, strengthening the interpretability and robustness of
the model.

In the context of the implementation of PROAFTN, the fuzzy intervals provide a more
dynamic representation that accommodates the inherent uncertainties and variations
within the data, thus creating an adaptable and resilient model. This nuanced approach
further bolsters PROAFTN’s ability to handle complex classification tasks and yield
insightful results effectively.

q1jh ¼ S1jh � d1jh (1a)

q2jh ¼ S2jh þ d2jh (1b)

applied to:

q1jh � S1jh: (2a)

q2jh � S2jh: (2b)

Hence, S1jh = S1j ðbhi Þ, S2jh = S2j ðbhi Þ, q1jh = q1j ðbhi Þ, q2jh = q2j ðbhi Þ, d1jh = d1j ðbhi Þ, and d2jh = d2j ðbhi Þ.
The following subsections explain the stages required to classify object a to class Ch using
PROAFTN. Here, ½S1jh; S2jh� denote lower and upper fuzzy bounds for attribute j in class h;
½d1jh� and ½d1jh� are expansion thresholds; wjh represents attribute weights. Together, these

parameters define class prototypes and guide membership calculation.
In this way, the performance matrix captures the comparative relationship between each

attribute gj of the object a and the corresponding attribute in each prototype bhi from each
class Ch. This comparison based on individual attributes facilitates a detailed and
comprehensive evaluation of the object’s relationship with the prototypes, further aiding
the subsequent classification process.

As a note, the degree of partial fuzzy indifference Ci
jhða; bhi Þ is a number that falls within

the range [0, 1], where 0 indicates no similarity between the attribute value of the object
and the prototype, and 1 indicates complete similarity or ‘indifference’ A value between 0
and 1 indicates partial similarity or ‘weak indifference.’

To illustrate this process, let us consider a hypothetical case where we have a set of
attributes fg1; g2; g3g and two prototypes b11 and b12, from the same class. If we denote the
attribute values for object a by a ¼ fa1; a2; a3g, the calculation of the degree of partial
fuzzy indifference between object a and each prototype would be carried out as follows:

For prototype b11, we calculate C
1
11ða; b11Þ, C1

21ða; b11Þ, and C1
31ða; b11Þ based on attribute

values g1, g2, and g3 respectively. Similarly, for prototype b12, we calculate C
1
12ða; b12Þ,

C1
22ða; b12Þ, and C1

32ða; b12Þ.
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This process is repeated for all prototypes across all classes, resulting in a comprehensive
performance matrix that contains the degree of partial fuzzy indifference for each
prototype against each attribute of the object a.

Once the performance matrix is calculated, the next step in the classification process
involves calculating the total fuzzy indifference relation Iða; bhi Þ for each prototype, which
involves a weighted summation of the individual attribute-based fuzzy indifference degrees
as given by Eq. (5).

Applying the fuzzy indifference concept within the framework of the PROAFTN
algorithm allows effective handling of uncertainty, making it a potent tool for tackling
complex classification tasks in areas such as data mining and machine learning.

Calculation of the fuzzy indifference relation: Iða;bh
i Þ

The classification procedure begins with the computation of the fuzzy indifference relation,

Iða; bhi Þ. This is a concept derived from the principles of concordance and non-

discordance, serving to quantify the relationship, or the degree of membership, between an
object to be assigned and a prototype (Belacel, 1999; Belacel, Raval & Punnen, 2007). The
fuzzy indifference relation is formulated as follows:

Iða; bhi Þ ¼
Xm
j¼1

wjhC
i
jhða; bhi Þ

 !Ym
j¼1

1� Di
jhða; bhi Þ

wjh
� �

: (3)

Here, wjh is the weight that signifies the relevance of an attribute gj for a specific class Ch

and is constrained as follows:

wjh 2 ½0; 1�; and
Xm
j¼1

wjh ¼ 1:

The term Ci
jhða; bhi Þ denotes the degree to which the object a is close to the prototype bhi

based on the attribute gj and is computed as:

Ci
jhða; bhi Þ ¼ minfCi1

jhða; bhi Þ;Ci2
jhða; bhi Þg; (4)

where

Ci1
jhða; bhi Þ ¼

d1j ðbhi Þ �minfS1j ðbhi Þ � gjðaÞ; d1j ðbhi Þg
d1j ðbhi Þ �minfS1j ðbhi Þ � gjðaÞ; 0g

and

Ci2
jhða; bhi Þ ¼

d2j ðbhi Þ �minfgjðaÞ � S2j ðbhi Þ; d2j ðbhi Þg
d2j ðbhi Þ �minfgjðaÞ � S2j ðbhi Þ; 0g

:

The discordance index, Di
jhða; bhi Þ, measures the dissimilarity between the object a and

the prototype bhi based on the attribute gj. This index employs two veto thresholds e1j ðbhi Þ
and e2j ðbhi Þ (Belacel, 2000). The object a is considered perfectly distinct from the prototype

bhi if the attribute gj reaches these veto thresholds. However, as defining veto thresholds via

inductive learning can be risky and requires expert input, this study focuses on an
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automatic approach, thus setting the veto thresholds to infinity, effectively eliminating
their impact. As a result, the computation simplifies to relying solely on the concordance
principle, which can be expressed as:

Iða; bhi Þ ¼
Xm
j¼1

wjhC
i
jhða; bhi Þ: (5)

Three comparative scenarios between object a and prototype bhi based on attribute gj
can be outlined (Fig. 1):

. Strong Indifference:

Ci
jhða; bhi Þ ¼ 1, gjðaÞ 2 ½S1jh; S2jh�; (i.e., S1jh � gjðaÞ � S2jh)

. No Indifference:

Ci
jhða; bhi Þ ¼ 0, gjðaÞ � q1jh, or gjðaÞ � q2jh

. Weak Indifference:
The value of Ci

jhða; bhi Þ 2 ð0; 1Þ is derived from Eq. (4). (i.e., gjðaÞ 2 ½q1jh; S1jh� or gjðaÞ 2
½S2jh; q2jh�)

The study and application of such functions are well documented in Marchant (2007)
and Ban & Coroianu (2015).

By encapsulating the concept of fuzzy indifference, the PROAFTN classification
algorithm adeptly manages the inherent uncertainty in data, providing a robust solution to
complex classification tasks in fields such as data mining and machine learning.

Estimation of membership degree: dða;ChÞ
To determine the degree of membership, dða;ChÞ, between an object a and a class Ch, the
PROAFTN classification algorithm takes advantage of the degrees of difference between a
and its closest prototype within the class Ch. This approach helps to quantify the degree to
which the object a aligns with a specific class based on its similarity to its representative
prototypes.

The determination of the nearest prototype is achieved through an exhaustive
comparison of the indifference degrees of a with all prototypes bhi within Bh. Thus, the
maximum indifference degree acquired will denote the most similar or ‘nearest’ prototype.
This can be mathematically represented as:

dða;ChÞ ¼ maxfIða; bh1Þ; Iða; bh2Þ; . . . ; Iða; bhLhÞg: (6)

The resultant dða;ChÞ measures the object’s affinity to class Ch, a higher value
indicating a stronger association.

Classification of an object: assignment to the appropriate class
Upon computing the membership degrees between the object a and all classes, the final
step is to assign a to the class that maximizes this degree. This step effectively assigns
the object to the class with the highest similarity based on the calculated indifference
degrees.
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The assignment is executed via the following decision rule:

a 2 Ch , dða;ChÞ ¼ maxfdða;CiÞ=i 2 f1; . . . ; kgg: (7)

This rule asserts that an object a belongs to a class Ch if and only if the membership
degree dða;ChÞ is the highest among all the membership degrees calculated in the set of all
classes f1; . . . ; kg.

