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ABSTRACT

Power grids, as critical cyber-physical systems, face increasing threats from
adversarial attacks that can compromise their operational integrity. This article
introduces a novel cascading policy learning framework that leverages a sequential
application of three deep reinforcement learning algorithms to bolster the power
grid’s resilience. The framework implements a three-stage cascading approach:
initially employing Proximal Policy Optimization to establish stable policy
foundations, subsequently applying Trust Region Policy Optimization to ensure
mathematically rigorous policy updates while maintaining performance bounds, and
finally utilizing Advantage Actor-Critic to minimize policy gradient variance and
optimize convergence. This sequential integration creates a robust control policy that
progressively refines decision-making capabilities at each stage. Experimental
validation in a simulated power grid environment evidences superior performance,
with the framework achieving 84% success in maintaining continuous grid
functionality for 24 h under bus-tripping attacks, exceeding baseline approaches by a
considerable margin. Results confirm that this multi-stage learning strategy
effectively amplifies convergence speed, maximizes cumulative rewards, and
strengthens power grid resilience against cyber-physical threats.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Security and Privacy,
Neural Networks

Keywords Cyber-physical systems, Security, Deep reinforcement learning, Cascading policy
learning framework (CPLF), Advantage actor-critic (A2C), Trust region policy optimization
(TRPO), Proximal policy optimization (PPO)

INTRODUCTION

The evolution of power grids into critical cyber-physical systems has created infrastructure
whose failure can cascade across entire societies. Yet these systems now confront an
unprecedented convergence of cyber threats (Krause et al., 2021; Yohanandhan et al.,
2020), physical vulnerabilities (Islam, Baig ¢» Zeadally, 2019; Paul et al., 2021), and natural
disasters (Mohamed et al., 2019; Bouramdane, 2024) that traditional management
approaches cannot adequately handle. Traditional grid management approaches are
inadequate for interdependent sequential decisions, especially when solving dynamic
security challenges. Artificial intelligence techniques yield a promising solution to tackle
these challenges. In particular, recent advances in machine learning, such as deep
reinforcement learning, reshape the research landscape for power grid control.
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Deep reinforcement learning (DRL), a subset of reinforcement learning (RL) that
employs deep neural networks, has successfully optimized fault detection, load balancing,
and real-time control systems (Belhadi et al., 2021; Nakabi ¢ Toivanen, 2021; Al-Saadi,
Al-Greer & Short, 2023). RL techniques also have found widespread application in
bolstering the resilience of power grid systems (Ernst, Glavic ¢» Wehenkel, 2004; Lan et al.,
2020; Subramanian et al., 2021; Chauhan, Baranwal & Basumatary, 2023), which has a
tangible operational impact. These include maintaining a continuous electricity supply to
vital infrastructure, mitigating the ramifications of natural disasters, and safeguarding
against cyber-attacks (Gautam, 2023). However, current approaches suffer from several
limitations, including the high-dimensional nature of decision-making processes and the
inability of traditional methods to adapt to dynamic and adversarial environments
(Zhu et al., 2014; Xie et al., 2021).

To investigate DRL’s practical applications in optimizing power grid management
under targeted attacks, we utilize the Grid2Op platform as a powerful testbed (Donnot,
2020). Within this context, adversarial attacks in cyber-physical systems refer to deliberate
actions by malicious actors to disrupt normal system operations through manipulation of
control signals, data corruption, or direct physical compromise. In power grids, such
attacks typically manifest as line-tripping events, load manipulation, or false data injection
that can jeopardize system stability and trigger cascading failures and widespread
blackouts.

Understanding the grid’s capacity to handle such threats requires distinguishing
between two fundamental concepts. Grid robustness represents the power grid’s inherent
ability to maintain stable operation and resist damage under normal variations, expected
disturbances, and bounded perturbations without significant performance degradation or
requiring adaptation. It focuses on static tolerance thresholds and the capacity to absorb
disruptions while keeping key operational parameters within safe limits. Building upon
this foundation, grid resilience encompasses the comprehensive ability of the power grid to
withstand, adapt to, and rapidly recover from major adverse events, including evolving
targeted attacks and unexpected disruptions, while maintaining critical functions.
Resilience incorporates dynamic response capabilities, adaptive recovery mechanisms, and
sequential corrective actions that prevent cascading failures and ensure prompt restoration
to stable operational states, thereby minimizing the duration and impact of service
interruptions. The key distinction lies in the fact that robustness emphasizes static
resistance and tolerance without adaptation. While resilience encompasses robustness, it
also extends to include dynamic adaptation, recovery processes, and the ability to learn
from and respond to evolving threats through active reconfiguration and corrective
measures. This conceptual framework is particularly relevant in our DRL approach, where
agents must not only withstand initial attacks (robustness) but also demonstrate resilience
by taking sequential adaptive actions to reconfigure the grid and prevent system-wide
failures.

In this work, we propose a novel framework to fortify the resilience of power grid
systems. This framework utilizes a cascading policy that combines several deep
reinforcement learning techniques, integrating Advantage Actor-Critic (A2C), Trust
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Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO). As a
result, this approach improves the resilience of power grid systems through three key
contributions:

1. Novel Cascading Policy Learning Framework (Methodology): We introduce a
three-stage sequential training methodology that synthesizes A2C, TRPO, and PPO
techniques through a theoretical knowledge transfer mechanism, enabling progressive
policy improvement and adaptive decision-making in dynamic grid scenarios under
adversarial conditions.

2. Comprehensive Empirical Validation (Experimental Results and Analysis): We
provide systematic experimental evaluation demonstrating superior performance over
single-algorithm and dual-stage baseline approaches, including ablation studies across
all six algorithmic permutations and statistical significance testing using 100 adversarial
scenarios on the Grid2Op platform.

3. Open-Source Implementation and Full Reproducibility (Code Availability): We
deliver a complete, permanent, and version-pinned open-source release including
source code, environment configurations, hyperparameter settings, trained model
weights, and evaluation scripts to ensure full reproducibility and foster future research
by the community.

The remainder of this article is as follows: ‘Related Works’ presents related works that
focus on using RL techniques to improve the resilience of power grids. Subsequently,
‘Methodology’ introduces the proposed framework. ‘Experimental Results and Analysis’
then presents the results, including a description of the simulated environment, the
experimental setup, implementation details, and performance analysis. ‘Discussion’
discusses the results, and ‘Conclusion’ concludes the article.

RELATED WORKS

The evolution of power grid management has progressed through distinct methodological
paradigms, each contributing valuable insights while revealing specific constraints that
motivate our framework.

Historically, conventional power grid control has relied primarily on model-based
approaches such as Optimal Power Flow (OPF) and Model Predictive Control (MPC)
(Faulwasser et al., 2018; Diab, Abdelhamid ¢ Sultan, 2024), which have maintained
dominance in industrial applications due to their mathematical rigor and proven
performance under well-characterized operating conditions. These approaches excel when
system dynamics are well understood and operating conditions remain within the
predicted parameters, providing deterministic solutions with established theoretical
guarantees. However, these model-based approaches encounter elemental restrictions
when confronting modern grid challenges, particularly in adversarial scenarios. Their
reliance on accurate system models becomes a critical vulnerability when encountering
unforeseen, fast-acting attacks that exploit non-linear system behaviors or manipulate the
very sensors upon which these models depend. The computational requirements for
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solving non-linear optimization problems in real-time further constrain their applicability
in dynamic threat environments where rapid response is essential. Most critically, classical
approaches struggle with the speed and uncertainty characteristic of adversarial scenarios,
as they assume system behavior follows predictable patterns that targeted attacks
deliberately violate.

Recognizing the drawbacks of model-based methods, researchers started exploring
reinforcement learning as an alternative paradigm for learning control policies directly
from system interactions without requiring explicit models. Ernst, Glavic ¢» Wehenkel
(2004) pioneered the use of RL in power systems, investigating its capability as a stability
control framework and establishing RL’s potential for handling uncertainties in dynamic
power system environments. This foundational research revealed that agents could adapt
to changing conditions through experience, laying the groundwork for subsequent
developments in the field. Building upon this foundation, Lan et al. (2020) advanced the
methodology by introducing a dueling deep Q-network (Dueling DQN) to maximize
available transfer capacity through optimal topology control. Their approach incorporated
imitation learning for initial policy generation and guided exploration for training,
showing improved performance over conventional methods in controlled scenarios.
Despite these promising results, early RL approaches remained constrained by severe
bottlenecks. Ernst, Glavic & Wehenkel’s (2004) work was limited to offline learning
scenarios, which proved impractical for real-time grid management. While Lan et al’s
(2020) methodology required extensive pre-training data, it caused consequential
impediments in dynamic environments where historical patterns may not reflect
current conditions. Subramanian et al. (2021) further investigated simplified DRL
approaches using cross-entropy methods for power flow control, establishing baseline
performance metrics while revealing the inherent trade-offs between computational
simplicity and scalability to large-scale grid systems. Yet, translating this to practice was
difficult due to poor training efficiency, high sample complexity, and a lack of stability
guarantees.

