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ABSTRACT
Biometrics are increasingly used for access control, fraud detection, and
authentication systems. Nevertheless, attackers can deceive such systems using
forged biometrics. This research proposes a novel method that makes biometric
security systems more resilient to such attacks. The proposed method transforms the
user’s biometric data into an irreversible code to protect the original data. This code
combines data from multiple biometric modalities, making fabricating a false
biometric harder. Additionally, the proposed method does not depend on any secret
keys, which helps avoid cases of stolen tokens. The proposed method utilizes the
generative adversarial network (GAN) to generate synthetic biometric templates
from multiple modalities, which is considered a transformation function for
biometric data. Three fusion levels are presented; features from multiple biometric
modalities are extracted first in each fusion level. Subsequently, the features train a
generative adversarial network to produce synthesized biometric templates. These
synthesized templates serve as secure substitutes for the original biometrics during
authentication, preventing direct exposure of raw biometric data. We evaluated our
methods on the CASIA-V3-Internal and MMU1 iris datasets and the AT&T (ORL)
and FERET face datasets. The results showed that our proposed methods can achieve
higher accuracy, usability, and improved security compared to a single biometric
modality. The proposed feature-level, GAN-based, and decision-level fusion schemes
achieved 2.03%, 0.82%, and 0.0297% error rates, respectively, for CASIA and ORL
datasets and 1.53%, 0.80%, and 0.0313% error rates, respectively, for MMU1 and
FERET datasets. Moreover, we have demonstrated that our method resists pre-image
and correlation attacks.
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INTRODUCTION
Multimodal biometrics is a type of biometric authentication that uses multiple biometric
traits to identify an individual by combining different types of biometrics (Jain & Ross,
2004). This article presents a new method of multimodal biometrics for secure
authentication.

Multimodal biometrics has many merits over unimodal biometrics (Adusumalli &
Bhuvaneswari, 2018). Firstly, it can increase accuracy by leveraging the advantage of
several biometric modalities. For instance, face recognition is usually more accurate at a
distance, whereas fingerprint recognition is usually more accurate up close (Adusumalli &
Bhuvaneswari, 2018). Secondly, combining biometrics can diminish spoofing and fraud by
securing the system and preventing it from being fooled. For instance, an attacker must
create a fake fingerprint and voice to spoof a multimodal biometric system based on finger
and voice recognition (Aditya & Kaur, 2021). Moreover, multimodal biometrics increase
usability as the authentication process becomes more user-friendly. For example, users can
identify themselves using their faces and fingerprints, which can be more convenient than
remembering PINs or passwords (Sheena & Mathew, 2014). There are numerous
challenges associated with multimodal biometrics (Patil, 2012). Users’ privacy should be a
key consideration in the biometric template design. Templates require removing all the
personal information that could be used to identify the users. Moreover, the biometric
traits used in the system should be compatible with each other. For example, these two
traits must be linked if that system uses face and iris recognition. The fusion of multimodal
biometric data may be challenging because the data quality may differ; data may be of
various types. There are three primary levels of fusion in multimodal biometrics (Gupta,
2015), utilizing the features that have been obtained from various biometric modalities
(Govindarajan, 2004), including scores that have been assigned to each biometric modality
(Feifei & Gonging, 2011), or accumulating the decisions that have been made by multiple
biometric systems (Prabhakar & Jain, 2002).

Cancellable biometrics (CB) is a biometric that can be transformed into a non-reversible
form, which ensures its resistance to attack (Patel, Ratha & Chellappa, 2015). This is
obtained by distorting the inherent biometric data in a way that keeps the information
required for authentication. However, reconstructing the original data is impossible due to
such distortion (El-Hameed et al., 2021). Cancelable biometrics offers many advantages
over traditional biometrics. It can enhance security through the increase in the complexity
of hacking a user’s biometric data. Moreover, it can improve flexibility by permitting users
to revoke their biometric records without involving a change in their appearance. Besides,
it can improve usability by simplifying the authentication process for users on multiple
devices (Manisha & Kumar, 2020). Several methods have been developed to generate
cancelable biometric templates, including random projection, cancelable filters,
biohashing, permutation, bio-convolving, and Bloom filters (Choudhury et al., 2018).
Random projection techniques map features into a random subspace while preserving
distances, with variants such as the Johnson–Lindenstrauss lemma improving system
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performance (Soliman, Amin & Abd El-Samie, 2018). Cancelable filters apply random
convolution kernels to produce secure templates (Savvides, Kumar & Khosla, 2004), while
biohashing extends random projection by incorporating user-specific random keys (Teoh,
Ngo & Goh, 2004). Permutation methods randomize biometric features using auxiliary
data, and bio-convolving generates sequences of cancelable templates from sequential data
(Maiorana et al., 2010). Bloom filter approaches, meanwhile, provide efficient
biometric querying through adaptive filtering (Rathgeb et al., 2014). Recently, one-factor
cancelable authentication schemes based on Generative Adversarial Networks (GANs)
have been proposed, in which cancelable keys are derived from permuted biometric traits.
Although these schemes demonstrate improved recognition performance, their security
remains a critical concern and warrants further enhancement (Tarek, Hamouda & El-
Metwally, 2021).

Integrating multimodal and cancelable biometrics is particularly promising for many
application areas, such as access control, border security, and law enforcement. Moreover,
it offers many advantages (Paul & Gavrilova, 2012), including:

. Improved accuracy: Using multiple biometric traits can help to reduce the chances of a
false match or rejection.

. Enhanced security: Cancellable biometrics complicates the theft or presentation forgery
of the biometric template.

. Increased usability: In terms of human-computer interactions, multimodal biometric
systems are more user-friendly than ones that use a single modality.

. Improved robustness: Systems employing multiple biometric modes are
designed to be more robust to changes in lighting and pose and other environmental
parameters.

GANs are deep learning algorithms that can produce realistic synthetic data (Saxena &
Cao, 2020). The application of GANs can produce biometric templates that can be used for
authentication without compromising the user’s privacy. GANs are an emerging technique
for creating a more reliable, keyless, secure, and user-friendly biometric access system
(Tarek, Hamouda & El-Metwally, 2021; Alqahtani, Kavakli-Thorne & Kumar, 2019).
GANs consist of a pair of generative and discriminative networks trained to compete
against each other. One network generates a synthetic biometric template, while the other
distinguishes a genuine and synthetic template from the given biometrics. As they train,
the generator gets better at generating templates that are indistinguishable from real ones.
GANs are effective at generating synthetic biometric templates that are both realistic and
secure (Saxena & Cao, 2020).