Through this comprehensive process, PROAFTN ensures robust and reliable object
classification, considering the inherent uncertainty and ambiguity present in the data. As
such, the algorithm’s results provide valuable insight for various applications in fields such
as data mining, machine learning, and decision analysis.

The classification process in PROAnt begins by estimating the degree to which each
input attribute value belongs to class-specific fuzzy intervals. These intervals are
represented using triangular membership functions defined by three parameters: the lower
bound (l), modal point (m), and upper bound (u). Each input instance x ¼ ½x1; x2; . . . ; xn�
is evaluated against each class prototype pc composed of attribute-specific intervals Ijc.

For a given attribute xj and class c, the membership degree ljcðxjÞ is calculated using
Eq. (8), which applies a piecewise linear function to assess the closeness of xj to the modal
pointmjc of the fuzzy interval. The resulting degree, in the range [0, 1], represents how well
the attribute value aligns with the prototype.

To reach a classification decision, PROAnt aggregates the membership degrees across
all attributes using a weighted summation:

Sðpc; xÞ ¼
Xn
j¼1

wj � ljcðxjÞ: (8)

Here, wj represents the relative importance of attribute j, also learned using the ACO
process. The target class label is determined by selecting the prototype pc with the highest
aggregated score Sðpc; xÞ. This method allows for a transparent and interpretable
decision-making process, where each classification is the result of systematically
comparing attribute values to fuzzy interval definitions tailored for each class.

The characteristics considered in this classification process include: the fuzzy
boundaries of each attribute per class (capturing uncertainty); attribute importance
(weights); the overall similarity score (preference score) between the object and each class
prototype.

These elements collectively enable the model to map input features to class labels (e.g.,
diabetes-positive or diabetes-negative) with high precision and interpretability.

META-HEURISTIC ALGORITHMS DEVELOPED FOR
ENHANCING PROAFTN LEARNING
This section provides an overview of the core classification procedure utilized by
PROAFTN to assign objects or actions to their most suited classes. The procedure is
encapsulated within Algorithm 1 and serves as the foundational approach that is used
throughout the subsequent section.
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The fundamental motives of this research lie in developing innovative
methodologies and amalgamating machine learning principles and metaheuristic
techniques to improve the learning capacity of the MCDA PROAFTN
classification method from data. The primary objective is to extract the PROAFTN
parameters and prototypes from the training data that yield the highest classification
accuracy.

The integration of a metaheuristic like ACO serves a fundamental role in PROAnt by
automating the selection of critical model parameters—particularly fuzzy interval limits
and attribute importance weights. Rather than relying on manual tuning or static
heuristics, ACO provides a flexible search mechanism to inductively derive these
parameters from the training data, thereby enhancing the model’s learning ability and
enabling its application across different problem domains with minimal human bias. This
study proposes several learning methodologies to achieve this goal. These methodologies,
which aim to improve the accuracy and effectiveness of the PROAFTN classifier, are
detailed in the following subsections.

Augmenting PROAFTN learning with ant colony optimization
As discussed previously, ACO is inspired by the food search behavior of ants and is a
probabilistic method designed to solve computational problems by identifying the
optimal path in the search space. The algorithm is based on how ants communicate
through pheromones, depositing them along their paths. Over time and after several
iterations, the hottest route accumulates the most pheromones, as ants travelling this
path return more quickly to reinforce it. This natural process is a powerful
optimization approach that allows ACO to effectively identify practical solutions to
complex problems.

Algorithm 1 PROAFTN classification procedure.

Step 1: Calculation of the indifference relation between object a and prototype bhi :

Iða; bhi Þ ¼
Xm
j¼1

wjhCjða; bhi Þ (9)

Cjða; bhi Þ ¼ minfC1
j ða; bhi Þ;C2

j ða; bhi Þg; (10)

where

C1
j ða; bhi Þ ¼

d1j ðbhi Þ �minfS1j ðbhi Þ � gjðaÞ; d1j ðbhi Þg
d1j ðbhi Þ �minfS1j ðbhi Þ � gjðaÞ; 0g

;

C2
j ða; bhi Þ ¼

d2j ðbhi Þ �minfgjðaÞ � S2j ðbhi Þ; d2j ðbhi Þg
d2j ðbhi Þ �minfgjðaÞ � S2j ðbhi Þ; 0g

Step 2: Evaluation of the membership degree:

dða;ChÞ ¼ maxfIða; bh1Þ; Iða; bh2Þ; . . . ; Iða; bhLhÞg (11)

Step 3: Object assignment to the most suited class:

a 2 Ch , dða;ChÞ ¼ maxfdða;CiÞ=i 2 f1; . . . ; kgg (12)
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Let us outline a high-level presentation of an ACO algorithm as represented in Fig. 2:

. Start: Begin.

. Initialize parameters: parameters initialization including number of ants, pheromone
evaporation rate, etc.

Figure 2 ACO algorithm flowchart. Full-size DOI: 10.7717/peerj-cs.3363/fig-2
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. Create ants: Generate ants to start the search process. Each ant will be part of the
problem space and construct a potential solution.

. Perform ant movements: Each ant navigates the problem space by combining
pheromone trail information with a heuristic search until the tour is complete.

. Update pheromone trails: Once all ants finish their tours, pheromone trails are updated
with stronger trails assigned to better solutions

. Termination condition: Check if the termination condition is met, such as the number
of iterations or the target improvement.

. Yes: The algorithm ends if the termination condition is met and the best solution is
returned as the output.

. No: If the termination condition is not met, repeat the movements of the ants and
continue the process.

. Output best solution: Output the best solutions identified by the ants after the algorithm
is over.

. End: The algorithm ends.

ACO is inspired by the foraging behavior of real ants that deposit and follow
pheromone trails. ACO is generally used to find the optimal path in a graph. Ants traverse
the graph and deposit a chemical, called a pheromone, on the paths they take. The amount
of pheromone on a path is a probabilistic indicator of its shortness, and ants prefer to move
along paths with more pheromone.

In PROAnt we map this behavior to parameter search as follows: each artificial ant
represents a candidate PROAFTN parameter vector (interval bounds and weights); an ant
tour constructs a candidate prototype set by selecting parameter values probabilistically
using the transition rule that combines pheromone intensity and heuristic desirability;
pheromone deposit increases probability for parameter choices that produced higher
classification fitness, while pheromone evaporation prevents premature convergence. This
mapping allows ACO to favor high-quality parameter regions (exploitation) while
retaining exploration via stochastic choices and evaporation, enabling efficient navigation
of the continuous PROAFTN parameter space. Over time, shorter paths have more
pheromones and are more attractive to ants, as described in the Algorithm 2.

Explanations of the algorithm:

. Initialization of pheromones: setting initial values for the pheromones on all paths.

. t  0: initializes iteration to zero. It is used to keep track of the number of iterations or
generations in the algorithm.

. Termination condition: The loop continues until a termination condition is met and no
further improvements are found.

. Increment in the time step t  t þ 1: This increments the iteration counter.

. Place each ant in a starting position: each ant is placed at a starting point, which could be
random or fixed, depending on the specific implementation of the algorithm.
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. For each ant k: The algorithm iterates over each ant in the colony. Each ant builds its
solution independently.

. Ant completes its solution: Each ant repeatedly chooses the next position within this
loop based on a probabilistic decision rule until it completes a tour or a solution.

. Choose the next position using rule p: The rule p typically depends on the amount of
pheromone on the trail and the local heuristic information.

. Move the ant k to the new position: the ant moves to that position, effectively
constructing part of its solution.

. Update pheromones sij  ð1� qÞ � sij þ Dsij: After all ants have completed their
solutions, the pheromones are updated. The formula here shows two components:
- ð1� qÞ � sij: represents the evaporation of the existing pheromone, where q, (0 < q < 1)
is the rate of evaporation of the pheromone.