As the field matured, researchers developed more engineered DRL architectures to
address the drawbacks of early approaches. The Learning to Run a Power Network
(L2RPN) challenge, introduced by Marot et al. (2020), established standardized
frameworks for evaluating RL approaches in power grid topology control, focusing on grid
capacity optimization through bus reconfigurations. This initiative catalyzed noteworthy
research progress and fostered systematic comparison of different methodologies.
Subsequent work by Lehina et al. (2023) compared rule-based agents with PPO-based
approaches (Schulman et al., 2017), revealing important behavioral patterns across
different operational scenarios. Chauhan, Baranwal ¢» Basumatary (2023) built upon these
findings through PowRL, combining heuristic approaches with RL for topology
optimization while maintaining robust operation under uncertain conditions. Dorfer et al.
(2022) proposed AlphaZero-based agents (Silver et al., 2018) for topology
reconfiguration, illustrating cost-effective alternatives to classical congestion
management. These developments showed that state-of-the-art DRL architectures could
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achieve superior performance in grid optimization tasks, though they typically relied on
single-algorithm paradigms that inherited the inherent constraints of their chosen
approach.

Addressing the growing threat landscape, recent research has explored adversarial
learning frameworks specifically designed for the security of the power grid. Chen, Nguyen
¢ Hassanaly (2024) developed a novel adversarial multi-agent reinforcement learning
(MARL) framework for detecting evolving false data injection attacks, employing
competing attacker and defender agents in continuous learning environments. Their
defender agent, implemented as a deep Q-network, achieved 98.7% detection accuracy for
previously unseen FDIAs while maintaining sub-200 ms detection latency, validating the
potential of adversarial training for cybersecurity applications. Similarly, Mukherjee et al.
(2023) introduced federated reinforcement learning methodologies for amplifying cyber
resiliency in networked microgrids, developing multi-agent federated Soft Actor-Critic
algorithms that address data-sharing concerns while optimizing microgrid
interconnectedness. These approaches represented tangible advances in applying RL to
adversarial scenarios, showing that agents could learn to detect and respond to specific
attack patterns through exposure during training. However, while these adversarial
frameworks excel at detecting and countering the specific threat models their agents
learned to counter, they are limited by critical bottlenecks in generalizability. Their
effectiveness remains tied to the predefined adversarial scenarios encountered during
training, potentially leaving systems vulnerable to novel attack methodologies that
differ from training distributions. This specificity-generalization trade-off
represents a persistent challenge in adversarial learning for critical infrastructure such as
power grids.

Analysis of existing methodologies reveals that individual RL algorithms, while
evidencing promise, suffer from specific constraints when applied in isolation to power
grid control. PPO-based approaches often experience initial instability during the crucial
early learning phases, potentially compromising system safety during policy development.
TRPO provides theoretical guarantees for monotonic improvement but incurs substantial
computational overhead that hampers real-time deployment in large-scale systems. A2C
offers computational efficiency but lacks the stability guarantees necessary for critical
infrastructure applications. Existing approaches typically commit to a single algorithm,
inheriting its specific weaknesses without mechanisms to mitigate them. Furthermore,
current frameworks lack effective transfer learning mechanisms between different
learning stages or algorithmic components. Each algorithm trains from scratch or with
limited initialization, resulting in inefficient policy development and prolonged learning
curves. This inefficiency is particularly problematic in power grid applications where
extensive training on live systems is impractical and simulation-to-reality gaps can
compromise performance. The adversarial learning approaches discussed above, while
advancing the state-of-the-art in attack detection, exhibit a key shortcoming in their
focus on specific threat models. Game-theoretic methods, though theoretically sound,
suffer from computational complexity that prevents real-time deployment in
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Table 1 Prior research on DRL applications in resilient power grid management.

Study Main contribution Limitations

Faulwasser et al. (2018), Diab, Abdelhamid ¢ Model-based control (OPF, MPC) for grid Model-dependent; computationally expensive; vulnerable

Sultan (2024) optimization to adversarial attacks
Ernst, Glavic & Wehenkel (2004) First RL framework for power stability =~ Limited to offline learning scenarios
Lan et al. (2020) Dueling DQN with imitation learning Requires extensive pre-training data
Subramanian et al. (2021) Cross-entropy method for topology Constrained action space
control

Chauhan, Baranwal & Basumatary (2023) ~ PowRL with heuristic-guided learning Arduous implementation requirements

Dorfer et al. (2022) AlphaZero for congestion management  High computational overhead

Lehna et al. (2023) Rule-based and PPO-based approaches  Limited novel methodological advances

Marot et al. (2021) DRL framework for N-1 contingency Limited grid generalization

Chen, Nguyen & Hassanaly (2024) Adversarial MARL for FDIA detection  Cannot guarantee detection of all FDIA variants

Mukherjee et al. (2023) Federated RL for microgrid cyber Training instability and limited attack scenarios
resilience

large-scale systems. More critically, approaches optimized for detecting particular attack
types struggle to generalize to diverse or evolving threat landscapes without extensive
retraining.

Table 1 provides a comprehensive comparison of existing approaches in DRL-based
power grid management, highlighting their key contributions and inherent limitations that
motivate our cascading framework design.

This comprehensive analysis reveals three critical research gaps that existing
methodologies fail to address systematically:

1. Limited integration of multiple learning paradigms: Current approaches typically
rely on single RL algorithms, failing to leverage the complementary strengths of
different learning methodologies or provide mechanisms to compensate for individual
algorithmic weaknesses.

2. Lack of systematic knowledge transfer: Existing frameworks lack effective transfer
learning between different algorithmic stages or training phases, resulting in inefficient
policy development, prolonged training times, and suboptimal performance across
diverse operating conditions.

3. Insufficient generalization for adversarial scenarios: While recent work addresses
specific attack types through adversarial training or detection mechanisms, no existing
framework provides comprehensive operational resilience against diverse, evolving
threat landscapes without requiring extensive retraining or attack-specific adaptations.
Current approaches focus on identifying and countering specific threats rather than
maintaining stable operations regardless of the origin of disruption.

These gaps collectively mandate the development of a unified framework that
systematically integrates multiple learning paradigms, supports efficient knowledge
transfer across training stages, and develops general control policies that maintain grid
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stability under diverse adversarial conditions without requiring attack-specific

customization.

METHODOLOGY
The Cascading Policy Learning Framework (CPLF), depicted in Fig. 1, introduces a novel

sequential training approach that leverages the complementary strengths of multiple DRL

algorithms within a simulated power grid environment. This framework systematically

unifies three state-of-the-art DRL algorithms to develop a robust power grid control policy:

Proximal Policy Optimization (Schulman et al., 2017), Trust Region Policy Optimization
(Schulman, 2015), and Advantage Actor-Critic (Mnih, 2016).

Theoretical foundation of cascading knowledge transfer

The CPLF consists of three main steps that implement progressive knowledge distillation,

where each algorithm acts as a teacher for the subsequent one, following the established

teacher-student paradigm (Hinton, 2015). This cascading approach goes beyond sequential
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execution by embedding knowledge transfer as a core design feature. From a transfer
learning perspective, the framework cultivates adaptive policies for increasingly dynamic
grid scenarios, with the knowledge accumulated in earlier stages informing the learning
process of subsequent algorithms.

The mathematical foundation of this cascading approach lends itself to formalization
through the lens of transfer learning. Let 0,, 0,, and 0; represent the parameter sets for
PPO, TRPO, and A2C, respectively. The transfer process follows: Hgo) = Hgf) and

9&0) = Hg ) where the superscripts (0) and (f) denote initial and final parameter states. This

sequential inheritance allows each stage to leverage the knowledge gained from previous

stages, while also applying its distinct optimization constraints. At each stage transition, we

transfer the complete actor and critic network parameters (weights and biases) but

reinitialize the optimizer state. This design choice allows each algorithm’s distinct

optimization dynamics to take full effect while preserving the learned control strategy.
Hence, the three sequential stages are:

1. Initial policy development: Proximal Policy Optimization establishes stable baseline
behavior through its clipped surrogate objective function:

LCLIP(B) =E, [min(n(@)zz\t, clip(ri(0),1 —¢,1 + S)At)]

with € = 0.2 constraining policy updates. This stability is pivotal for creating a robust
initial policy within the highly interconnected power grid environment. The initial PPO
stage then acts as a foundational teacher, establishing stable behavioral patterns.

