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ABSTRACT

Q-learning (QL) is a reinforcement learning technique. It enables agents to learn
optimal policies by iteratively updating action-value functions (Q-values). The
deployment of Q-value storage and updating is critical to operational efficacy during
training. This article presents a resource-efficient and low-power Q-learning
algorithm implementation on field programmable gate arrays (FPGAs) by using a
temporary memory to optimize updating Q-values during learning. The design was
implemented on a Genesys 2 Kintex7 (XC7K325T-2FFG900C) FPGA. It is analysed
for different state scenarios, Q-Matrix sizes, and fixed-point formats. The proposed
design achieves convergence to the optimal policy. Compared with the literature, the
proposed design with 1,024 states at 16 bits achieves a 71.9% reduction in look up
tables (LUTSs), a 66.4% reduction in flip-flops (FFs), a 75.6% reduction in block
random access memories (BRAMs), and a 67% reduction in power consumption.
Similarly, with 1,024 states at 32 bits, it achieves a 73.8% reduction in LUTs, a 65.8%
reduction in FFs, a 59.8% reduction in BRAMs, and a 65.7% reduction in power
consumption. These significant improvements in resource utilization and power
efficiency make the proposed design well-suited to applications that demand efficient
and rapid information processing and also require fewer hardware resources.

Subjects Algorithms and Analysis of Algorithms, Embedded Computing, Optimization Theory
and Computation, Real-Time and Embedded Systems, Operating Systems
Keywords Convergence, Hardware accelerator, Low power, FPGA, Optimal policy, Q-learning

INTRODUCTION

In recent decades, artificial intelligence (AI) and machine learning (ML) techniques have
gained much attention due to improvements in computational systems in terms of
performance, power, and space. Reinforcement learning (RL) is one category of ML. RL is
a trial-and-error learning strategy. It uses feedback to enhance its agent performance
(Theobald, 2017), which gets a reward that can be either positive or negative and gradually
improves its actions to maximise the collective reward. Figure 1 illustrates the learning
process in RL.

Among RL algorithms, deep reinforcement learning (DRL) algorithms, including deep
Q-networks (DQN) and proximal policy optimization (PPO), have focused on deep
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Figure 1 Learning process in reinforcement learning (RL).
Full-size Ka] DOT: 10.7717/peerj-cs.3351/fig-1

reinforcement learning (DRL) with neural networks. These methods require significant
processing power, computational resources, and extensive training time and memory.
Such demands limit their practicality in resource-constrained environments that require
low latency, efficiency, and predictable performance. Q-learning (QL) provides a
lightweight structure that avoids the overhead of neural network training while still
ensuring convergence to the optimal policy. This makes Q-learning suitable for
resource-limited systems, such as embedded systems.

RL hardware acceleration has been a popular research area (Rothmann ¢ Porrmann,
2022a). Researchers and engineers have been investigating various techniques to improve
the efficiency and speed of RL algorithms on specialized hardware platforms. The training
process of RL algorithms can be accelerated by utilizing hardware accelerators, such as
graphics processing units (GPUs), field-programmable gate arrays (FPGAs), or central
processing units (CPUs), that perform computationally expensive operations more
efficiently.

Q-learning has successfully resolved complicated sequential decision-making issues.
Q-learning is a model-free reinforcement learning method. It has the advantage of
evaluating utility and updating control policies without the need for models of the
environment (Wei, Liu & Shi, 2015; Al-Tamimi, Lewis ¢ Abu-Khalaf, 2007). Watkins
proposed QL in 1989 (Watkins & Dayan, 1992). QL is a value-based and off-policy
algorithm. The QL updates the Q-values iteratively at each step (Sewak, 2019) without
making any assumptions about the specific policy being applied (Saini, Lata ¢ Sinha,
2022). Implementing Q-learning on FPGAs is particularly beneficial, since FPGAs allow
for customized parallel architectures that accelerate Q-value updates and memory
operations with reduced power consumption. QL is composed of three elements, which are
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state, action, and reward combination, called quality or (Q-Value) (Ris-Ala, 2023).
The Q-value is calculated using the following equation:

Quew(St+1, ar41) = Qi(st,ar) + afre + 7 - max(Q(se41,a)) — Qe(s, ar)], (1)

where s; and s,,, represent the current and subsequent states of the environment,
respectively, similarly, a, and a,, are the current and next actions selected by the agent,
respectively. Q(s,, a,) is the Q-value associated with taking current action a, in current state
s;. The discount factor, y, lies within the range [0, 1]. Furthermore, « is the learning rate,
where a € [0, 1], and r; is the current reward value. Finally, QL uses max (Q(s¢+1,a)) to
select the maximum Q-value among all possible actions for the next state. The QL
generates a Q-table to store Q-values, using state-action pairs Q(s, a) to index the Q-value.
The Q-table contains a matrix of size M x N, called the Q-Matrix, where M is the number
of states and N is the number of possible actions. The Q-values for every state and action
are updated according to Eq. (1).

In the Q-learning algorithm, action-values (Q-values) are iteratively updated to produce
optimal behaviours. The efficient access and updating of these Q-values within a memory
structure is critical for the system’s scalability and performance (Mnih et al., 2015).
Further, a resource-constrained deployment of Q-learning is impacted by the frequency
and speed of updates to Q-values during the learning process (Mnih et al., 2015).

During training, the Q-learning algorithm stores and updates Q-values in a Q-table,
which involves frequent memory update operations. These operations consume significant
time, power, and hardware resources. Several studies have aimed to lower computing cost
and optimize memory access patterns in RL. For instance, Mnih et al. (2015) introduced
the DQN, which replaced the Q-table with a neural network to approximate Q-values.
However, DQN models typically require significant computational resources, which may
not be possible for low-power or edge devices. The authors in Sahoo et al. (2021) stored
maximum Q-values in a lookup block for each state, but this strategy resulted in delays and
increased storage overhead. Similarly, Meng et al. (2020) used a table to store maximum Q-
values, while Rothmann ¢ Porrmann (2022b) divided BRAM blocks for each action.

Another approach proposed by Lin (1991), who introduced experience replays and
frame skipping to enhance training efficiency and reduce redundant computations. Zeng,
Feng & Yin (2018) explored reduced update policies, selectively updating Q-values based
on thresholds in value changes, making memory usage more efficient without affecting
convergence in a significant way (Zeng, Feng & Yin, 2018).

This article introduces a method to reduce memory access, hence improve architecture
performance in terms of resource usage and power consumption. This can be achieved by
avoiding unnecessary write-backs of the Q-values to the memory. The proposed method is
evaluated based on speed, hardware resources, and overall effectiveness of the learning
process.

This article is organized as follows. The QL architecture design is explained in ‘QL
Architecture’. ‘Results and Discussion’ provides details on the evaluation, analysis results,
and state-of-the-art architecture, and lastly, ‘Conclusions’ concludes the article.
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Figure 2 The proposed QL architecture with temporary memory.
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QL ARCHITECTURE

The architecture for the QL algorithm has been implemented using MATLAB 2020b (The
MathWorks, Natick, MA, USA) and Vivado 2020.2. MATLAB and Simulink were utilized
to simulate the QL algorithm and develop the overall system design. Xilinx Vivado was
employed to synthesize the design for the FPGA. A Grid-World environment has been
implemented to evaluate the architecture on the Xilinx Kintex 7.

Figure 2 shows the Q-learning architecture implementation on the Kintex 7
XC7K325T-2FFG900C FPGA. The proposed architecture is designed based on a pipeline
and parallel structure. Some architectural structures are inspired by the QL hardware
accelerator (Meng et al., 2020). The system is designed to work with M states and N actions,
resulting in M x N state-action pairs. At the start of each episode, the initial state is chosen
randomly, while subsequent states are determined based on the current state and chosen
action. Similarly, the first action is selected randomly, while the next action is chosen
according to the e-greedy policy.