Algorithm 2 General ant colony optimization (ACO).

1: Input:
. Problem representation (e.g., graph, feature space)
. Number of ants m
. Maximum iterations T
. Pheromone evaporation rate ρ
. Heuristic information gij for all elements
. Pheromone influence factor a and heuristic influence factor β

2: Output: Best solution found by the colony
3: Step 1: Initialization
4: Initialize pheromone trails sij uniformly
5: Set iteration counter t  0
6: while termination condition not met and t <T do
7: t  t þ 1
8: Place each ant k ¼ 1; 2; . . . ;m at a random initial state
9: for each ant k ¼ 1 to m do
10: Initialize an empty solution Sk
11: while ant k has not completed its solution do
12: Compute transition probabilities:

Pk
ij ¼

½sij�a � ½gij�bP
l2Ni
½sil�a � ½gil�b

13: Move ant k to the next state based on Pk
ij

14: Update partial solution Sk
15: end while
16: end for
17: Step 2: Pheromone Update
18: Apply pheromone evaporation: sij  ð1� qÞ � sij
19: Deposit pheromone for each ant based on solution quality:

sij  sij þ
Xm
k¼1

Dskij

where Dskij is computed based on fitness of Sk
20: end while
21: Output: Return the best solution S� found across all iterations
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- Dsij: This is the amount of pheromone deposited, which is typically a function of the
quality of the solution that an ant has found (better solutions contribute more
pheromones).

. Pheromone evaporation: Pheromones, over time, trail and evaporate, reducing their
strength. This prevents the algorithm from converging prematurely to a local optimum.

. Output best solution found: At the end of the algorithm, the best solution any ant finds is
reported as the algorithm’s output.

These steps collectively describe the typical flow of the ACO algorithm, emphasizing
how ants collectively solve complex problems through simple rules and indirect
communication via pheromones.

Please note that ACO algorithms can vary quite a bit in detail, so this version is
somewhat simplified and general. Different problems might require different variations
of ACO. However, the general principle remains the same: ants construct solutions, and
then the pheromone trails are updated to reflect the quality of these solutions, guiding
the search for promising regions of the space. For more extensive elaboration, the
methodology and its application are detailed in Dorigo & Stützle (2004).

Learning PROAFTN using ant colony optimization (PROAnt)
Based on the ACO algorithm, a novel approach was proposed to train the MCDA fuzzy
classifier PROAFTN named PROAnt. Inspired by the foraging behaviour of ants, ACO
was used to induce a high-performance classification model for PROAFTN. The
exploration and exploitation capabilities of ACO and implicit parallelism make it a
stable choice for this task (Dorigo & Stützle, 2004).

The methodology was initiated by formulating an optimization model, which the ACO
algorithm subsequently used to solve. ACO uses training samples to iteratively adjust the
parameters of PROAFTN, shaping the so-called “prototypes.” These prototypes embody
the classification model and are used to classify unknown samples. The ultimate goal of
this learning process is to discover the prototype set that maximizes the classification
accuracy for each dataset.

The performance of PROAnt applied to different classification datasets underscores the
efficacy of this approach. Comparative analyzes demonstrated that PROAnt consistently
outperforms other well-established classification methods, demonstrating its value in data
classification.

In our work, ACO can be employed to find the optimal values for the parameters: the
intervals ½S1j ðbhi Þ, S2j ðbhi Þ�, thresholds ½d1j ðbhi Þ, d2j ðbhi Þ� and w, it is necessary to find the most
suitable values for these parameters to construct the best PROAFTN prototypes.

To frame this as an optimization problem, we aim to maximize the classification
accuracy. The formulation can be stated as follows:

In this case, the objective or fitness function f depends on the precision of classification,
and n is the set of training samples. The procedure for calculating the fitness function f is
described in Eq. (15). The result of the optimization problem can vary within the interval
[0, 100].
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Here, the algorithm starts by initializing pheromone trails and then constructs
solutions using a probabilistic rule in a loop until the termination condition is met. A
local search is optionally applied to find better solutions in the neighbourhood
of the current solutions. After that, pheromones are updated, increasing for
reasonable solutions and evaporating over time. Finally, the algorithm returns the best
solution found.

In the context of this work, the ants in the algorithm represent possible solutions, each
characterized by particular parameters: values of ½S1j ðbhi Þ, S2j ðbhi Þ� and thresholds ½d1j ðbhi Þ,
d2j ðbhi Þ�. Ants traverse the solution space guided by pheromone trails and heuristic

information, which, in our case, could be derived from the dataset characteristics. During
the solution construction phase, each ant probabilistically chooses the following
parameters based on the intensity of the pheromone trail and the heuristic
information. After all, ants have built their solutions; a local search can be applied to
exploit promising regions of the solution space. The pheromone trails are then updated to
guide the next generation of solutions: The intensity increases if the associated solution is
good (i.e., it leads to higher classification accuracy) and gradually evaporates otherwise.
The process is repeated until the termination condition is met, which could be a
predetermined number of iterations, a stagnation condition, or a satisfactory quality of the
solution. The final output is the best solution found during the iterations, giving the
optimal ½S1j ðbhi Þ, S2j ðbhi Þ� and threshold values ½d1j ðbhi Þ, d2j ðbhi Þ� for the PROAFTN
methodology.

When applied to our problem of finding optimal values ½S1j ðbhi Þ, S2j ðbhi Þ� and
thresholds ½d1j ðbhi Þ, d2j ðbhi Þ�, each ant constructs a solution by traversing the space of
potential combinations. The pheromone trail is updated based on the fitness of the
solutions found, promoting the regions of the search space that led to better classification
results.

As previously discussed, for implementing PROAFTN, the pessimistic interval ½S1jh; S2jh�
and the optimistic interval ½q1jh; q2jh� for each attribute in each class must be established,
where:

q1jh ¼ S1jh � d1jh q2jh ¼ S2jh þ d2jh (13)

Such that:

q1jh � S1jh q2jh � S2jh (14)

Therefore, S1jh ¼ S1j ðbhi Þ, S2jh ¼ S2j ðbhi Þ, q1jh ¼ q1j ðbhi Þ, q2jh ¼ q2j ðbhi Þ, d1jh ¼ d1j ðbhi Þ, and
d2jh ¼ d2j ðbhi Þ.

As noted, to implement PROAFTN, the intervals ½S1jh, S2jh� and ½q1jh; q2jh� must meet
the constraints in Eq. (14), and weights wjh must be obtained for each attribute gj in class

Ch. To simplify the constraints in Eq. (14), variable substitution based on Eq. (13) is
employed. As a result, the parameters d1jh and d2jh are used instead of q1jh and q2jh,
respectively. Consequently, the optimization problem, grounded on maximizing
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classification accuracy by providing the optimal parameters S1jh; S
2
jh; d

1
jh; d

2
jh and wjh, is

defined here:

P : Maximize f ðS1jh; S2jh; d1jh; d2jh;wjhÞ
Subject to : S1jh � S2jh; d

1
jh; d

2
jh � 0Xm

j¼1
wjh ¼ 1

0 � wjh � 1

(15)

where f is the function that calculates classification accuracy, and n signifies the number of
training samples used during optimization. The procedure for calculating the fitness
function f ðS1jh; S2jh; d1jh; d2jh;wjhÞ is depicted in Table 2.

ACO is used to solve the optimization problem presented in Eq. (15). The dimension of
the problem D (i.e., the number of parameters in the optimization problem) is described as
follows: Each ant x consists of parameters S1jh; S

2
jh; d

1
jh; d

2
jh and wjh, for all j ¼ 1; 2; . . . ;m

and h ¼ 1; 2; . . . ; k. Thus, each ant in the colony comprises D ¼ 5�m� k real values
(i.e., xD ¼ dimðxÞ).