This article suggests a novel approach for cancelable multimodal biometrics that uses
GANs to protect multimodal biometrics (left and right iris and face) at different fusion
levels. The proposed approach first extracts feature from multiple biometric modalities.
These features then train a GAN to generate synthetic biometric templates. The generated
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templates are non-reversible and can be used for authentication without compromising the
user’s privacy. The proposed approach presents three fusion levels:

. Feature-level fusion: The features from multiple biometric modalities are combined to
generate the training input features for the GAN models.

. GAN-based fusion: Each biometric modality features trains its own GAN model. The
generated synthetic biometric templates from each GAN model are then combined.

. Decision-level fusion: Each biometric modality features train its GAN model to
generate synthetic biometric templates. A voting process is then used to decide the final
result.

The suggested approach uses GANs, which generate synthetic biometric templates,
making it more difficult for hackers to spoof the system. The non-reversibility of the
generated templates protects the user’s privacy. Employing a system based on various
biometric modalities can improve the system’s accuracy, and the proposed approach is
relatively simple to implement. This work relies on the difficulty of an attacker
simultaneously impersonating multiple biometric traits for a genuine user (Merkle,
Kevenaar & Korte, 2012). The GAN models work as a keyless salting scheme for the input
biometric modality (Tarek, Hamouda & El-Metwally, 2021). Accordingly, the
performance is increased using multiple biometric modalities instead of single or
unimodal. In addition, multimodal provides a cost-saving way to enhance performance as
it does not require any data sensor extraction, feature modules, or matching units (Ross &
Jain, 2004).

Despite their success in feature generation and data augmentation, GANs exhibit several
vulnerabilities when applied to authentication systems. A major limitation is mode
collapse, wherein the generator fails to capture the full variability of the underlying
biometric distribution and instead produces highly similar outputs. This lack of diversity
reduces the representativeness of synthetic samples, thereby compromising the robustness
of the authentication process and increasing susceptibility to spoofing attacks (Saxena &
Cao, 2020). The proposed framework addresses these limitations through a multi-level
fusion strategy that integrates feature-level, GAN-based, and decision-level components.
This design alleviates the impact of mode collapse by diversifying the representation space
and ensuring that authentication does not rely solely on the variability captured by the
generator. In addition, the adoption of cancelable biometric transformations enhances
privacy protection by concealing original templates, thereby mitigating risks associated
with overfitting and potential template leakage.

The rest of the article is organized as follows: related works about multimodal cancelable
biometrics are summarized in “Background and Related Works”. The “Problem and
Mathematical Formulation” introduces the problem and mathematical formulation for the
presented multibiometric models. “Materials and Methods” presents the proposed
cancellable multimodal security schemes. “Results” presents the experimental results for
the proposed schemes. “Discussion” discuss the security perspectives and explores the
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operational considerations and real-world application of the proposed method. Finally,
“Conclusion” concludes the main article’s work.

BACKGROUND AND RELATED WORKS
El Rahman & Alluhaidan (2024) proposed two convolutional neural networks
(CNN)-based multimodal biometric systems that combine fingerprint and an
electrocardiogram (ECG) data. The authors explored different feature fusion levels and
employed various feature extraction and classification methods. They claimed that a
sequential multimodal CNN system outperforms a parallel one. In the same year, Salturk
& Kahraman (2024) published a method that combined signature dynamics and static and
face-based data. They implement CNNs, long short-term memory (LSTMs), and gated
recurrent units (GRUs), as well as the temporal convolutional networks (TCNs) that are
based on the foundation of deep learning algorithms. Their research proved that the
system could achieve outstanding performance by merging kinetic and static biometric
features. The multimodal biometric system proposed by Haider et al. (2023) incorporates
finger vein patterns and fingerprint recognition. A fuzzy system fuses biometric
information of multi-traits. Initially, the data on finger texture is classified using a Support
Vector Machine (SVM). Subsequently, transfer learning is applied by plugging in the
pre-trained CNNs for finger vein recognition. With the help of a fuzzy rules-based
inference system, the Multimodal system performs the task more accurately than just the
unimodal system. Balraj & Abirami (2022) combined facial recognition and iris scanning
with score-level fusion and an extended ant colony optimization (ACO) approach. El-
Rahiem et al. (2021) presented a multibiometric CB system using CNN features, feature
map fusion, and the DeepDream algorithm. Abdellatef et al. (2020) proposed a CNN-based
scheme for face recognition that achieves cancelability through bio-convolving encryption.
Sudhakar & Gavrilova (2020) utilized CNN features and random projection for finger vein
and iris recognition. Table 1 summarizes the recent techniques that have been noticed for
their significant contributions to multibiometric authentication systems. However, the
recognition performance for existing multimodal cancelable biometrics systems is
promising, and factors such as security, privacy, and usability should be considered.

PROBLEM AND MATHEMATICAL FORMULATION
The main challenge for this work is how to generate a cancelable biometric template from
multibiometric traits without any external key by using GAN model. A GAN model
designed with two competed networks was considered here as a transformed function
where the inputs are multibiometric features and a driven key from this feature and the
output is the transformed template. The foundation of this proposed work draws
inspiration from the established GAN model, which serves as a keyless biometric salting
scheme (Tarek, Hamouda & El-Metwally, 2021). The notations used by the proposed
multimodal cancelable biometric scheme are shown in Table 2.
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Let the biometric system contain p biometric samples [x1; x2; . . . ; xP] for each
enrolled user. The GAN model is used to create a biometric salting data S, which is then
combined with the mean of the input biometric data to form the cancelable template C.
The decision of whether the user is genuine or impostor is made based on the cancelable
template C. The GAN model contains two compotator networks: a forger (the generator,
G) and a detective (the discriminator, D). The generator G tries to generate biometric
salting data indistinguishable from actual data. In contrast, the discriminator D tries to
distinguish between real and generated data. This competition is formulated
mathematically in the equations (1:6) (Saxena & Cao, 2020), Eq. (1) presents GAN loss
function which is obtained from the binary cross-entropy formula

L x; kð Þ ¼ ½k : log xð Þ þ 1� kð Þ: log 1� xð Þ� (1)

Table 1 Recent multibiometric authentication systems.