2. Policy fine-tuning: Trust Region Policy Optimization implements mathematically
rigorous updates by enforcing Kullback-Leibler (KL) divergence constraints, a statistical
measure that quantifies the difference between two probability distributions, building
upon PPO’s trained policy network weights:

[ mo(a | st)

max E A;| subjectto Dyp(mg,,,mg) < 0
t n(}old(at | St) t] ) KL( Oora» 9) S

0

with 0 = 0.01 sustaining policy stability. This constraint guarantees that the policy
variance reduction preserves the useful policy patterns learned in the initial stage while
optimizing for unstable grid scenarios, particularly those involving multiple concurrent
contingencies or rapid load fluctuations. TRPO then hones these patterns, leveraging its
trust region approach to deliver robust policy improvements.

3. Final optimization: Advantage Actor-Critic further optimizes the policy using a
learned value function baseline, initialized with TRPO’s trained policy network weights:

L*€(0) = Ey[logmg(a; | s:)(R, — V(s;)) + aH (7))

with V(s;) normalizing returns across states. This approach balances exploration and
exploitation, normalizing returns across different grid states and resulting in more
precise policy improvements, primarily in scenarios with diverse load patterns and grid
topologies.
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Algorithm 1 Cascading policy learning framework.

Input: Environment &, PPO iterations Nppo, TRPO iterations Nygpo, A2C iterations Nasc
Initialize: PPO, TRPO, A2C parameters
Output: Optimized policy 7},
/I Single Algorithm Training Phase
Initialize 7" randomly
for iteration = 1 to Nppp do
Collect trajectories using current policy 75"
Update policy using PPO objectives
end for
/1 Policy Transfer and TRPO Training Phase
Initialize TEERPO — ngpo {Transfer learned policy}
for iteration = 1 to Nygpo do
Collect trajectories using current policy 7, "*©
Update policy using TRPO objectives with conservative updates
end for
/I Policy Transfer and A2C Fine-tuning Phase
Initialize 73°C « 73 R*C {Transfer learned policy}
for iteration = 1 to Ny, do
Collect trajectories using current policy 74*C
Update policy using A2C objectives
end for
return 7,*¢

(¢)

*
as 7,

The knowledge transfer between algorithmic stages represents a critical component of
the CPLF framework. Each transition involves the inheritance of the complete policy
network parameters, where the successor algorithm initializes its neural network weights
and biases directly from the trained predecessor model. Specifically, this transfer is
intentionally limited to the policy and value function weights and does not include the
optimizer’s state (e.g., Adam’s moments). Consequently, each algorithmic stage begins
with a re-initialized optimizer. This approach solidifies maximal knowledge retention of
the learned control strategy while allowing the distinct optimization dynamics of each
algorithm to take full effect without being constrained by the momentum of a previous
stage. The transfer process leverages the identical network architectures maintained across
all stages, allowing for seamless parameter mapping without dimensional conflicts.

The constraints of each algorithm implicitly regularize the transfer process. PPO’s
clipping mechanism (¢ = 0.2) maintains initial stability. TRPO’s KL divergence constraint
(A = 0.01) maintains learned behaviors through mathematically rigorous updates, and
A2C’s value function baseline empowers precise policy improvements by reducing
gradient variance.

Formally, the policy transfer mechanism minimizes the divergence between the source
policy Tource and target policy iarger: MingDkr (Tsource || Trarget)> Subject to performance
constraints that guarantee the target policy maintains or improves upon the performance
of the source policy. This theoretical foundation guarantees that our cascading approach
optimizes both policy performance and knowledge retention across algorithmic
transitions.

The numbered arrows in Fig. 1 illustrate the sequence of operations. Hence, arrows
(1, 3, and 5) represent the interaction of each algorithm with the environment. Arrows 2
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and 4 represent the transfer of policy network weights between successive algorithms.
Finally, arrow 6 depicts the final policy deployment by producing the optimal policy 7.
Algorithm 1 details the proposed framework.

Network architecture and data handling

Our consistent neural network architecture allows for seamless parameter transfer across
all algorithmic stages. The network features two fully connected hidden layers with 1,200
and 1,000 units, respectively, utilizing LeakyReLU activation functions with o = 0.01. This
architectural choice delivers sufficient representational capacity for the high-dimensional
state space while minimizing resource consumption. Complete neural network parameter
transfer occurs between stages, including weights and biases from the predecessor
algorithm, with no layer freezing, allowing complete adaptation while preserving learned
representations.

Hyperparameter selection followed a systematic manual tuning process informed by
values commonly reported in DRL literature. Starting from the defaults of stable-
baselines3 (Raffin et al., 2021), we iteratively adjusted the learning rates, batch sizes, and
iteration counts based on the agent’s performance on validation scenarios. While this
approach yielded stable, high-performing policies, we acknowledge that automated
hyperparameter optimization (e.g., Bayesian optimization via Optuna (Akiba et al., 2019))
could further improve performance and represents a valuable direction for future work.

The data for our experiments comes from the Grid2Op environment in a structured
format that minimizes preprocessing requirements while maintaining the ontological
integrity of power system measurements (Donnot, 2020). Data points are directly
integrated into the reinforcement learning agents without requiring transformational
procedures such as normalization or feature scaling, thus preserving their ontological
integrity. This methodological approach maintains a streamlined operational footprint
while mitigating the risk of systematic biases that might otherwise arise through data
manipulation techniques.

EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the proficiency and robustness of CPLF, we trained the agent within a
Grid20p Robustness 2020 challenge environment. The agent was trained on a mid-level
difficulty setting and then tested on the most difficult “competition level” to assess its
ability to generalize and maintain grid stability against destabilizing attacks.

Experimental setup

Grid2Op (Donnot, 2020) serves as the foundational framework for our resilient grid
control experiments. It models the power grid control dynamics as a Markov

Decision Process (MDP), which is well-suited for RL. Its compatibility with the OpenAl
Gym library (Brockman et al., 2016) further optimizes its flexibility, supporting the
development and assessment of a diverse range of control agents, including RL models,
heuristics, and optimization algorithms. We employed the Grid2Op Robustness 2020
challenge environment (Marot et al., 2020), which implements a modified subset of the
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Figure 2 A schematic shows the Grid2Op robustness 2020 challenge testbed, which modifies an IEEE 118-bus system. This environment
simulates dynamic real-world and threat scenarios. It comprises 36 substations, 59 power lines, 22 generators, and 37 loads.
Full-size K&l DOT: 10.7717/peerj-cs.3358/fig-2

Table 2 Grid20p environment configuration.

Component Specification Details

Python version 3.11.13 Programming language environment
Grid2Op version 1.12.1 Pinned for reproducibility
Backend (LightSim2Grid) 0.10.3 Fast power flow computation

ML framework Stable-Baselines3 (2.1.0) Reinforcement learning library
Deep learning backend PyTorch (2.6.0) + CUDA (12.4) For GPU-accelerated training

Base system a modified IEEE-118 36 substations, 59 lines
Observation space 765 dimensions Table 3 breakdown

Action space 66,000+ discrete actions Set line operations

Reward function Custom survival-based ‘CPLF’s reward function’ definition
Attack model Line-tripping attacks p-normalized, 4 h duration

IEEE 118-bus system and uses only traditional energy sources, as depicted in Fig. 2. This
environment comprises a total of 36 substations managing power distribution, 59

powerlines for power transmission, 22 generators supplying power, and 37 loads, including
interconnections with other grid sections represented as negative loads. Table 2 provides
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Table 3 Observations for the cascading policy learning framework.

Category Attribute Description

Temporal attributes month The present month.
day_of_week The present day of the week (Monday = 0, Sunday = 6).
day The present day of the month (1 = first day).
hour_of_day The present day’s hour (0-23).
minute_of_hour The present minute within the current hour (0-59).

Generator attributes gen_p Active power output of each generator (MW).
gen_q Reactive power output of each generator (MVar).
gen_v Voltage level at the bus linked to each generator (kV).

Load attributes load_p Active power consumption of each load (MW).
load_q Reactive power consumption of each load (MVar).
load_v Voltage level at the bus linked to each load (kV).