The procedure for calculating the fitness function f ðS1jh; S2jh; d1jh; d2jh;wjhÞ is detailed in
Table 2.

In the ACO algorithm, the procedure to update the components (parameters) of an
individual ant vi is based on pheromone trails and heuristic information, as presented
below:

An ant vi chooses the next parameter S1jh; S
2
jh; d

1
jh; d

2
jh or wjh to include in its solution

based on pheromone trails and heuristic information such that:

pihjs ¼
½sihj�a�½gihj�bP
l2Jih
½sil�a�½gil�b

; if h 2 Jih

0; otherwise:

8<
: (16)

Here, pihjs is the probability that ant vi chooses to move from parameter hj to s; sihj is the
amount of pheromone trail on the move from hj to s; gihj is the heuristic information,
which is the reciprocal of the distance between parameters hj and s; Jih is the feasible set of
moves for ant vi at parameter hj; a and b are parameters controlling the relative
importance of the pheromone trail and the heuristic information.

Table 2 The steps for calculating the objective function f .

For all a 2 A:

Step 1: - Apply the classification procedure according to Algorithm

Step 2: - Compare the value of the new class with the true class Ch

- Identify the number of misclassified and unrecognized objects

- Calculate the classification accuracy (i.e., the fitness value):

f ¼ number of correctly classified objects
n
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This is in line with the principle of ACO, where the chance of selecting a particular
parameter is influenced by the amount of pheromone deposited on it, reflecting the quality
of solutions found in previous iterations. This operation forces the process to be applied to
each gene selected s randomly for each set of five parameters S1jh; S

2
jh; d

1
jh; d

2
jh and wjh in vi

for all j ¼ 1; 2; . . . ;m and h ¼ 1; 2; . . . ; k.
In this ACO run, each ant constructs a solution to the problem and evaluates the fitness

of that solution in each iteration. In your case, this solution is a set of parameters defining
prototypes for each class in a 5-dimensional space. The fitness represents how well that
specific set of parameters classifies the Iris dataset, measured as the percentage of correctly
classified instances.

ACOmimics the behavior of ants that find the shortest route from their colony to a food
source. In this context, an ant is a simple computational agent in the algorithm that
probabilistically builds a solution by moving through the problem’s search space. The
algorithm maintains a “pheromone trail,” a value associated with each possible decision
the ants can make. Ants preferentially choose decisions with higher pheromone values and
update the pheromone trail to reflect their success, biasing future ants towards their
successful decision.

The ants traverse the search space, updating the pheromone trail until the termination
condition is met (in this case, a certain number of iterations). Ultimately, the best solution
is chosen based on the highest fitness score.

In the provided code, pheromones influence ants’ movement in the Ant Colony
Optimization (ACO) algorithm. The pheromone matrix pheromones is initialized using
the initializePheromones method, which sets all the pheromone values to 1.0.

During the movement phase of the ant, the generateRandomParams method generates
random parameter values for each ant. Within this method, the pheromones are
considered to influence the parameter selection. The calculateTotalPheromone method
calculates the total value of pheromones for a specific class, prototype, and combination of
attributes. This total pheromone value is compared with a random value, and on the basis
of the comparison, the parameter value is selected. Suppose that the random value is
greater than the proportion of the pheromone value to the total pheromone value. A
random value is chosen for the parameter within the specified bounds (L and H).
Otherwise, the value of the existing parameter is modified slightly by adding a small
random value and ensuring that it stays within the bounds.

After generating the parameter values for each ant, the fitness is evaluated using the
evaluateFitness method. The fitness value is then used to update the pheromones in the
depositPheromones method. The increment in pheromone is calculated as ‘Q/fitness,’ and
the pheromones are updated by applying the evaporation rate ‘RHO‘ and adding the
increment in pheromone.

The pheromones are also evaporated after each iteration in the evaporatePheromones
method, where all pheromone values are multiplied by ‘(1.0-RHO)’.

In general, on the basis of the provided code, pheromones appear to influence ants’
movement in the ACO algorithm by guiding the selection of parameter values. In PROAnt,
each ant represents a candidate configuration of PROAFTN’s fuzzy parameters. The
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quality of each configuration is evaluated using classification accuracy as a fitness function.
Through pheromone reinforcement, promising parameter combinations receive higher
probabilities of selection in subsequent iterations. This iterative process enables ACO to
inductively infer optimal intervals and weights directly from the training data, replacing
manual parameter tuning.

The provided code initializes and sets the lower (L) and upper (H) boundaries for each
class attribute. The boundaries are defined based on some given threshold values
(thresholds). The code uses these boundaries later to constrain the ant colony algorithm’s
search space, ensuring that solutions do not exceed specified ranges.

Interpretable fuzzy classification with PROAFTN: membership function
design and application to iris data
In fuzzy multicriteria classification, the PROAFTN model relies on a set of key parameters
that govern its decision rules. For every attribute in each class, four fuzzy thresholds—S1,
S2, q1 and q2—define the pessimistic and optimistic boundaries of the membership
function, while the weight (w) expresses the relative importance of that attribute in the
overall decision process. In addition to these parameters, PROAFTN requires prototypes,
which serve as representative profiles for each class. Each prototype encapsulates the
corresponding fuzzy thresholds and weights for all attributes; thus, a prototype is not a
single training sample but a structured entity that integrates the values (S1, S2, q1, q2, w)
across all attributes of a class. These prototypes collectively form the core of the classifier,
and their quality directly determines performance.

These prototypes collectively form the core of the PROAFTN classification model, and
their quality directly affects the performance of the classifier. During inference, new
instances are compared against the set of learned prototypes to determine their most
suitable class, based on similarity measures derived from fuzzy membership degrees. Thus,
the process of learning effective prototypes is equivalent to learning the classification
model itself and is essential to ensure accurate and robust decision making in fuzzy
environments.

To illustrate the concept of PROAFTN classification, we use an example in Python
with the Iris data. Iris contains 150 samples, each belonging to one of three sets of
classes setosa, versicolor, and virginica. The goal is to obtain a prototype for each class
and to perform the work of the ant colony during learning by obtaining the value of s1
and s2 and then d1 and d2. Suppose that the ant colony produced the following
prototypes as mentioned in the code here. For simplicity, this example assumes
that all attributes have equal weight (i.e., w ¼ 1). However, in the full implementation
of PROAnt, attribute weights are also automatically optimized as part of the learning
process.

This procedure constitutes the defuzzification step, as it translates the fuzzy
relationships (degrees of membership) into a crisp class label. This approach maintains
interpretability while enabling high adaptability to uncertain or overlapping data regions.

To aid reproducibility and clarity, we included an illustrative Python code snippet using
the Iris dataset as an example just for clear understanding.
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1. Calculation of the indifference relation between the object a and the prototype bhi :
This step is performed using Eq. (9), which relies on the definition of the degree of
membership given in Eq. (11). In the code, this logic is implemented in the functions
def membership and def calculate_ip.

2. Evaluation of the membership degree: The membership degree of the object with
respect to each prototype is calculated directly using Eq. (11). In the code, this is
represented in the section labeled # --- Calculate I[p] ---.