Authors Year Biometric trait Algorithm Fusion level

Abdellatef et al. (2020) 2020 • Different regions of a face CNN & bio-convolving encryption Feature fusion

Sudhakar & Gavrilova (2020) 2020 • Finger vein

• Iris

CNN & SVM &random projection Feature fusion

El-Rahiem et al. (2021) 2021 • Fingerprint

• Finger vein

• Iris

CNN & DeepDream algorithm Feature fusion

Balraj & Abirami (2022) 2022 • Face

• Iris

Extended ACO Score fusion

Haider et al. (2023) 2023 • Finger texture

• Finger Vein

SVM & CNN Score fusion

El Rahman & Alluhaidan (2024) 2024 • Fingerprint

• ECG Signal

CNN Feature fusion

Salturk & Kahraman (2024) 2024 • Signature

• Face

CNN & LSTM & GRU & TCN Feature fusion

Table 2 Notations used by the proposed multimodal cancelable biometric scheme.

Notation The meaning of the notation

x The input biometric data

n The length of the iris binary template

f The length of the face binary template

k The salting key

S The generator output data

C The cancelable template

G The generator of the GAN model

D The discriminator of the GAN model

h The decision threshold

Sim Cð Þ The similarity score of the cancelable template C
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where the discriminator loss function LD remaining the same with a variation of
Generator ‘s cost function LG. While training discriminator, the output will be 1 for real
data and 0 for fake data. Then, by substituting this into Eq. (1), we have:

L D kð Þ; 1ð Þ ¼ log D kð Þð Þ (2)

L D Gðxð Þ; 0ð Þ ¼ log 1� D G xð Þð Þð Þ: (3)

The final discriminator loss function is denoted in Eq. (4) as the discriminator’s goal is to
classify accurately its input as fake or real. Therefore, the given G & D loss functions have
to be maximized.

LD ¼ max ½ log D kð Þð Þ þ log 1� D G xð Þð Þð Þ: (4)

The final generator loss function is denoted in Eq. (5) as the generator is competing
against discriminator. So, the generator aims to minimize the optimization problem
given in Eq. (4).

LG ¼ min ½ log D kð Þð Þ þ log 1� D G xð Þð Þð Þ�: (5)

Therefore, Eq. (6) denoted the combination of the generator and discriminator loss
functions as combining between Eqs. (4), (5).

L ¼ minGmaxD½ log D kð Þð Þ þ log 1� D G xð Þð Þð Þ�: (6)

Loss function in Eq. (6) is valid only for a single data point. Therefore, to consider
this equation to entire dataset, Eq. (7) considered the expectation of combined loss
function as:

minGmaxDVðG;DÞ ¼ Ek½Log DðkÞ� þ Ek½logð1� DðGðxÞÞ�: (7)

Here, V (G, D) represents the overall performance of both G and D. The lower this value is
for G, the better it is at creating realistic fakes. Conversely, the higher it is for D, the better it
is at spotting fakes. The first part of the equation calculates the average confidence D has
when evaluating actual data. In contrast, the second part of the equation calculates D’s
average confidence when evaluating the generator’s creations. K represents the salting key,
a permutated version for input biometric sample xi; it is generated by rearranging the bits
in a randomly selected template xi for the enrolled user.

The cancelable template for each enrolled user, C, is calculated using Eq. (8):

C ¼ Y� S (8)

where � is the XOR operation applied to the generator output, S, and the binarized mean
of all input samples for the enrolled user, Y, it can be calculated using Eqs. (9) and (10) as
follows:

T ¼ mean x1; x2; . . . ; xp
� �

(9)

Y i ¼ 1; if Ti � 0:5ð Þ
0; otherwise

�
(10)

The decision of whether the user is genuine or impostor is made based on the cancelable
template C using a decision threshold θ. If the similarity score of cancelable template C is

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3360 7/28

http://dx.doi.org/10.7717/peerj-cs.3360
https://peerj.com/computer-science/


greater than θ, then the user is classified as genuine. Otherwise, the user is classified as an
impostor. It can be calculated using Eq. (11):

Decision ¼ 1; if Sim Cð Þ � hð Þ
0; otherwise

�
: (11)

Sim(C) is the similarity score of the cancelable template C, which is calculated based on the
hamming distance measure. This metric is applied to check the variation between a test
biometric template and the reference template; it refers to the number of positions where
the two biometric templates differ. This represents the general mathematical formation of
the proposed methodology.

MATERIALS AND METHODS
The primary contribution of this research lies in enhancing the security and performance
of the biometric system. This improvement is achieved by utilizing a multimodal biometric
modality instead of relying solely on a single instance from one biometric modality
(Adusumalli & Bhuvaneswari, 2018). The actual implementation of the methodology
varies depending on the applied fusion scheme, as discussed in the later subsections.
Unlike methods that handle transformation keys, the suggested approach only takes
biometric data and avoids the risk of key storage vulnerabilities. Security enhancement
stems from the increased complexity impostors face when attempting to breach the system
using multiple biometric traits. Additionally, performance enhancement is anticipated by
applying fusion principles within the context of multimodal biometric traits. In light of
these considerations, this work presents three strategies for combining iris and face data
using a multimodal fusion approach based on the standard GAN model: feature-level
fusion, GAN-based fusion, and decision-level fusion. By feature-level fusion, the unique
feature of shared feature values among the biometric modalities is of utmost help in
unifying the related feature values. It prioritizes a concise selection of certain key features
that can enhance recognition accuracy (Govindarajan, 2004). In GAN-based fusion, the
generated templates from various GAN models are integrated to produce a new template.
This resultant template can then be utilized by verification or identification modules to
make informed decisions about an individual’s identity (Feifei & Gonging, 2011).
Decision-level fusion involves consolidating multiple hypotheses into a single decision.
This technique is frequently employed to enhance decision precision (Prabhakar & Jain,
2002).