Powerline origin attributes p_or Active power flow at the origin end of each powerline (MW).
q_or Reactive power flow at the origin end of each powerline (MVar).
v_or Voltage level at the origin end of each powerline (kV).
a_or Current flow at the origin end of each powerline (A).

Powerline extremity attributes p_ex Active power flow at the extremity end of each powerline (MW).
q_ex Reactive power flow at the extremity end of each powerline (MVar).
v_ex Voltage level at the extremity end of each powerline (kV).
a_ex Current flow at the extremity end of each powerline (A).

Bus info rho Utilization rate of each powerline (current flow relative to thermal limit).

Topology info

Cooldowns

Maintenance

line_status
timestep_overflow
topo_vect
time_before_cooldown_line
time_before_cooldown_sub
time_next_maintenance

duration_next_maintenance

Operational status (connected or disconnected) of each powerline.
The number of timesteps a powerline has overloaded.

Bus connections for each element (load, generator, powerline ends).
Remaining timesteps before a powerline can be interacted with again.
Remaining timesteps before a substation can be interacted with again.
Timesteps until the next scheduled maintenance for each powerline.

Duration of the upcoming maintenance for each powerline.

the complete technical specifications of the experimental environment, including the

Python version, Grid2Op version, backend details, observation space dimensions, action
space size, and attack model parameters. It is worth noting that the detailed attributes of
the observation space are presented in Table 3.

Furthermore, this testbed supports a high-dimensional action space comprising over
66,000 discrete and continuous actions, allowing for end-to-end exploration and
optimization of power grid performance. It delivers rich observational data to agents,
including temporal information such as the month, day, and hour; power flow
measurements, e.g., active/reactive power, voltage, and current, at both ends of the power
lines; generator and load statistics, including active power output and voltage levels; grid
topology status, for instance, bus connections, line status, and capacity; operational
constraints, namely cooldown timers for powerlines and substations; and finally
maintenance schedules for powerlines.
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Figure 3 Power flow redistribution through bus-splitting: left panel (grid at time ?): initial grid state showing line congestion of 118 MW (red
line) exceeding operational limits due to concentrated power flows from 250 MW total generation to —250 MW aggregate load demand. Right
panel (grid at time ¢ + 1): post-intervention state after bus-splitting at the receiving substation creates parallel power flow paths, reducing maximum
line loading to 100 MW while maintaining identical generation dispatch and load consumption.  Full-size K&l DOT: 10.7717/peerj-cs.3358/fig-3

Agents can interact with this environment through two primary action categories:
“Change” operations, which toggle powerline connections and bus assignments, and “Set”
operations, which directly assign specific statuses or buses to grid components. The
powerline status (connected/disconnected) can be modified either by directly setting its
status using “set_line_status” or by assigning components to specific buses via “set_bus”,
which indirectly affects line connectivity based on topological configurations. To maintain
consistent action semantics and simplify the learning process, we customized the agent’s
action space to use “Set” actions (“set_line_status” and “set_bus”), providing deterministic
state transitions that yield more stable policy learning compared to the toggle-based
“Change” operations. These actions encompass a wide range of grid management
capabilities, including line status modification, topological alterations, power redispatch, load
curtailment, and management of storage units. This framework also supports predefined and
custom reward functions for performance evaluation, such as CloseToOverflowReward,
which penalizes states where lines approach overflow conditions, and LinesCapacityReward,
which evaluates the optimal use of line capacity.

Some environments include opponents that simulate disruptive attacks. In our
simulated environment, the adversary quasi-randomly performs line-tripping attacks.
Specifically, the adversary employs a weighted random selection mechanism where
line-tripping probabilities are proportional to their strategic importance (p-normalized),
creating realistic adversarial behavior that targets vulnerable infrastructure while
maintaining stochasticity. The attacks occur with a 24-h cooldown period and a 4-h
duration, subject to a budget constraint limiting their frequency and intensity.

For a direct comparison with trained solutions, Grid2Op supplies baseline agents. For
instance, the “RandomAgent” takes random actions, while the “ExpertAgent” uses a
greedy algorithm to streamline the overflow resolution process.

One critical challenge these agents must solve is preventing power grid capacity
overload. It can occur due to a combination of factors, such as scheduled maintenance
events, equipment faults, and malicious actions. Additionally, fluctuations in power
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demand, extreme weather conditions, and inadequate infrastructure can also exacerbate
such incidents. It is indispensable that when we train control agents, they must be capable
of proficiently managing overflow situations using the actions available. Figure 3 illustrates
a bus-splitting action in response to an overflow scenario within a simulated Grid2Op
environment. As depicted on the left side of the Fig. 3, at timestep ¢, the grid experiences
line congestion of 118 MW on the eastern transmission path (shown in red), exceeding
operational limits due to aggregate power demands of —150 and —100 MV at the load sinks.
The implemented topological action involves bus-splitting at the receiving substation,
creating parallel power flow paths. This reconfiguration at ¢ + 1, as visualized on the right
side of Fig. 3, redistributes power flows more optimally across the network, reducing
maximum line loading to 100 MW while maintaining constant generation dispatch (50,
200 MV) and load consumption patterns. The bus-splitting intervention successfully
mitigated the congestion without requiring changes to generation schedules or load
curtailment, which can be costly and detrimental to system reliability.

CPLF’s reward function
We define the composite reward function R; at timestep ¢ as a weighted linear combination
of four reward components:

R, =w 'R?Ll + Wy - R‘zgame T ws 'R;:apacity + wy .R?lert (1)

where the weight vector w = [3.0, 2.0, 1.5, 1.0] establishes a hierarchical priority structure
that emphasizes security criteria over operational efficiency.

Reward components

N-1 security criterion (R !, weight = 3.0) The N-1 reward evaluates grid resilience by
simulating single-line contingencies, a main principle of security in power system
operations. For each powerline ¢, this component computes:

RN-1(0) :f< max p,@)> (2)

ic\{0}
(0)

disconnection of line 4, and % denotes the set of all powerlines. The function f(-)

where p;’ represents the thermal loading ratio of line i following the

maps the maximum post-contingency flow to a reward value, with higher flows
yielding lower rewards. This component receives the highest weight (3.0) as
maintaining N-1 security is paramount for critical infrastructure resilience,
particularly under adversarial conditions where attackers may strategically target
vulnerable lines.

Operational stability (RS, weight = 2.0) The gameplay reward provides immediate
feedback on the agent’s operational status:

Tfailure <0 if blackout occurs
R‘;’mme = < Tyviolation = % if operational rules violated . (3)
Tnominal > 0 otherwise
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This component penalizes catastrophic failures (blackouts) and rule violations

while rewarding stable operation. The intermediate penalty for rule violations

(half the failure penalty) encourages the agent to avoid technical infractions without
treating them as severely as complete system failures. With a weight of 2.0, this
component ensures basic operational viability while remaining subordinate to security

considerations.
Line capacity management (R\**“”, weight = 1.5) The capacity reward incentivizes
efficient utilization of transmission infrastructure through a linear relationship with line
loading:

, 1 I

t
R;apacl}’ = Tmax — (Tmax — Tmin) * T mlax (4)

‘gactivel ieyaative Ii

where % ;.ive represents connected powerlines, I; is the current flow on line i, and I/"** is
its thermal limit. This formulation considers only active lines, preventing disconnected
lines from artificially inflating the reward. The linear structure (as opposed to quadratic
alternatives) provides consistent gradient signals across varying loading conditions. The
moderate weight (1.5) positions capacity optimization as important but subordinate to
security and stability.

Predictive alert mechanism (R*"', weight = 1.0) The alert reward implements a sparse,
delayed reward structure for proactive threat detection:

rfjfjfck"”t =2.0 if alert sent AND blackout within 7 steps
rf’rf?rfk"”t = —10.0 if no alert AND blackout within 7 steps

RIert = rz% =1.0 if no alert AND survival beyond 7 steps post—attack 5)
Fpin = —1.0 if alert sent BUT survival beyond 7 steps post—attack
Thonus = 1.0 if episode completed successfully
0 otherwise

where 7 represents the alert time window (typically 12 steps). This component exhibits two
critical characteristics:

 Delayed reward structure: The reward is received t timesteps after alert submission,
requiring the agent to develop temporal credit assignment capabilities.

o Sparse reward distribution: Non-zero rewards occur only during attacks and blackouts,
creating a challenging learning signal that necessitates efficient exploration strategies.