3. Object assignment to the most suitable class: Finally, the object is assigned to the most
appropriate class using Eq. (12), based on the highest membership value. In the code,
this corresponds to the section labeled # --- Final Prediction ---.

def membership(a, s1, s2, d1, d2):

if s1 <= a <= s2:

return 1.0

elif a <= (s1 - d1) or a >= (s2 + d2):

return 0.0
else:

c_minus = (d1 - min(s1 - a, d1))/(d1 - min(s1 - a, 0))

c_plus = (d2 - min(a - s2, d2))/(d2 - min(a - s2, 0))

return min (c_minus, c_plus)

def calculate_ip(instance, prototype):

total_membership = 0.0

for feature in instance:

s1 = prototype[feature]["s1"]

s2 = prototype[feature]["s2"]

d1 = 0.05 � s1
d2 = 0.05 � s2
total_membership += membership(instance[feature], s1, s2, d1,
d2)

return total_membership/len(instance)

# — Prototypes —

setosa = {
"Sepal-length": {"s1": 5.30, "s2": 5.80},
"Sepal-width": {"s1": 3.70, "s2": 4.40},
"Petal-length": {"s1": 1.50, "s2": 1.50},
"Petal-width": {"s1": 0.10, "s2": 0.20},

}

versicolor = {
"Sepal-length": {"s1": 6.10, "s2": 6.60},
"Sepal-width": {"s1": 2.70, "s2": 3.20},
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"Petal-length": {"s1": 4.40, "s2": 4.90},
"Petal-width": {"s1": 1.30, "s2": 1.50},

}

virginica = {
"Sepal-length": {"s1": 6.30, "s2": 6.80},
"Sepal-width": {"s1": 2.70, "s2": 3.20},
"Petal-length": {"s1": 5.10, "s2": 5.60},
"Petal-width": {"s1": 1.90, "s2": 2.50},

}

# --- Instance to classify ---

instance = {
"Sepal-length": 6.5,
"Sepal-width": 3.0,
"Petal-length": 5.4,
"Petal-width": 2.2,

}

# --- Print Prototypes and Instance ---

print("=== Prototypes ===")

print("Setosa:", setosa)
print("Versicolor:", versicolor)
print("Virginica:", virginica)
print(“ n=== Instance to Classify ===")

print(instance)
# --- Calculate I[p] ---

classes = {
"Setosa": calculate_ip(instance, setosa),

"Versicolor": calculate_ip(instance, versicolor),

"Virginica": calculate_ip(instance, virginica),

}

# --- Print Results ---

print(“ \n=== Membership Degrees (I[p]) ===")

for cls, ip in classes.items():

print(f"cls: ip:.4f")

# --- Final Prediction ---

predicted_class = max(classes, key=classes.get)

print(“ \n=== Predicted Class ===")

print(predicted_class)
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The results of the previously mentioned code which is generating the sample of
prototype for each class related to dataset (iris).

=== Prototypes ===

Setosa: {‘Sepal-length’: {‘s1’: 5.3, ‘s2’: 5.8},
‘Sepal-width’: {‘s1’: 3.7, ‘s2’: 4.4},
‘Petal-length’: {‘s1’: 1.5, ‘s2’: 1.5},
‘Petal-width’: {‘s1’: 0.1, ‘s2’: 0.2}}

Versicolor: {‘Sepal-length’: {‘s1’: 6.1, ‘s2’: 6.6},
‘Sepal-width’: {‘s1’: 2.7, ‘s2’: 3.2},
‘Petal-length’: {‘s1’: 4.4, ‘s2’: 4.9},
‘Petal-width’: {‘s1’: 1.3, ‘s2’: 1.5}}

Virginica: {‘Sepal-length’: {‘s1’: 6.3, ‘s2’: 6.8},
‘Sepal-width’: {‘s1’: 2.7, ‘s2’: 3.2},
‘Petal-length’: {‘s1’: 5.1, ‘s2’: 5.6},
‘Petal-width’: {‘s1’: 1.9, ‘s2’: 2.5}}

=== Instance to Classify ===

{‘Sepal-length’: 6.5, ‘Sepal-width’: 3.0, ‘Petal-length’: 5.4, ‘Petal-

width’: 2.2}

=== Membership Degrees (I[p]) ===

Setosa: 0.0000

Versicolor: 0.0000

Virginica: 1.0000

=== Predicted Class ===

Virginica

Description of the algorithm:

The main algorithm: The primary function provided initializes the ant colony parameters.
The function then reads the data from the file and randomizes it. The algorithm then
performs a 10-fold cross-validation process to train and test the model. The high-level
algorithmic description.

This algorithm begins by instantiating two ‘individual’ objects: populationTestingData
and populationTrainingData. These objects represent the algorithm’s initial state and are
constructed with initial threshold values (Thresholds) and actual discrete events
(‘TestRealDE’ and ‘TrainRealDE’). The fitness of these initial populations on both the
testing and training data is then printed on the console for reference.

Subsequently, the algorithm initializes L and H, which act as lower and upper bounds.
The dimensions are determined by the number of classes and attributes and a predefined
constant D, representing the number of parameters.
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The algorithm then enters a nested loop to populate the L and H arrays based on the
initial threshold values. This is crucial as these arrays define the boundaries that the
algorithm will operate to optimize the parameters. Specifically, the algorithm ensures that
the lower bounds (L) are not less than zero and that the upper bounds (H) are not less than
the respective lower bounds.

This algorithm can be seen as implementing an optimization problem to find the
optimal set of parameters that yield the best fitness score on a given data set under the
constraints defined by the boundaries L and H.

Following the initialization of the boundaries, a initialThresholds5D array is created.
This array represents the starting point for the parameter optimization process.

The function optimizeParameters performs the core optimization process, which inputs
the initialThresholds, TestRealDE, and the L and H arrays. This function is assumed to
implement a specific optimization routine, presumably the ACO algorithm, to obtain the
optimal parameters stored in bestParams.

Finally, the algorithm prints these optimal parameters, calculates their fitness using the
function evaluateFitness, and prints the resultant bestFitness. The bestFitness value is then
returned, marking the completion of the algorithm. This value bestFitness is a performance
indicator of the optimized parameters compared to the TestRealDE data.

Now, let us analyze the code further:
The optimizeParameters function seems to be the main optimization loop. It initializes

the pheromone matrix, defines variables to store the best parameters and fitness, and then
proceeds with iterations.

The function initializePheromones initializes the pheromone matrix with a constant
value of 1.0 for all elements. This seems acceptable as an initial starting point.

The function generateRandomParams generates random parameters based on the
pheromone matrix. Calculate the total pheromone for a specific position and use the

Algorithm 3 Main function.

1: Initialize parameters for population size, number of generations, dataset, and folds
2: Initialize lists for testing results and classes
3: Read the data from the dataset file
4: Determine class index in the dataset
5: for majorLoop in range(1) do
6: Randomize and stratify data
7: Initialize an instance of the PROAnt class and set its parameters
8: Reset the sums for resultTestBefore, resultTrainBefore, resultTrainAfter, and sum
9: for n in range(folds) do
10: Split data into testing and training sets using cross-validation
11: Calculate the thresholds from the training set
12: Send training set, testing set, and thresholds to PROAnt instance and run the PROAnt
algorithm

13: Add up the results of testing before and after and training before and after from the PROAnt
algorithm

14: Get the result of each fold
15: end for
16: Get final results averaged over all folds
17: end for
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roulette wheel selection method to select a random offset based on the proportions of the
pheromone. However, it should be noted that the random selection process might not yield
optimal results. Consider exploring other selection strategies, such as rank-based or
tournament selection, to enhance the exploration and exploitation of the search space.

The function evaluateFitness evaluates the fitness of a set of parameters using the
PROAnt class. Since the details of the PROAnt class are not provided, I cannot comment
on its correctness. Ensure that the fitness evaluation accurately reflects your target
objective or optimization criteria.

The function depositPheromones updates the pheromone matrix based on the
parameters and fitness of an ant. Increases pheromone levels for each element of the
matrix. However, the method used to calculate the pheromone increment
(calculatePheromoneIncrement) references bestFitnessSoFar, which is not updated within
this function. Consider passing bestFitnessSoFar as a parameter to the depositPheromones
function or making it a class-level variable if it needs to be shared between multiple
functions.

The function evaporatePheromones reduces the levels of pheromones in the matrix by
applying a base evaporation rate. The evaporation rate of 0.9 seems reasonable, but you can
experiment with different values to find the best balance between exploration and
exploitation.