Feature-level fusion
Given that humans possess two iris instances (Left and right) and one face, two binary iris
templates (left and right, each of length [1 × n]) and one binary face template of length
[1 × f] are concatenated into a single binary feature vector [1 × (2n + f)]. This concatenated
vector is then input into a GAN model, where the generator produces a transformed
template while the discriminator is trained using both generated and permuted samples.
To enhance security and non-invertibility, the binarized output of the generator is XORed
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with the binarized mean of the concatenated samples, producing the final cancelable
template stored in the system database, as illustrated in Fig. 1.

First, the GAN model generates a transformed template from this concatenated sample.
Second, this transformed template is subjected to XOR (exclusive OR) operation with the
mean of the concatenated samples to enhance system performance and security concerns.
As displayed in Fig. 1, the enrollment phase for each individual comprises three core
stages. The first stage aims to execute feature-level fusion between the features of the two
binary iris instances and one binary face instance. These results in a definitive binary
feature achieved through a straightforward concatenation procedure. A total of p binary
concatenated samples are generated for each person. Each sample has a length of ([1 × 2n]
+ [1 × f]) binary template; each left and right iris instance has a template of length 1 × n
binary features, and the face has a template of length 1 × f binary features. In the second
stage, the produced p binary concatenated samples serve as training inputs for the
generator networks within the GAN model. In contrast, a single selected binary
concatenated sample is randomly permuted and introduced as an additional input to the
discriminator network in the same GANmodel. This input to the discriminator serves as a
salting key for the GAN transformation model.

During GAN model training, the generator’s output, a template of size 1 × (2n + f), is
also input for the discriminator network. Across each training epoch, a conventional

Figure 1 The multimodal cancelable feature level fusing. Full-size DOI: 10.7717/peerj-cs.3360/fig-1
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back-propagation learning algorithm is applied to update the weights of the discriminator
network (Goodfellow et al., 2014). The weights of the generator network are updated using
the same learning algorithm by the output of the discriminator network. After a specific
number of training epochs, the final output of the generator network is employed to
construct a transformed template, and the final generator network weights are stored in the
system database. Because of the reversible nature of the GAN model (Creswell & Bharath,
2018), the original concatenated iris and face features can be recovered if the transformed
template is publicly stored in the system database, along with the weight values of the
generator network. A third stage is introduced to generate a non-invertible cancelable
template to circumvent this security concern while enhancing system performance. This is
achieved through an additional transformation layer involving XOR between a binarized
version of the transformed template (generator’s output) and another binarized version
derived from the mean computation of all concatenated iris and face samples (generator’s
inputs). The resultant binary output from the XOR operation constitutes a template of the
size 1 × (2n + f) and is proposed as the final stored cancelable template within the system
database. The steps for the feature-level fusion scheme are illustrated in Scheme 1. During
the authentication phase, the proposed system solely necessitates tested samples from the
left and right iris instances along with the face to authorize the identity of the tested
individual. As depicted in Fig. 1, a tested sample is generated by concatenating the features
extracted from both irises and face. This tested template is input into the generator
networks, employing their stored weight values. A binarized variant of the generator
networks’ output is XORed with the tested sample, culminating in creating the final tested

Scheme 1 The proposed feature-level fusion scheme.

Input:
- Left iris samples {L1, …, Lp}, length n
- Right iris samples {R1, …, Rp}, length n
- Face samples {F1, …, Fp}, length f
- N (training epochs), a (learning rate)
- h1 (generator hidden size), h2 (discriminator hidden size)
Procedure:
1. For each sample i ∈ {1, …, p}:

Create template xi = concatenate (Li, Ri, Fi) of size (2n + f)
2. Randomly select template xi
3. Generate salting key k = permute(xi)
4. Compute reference template T using Eq. (9)
5. Compute binarized template Y using Eq. (10)
6. Build generator network G: [(2n + f) / h1 / (2n + f)]
7. Build discriminator network D: [(2n + f) / h2 / 1]
8. Initialize weights Wg(G), Wd (D)
9. For epoch = 1 to N:

Train G and D alternately with backpropagation algorithm: Input: {x1, …, xp}
10. Retrieve generator output S
11. Compute cancelable reference template Cref using Eq. (8)
12. Store {Wg, Cref} in system database
Output:
During authentication, compute decision for test template Ctest using Eq. (11).
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cancelable template. Ultimately, comparing these tested and stored cancelable templates
for the claimed individual facilitates the ultimate authentication decision.

GAN-based fusion
The second proposed scheme is centered around merging the outcomes of each cancelable
instance model. The three cancelable templates generated from each cancelable iris and
face instance model are fused through a concatenation process, as depicted in Fig. 2. In this
approach, each cancelable iris and face model operates independently. As depicted in
Fig. 2, enrollment phase functions independently for each iris and face instance, with the
outputs of each iris and face instance model concatenated to yield the fusion system’s
cancelable template. The process begins by treating each iris and face instance model
distinctly. For every instance model, a set of p binary feature samples from each iris and
face instance model are utilized as training inputs for each generator network within the
GAN model. The output of the generator networks—a template of size 1 × n for the iris
models and 1 × f for the face model, is used as an input for their discriminator network
and, in combination with a randomly permuted version of a chosen binary input sample
from their generator, as seen in Fig. 2. A back-propagation learning algorithm
(Goodfellow et al., 2014) is employed during the GAN training process for each instance

Figure 2 The multimodal cancelable GAN-based fusion scheme (enrollment phase).
Full-size DOI: 10.7717/peerj-cs.3360/fig-2
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model, updating the discriminator and generator network weights based on the output of
the discriminator network for each GAN network. Following a specific number of epochs,
the final generator network weights are stored in the system database. Each generator
network output is binarized and subsequently X-ORed with a binarized version derived
from the mean computation of their iris/face instance samples (generator’s inputs). The
resultant binary output from the XOR operation yielding a template of size 1 × n for each
iris model and 1 × f for the face model is proposed as the cancelable template. The last step
involves concatenating the three cancelable templates generated from each iris and face
instance model to yield the stored fused cancelable template (a template of the size 1 × (2n
+ f)) within the system database and the generator networks’ weights for each iris and face
instance model. The steps for a GAN-based fusion scheme are illustrated in Scheme 2.

Subsequently, in the authentication phase, the proposed system requires tested samples
from both the left and right iris and face instances to validate the individual’s identity. As
illustrated in Fig. 3, each tested template is forwarded to its respective generator networks
as input, leveraging the stored weight values for each iris/face instance generator network.
After being binarized, each generator network’s output is X-ORed with the corresponding
trait instance’s tested sample to generate an instance-level cancelable template. Ultimately,

Scheme 2 The proposed GAN-based/decision-level fusion schemes.