The alert mechanism encourages predictive behavior by heavily penalizing missed
threats (rPlackout — _10.0) while moderately discouraging false alarms (rjslfne = —1.0). The
asymmetric penalty structure reflects the critical nature of power grid operations, where
failing to anticipate a blackout-inducing attack is significantly more consequential than
issuing unnecessary warnings. The lowest weight (1.0) acknowledges that while predictive
capabilities enhance resilience, they remain supplementary to fundamental security and

operational requirements.
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Table 4 Key performance indicators (KPIs) for resilience evaluation.

KPI Unit Definition

Survival time Timesteps Total number of timesteps the agent maintains grid stability without blackout (max: 2,000)
Success rate Percentage (%) Proportion of scenarios where agent survives >288 timesteps (24 h)

Failure rate Percentage (%) Proportion of scenarios where agent experiences blackout before 288 timesteps

Median survival Timesteps 50th percentile of survival duration distribution across all scenarios

95th percentile survival Timesteps 95th percentile of survival duration, indicating high-end performance

Constraint violations Count Number of episodes where thermal overloads (p >1.0) persist beyond allowed duration
Performance consistency Ratio Proportion of scenarios achieving “Good” or “Excellent” performance (survival >288 timesteps)

Design rationale
The hierarchical weighting scheme [3.0,2.0, 1.5, 1.0] embodies a principled approach to
multi-objective reinforcement learning in critical infrastructure domains:

e Security-first paradigm: The highest weight on N-1 security ensures agents prioritize
grid resilience, particularly relevant when defending against adversarial attacks that
exploit contingency vulnerabilities.

« Stability as foundation: The secondary weight on operational stability prevents the
agent from pursuing aggressive optimization strategies that might compromise basic
grid functionality.

» Efficiency as refinement: The tertiary weight on capacity management encourages
resource optimization without allowing efficiency concerns to override security
imperatives.

* Prediction as enhancement: The quaternary weight on alert positions proactive threat
detection as a valuable but non-essential capability, preventing the sparse reward
structure from dominating the learning dynamics.

This composite reward function enables the CPLF framework to learn policies that
balance multiple operational objectives while maintaining the security-centric focus
essential for adversarial resilience in power grid management.

Implementation and evaluation protocol

We rigorously assess the proposed CPLF framework using a scenario-based evaluation
protocol within the Grid2Op simulation environment. Our primary evaluation metric is
the success rate. Table 4 formally defines all key performance indicators (KPIs) used
throughout our evaluation. This metric, as specified in Eq. (6), quantifies resilience as the
percentage of simulated scenarios in which agents maintain grid stability for a minimum
duration of 288 timesteps, equivalent to 24 h of continuous operation. This duration
captures a complete daily load cycle, creating a meaningful timeframe to assess the agent’s
performance across varying operational conditions, including peak and off-peak demand
periods. The 24-h evaluation window allows for observation of agent behavior under
typical fluctuations in electricity demand and traditional generation that occur throughout
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the day, establishing it as a practical benchmark for testing grid management strategies in
simulation environments.

Number of scenarios surviving > 288 timesteps
% 100%. (6)

SuccessRate = -
Total scenarios

Grid stability maintenance requires preventing both thermal overloads (p > 1.0 for
extended periods) and topological instabilities that result in disconnected loads or
unsustainable power flow distributions. The evaluation encompasses 100 distinct
adversarial test scenarios, each executing for a maximum of 2,000 timesteps with
systematically varied environmental and agent seed values to achieve methodological
robustness and reproducible results.

We implemented systematic seed management across different testing phases. The
environment evaluation utilized seeds 300-399, while algorithm-specific evaluations
employed distinct seed ranges: the PPO phase (150-249), the TRPO phase (200-299), the
A2C phase (300-399), and reference implementations (400-499). The observation space,
detailed in Table 3, included power flow metrics (P, Q, V, A) for transmission line
monitoring, generator output and load demand states, network topological configurations,
line capacity utilization coefficients (p), and temporal indicators for maintenance
scheduling and cooldown periods.

Through systematic hyperparameter optimization, we developed a neural network
architecture featuring two fully connected hidden layers with 1,200 and 1,000 units,
respectively, utilizing LeakyReLU activation functions (« = 0.01). The network
implemented a custom Actor-Critic Policy. We leveraged Stable Baselines 3 for
implementing PPO, A2C, and TRPO algorithms (Raffin et al., 2021). All experiments were
conducted on an NVIDIA Tesla P100 GPU platform. Table 5 outlines the complete set of
hyperparameters used across all algorithms in our framework (PPO, TRPO, A2C),
including network architecture specifications and algorithm-specific parameters that we
tuned to attain good performance and stable policy transfer.

Our training protocol encompassed several configurations to assess the performance of
different algorithmic combinations:

« Single algorithm training: All configurations utilized GAE-4 (4 = 0.95) for advantage
estimation:

- PPO: Trained for 16,000 iterations with a learning rate of 3 x 1074,
~ A2C: Trained for 16,000 iterations using a learning rate of 7 x 107,

— TRPO: Trained for 16,000 iterations using a learning rate of 7 x 10™*.

« Single pre-trained baselines:

- Baseline 1 (A2C — PPO): A2C was initially trained for 9,600 iterations, followed by
PPO training for 9,600, transferring the learned policy from A2C to PPO.
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Table 5 Hyperparameters for cascading policy learning framework.

Parameter PPO TRPO A2C
Number of iterations 11,200 1,600 3,200
Learning rate 3e-4 le-3 7e—4
Batch size 256 512 128
Policy network architecture

Hidden layers 2 2 2
Units per layer 1,200, 1,000 1,200, 1,000 1,200, 1,000
Activation function LeakyReLU LeakyReLU LeakyReLU
Activation (o) 0.01 0.01 0.01
Algorithm-specific parameters

Discount factor () 0.99 0.99 0.99
GAE parameter (4) 0.95 0.95 0.95
Value function coef 0.5 - 0.5
Entropy coef 0.01 - 0.01
Clip range (¢) 0.2 - -
Max. KL divergence - 0.01 -
Training configuration

Update steps 2,048 2,048 128
Minibatch size 64 64 -
Number of epochs 10 10 1
Value function updates 10 10 1
Gradient clip 0.5 0.5 0.5

- Baseline 2 (PPO — A2C): PPO trained for 9,600 iterations. Subsequently, A2C
leverages this initial policy and further fine-tunes it for 6,000, culminating in a more
stabilized policy.

- Baseline 3 (PPO — TRPO): After an initial 9,600 iterations with PPO, TRPO
continued training for 6,000 iterations, incorporating the preceding policy to achieve
greater stability.

o Double-stage cascading baselines: These configurations investigate the cumulative
effect of cascading policy knowledge through three distinct DRL algorithms to establish
ideal transfer sequences. All baselines maintain consistent neural network architectures
during knowledge transfer to sustain stable policy inheritance.

- Baseline 4 (TRPO — PPO — A2C): TRPO trains for a specified number of iterations,
then transfers its learned policy to PPO for further training. Finally, A2C fine-tunes the
resulting policy, building upon the knowledge from both preceding stages.

- Baseline 5 (A2C — PPO — TRPO): A2C initiates training and transfers its policy to
PPO for intermediate optimization. PPO then transfers the refined policy to TRPO for
final optimization.
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Figure 4 Workflow of the cascading policy learning framework (CPLF) for adversarial power grid control. The framework implements a
three-stage sequential training approach: (1) proximal policy optimization (PPO) establishes stable baseline policies over 11,200 iterations through
clipped surrogate objectives, (2) trust region policy optimization (TRPO) fine-tunes policies using KL-divergence constraints for mathematically
rigorous updates over 1,600 iterations, and (3) advantage actor-Crtici (A2C) performs final optimization with value function baselines over 3,200
iterations. Numbered arrows represent policy-environment interactions (1, 3, 5), parameter transfer between algorithms (2, 4), and final policy
deployment (6). The shared neural network architecture (two hidden layers: 1,200 and 1,000 units with LeakyReLU activation) allows for seamless
knowledge transfer across all stages. The framework interfaces with the Grid20p environment (a modified IEEE 118-bus system), featuring 36
substations, 59 transmission lines, and adversarial attack simulation. Full-size K&l DOT: 10.7717/peerj-cs.3358/fig-4

- Baseline 6 (PPO — A2C — TRPO): PPO establishes an initial policy and transfers it
to A2C for intermediate tuning. TRPO then performs the final optimization stage using
the policy parameters from A2C.

- Baseline 7 (A2C — TRPO — PPO): A2C establishes an initial policy and transfers it
to TRPO for intermediate refinement with monotonic improvement guarantees. PPO
then performs the final optimization stage using the policy inherited from TRPO.