The function calculateTotalPheromone calculates the total value of pheromones for a
given position in the pheromone matrix. Sums up all the pheromone values for the
specified position. This function appears to be correctly implemented.

The printParameters function outputs the parameters stored in the params matrix. It
prints the class, prototype, attribute, and corresponding values. This function can help to
debug and verify the accuracy of the optimization process. However, further analysis and
testing are necessary to assess its performance and determine if adjustments or
improvements are required.

Algorithm 4 Optimization algorithm.

1: procedure START
2: popTest  INDIVIDUAL (Th, TestRealDE) Algorithm 5
3: popTest.fitness
4: popTrain INDIVIDUAL (Th, TrainRealDE) Algorithm 5
5: popTrain.fitness
6: L {GET} (nC, nA, D)
7: H  {GET} (nC, nA, D)
8: for Cl 0 to nC do
9: for At  0 to nA do
10: Init. L and H for Cl and At
11: end for
12: end for
13: initTh {GET} ({nC, nP, nA, D})
14: bParams OPTPARAMS (initTh, TestRealDE, L, H) Algorithm 5
15: bFitness EVALFITNESS (bParams, TestRealDE)
16: get “Best Fitness after all:”,
17: bFitness
19: return bFitness
19: end procedure
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Here is a high-level representation of the optimization approach.
This algorithm runs an optimization loop for a predefined number of iterations

NUMITERATIONS. Each iteration generates a set of parameters for each ant, and the
fitness of these parameters is evaluated. The pheromone trail is updated based on these
parameters and their corresponding fitness scores. If the fitness of a particular set of
parameters exceeds the current best fitness, the best parameters are updated. Once all ants
have moved and the pheromones have been deposited, the pheromone trail evaporates
slightly to prevent stagnation and ensure exploration of the search space. After completing
all iterations, the algorithm returns the set of parameters with the highest observed fitness.

In this function, a five-dimensional array of pheromones is initialized to have the
dimensions specified by numOfClasses, numOf Prototypes, numOfAttributes, and D.
Then, every element of this array is initialized to 1.0. The array is then returned as the
result of the function.

This function generates 5D params with random values for each entry. These random
values are generated in the range ‘[L[cl][k][l], H[cl][k][l]]’ for each cl, k, l combination.
The array ‘params’ is then returned by the function.

This algorithm updates the pheromone matrix according to the fitness of the current
solution. If the fitness of the solution is better than the best, it updates the entire
pheromone matrix; otherwise, it only updates the part corresponding to the current
solution. In your original code, bestFitnessSoFar is assumed to be a global variable, so it
should be initialized outside of this function in your main program.

This algorithm iterates the entire pheromone matrix and applies an evaporation effect
to every level. The result is modeled by multiplying by factor (1–baseEvaporationRate) and
(1–decayRate), thus reducing the level of pheromones with each pass.

APPLICATION AND A COMPARATIVE STUDY
Diabetes, often regarded as a modern epidemic, is one of the leading causes of morbidity
and mortality worldwide. According to the World Health Organization and various other
health agencies, the prevalence of diabetes has been dramatically increasing over the past
few decades, affecting millions of people in different age groups, ethnicities, and
socioeconomic statuses. Its alarming spread can be attributed to many factors, including
sedentary lifestyles, diet changes, increased life expectancy, and genetic predispositions.
The complications associated with uncontrolled diabetes, such as cardiovascular disease,
kidney failure, blindness, and lower limb amputations, deteriorate the quality of life of
affected people and exert immense pressure on healthcare systems worldwide.

In addition, the economic implications of diabetes are striking. Direct medical costs,
coupled with indirect costs related to productivity loss and disability, place a significant
financial burden on affected families and national economies. Preventive and management
strategies for diabetes require rigorous research and consistent interventions. By studying
diabetes in depth, researchers can develop better diagnostic tools, treatments, and
preventive measures. Furthermore, understanding the trajectory of the disease can enable
policymakers to implement effective public health initiatives, ensuring that societies are
better equipped to control its spread and manage its complications. Thus, the significance
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Algorithm 5 optimizeParameters.

1: function OPTIMIZEPARAMETERS (initialThresholds, Data, L, H)
2: Initialize pheromones Algorithm 6
3: Initialize bestParams to null
4: Initialize bestFitness to negative infinity
5: Initialize parameters for each ant (antParams)
6: Initialize fitness for each ant (antFitnesses)
7: for each iteration in NUM ITERATIONS do
8: Generate parameters for each ant and evaluate their fitnesses Algorithm 7
9: Identify best ant parameters and fitness within the current iteration
10: Deposit pheromones based on each ant’s parameters and fitness Algorithm 8
11: if the best ant’s fitness is better than the current best fitness then
12: Update bestParams and bestFitness
13: end if
14: Evaporate pheromones Algorithm 9
15: end for
16: return bestParams
17: end function

Algorithm 6 initializePheromones.

1: function INITPHERO (n cl; n pt; n at;D)
2: Init. pheromones array with dims n cl; n pt; n at;D
3: for each class index i in n cl do
4: for each proto. index j in n pt do
5: for each attr. index k in n at do
6: for each dim. index l in D do
7: Set pheromones[i][j][k][l] to 1.0
8: end for
9: end for
10: end for
11: end for
12: return pheromones
13: end function

Algorithm 7 genRandParams.

1: function GENRANDPARAMS (nC, nP, nA, D, L, H, P)
2: Init vars and arrays
3: for each idx in params do
4: Calc and update vals
5: end for
6: return params
7: end function

Algorithm 8 depositPheromones.

1: function DEPOSITPHEROMONES (pheromones, params, fitness)
2: pheromoneIncrement  calculatePheromoneIncrementðf itnessÞ
3: if fitness > bestFitnessSoFar then
4: bestFitnessSoFar  f itness
5: Add pheromoneIncrement to all elements in pheromones
6: end if
7: Add pheromoneIncrement * params[i][j][k][l] to corresponding element in pheromones
8: end function
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of studying diabetes goes beyond individual health, affecting the broader aspects of societal
well-being and economic stability.

Machine learning, particularly classification techniques, plays a significant role in the
battle against diabetes. As diabetes presents in various forms and is influenced by a
complex interplay of genetic, lifestyle, and environmental factors, traditional diagnosis and
risk prediction methods often fail. Machine learning algorithms can analyze vast amounts
of medical and demographic data to uncover hidden patterns and relationships beyond
human analysts. Classification models can efficiently categorize people according to risk
levels, facilitating early interventions and personalized treatment plans. Thus, by utilizing
the power of machine learning, healthcare professionals can enhance the accuracy and
speed of diabetes diagnosis, ultimately leading to more effective management and
prevention of this disease.

In this context, the following section presents the diabetes study and applies the newly
developed classification algorithm (PROAnt) with a comparative analysis with well-known
machine learning algorithms. The goal is to discover the main factors that cause diabetes
and also to build a model that can categorize patients’ levels of diabetes.

DATA COLLECTION AND PREPROCESSING
Dataset description
The dataset in discussion comprises 100,000 data entries from diabetes patients, covering
medical and demographic information. Each sample is labeled to indicate the absence (0)
or the presence (1) of diabetes. This dataset was recently made available on Kaggle’s public
dataset repository in conjunction with a ML competition held in June 2023. Data were
collected as described in Mustafa (2022). This data has potential for healthcare
professionals, providing information on patients at increased risk of diabetes and helping
to create individualized treatment strategies. The dataset spans nine columns: four have
integer attributes, three are of a decision type, and the remaining two, including the class
label, are string attributes. A detailed statistical overview of this dataset can be found in
Table 3.