Input:
- Left iris samples {L1, …, Lp}, length n
- Right iris samples {R1, …, Rp}, length n
- Face samples {F1, …, Fp}, length f
- N (training epochs), a (learning rate)
- h1 (generator hidden size), h2 (discriminator hidden size)
Procedure:
1. Randomly select li ∈ {L1, …, Lp}
2. Randomly select ri ∈ {R1, …, Rp}
3. Randomly select fi ∈ {F1, …, Fp}
4. Generate salting keys:

kl = permute(li), kr = permute(ri), kf = permute(fi)
5. Compute reference templates Tl, Tr, Tf using Eq. (9)
6. Compute binarized templates Yl, Yr, Yf using Eq. (10)
7. Build generator networks:

Gl: [n / h1 / n], Gr: [n / h1 / n], Gf: [f / h1 / f]
8. Build discriminator networks:

Dl: [n / h2 / 1], Dr: [n / h2 / 1], Df: [f / h2 / 1]
9. Initialize weights for all generator networks
10. Initialize weights for all discriminator networks
11. For epoch = 1 to N:

Train {Gl, Gr, Gf} and {Dl, Dr, Df} alternately
Inputs: {L1, …, Lp}, {R1, …, Rp}, {F1, …, Fp}
Keys: kl, kr, kf

12. Retrieve outputs Sl, Sr, Sf from generators
13. Compute cancelable templates Cl_ref, Cr_ref, Cf_ref using Eq. (8)
14. For GAN-based fusion:

Concatenate Cl_ref, Cr_ref, Cf_ref / Cref (size: 2n + f)
15. Store generator weights and reference template(s) in database
Output:
- GAN-based: authenticate test template Ctest using Eq. (11)
- Decision-level: authenticate using majority voting on {Cl_test, Cr_test, Cf_test} with Eq. (5)
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the fused tested cancelable template results from concatenating the three instance-level
cancelable templates. To finalize the authentication process, these fused tested cancelable
templates are matched against the stored fused cancelable template for the purported
individual, culminating in the authentication decision.

Decision-level fusion
The third proposed scheme’s main idea depends on applying the majority voting
mechanism to the final decisions of each cancelable GANmodel for each instance (two iris
and face). This approach aims to improve overall decision accuracy and reliability by
leveraging the diversity of information provided by different sources. Each instance
evaluates its input data using this approach and makes decisions. These individual
decisions are then aggregated or “voted” upon to determine the outcome. Each instance’s
decision is considered as a “vote”. The decision that receives the most votes is selected as
the final decision. As shown in Fig. 4, the method works by first training three independent
GAN models. The models are trained using the same algorithm described earlier. During
the authentication, the proposed system operates with the requirement of verified samples
originating from both the left and right iris and face instances.

As depicted in Fig. 5, each tested template is directed to its corresponding generator
networks as input. This process involves utilizing the weight values stored for each
generator network associated with iris instances. After being transformed into a binary
format, each generator network’s outcome is subjected to an X-OR operation with the
respective tested sample of the trait instance. Each tested cancelable template is matched
against the stored cancelable template for its instance model, leading to an authentication

Figure 3 The multimodal cancelable GAN-based fusion scheme (authentication phase).
Full-size DOI: 10.7717/peerj-cs.3360/fig-3

Tarek et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3360 13/28

http://dx.doi.org/10.7717/peerj-cs.3360/fig-3
http://dx.doi.org/10.7717/peerj-cs.3360
https://peerj.com/computer-science/


Figure 4 The multimodal cancellable decision fusion scheme (enrollment phase).
Full-size DOI: 10.7717/peerj-cs.3360/fig-4

Figure 5 The multimodal cancelable decision fusion scheme (authentication phase).
Full-size DOI: 10.7717/peerj-cs.3360/fig-5
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decision for each instance model. Finally, the final authentication decision is formed from
the majority voting decision for the three-authentication decision for each instance model.
The steps for the Decision-Level fusion scheme are illustrated in Scheme 2.

Data preprocessing
Experiments were conducted employing four publicly available datasets (CASIA, MMU1,
ORL, and FERET), which are anonymized benchmark datasets provided for research
purposes and were used in strict accordance with their usage policies and established
ethical guidelines. Institute of Automation, Chinese Academy of Sciences (CASIA) (2020)
comprises 146 subjects, each with left and right eye instances. AT&T Laboratories
Cambridge (2001) comprises 400 images encompassing 40 distinct individuals. MMU1
(2008) contains 460 iris images for 46 subjects; each individual has five images for the left
and right iris, respectively. National Institute of Standards and Technology (NIST) (2003)
has 994 subjects; each individual has sets of five to 11 images. While each face database
does not have corresponding iris images, iris samples are paired with an arbitrary (but
fixed) face sample. In this study, 40 randomly selected subjects from the CASIA-V3-
Internal iris dataset are paired with the ORL face dataset. At the same time, a randomly
selected 40 subjects from the MMU1 iris dataset are paired with the FERET face dataset.
This pairing strategy is justified by the fact that all samples originate from publicly
available benchmark datasets widely used in biometric research. While the samples do not
belong to the same individuals across datasets, their fusion enables a realistic simulation of
multimodal authentication systems, where complementary modalities are combined to
strengthen security and robustness. To mitigate concerns of dataset-induced bias, we
ensured balanced sampling across genders and age groups where possible, and
performance was evaluated on each dataset independently as well as in fused settings. For
iris datasets, iris images were first subject to segmentation, normalization, and encoding
into binary iris codes using the Libron Mask code (Libor & Peter, 2003). The Libron Mask
algorithm is a complex sequence of procedures that results first from the Hough circular
Transform and later Hough Transform linear for iris separation and identification, and
after signal standardization by implementing Daugman’s rubber sheet method, and,
finally, conversion of the iris area in 1D Log-Gabor filtering and phase quantization, hence,
embedding them into binary iris templates. Every image of each iris template went through
the conversion into the same binary iris code vector, which was then utilized to feed the
generator and the discriminator networks. On the other hand, binary facial features were
extracted for face datasets (Turk & Pentland, 1991) utilizing an optimized genetic
algorithm transformation (Hamouda et al., 2016). During the experiments, the samples are
divided into 60% for the training set and 40% for the test set. The generator and
discriminator networks have the same number of neurons in the input layer, while the
discriminator network is crowded with a single neuron within its output layer. In each
fused scheme, random weight initialization was applied to the generator and discriminator
networks. The algorithms have been implemented using MATLAB R2023a (The
MathWorks Inc., Natick, MA, USA). All the experiments are performed on the same
computing infrastructure with attributes shown in Table 3.
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Evaluation methods
In biometric authentication systems, three critical performance metrics are the Equal Error
Rate (EER), False Acceptance Rate (FAR), False Rejection Rate (FRR). FAR represents the
probability that an unauthorized individual is incorrectly accepted by the system,
indicating a security vulnerability. Conversely, FRR measures the likelihood that a
legitimate user is mistakenly rejected, leading to usability concerns. These rates are
inversely related; reducing one typically increases the other. The EER is the point at which
FAR and FRR are equal, serving as a balanced measure of system performance. A lower
EER signifies a more accurate and reliable biometric system, making it a widely used metric
for comparing different authentication methods (Jain, Ross & Prabhakar, 2004). Equations
(12), (13), and (14) define the False Acceptance Rate (FAR), False Rejection Rate (FRR),
and Equal Error Rate (EER), respectively, True Positive (TP) refers to correctly accepted
genuine users, while True Negative (TN) represents correctly rejected impostors. False
Positive (FP) occurs when an unauthorized individual is mistakenly accepted, leading to a
security breach. Conversely, False Negative (FN) happens when a legitimate user is
wrongly rejected, affecting system usability.