- Baseline 8 (TRPO — A2C — PPO): TRPO initiates training to ensure stable policy
development, then transfers the policy to A2C for efficient intermediate training. A2C
transfers the refined policy to PPO for final fine-tuning and deployment.

o Framework training: Our cascading framework implements a three-stage training
process. Each stage inherits and builds upon the policy learned in previous stages, as in
Fig. 4:

- Stage 1: PPO training for 9,600 iterations to establish robust baseline policies.

- Stage 2: TRPO optimization for 1,600 iterations, delivering conservative policy
updates while maintaining performance.

- Stage 3: A2C fine-tuning for 3,200 iterations, focusing on sample-efficient policy
improvement.

The computational requirements for CPLF implementation vary vastly across training
stages. PPO training required approximately one hour on an NVIDIA Tesla P100 GPU
platform for 11,200 iterations, while TRPO’s conservative update mechanism completed
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Figure 5 Survival analysis of the cascading policy learning framework across 100 distinct adversarial
test scenarios (seed 42) on the Grid2Op robustness 2020 challenge environment (modified IEEE
118-bus system). Each point represents the total number of timesteps (0-2,000, maximum) during
which the agent successfully maintained grid stability in a single scenario under bus-tripping attacks, with
a 24-h cooldown and a 4-h duration. The horizontal red dashed line at 288 timesteps indicates the
minimum survival threshold required for success (24 h of continuous operation at 5-min intervals). The
framework achieved an 84% success rate, with 84 scenarios exceeding the threshold and many scenarios
maintaining stability beyond 1,500 timesteps, demonstrating robust resilience against adversarial attacks.

Full-size K&l DOT: 10.7717/peerj-cs.3358/fig-5

1,600 iterations in 6 h. A2C fine-tuning proved the most resource-light, requiring only 1 h
for 3,200 iterations due to its streamlined architecture and reduced batch size
requirements.

Memory usage peaked at 16 GB during TRPO training phases, while PPO and A2C
maintained more modest memory footprints of 8 and 4 GB, respectively. The training data
pipeline benefits from Grid2Op’s structured format, requiring minimal preprocessing
overhead. State normalization occurs automatically within the environment, and the
standardized observation space removes the requirement for custom feature engineering
or data transformation procedures that introduce computational bottlenecks or systematic
biases.
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Figure 6 Training progression of the cascading policy learning framework showing average survival steps across the sequential three-stage
training process on Grid2Op level 2 environment (seed 42, NVIDIA Tesla P100 GPU). Stage 1 (PPO): 11,200 iterations over 1 h, achieving
107.9 mean survival steps. Stage 2 (TRPO): 1,600 iterations over 6 h, improving to 191.1 mean steps. Stage 3 (A2C): 3,200 iterations over 1 h,
reaching 394.1 mean steps. The horizontal teal line at 288 timesteps represents the 24-h success threshold. Performance metrics represent rolling
averages over training episodes, demonstrating a progressive knowledge accumulation through sequential algorithm deployment. Total training

time: approximately 8 h.
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Performance analysis

Our empirical evaluation revealed several pronounced findings regarding the framework’s
performance. The survival analysis, depicted in Fig. 5, shows substantial variance across
scenarios, with numerous instances exceeding 1,500 timesteps of stable operation. The
visualization plots survival duration (0-2,000 timesteps) against scenario indices (0-100),
with a threshold line (presented by the red line) at 288 timesteps, establishing our
minimum success criterion.

To illustrate the contribution of each algorithmic stage to the CPLF’s performance, we
analyzed the framework’s learning progression over the entire training timeline. Figure 6
illustrates this process, plotting the average number of survival steps achieved as the
framework transitions through its three sequential stages.

The cascading process unfolds as follows:

1. Stage 1: PPO Foundation (0-11,200 timesteps) The framework begins with Proximal
Policy Optimization (PPO) to establish a stable policy foundation. As shown in Fig. 6,
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PPO steadily improves performance from a low baseline, creating a robust but modest
initial policy that reaches an average survival of 107.9 steps. This initial phase is a
prerequisite for exploring the high-dimensional action space without catastrophic
policy collapses.

2. Stage 2: TRPO (13,000-14,500 timesteps) Upon inheriting the policy from PPO, the
Trust Region Policy Optimization (TRPO) stage commences. This transition yielded an
immediate and substantial performance boost. It validates our choice of TRPO, given its
mathematically rigorous updates that optimize the existing policy within a constrained
trust region, thereby guaranteeing monotonic improvement. This stage elevates the
policy’s performance to an average of 191.1 survival steps.

3. Stage 3: A2C fine-tuning (14,500-17,500 timesteps) In the final stage, we transfer the
polished policy to the Advantage Actor-Critic agent for policy tuning. A2C’s ability to
use a learned value function baseline empowers more precise and sample-efficient
policy improvements. The agent’s performance increases in this final phase, as it
decisively and consistently exceeds the 288-timestep survival target required for success,
ultimately achieving an average of 394.1 survival steps.

This sequential, stage-wise visualization confirms that the CPLF’s superior performance
is not incidental but a direct result of its cascading design. As illustrated in the detailed
workflow presented in Fig. 4, each algorithm builds upon the distilled knowledge of its
predecessor, validating our hypothesis that sequential knowledge transfer across
complementary algorithms yields a more robust control policy for power grid resilience.
The subsequent analysis compares the final performance of this complete framework
against a range of baseline configurations across 100 adversarial scenarios. Due to
computational constraints (=8 h per training run on NVIDIA P100 GPUs), we trained
each permutation once; however, we evaluated each resulting policy across 100 diverse
random adversarial scenarios (seeds 300-399) to ensure statistical robustness of our
performance comparisons.

To quantify the individual contributions of each algorithmic component, we conducted
a complete ablation study examining the compelling performance hierarchy across
different baselines. As depicted in Fig. 7, each data point represents the mean survival
duration (0-2,000 timesteps) over 100 scenarios. Our rationale for the PPO — TRPO —
A2C sequence is grounded in algorithmic complementarity: PPO’s clipped surrogate
objective fosters stable initial policy development, which is a prerequisite for success in
high-dimensional power grid environments, TRPO’s KL divergence constraint guarantees
mathematically rigorous updates by preserving well-established policy patterns, and A2C’s
value function baseline achieves precise policy improvements through reduced gradient
variance. The results reveal clear evidence for the necessity of each element in achieving
optimal performance.

Single-algorithm baselines revealed severe limitations in managing adversarial power
grid scenarios. The Random Agent baseline and standalone PPO both achieved 0% success
rates, failing to maintain grid stability beyond the minimum threshold in any test scenario.
PPO’s failure stems from its exploration strategy, which proves inadequate for the highly
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Figure 7 Comparative performance analysis of the proposed cascading policy learning framework (CPLF) against baseline reinforcement
learning agents across different architectural configurations, where each configuration was evaluated over 100 episodes (seed 42) in a
Grid2Op power grid management environment under adversarial conditions with episodes lasting up to 2,000 timesteps. The success rate
is defined as the percentage of episodes in which an agent maintained grid stability for at least 288 timesteps (24 h) without experiencing a blackout.
The CPLF achieves an 84% success rate, significantly outperforming single-algorithm agents including proximal policy optimization (PPO: 0%),
trust region policy optimization (TRPO: 2%), and advantage actor-critic (A2C: 34%), two-stage transfers (PPO — TRPO: 39%, PPO — A2C: 43%,
A2C — PPO: 43%), and three-stage configurations (TRPO — A2C — PPO: 39%, TRPO — PPO — A2C: 40%, A2C — PPO — TRPO: 39%, PPO —
A2C — TRPO: 62%, A2C — TRPO — PPO: 63%). The progressive improvement from single-algorithm baselines (max: 34%) to two-stage transfers
(max: 43%) to three-stage configurations (max: 63%) and finally to the optimized CPLF (84%) demonstrates that sequential knowledge transfer
across complementary algorithms with optimized ordering yields superior control policies for power grid resilience.

Full-size K&l DOI: 10.7717/peerj-cs.3358/fig-7

constrained and safety-critical power grid environment. A standalone TRPO achieved only
a 2% success rate (average survival: 34.6 steps, median: 27.0 steps), demonstrating that
conservative policy updates alone are insufficient without a stable initial foundation.
Standalone A2C performed moderately better with a 34% success rate, benefiting from its
value function baseline but still lacking the robustness required for consistent
performance.