Exploratory data visualization
Exploratory data visualization (EDA) creates a visualization of the insights of the data set
and helps the reader to understand the data by summarizing a large amount of data in a
single figure. This is essential when exploring and trying to become familiar with our
dataset. The Pairplot is an integral part of EDA that allows us to plot pairwise relationships
between variables within a dataset. Figure 2 illustrates the pair plot of the subject target.

Algorithm 9 evaporatePheromones.

1: function EVAPORATEPHEROMONES (pheromones)
2: baseEvaporationRate 0:1 ▹ Choose an appropriate base evaporation rate
3: decayRate 0:1 ▹ Choose an appropriate decay rate
4: Apply evaporation and decay rates to every element in pheromones
5: end function
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This visualization (see 2) shows the pairwise relationships between the four main
numerical variables in the diabetes dataset:

A heat map is a two-dimensional graphical representation of data in which the
individual values in a matrix are represented as colours. A heat map is a matrix
representation of the variables that are coloured on the basis of the intensity of the value.
Hence, it provides an excellent visual tool for comparing various entities (Pham, Nguyen &
Dang, 2021). Figure 3 visualizes the correlation between the attributes of the target dataset.
This heatmap (see 3) shows the correlation coefficients between all features in the dataset.
The correlation values range from −1 (perfect negative correlation) to +1 (perfect positive
correlation).

Table 3 Subject dataset description.

Attributes Count Missing value Distinct values Min-Max values Std. Dev.

Gender 96,128 0 102 3 0.49

Age 96,128 0 2 0–80 22.46

Hypertension 96,128 0 2 0–1 0.27

Heart_disease 96,128 0 6 0–1 0.20

Smoking_history 96,128 0 4,247 0–5 1.47

Bmi 96,128 0 18 10–95 6.77

HbA1c_level 96,128 0 18 3.5–9 1.07

Blood_glucose 96,128 0 18 80–300 40.91

Diabetes 96,128 0 2 0–1 0.28

Figure 3 Heatmap of the subject dataset. Full-size DOI: 10.7717/peerj-cs.3363/fig-3
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. The gender attribute can play a role in the risk of diabetes. However, the effect may vary
because women with a history of gestational diabetes (diabetes during pregnancy) are at
increased risk of developing type 2 diabetes later in life.

. The age attribute is an important factor in predicting the risk of diabetes. As individuals
get older, their risk of developing diabetes increases.

. Hypertension, or high blood pressure, is a condition that often coexists with diabetes.
The two conditions share common risk factors and can contribute to each other’s
development.

. Heart disease, including coronary artery disease and heart failure, is associated with an
increased risk of diabetes.

. Smoking is a modifiable risk factor for diabetes. Cigarette smoking has been found to
increase the risk of developing type 2 diabetes.

. Body mass index (BMI) measures body fat according to height and weight. It is
commonly used to indicate general weight status and can help predict the risk of
diabetes.

. HbA1c (glycated hemoglobin) measures the mean blood glucose level in the last
2–3 months.

. The blood glucose level refers to the amount of glucose (sugar) in the blood at a given
time.

. Diabetes is the predicted target variable, with 1 indicating the presence of diabetes and 0
indicating the absence of diabetes.

Data preprocessing
Data preprocessing is a crucial phase in the development of machine learning models,
particularly when handling large and heterogeneous datasets. In this study, the original
dataset consisted of 100,000 medical records. Upon examination, 3,854 duplicated samples
were identified and removed, resulting in 96,128 unique entries used for model building.
Additionally, instances containing the value "other" in the "gender" attribute—
representing only 0.00195% of the population—were excluded due to their negligible and
ambiguous contribution to the classification task.

The dataset also contained missing values across several attributes. For numerical
variables, missing entries were imputed using mean substitution, while for categorical
variables, the mode was used. All categorical variables were then transformed into
numerical form using label encoding. For example, the gender attribute was encoded as
one for male and two for female. Similarly, the smoking history attribute was encoded as
shown in Table 4.

To ensure feature scale consistency, especially for algorithms sensitive to magnitude
differences, all numerical attributes were normalized using Min-Max scaling. Furthermore,
class distribution was analyzed for imbalance. While minor skewness was detected, the
distribution remained statistically manageable, and no over- or under-sampling
techniques were applied. Finally, to validate the model performance reliably, stratified
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10-fold cross-validation was used, preserving the class proportions across training and
testing subsets. This preprocessing pipeline ensured that the dataset was clean, well-
structured, and suitable for robust classification analysis.

STATE-OF-THE-ART MACHINE LEARNING METHODS
To evaluate the performance of various state-of-the-art machine learning techniques, we
have considered the 10-fold cross-validation method. The 10-fold cross-validation
technique is one of the most widely used methods by researchers for model selection and
classifier error estimation (Hasan et al., 2023).

Baseline classifier configuration
To ensure a fair and reproducible comparison, all baseline classifiers were configured using
standard and empirically validated parameter settings. For the k-NNmodel, we used k ¼ 5
with the Euclidean distance metric. The Decision Tree classifier (C4.5) was implemented
with a confidence factor of 0.25 and a minimum of two instances per leaf. The logistic
regression model employed L2 regularization with a regularization strength C ¼ 1:0, using
the liblinear solver. The Naive Bayes classifier was used in its standard Gaussian form,
without the need for hyperparameter tuning. For the neural network (multilayer
perceptron), we used one hidden layer containing 100 neurons with ReLU activation,
trained using the Adam optimizer and a learning rate of 0.001. On the other hand, the DL
model comprised a feedforward neural network [x] with three hidden layers (128, 64, and
32 neurons, respectively), ReLU activation functions, a dropout rate of 0.5 to prevent
overfitting, a batch size of 64, and a training duration of 50 epochs. These configurations
were selected based on initial experimentation and established practices in the literature to
ensure optimal performance and consistency across all comparative models.

These parameter values were selected based on preliminary tuning experiments and best
practices reported in the literature to ensure optimal performance and consistency across
models.

Based on what has been discussed above, PROAFTN and DT share a fundamental
property: they use the white-box model. Table 5 presents a performance-based comparison
across seven classifiers, including Decision Tree (C4.5), Naive Bayes, DL, k-NN, NNs,
logistic regression, and the proposed PROAnt. This table reports metrics such as precision,
weighted recall, weighted kappa, overall accuracy, and standard deviation. As shown,

Table 4 Categorical attribute values encoding.

Smoking_history Corresponding value

Never 0

No Info 1

Current 2

Former 3

Ever 4

Not current 5
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PROAnt achieves the highest precision (98.42%) and weighted accuracy (97.28%), and
matches the top-performing models in kappa score, indicating both robustness and
reliability. Recent studies have explored hybrid deep learning approaches for diabetes
prediction. Abgeena & Garg (2023) proposed an S-LSTM-ATT model combining long
short-termmemory (LSTM) networks with firefly optimization.While these methods yield
competitive accuracy, they often lack interpretability and transparency, which are critical
in medical decision-making. In contrast, PROAnt achieves comparable accuracy (e.g.,
98.42% weighted precision) while maintaining interpretability through fuzzy rule-based
modeling. This balance of performance and explainability substantiates PROAnt as a state-
of-the-art alternative, especially in domains where transparent decision rationale is
essential.

DT and PROAFTN can generate classification models which can be easily explained
and interpreted. However, classification accuracy is another essential factor when
evaluating any classification method. Based on the experimental study presented in
‘PROAFTN Method’, the PROAFTN method has been shown to generate a higher
classification accuracy than decision trees such as C4.5 (Quinlan, 1996) and other
well-known classifier learning algorithms, including Naive Bayes, DL, NN, k-NN and
logistic regression. That can be explained by the fact that PROAFTN uses fuzzy intervals.