FAR ¼ FP
FP þ TN

(12)

FRR ¼ FN
FN þ TP

(13)

EER ¼ FARþ FRR
2

: (14)

In parallel, performance can also be assessed using precision, recall, and the F1-score.
Precision reflects the proportion of correctly identified positive instances among all
positive predictions, while recall (or sensitivity) captures the proportion of actual positives
correctly recognized by the system. The F1-score, computed as the harmonic mean of
precision and recall, integrates these two complementary measures into a single metric.
This ensures that the evaluation considers both predictive accuracy and completeness,
thereby offering a robust assessment of system performance without bias toward one
measure at the expense of the other. Equations (15), (16), and (17) define the precision,
recall, and F1-score, respectively.

Precision ¼ TP
FP þ TP

(15)

Recall ¼ TP
FN þ TP

(16)

F1-score ¼ 2 � Precision � Recall
Precisionþ Recall

: (17)

Table 3 Attributes of used machine.

Processor AMD Ryzen 7, CPU 3.20 GHz

Memory 16 GB

Operating system Windows 11
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RESULTS
In this section, we present the substantiation of how our proposed approaches significantly
enhance recognition performance, highlighting their primary contribution.

Experimental setup
Identifying the optimal combination of control parameters (hidden layer size for networks,
learning rate, and number of training epochs) requires an extensive number of possible
combinations. While optimization techniques could efficiently identify the best parameter
configuration for GAN; this work mainly focuses on utilizing GAN to protect
multibiometric schemes. Four preliminary experiments were conducted to investigate the
effect of GAN control parameters. The first experiment (Expa) explores the effect of hidden
layer size for generator networks while fixing other parameters (h2 = 32, N = 50, and alpha
= 0.00001). The second experiment (Expb) explores the effect of hidden layer size for
discriminator networks while fixing other parameters (h1 = 32, N = 50, and alpha=
0.00001). The third experiment (Expc) explorers the effect of the number of training
epochs while fixing other parameters (h1 = 32, h2 = 32, and alpha = 0.00001). Eventually,
the fourth experiment (Expd) explores the effect of the learning rate while fixing other
parameters (h1 = 32, h2 = 32, and N = 50). Table 4 shows the effect of the GAN control
parameter on EER. As shown in Table 4, the best-found performance is achieved when h1
equals 32, h2 equals 32, N equals 50, and alpha equals 0.00001. The values of these control
parameters are fixed for the following experiments. The experimental parameters settings
are presented in Table 5.

Each GAN model is designed with a lightweight yet effective architecture tailored for
binary biometric feature transformation. The generator consists of three fully connected
layers: an input layer, a hidden layer activated by the Rectified Linear Unit (ReLU)
function, and an output layer of the same size as the input, activated using the Sigmoid
function to ensure binary-like outputs. The discriminator is composed also of one hidden
using Leaky ReLU activation, followed by a final Sigmoid layer that outputs the probability
of the input being real or generated. The model is trained with an effective batch size of 64,
a learning rate of 0.00001, Training is conducted for 50 epochs, with binary cross-entropy
as the loss function. This configuration balances computational efficiency with the ability
to learn discriminative feature transformations while avoiding overfitting.

Table 4 GAN control parameter effects on EER.

Expa Expb Expc Expd

h1 EERa h2 EERb N EERc alpha EERd

16 1.95 16 2.10 10 2.15 0.1 2.18

32 1.80 32 1.89 50 1.82 0.01 2.17

64 1.99 64 1.93 100 1.96 0.001 2.16

128 1.90 128 2.08 200 2.04 0.00001 1.92

Note:
The best-found performance is highlighted in bold.
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Figure 6 highlights the encouraging recognition accuracy demonstrated by the curves
depicting the FAR and FRR. Notably, the point of intersection between these curves
signifies the hamming distance threshold (u) employed during the verification phase. This
threshold results in a minimal EER value of 2.03% and 0.82% for the feature-level and
GAN-based fusion schemes, respectively, for CASIA and ORL datasets, where it achieves
EER values of 1.53% and 0.80% for MMU1 and FERET datasets. While the decision-level
fusion scheme, FAR and FRR are computed in terms of (the number of FN trails, the
number of FP trails, the number of TN trails, and the number of TP trail) as in Eqs. (12),
(13), and (14). The EER for the decision-level fusion scheme was 0.0297% for CASIA and
ORL datasets and 0.0313% for MMU1 and FERET datasets.