The introduction of policy transfer between algorithms resulted in meaningful
improvements, validating the utility of knowledge transfer between complementary
algorithms. The PPO — TRPO configuration achieved a 39% success rate, with an average
survival of 462.7 steps and a median of 193.0 steps, suggesting that TRPO’s conservative
optimization can build upon PPO’s foundation but remains limited without subsequent
fine-tuning. The PPO — A2C configuration reached a 43% success rate (average survival:
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469.2 steps, median: 205.5 steps), confirming the benefit of PPO’s initial policy
establishment, followed by A2C’s optimized fine-tuning capabilities.

Alternative three-stage configurations further illustrated the imperative of proper
algorithmic sequencing. The TRPO — PPO — A2C sequence achieved a 52% success rate,
with an average survival of 418.5 steps and a median of 319.0 steps. This reduction
stemmed from the TRPO’s conservative nature and proved inadequate for initial policy
exploration in the high-dimensional Grid2Op environment. A2C — PPO — TRPO
reached a 33% success rate (average survival: 350.8 steps, median: 98.5 steps), because the
unstable foundations created by A2C’s high-variance initial learning hindered subsequent
algorithms from achieving stability. PPO — A2C — TRPO achieved a 42% success rate
(average survival: 404.3 steps, median: 111.5 steps), with TRPO’s conservative adjustments
in the final position unable to fully capitalize on the A2C intermediate stage. Table 6
provides a detailed statistical analysis, including the mean, standard deviation, median,
95th percentile, coefficient of variation, and performance stability metrics for all multi-
stage configurations (statistics achieved by our solution, CPLF, are shown in bold). These
results confirm that initiating the cascade with PPO’s stable foundation is a prerequisite
and that TRPO’s conservative optimization works best as an intermediate stage rather than
as a final component.

The complete CPLF framework, which extends the knowledge transfer concept by
incorporating TRPO as an intermediate optimization stage, achieved an exceptional 84%
success rate with an average survival of 861.0 steps and a median of 786.0 steps. As shown
in Fig. 8, the framework’s robust performance is further evidenced by its superior survival
duration distribution, with the highest median survival and most consistent performance
across all scenarios. The framework’s 95th percentile survival duration of 1,957.2 steps
reflects consistent high performance across challenging scenarios, distinguishing it from
the more variable performance patterns exhibited by other configurations. This framework
leverages TRPO’s ability to deliver mathematically rigorous updates, building upon the
initial policy established by PPO and establishing a strong foundation for final tuning by
A2C. The 41-percentage-point improvement over the best two-stage configuration (PPO
— A2C: 43%) reveals that the additional architectural complexity yields meaningful
advantages in grid stability management. The progressive performance improvements
from single-algorithm (0-34%) to two-stage transfers (39-43%) and finally to the complete
CPLF framework (84%) substantiate the core premise of our cascading approach: that
sequential knowledge transfer across multiple algorithmic stages delivers markedly
superior policy development compared to simpler architectural configurations.

Figure 9 illustrates the relationship between success rate and survival duration across all
configurations, with the complete quantitative results detailed in Table 7. Our CPLF
framework uniquely occupies the optimal performance quadrant, achieving both a high
84% success rate and an extended 861-timestep survival duration, thereby establishing a
new benchmark for power grid resilience under adversarial conditions. While most other
configurations exhibit clear trade-offs between these metrics, the progressive performance
improvements from single-algorithm (0-34%) to two-stage transfers (39-43%) and finally
to the complete CPLF framework (84%) substantiate the pivotal premise of our cascading
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Figure 8 Survival duration distribution analysis across different reinforcement learning configurations evaluated on 100 adversarial test
scenarios (seed 42) in the Grid2Op Robustness 2020 challenge environment. Box plots display survival time distributions in timesteps (y-axis,
0-2,000 range), where the central line represents median survival, box boundaries indicate 25" and 75" percentiles (IQR), and whiskers extend to
1.5 x IQR. The horizontal red dashed line marks the 288-timestep success threshold (24 h). The cascading policy learning framework (CPLF)
achieves superior performance with median = 786 steps, mean = 861 steps, and 95™ percentile = 1,957 steps. Configurations tested include: single
algorithms (TRPO median = 27), two-stage transfers (PPO — TRPO median = 193, PPO — A2C median = 205), and three-stage configurations
(TRPO — PPO — A2C median = 319, A2C — PPO — TRPO median = 98, PPO — A2C — TRPO median = 111). Here, PPO stands for proximal
policy optimization, TRPO for trust region policy optimization, and A2C for advantage actor-critic. Full-size K&l DOT: 10.7717/peerj-cs.3358/fig-8

approach: sequential knowledge transfer across multiple algorithmic stages delivers
markedly superior policy development compared to simpler architectural configurations.

Our experimental design mitigates the risk of overfitting by training on “level 2”
scenarios and evaluating 100 unseen, more challenging “competition level” scenarios. The
framework’s 84% success rate on this holdout set affirms strong generalization. Training
stability stemmed from the inherent properties of the cascaded algorithms (PPO’s clipping,
TRPO’s KL-divergence constraint, and A2C’s variance reduction). The monotonic
performance improvement and smooth convergence shown in Fig. 6 corroborate the
successful implementation of this approach.
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Performance Trade-off Analysis: Success Rate vs Survival Duration
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Figure 9 Performance trade-off analysis illustrating the relationship between success rate (%, x-axis) and average survival duration (timesteps,
y-axis) across all tested configurations evaluated on 100 adversarial scenarios (seed 42, Grid20p Robustness 2020 challenge). Each marker
represents a distinct configuration: single algorithms (red circles), two-stage transfers (teal squares), three-stage configurations (blue triangles), and
the CPLF framework (green diamond). The success rate is defined as the percentage of episodes surviving > 288 timesteps (24 h). The CPLF uniquely
occupies the optimal performance quadrant at (84%, 861 timesteps), outperforming all baselines. Quadrant divisions highlight performance regions
where most configurations exhibit trade-offs between metrics. Abbreviations: CPLF, cascading policy learning framework; PPO, proximal policy
optimization; TRPO, trust region policy optimization; A2C, advantage actor-critic. The box plot for CPLF (far right) clearly shows a superior
distribution, achieving a median survival of 786.0 steps and a 75th percentile of over 1,200 steps, demonstrating its consistent high performance
compared to all other configurations, whose medians remained below 500 steps. Full-size K&l DOT: 10.7717/peerj-cs.3358/fig-9

While the 84% success rate demonstrates strong overall performance, analyzing the 16
failures provides valuable insights into the framework’s operational boundaries and
remaining vulnerabilities. To complement the success rate metric and provide deeper
insights into resilience characteristics, we conducted a failure analysis examining
constraint violations across all unsuccessful episodes. This analysis reveals two primary
failure patterns that account for all 16 constraint violations (16 failed scenarios out of 100
total). The dominant failure mode, occurring in 10 of these cases, involved concurrent
high-impact contingencies where the adversary strategically initiated an attack on a critical
transmission line immediately followed by a scheduled maintenance outage on a nearby
parallel line. This N — 2 situation created a severe topological bottleneck that the agent
could not resolve sufficiently quickly, ultimately leading to cascading overloads. The
remaining six failures exhibited a distinct pattern characterized by substation isolation,
where coordinated attacks on multiple lines connected to a single substation effectively
severed it from the central grid, resulting in immediate blackouts for the loads it served.
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Table 6 Quantitative performance summary of all evaluated configurations. Values in bold represent the statistics achieved by our solution.

Configuration Success rate (%) Avg. survival (steps) Median survival (steps) 95th percentile (steps)
PPO 0.0 0.0 0.0 0.0
TRPO 2.0 34.6 27.0 51.1
PPO — TRPO 39.0 462.7 193.0 1,541.8
PPO — A2C 43.0 469.2 205.5 1,628.8
A2C — PPO — TRPO 39.0 303.9 236.0 681.4
TRPO — A2C — PPO 39.0 303.9 236.0 681.4
PPO — A2C — TRPO 42.0 404.3 111.5 1,349.3
TRPO — PPO — A2C 52.0 418.5 319.0 1,249.8
A2C — TRPO — PPO 63.0 659.4 494.0 1,579.0
CPLF 84.0 861.0 786.0 1,957.2

Table 7 Performance statistics for multi-stage configurations. Values in bold represent the statistics
achieved by our solution.