Table 6 presents the comparative results of PROAnt against baseline models,
demonstrating the superior accuracy and balanced trade-off achieved by the proposed
framework, where accuracy reflects the overall proportion of correctly classified cases,
while precision emphasizes the reliability of positive diabetes predictions. Recall highlights
the model’s ability to detect diabetic cases, and Cohen’s kappa accounts for agreement
beyond chance. Together, these measures provide a comprehensive assessment of model
robustness in medical diagnosis. The observations in this table are based on the results
obtained using the learning methodology developed for this research study.

In this work, the use of machine learning and metaheuristic algorithms to obtain
PROAFTN parameters proved to be a successful approach to optimize PROAFTN’s
training and thus significantly improve its performance.

As has been demonstrated, every classification algorithm has its strengths and
limitations. More particularly, the characteristics of the method and whether it is
strong or weak depending on the situation or the problem. For example, assume that the

Table 5 Performance comparison of the ML techniques.

Models Weighted precision Weighted recall Weighted kappa Weighted accuracy Std. Div. +/−

Decision tree 98.03 83.79 0.789 +/− 0.005 97.07 0.05

Naive bayes 71.40 78.98 0.489 +/− 0.011 90.29 0.26

Deep learning 94.53 83.51 0.761 +/− 0.014 96.64 0.19

k-NN 91.30 75.86 0.630 +/− 0.014 95.14 0.16

PROAnt 98.42 83.73 0.789 +/− 0.008 97.2787 0.10

Neural network 98.40 83.63 0.789 +/− 0.011 97.12% 0.13

Logistic regression 91.68 81.14 0.710 +/− 0.011 95.93% 0.11
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issue at hand is a medical dataset and that the interest is to look for a classification
method for medical diagnostics. Suppose that executives and experts are looking for a high
level of classification accuracy. At the same time, they are very interested in more details
about the classification process (e.g., why the patient is classified into this disease category).
In such circumstances, classifiers such as neural networks, k-NN, or deep learning may
not be an appropriate choice due to the limited interpretability of their classification
models. Thus, it is necessary to look for other classifiers that reason about their
output and can generate good classification accuracies, such as DT (C4.5, ID3), NB or
PROAFTN.

Based on the summary provided, PROAnt demonstrates superior performance across a
range of important classifier properties compared to well-known classifiers such as
Decision Trees (DT C4.5), Naive Bayes (NB), DL, NN, k-NN and logistic regression.

Here is a detailed comparison: The PROAnt model exhibits exceptional performance
across a comprehensive range of evaluation criteria, positioning it as a highly competitive
and reliable classifier. In terms of general classification accuracy, PROAnt matches the
highest ratings achieved by established models such as Decision Tree C4.5, DL and NN,
while outperforming Naive Bayes (NB), k-NN and logistic regression.

Regarding the ability to handle diverse data types, PROAnt shares the top rating with
DT C4.5, demonstrating superior adaptability over NB, DL, NN, k-NN, and logistic
regression. When evaluated for precision under noisy data conditions, PROAnt again
reaches the top tier alongside DT C4.5 and NN, showing better resilience than NB, DL, k-
NN, and logistic regression.

In terms of training time, PROAnt demonstrates efficiency comparable to DT C4.5 and
logistic regression. It is significantly faster than DL, NN, and k-NN, though it is slightly
slower than NB. For testing time (classification phase), PROAnt achieves the highest

Table 6 Summary of the behaviour of well-known classifiers vs. PROAnt properties (the highest
property is denoted by **** and the lowest by *).

DT c4.5 NB DL NNMLP k-NN Logistic regression PROAnt

Accuracy in general **** ** **** **** ** *** ****

Dealing with data types **** ** *** *** *** *** ****

Precision to noise **** * *** **** *** *** ****

Training time (learning) *** **** * * * *** ***

Testing time (classification) **** **** *** ** * **** ****

Dealing with overfitting ** *** ** * *** ** ****

Number of parameters *** * *** *** ** ** ****

Interpretability **** **** * * ** *** ****

Transparency *** *** * * **** *** ****

Data transformation **** *** ** *** *** ** **

Note:
The asterisks indicate relative performance levels for each property. Four asterisks (****) denote the highest or best
performance, three asterisks (***) indicate high performance, two asterisks (**) represent moderate performance, and
one asterisk (*) corresponds to the lowest performance among the compared classifiers.
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rating, matching DT C4.5, NB, and logistic regression, and surpassing DL, NN, and k-NN
in computational efficiency.

A particularly notable strength of PROAnt is its superior capability in handling
overfitting, where it stands alone at the top rating. It clearly outperforms DT C4.5, DL, NN,
k-NN, NB, and logistic regression in this aspect. The model also scores highest in terms of
parameter efficiency, reflecting its design simplicity and optimization—outperforming NB,
k-NN, and logistic regression, and equaling DL and NN in this regard.

On the metric of interpretability, PROAnt shares the top rating with DT C4.5 and NB,
offering greater transparency than more complex models like DL, NN, and k-NN.
Similarly, in terms of transparency, PROAnt performs comparably to k-NN, DT C4.5, NB,
and logistic regression, and more transparently than DL and NN.

The only area where PROAnt shows a marginal shortfall is in data requirements. It
receives a slightly lower rating than DT C4.5, NN, and k-NN but is on par with DL and
logistic regression, and requires more data than NB.

Overall, PROAnt demonstrates strong and consistent performance across the majority
of key evaluation dimensions, including classification accuracy, adaptability to data types,
robustness to noise, fast classification time, overfitting control, and model interpretability.
Its simplicity in terms of the number of required parameters and its transparency further
contribute to its robustness. These qualities make PROAnt a versatile and competitive
classifier, well-suited for a wide range of machine learning tasks and real-world
applications, especially in domains demanding both high accuracy and model
interpretability.

CONCLUSIONS AND FUTURE WORK
This study presented PROAnt, a novel classification framework that integrates ACO with
the PROAFTN method for learning fuzzy classification rules. The key findings derived
from this work is that metaheuristic algorithms like ACO, when combined with
multicriteria decision-making techniques such as PROAFTN, can significantly improve
classification accuracy by automatically optimizing critical parameters like interval
boundaries and attribute weights. This integration not only eliminates the need for manual
parameter specification but also enhances the transparency and adaptability of the
classification process. The proposed PROAnt achieved 98.42% accuracy, 83.73% precision,
and a kappa score of 0.789, clearly demonstrating the effectiveness of ACO-optimized
PROAFTN in improving diabetes detection. These results confirm that the novel
parameters significantly enhanced both predictive power and interpretability.

Empirical evaluations using a large-scale diabetes dataset demonstrated the superior
performance of the proposed model compared to several widely used classifiers, including
decision trees, logistic regression, and neural networks. While this study focused on
diabetes detection, the PROAnt framework is not limited to this application. Its learning
mechanism is inherently domain-independent, making it applicable to a variety of fields,
such as cardiovascular risk prediction, cancer diagnostics, industrial monitoring, and
educational analytics.
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The adaptability of the model comes from its data-driven parameter inference process,
which enables it to handle data sets with varying levels of noise, dimensionality, and
complexity. Furthermore, PROAnt is computationally efficient, particularly when
implemented with parallel learning strategies, and its modular design allows for further
enhancements using hybrid optimization approaches. The sustainability of the model lies
in its interpretability, scalability, and minimal reliance on expert input, which positions it
as a viable tool for real-world deployment in intelligent decision support systems.

Future work could explore several directions to enhance the scalability and
generalizability of the model. These include investigating more efficient parameter tuning
strategies, such as adaptive or self-configuring metaheuristics; integrating feature selection
and interval estimation through unsupervised clustering or feature ranking techniques;
and employing parallel computing to reduce training time. Moreover, while this study
proposed a fully automated approach, PROAFTN is inherently capable of incorporating
expert knowledge. Thus, hybrid strategies that combine expert input with inductive
learning could further improve interpretability and performance in domains where
transparency is critical.
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