To analyze our proposed schemes further, we compared recognition accuracy against
the original unimodal with a multi-model for iris and face instances. The ROC curves are
depicted in Fig. 7 for the original iris instances represented by the left and right iris curves,
original face instances, and multimodal iris and face instances. Both schemes outperform
alternative unimodal iris/face instance models. Furthermore, Fig. 8 represents a histogram
diagram comparative assessment of recognition accuracy values against unimodal GAN
instances represented by the left and right iris, unimodal GAN face with the multimodal
iris and face proposed schemes. It can be concluded that the proposed fusion schemes
outperform alternative unimodal (iris/face) instance models. Also, it is worth noting that
the proposed feature-level fusion scheme exhibits a minor decrease in recognition accuracy
compared to the other proposed schemes. On the other hand, the decision-level fusion
scheme achieves the best recognition accuracy.

Eventually, the proposed multimodal biometric schemes are compared to recent
multimodal biometric schemes published in the literature. Table 6 shows the results of this
comparison, including the type of biometric data, the fusion type, and EER. Our proposed
schemes improve the recognition accuracy of multimodal biometric systems compared to
existing schemes. However, the feature-level fusion scheme reduces the recognition
accuracy compared to other proposed schemes. This is because of the curse of

Table 5 Experimental parameters.

Parameters Feature-level
fusion scheme

GAN-based
fusion scheme

Decision-level
fusion scheme

Number of GAN’s model 1 3 3

Feature size 19,400 9,600 (left iris GAN model)

9,600 (right iris GAN model)

200 (face GAN model)

Generator structure 19,400 × 32 × 19,400 9,600 × 32 × 9,600 (left iris GAN model)

9,600 × 32 × 9,600 (right iris GAN model)

200 × 32 × 200 (face GAN model)

Discriminator structure 19,400 × 32 × 1 9,600 × 32 × 1 (left iris GAN model)

9,600 × 32 × 1 (right iris GAN model)

200 × 32 × 1 (face GAN model)
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dimensionality, which occurs when combining features frommultiple sources create a new
feature space with much higher dimensionality than any original. This can make it
challenging to learn a good predictive model.

On the other hand, the decision-level fusion approach outperforms the other proposed
schemes, achieving a F1-score of 98.76%. This is because the classifiers are more likely to
agree on the correct prediction than to disagree. Since it operates only on final decisions
(e.g., accept/reject or 1/0), it enhances security and reduces the risk of data leakage.
Moreover, this strategy simplifies the integration of different biometric modalities or

Figure 6 FAR and FRR curves for the proposed schemes: feature-Level fusion scheme (A, C) and GAN-based fusion scheme (B, D).
Full-size DOI: 10.7717/peerj-cs.3360/fig-6
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vendor systems, which is one of the key reasons why decision-level fusion achieves higher
recognition performance compared to other fusion schemes.

The promising performance results come at a specific computational cost. The proposed
method utilizes GANs for synthetic template generation, the most computationally
intensive step. The training process has a time complexity of O (N � P � L � (h1 + h2)),
where N represents the number of training epochs, P represents the number of training
samples per epoch, L represents the length of the input biometric template, and h1 and h2
represent hidden layer sizes of generator and discriminator networks, respectively. The

Figure 7 ROC curves comparison among feature-leve fusion scheme (A, C) and GAN-based fusion scheme (B, D) compared to its unimodal
instance. Full-size DOI: 10.7717/peerj-cs.3360/fig-7
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value of L depends on the applied fusion level; it represents the sizes of iris/face data. The
feature extraction step also adds complexity; however, its computational load in
comparison to the training phase is relatively marginal, especially for larger input sizes n
and f. It is important to note that training typically occurs offline during system setup.
Although the complexity is a consideration, the improved security offered by the
multimodal, GAN-based approach outweighs the computational cost in the targeted
application. The computational time for training the schemes, are approximately 1,500 s

Figure 8 Recognition accuracy comparison among the multimodal schemes and its unimodal
instance. Full-size DOI: 10.7717/peerj-cs.3360/fig-8

Table 6 Comparative study analysis, a indicates (CASIA and ORL) datasets and b indicates (MMU1
and FERET) datasets.

Method Year Biometric modality Fusion type EER (%)

Hili et al. (2016) 2016 Face + iris Score-level 0.63

Miao et al. (2017) 2017 Face + iris Score-level 0.39

Mostafa et al. (2020) 2020 Face expressions Score-level 4.20

Sudhakar & Gavrilova (2020) 2020 Multi-instance iris + finger vein Feature-level 0.12

Balraj & Abirami (2022) 2022 Multi-instance iris Score-level 3.58

Salturk & Kahraman (2024) 2024 Signature + Face Feature-level 1.99

Proposed feature-level fusion – Multi-instance iris + face Feature-level 2.032

1.53

Proposed GAN-based fusion – Multi-instance iris + face Feature-level 0.820

0.800

Proposed decision-level fusion – Multi-instance iris + face Decision-level 0.0297

0.0313
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for the proposed feature-level fusion, 420 s for the proposed GAN-based fusion, and 300 s
for the proposed decision-level fusion.

DISCUSSION
From a security standpoint, the proposed multimodal cancelable fusion schemes are
regarded as secure schemes if they meet the following criteria:

Recoverability, diversity, and unlinkability: Recoverability is the ability to generate
multiple versions of a cancelable template from the same original biometric data. The
proposed schemes address this by introducing a new salting key based on a random
permutation of the biometric data. Because this permutation process has many possible
combinations, it allows us to create variations of the salting key for a single person. The
recoverability property is fulfilled with a total number of different salting keys equals (2n +
f)! for the first proposed scheme and (n! � n! � f!) for the second and third proposed
schemes, where n and f represent the iris and face feature sizes, respectively. The number of
possible permutations grows very quickly as the size of the biometric data increases. This
vast number guarantees recoverability. By changing the salting key, each user’s template
becomes unique and unpredictable, making it harder for attackers to exploit (diversity)
and cannot be linked together for the same user (unlinkability).