Configuration Success rate Mean + Std Median 95th %ile CV  Perf. stability
CPLF 84.0% 861.0 +597.1 786.0 1,957.2 0.72 0.87

A2C — TRPO — PPO  63.0% 659.4 +£560.1 494.0 1,579.0 0.85 0.75

TRPO — PPO — A2C 52.0% 418.5£328.7 319.0 1,249.8 0.79 -

PPO — A2C — TRPO 42.0% 404.3 £+ 344.7 111.5 1,349.3 085 -

A2C — PPO — TRPO  39.0% 303.9+163.0 236.0 681.4 0.54 0.78

TRPO — A2C — PPO  39.0% 303.9+£163.0 236.0 681.4 0.54 0.78

DISCUSSION

By merging PPO, A2C, and TRPO into a unified learning system, the CPLF framework
introduces a novel approach to power grid control. This methodology promotes robust
policy learning and the seamless sharing of strategies, ultimately delivering a more resilient
grid. Experimental results confirm that this multi-stage strategy conspicuously
outperforms DRL baselines in fortifying the grid against malicious attacks.

While our approach exemplifies promising results, several limitations warrant
discussion. The framework operates in a high-dimensional action space, comprising more
than 66,000 possible actions, which is computationally intensive and may limit real-time
applicability in resource-constrained environments. Additionally, the framework’s
performance exhibits sensitivity to hyperparameter selection for the three agents,
including learning rate, batch size, and policy transfer timing, necessitating rigorous
fine-tuning that can be time-consuming and demand domain expertise. Furthermore, our
evaluation is currently limited to the modified IEEE-118 bus system, and scalability to
large-scale power grids remains to be validated. While our evaluation procedure across 100
scenarios with varied seeds provides evidence of generalization within the tested
distribution, systematic testing across controlled distribution shifts (e.g., extreme seasonal
profiles, multi-line outages, specific unseen contingencies) would strengthen external
validity claims and provide deeper insights into the boundaries of policy robustness.
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Specifically, while our framework generalized across randomized attack scenarios and
unseen competition-level environments, it has not yet been systematically tested on
multi-line outages, seasonal load variations, or domain randomization setups. We
acknowledge this as a limitation and identify it as a priority for future work.

A notable limitation of our evaluation is the absence of direct comparison with non-RL
baselines such as OPF/SCOPF-based redispatch, rule-based priority shedding, or MPC
approaches. While the Grid2Op platform provides baseline agents (RandomAgent,
ExpertAgent), implementing fair comparisons with traditional power systems control
methods requires extensive engineering effort due to different problem formulations and
the platform’s primary design for DRL evaluation. It hinders a full contextualization of the
performance gains relative to classical control paradigms. We recognize that comparisons
with OPF/SCOPF and rule-based heuristics are critical for bridging the DRL-power
systems gap. While implementing these within Grid2Op was beyond our current revision
scope, we explicitly identify this as essential future work. The framework’s robustness
against more evolved attack models beyond the scenarios tested also mandates further
investigation.

Nevertheless, several avenues for future research present promising opportunities to
bolster the practical application and applicability of CPLF. Future work should incorporate
domain randomization during training and structured out-of-distribution testing
protocols to comprehensively assess policy robustness across diverse operational regimes.
Establishing rigorous benchmarks against classical power systems control methods (OPF/
SCOPF, MPC, rule-based strategies) represents a critical priority to fully quantify the
advantages of cascading DRL methods over traditional control paradigms in adversarial
scenarios. Such comparisons would help validate whether the additional complexity of
multi-stage DRL training yields proportional benefits compared to well-tuned classical
approaches.

Reducing the action space to include only the most meaningful and critical actions, as
suggested by Binbinchen’s work (Marot et al., 2021), could streamline the learning process
and accelerate policy convergence. This approach is similar to focusing on electrical
isolation between object groups in substation topologies rather than specific busbar
assignments.

Additionally, incorporating knowledge distillation techniques during the transfer of
policies between agents could further boost performance. Knowledge distillation, a
paradigm first proposed in Hinton (2015), trains a smaller, more lightweight student model
to replicate the performance of a larger, higher-capacity teacher model. This process
reduces computational cost while preserving high accuracy. We can achieve smoother and
more superior policy transfers by distilling knowledge from pre-trained models.

Furthermore, to achieve even better performance, we will increase the number of
learning iterations and conduct more extensive hyperparameter tuning. Precisely, we will
investigate automated hyperparameter optimization using Bayesian frameworks such as
Optuna. This approach promises to accelerate convergence and reduce computational
overhead. It has shown promising results over traditional grid and random search methods
in reinforcement learning applications (Akiba et al., 2019). Integrating wide-ranging
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AutoML techniques, including automated neural architecture search, could further
streamline the framework’s deployment across a diverse set of power grid topologies by
identifying optimal network topologies and eliminating the current manual optimization
overhead for each new scenario.

Addressing safety constraints represents another critical direction for future
work. While our current framework demonstrates robust performance through its
cascaded architecture, incorporating formal safe RL techniques would provide explicit
safety guarantees during both training and deployment. Methods such as constrained
policy optimization or safety layers could ensure that the agent maintains critical
operational constraints even during exploration, which is particularly important for
critical infrastructure applications where constraint violations can have severe
consequences.

Moreover, we will focus on more powerful opponent attacks by increasing both the
attack complexity (e.g., tripping multiple lines per timestep) and the opponent’s total
attack budget. Reducing the time between two successive attacks and increasing the
downtime period for each attack can considerably amplify the challenge the opponent
encounters. It will guarantee that our control policies are resilient against diverse
malevolent scenarios.

Scaling up to large-scale power grids is imperative to validate the framework’s
scalability. Developing solutions for modern power grids that integrate renewable energy
sources will also be critical for overcoming real-world challenges in sustainable energy
management.

Lastly, we will investigate the integration of other frameworks that complement our
cascading approach. Federated RL could support distributed training across multiple grid
regions while preserving the sequential knowledge transfer within each federated node.
Hierarchical RL (HRL) could decompose our framework into high-level policy selection
(choosing between PPO/TRPO/A2C strategies) and low-level action execution (specific
grid operations) (Manczak, Viebahn & van Hoof, 2023; Jendoubi & Bouffard, 2023;
Hutsebaut-Buysse, Mets & Latré, 2022; Narvekar et al., 2020; Matavalam et al., 2022).
Curriculum RL (CRL) systematically orders the cascading stages by progressively
increasing scenario complexity, starting with simple grid contingencies for PPO,
advancing to multi-fault scenarios for TRPO, and culminating in adversarial attacks for
A2C. These structured learning paradigms could optimize the reliability and adaptability
of our sequential knowledge transfer approach.

CONCLUSION

The Cascading Policy Learning Framework uses a novel sequential training approach to
fortify power grid resilience and optimize control policy expediency. Our framework,
which operates within a modified IEEE-118 power network, leverages the complementary
strengths of multiple DRL algorithms, including Proximal Policy Optimization, Advantage
Actor-Ciritic, and Trust Region Policy Optimization. This integration combines stability
with PPO’s constrained updates, resilience with TRPO’s KL-divergence constraint, and
precision with A2C’s value-function baseline. These features allow the policy to adapt to
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unstable grid scenarios, including rapid load changes and targeted attacks. Our solution
achieved an 84% success rate in test scenarios, maintaining grid stability for at least 24 h
and substantially outperforming a plethora of baseline agents. It manifests the capability of
our multi-stage learning strategy in strengthening power grid resilience against malicious
attacks. By integrating these algorithms, CPLF overcomes limitations in existing
approaches, particularly in adapting to hostile conditions and maintaining operational
continuity. This work establishes a blueprint for applying sequential learning and
multi-stage RL strategies to large-scale control problems in domains such as transportation
networks, water distribution systems, and telecommunications infrastructure, where
resilience is paramount. Moreover, using other frameworks, such as curriculum
reinforcement learning and hierarchical RL, could unlock promising perspectives for
improving the current results.

CODE AVAILABILITY

The complete source code for the Cascading Policy Learning Framework, including
implementation details, hyperparameter configurations, and evaluation scripts, has been
made publicly available through a permanent DOI-backed archive (DOI: 10.17605/OSF.
10/GCW7X) (Bensalah et al., 2025). The repository includes detailed documentation,
installation instructions, and complete reproducibility guidelines to support replication
and extension of this work. We provide all experimental configurations to ensure full
reproducibility of reported results, including an interactive Jupyter notebook with the
environment configuration. The requirements.txt file documents the exact version
dependencies of the used packages, such as Python 3.11.13, Grid2Op 1.12.1, lightsim2grid
0.10.3, and PyTorch 2.6.0+cul24. The interactive Jupyter notebook provides the cascading
policy learning framework along with the environment configuration.
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