Non-invertibility: The schemes are non-invertible when the original characteristics of the
biometric instance cannot be deduced from the parameters stored in the authentication
system database. For the proposed schemes, these parameters are the weight values of the
generators and the stored cancellable template. Prior mathematical analysis in Tarek, Ouda
& Hamza (2016) has established that recovering the input or output of a neural network
model using only the network’s weights is computationally challenging. Consequently, the
final stored cancelable template results from the X-OR operation involving a binarized
version of the network generator’s output and another template. This design ensures no
direct stored information regarding the inputs or outputs of the GAN networks.
Furthermore, the inherent irreversibility property of the XOR function, which prevents the
retrieval of its inputs based only on its output, significantly hampers any potential
attacker’s ability to computationally recover the network generator’s inputs (e.g., the mean
of input biometric templates) using the stored cancelable template. Consequently, the
proposed schemes adhere to the non-invertibility property. This compliance stems from
the irreversible nature of the stored network weights, which makes it arduous to deduce the
exact network input or output, and the irreversibility inherent to the XOR process makes it
exceptionally difficult to unveil its inputs using only the cancellable template. Moreover,
experimental evaluation shows that attempting to reconstruct the original biometric from
the stored cancelable templates results in an average reconstruction error above 95%,
confirming that the stored data does not reveal meaningful information about the original
inputs.

Resistance to pre-image and correlation attacks: A pre-image attack involves crafting
synthetic biometric features based on the parameters stored in a biometric system
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database, aiming to pass them off as genuine features for authentication (Tarek, Ouda &
Hamza, 2017). As previously mentioned, the stored parameters within the proposed
schemes are effectively useless to potential attackers. Consequently, attempting to
construct pre-image biometric features would prove unsuccessful. Thus, the pre-image
attack becomes computationally daunting, similar to a brute force attack. The attacker
would require 2(2n + f) trials to generate a disclosed biometric feature in the feature-level
fusion scheme and 2(2n + 2n + f) trials in the GAN-based and decision-level fusion schemes.
Consequently, attacking a biometric system with a larger feature size would be even more
challenging. On the other hand, a correlation attack seeks to recover the original biometric
template by correlating various cancelable templates derived from the same biometric
traits (Cai & Jiankun, 2014). As previously explained, the schemes ensure distinct
unlinkable cancelable templates for the same biometric instances across diverse biometric
systems through distinct permutations for feature instances and distinct initializations of
GAN networks’ weights. In conclusion, the proposed fusion schemes are secure against
various attack types. To further support unlinkability, we computed correlation scores
between cancelable templates generated from the same biometric under different
permutations and GAN initializations. The results showed near-zero correlation values,
demonstrating that the templates cannot be linked back to the same user across systems.

Real-world applications and operational considerations
This subsection discusses the possible practical implementations of the proposed
multimodal user authentication schemes. In addition, the operational aspects of
implementation are analyzed. The introduced technology is very convenient for real-life
applications requiring robust and reliable security. It can be summarized as follows:

. Access control systems: In high-security environments (e.g., data centers, government
buildings, and research laboratories), multimodal biometric systems are heavily
required. The proposed method can contribute to developing access control systems by
making them more secure, private, user-friendly, and flexible. The irreversible templates
generated by GANs make forgery much harder for fraudsters. In addition, the system
ensures users’ privacy as it does not save the original biometric data. Eventually, the
multimodal features will make biometric recognition user-friendly, even with lighting or
pose changes.

. Border security: Accurate and secure identification of persons is a critical part of any
border security application. The proposed method can be helpful for border control as it
would allow border control to guarantee privacy. The advantage of using multiple
modalities and synthetic templates will significantly limit the risk of unauthorized access
and increase accuracy. Furthermore, privacy issues are addressed as the system does not
store original biometric data.

. Law enforcement: Law enforcement situations often require robust and spoof-resistant
identification. Law enforcement personnel can use the proposed method to secure
authentication using multimodal biometrics with synthetic templates. Additionally, the
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proposed method can be used for accurate identification of suspects in sensitive
situations.

Despite the mentioned benefits, the proposed method encounters some implementation
operational issues, such as computational cost, data collection privacy, and system
integration. The training phase of the proposed GAN-based models can be too
computationally intense for real-world-based applications. When it happens during offline
system setup, this issue can be resolved through cloud training offering that reduces any
processing onboard. Furthermore, model optimization and resource reduction, for
instance, could be used along the way. On the one hand, consent should be obtained for
data collection and anonymization of GAN training. However, this problem may be
overcome by establishing rigorous user consent procedures for collecting biometric data.
In addition, differential privacy methods for anonymity in the data used for training
should be used. Eventually, integrating the proposed technique with current security
programs could require further improvement. The integration problem can be overcome
with modularity to allow future integration and cooperation with security system
manufacturers on integration protocol development. The advantages of security and
privacy are the main focus of this research. However, multimodal biometrics with
enhanced efficiency and robustness may also bring economic benefits and cost savings in
the future for the companies that employ this technology.

CONCLUSIONS
This article introduces keyless multimodal cancelable biometrics. Three fusion-level
schemes are presented: fusion at the feature level for the first scheme, GAN-based level for
the second, and the decision level for the third. The generative adversarial network is
adopted as a cancelable transformation function to secure the biometrics data.
Furthermore, the schemes employ a random permutation salting key extracted from the
input biometric data, eliminating the need for external storage of keys and avoiding
possible security breaches. The proposed method effectively tackles various security
challenges of biometric salting methods, such as non-invertibility, recoverability, and
diversity. In addition, their resistance to pre-image and correlation attacks is also
addressed. Experimental simulations based on several iris and face datasets show
promising recognition performance for the proposed multimodal schemes compared to
the unimodal schemes. The slight decrease in accuracy observed from the feature-level
fusion scheme, compared to the GAN-based and decision-level fusion schemes, is
considered acceptable, given the overall performance improvement. However, despite
these advantages, the proposed system has certain limitations. The computational
complexity introduced by the GAN-based transformation may impact real-time
performance, making it less suitable for resource-constrained environments. Additionally,
while the system demonstrates improved security, its robustness against sophisticated
adversarial attacks requires further investigation.

Future work will focus on several directions. Comprehensive empirical simulations of
adversarial and correlation attacks will be conducted to further assess robustness under
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practical scenarios. Strategies for scaling the approach to efficiently handle significantly
larger datasets will also be explored, facilitating deployment in real-world biometric
systems. While the implementation of optimization methods, such as pruned or
lightweight generator architectures, is beyond the scope of the current study, we recognize
their potential to reduce computational overhead. These strategies are therefore
highlighted as a future research direction, aimed at enabling deployment in
resource-constrained environments. While these studies are extensive and beyond the
scope of the current work, they are considered essential for a dedicated future
investigation.
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