In the context of QL, the agent has to balance exploration and exploitation to reach the
optimal policy by choosing the best action. Thus, in this work, the action for the next state
s¢41 is determined based on the e-greedy policy, which is quite effective in various RL
environments (Sutton ¢» Barto, 1998). In the e-greedy (Langford ¢» Zhang, 2007) policy, the
exploration and exploitation are balanced by the parameter ¢, where ¢ € [0, 1]. With a
probability of 1 — ¢, the action with the highest Q-value is selected (exploitation), while
with a probability of ¢, the action is chosen randomly (exploration). In this work, different
values of the parameter € were tested. Initially, € was set to its maximum value of 1 and
gradually reduced to 0.00 to identify the optimal setting.

This work used two dual-port RAMs to store the Q-Matrix, which contains all Q-values
corresponding to state-action pairs. Dual-port RAM allows for concurrent reading and
writing operations, facilitating quick Q-value updates and accelerating learning. It is
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essential to determine each state-action pair’s current Q-value and the next state’s
maximum Q-value for all actions to calculate the Q-value based on Eq. (1). This work used
parallel processing to obtain the current Q-value of state-action pairs (Q(s;, a;)), the max
Q-value of the next state for all actions (Max_Q (s..;, a)), as well as the index of the
maximum Q-value of the current state from memory. The key behind finding the index is
that it represents the action that can be used by the e-greedy policy to move from the
current state to the next state. All these values were obtained from the first dual-port RAM.
The second dual-port RAM was used to find the Q-value of the current state. The
maximum Q-value was selected using a MAX logic operation requiring fewer hardware
resources. The implementation of parallel processing yields performance improvements
and optimizes the overall system. The parallel processing allows current Q, maximum Q,
and next action to be calculated at the same time in stage 2. The configuration is shown in
Fig. 3. Both hyperparameters, & and y, were assigned equal values of 0.875. Then, Eq. (1) is
applied to calculate the new Q-value Qe (¢, ar).

This work introduces a method for updating Q-values that reduces BRAM usage,
thereby lowering resource consumption, power usage, and processing time. A temporary
memory was used to store the current Q-value, enabling faster access and avoiding
unnecessary reads and writes to BRAM, as shown in the third stage in Fig. 2. Each new
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Q-value computed during the learning process was compared directly against it, as shown
in Fig. 4. A MAX comparison was used to compare and determine whether the new
Q-value is larger than the current Q-value in the temporary memory. If the new Q-value is
larger, it is written back into dual-port RAMs in the corresponding location; otherwise, the
previous value is kept, which means memory access is not required. This is a practical
approach that reduces unnecessary memory writes, and only meaningful improvements
are stored. This technique can improve hardware resource utilization. It reduces negligible
writing operations that would otherwise consume additional power and time, particularly
in high-frequency learning environments. Moreover, it facilitates achieving convergence
by systematically improving the Q-values.

RESULTS AND DISCUSSION

Analysis of results

The simulation and synthesis analyses various scenarios, each incorporating a different
number of states and actions. All scenarios were simulated and synthesized with a
fixed-point representation represented as [n, b], where # indicates the number of bits and b
shows the number of bits in the binary part in two different scenarios (different word
lengths). Fixed-point can enhance performance, and hardware resources can be conserved
(Nguyen, Kim ¢ Lee, 2017; Kara et al., 2017). Additionally, fixed-point can be very efficient
in FPGA designs (Kara et al., 2017).

Q-value updates, processing times, and throughputs differ in each episode. Thus,
the average throughput for each M state was calculated. The throughput is defined
as the number (in millions) of Q-values (samples) computed per second (MSPS)

(Meng et al., 2020).

In this work, the value of ¢ is set to 0.01. This value yielded a significant number of
actions that were taken through the learning process, as explained in Sutton ¢ Barto
(2018). Besides the value of the epsilon parameter, the proposed optimization approach
provided optimal results in updating more Q-values. It contributed to enabling faster
convergence, and enhancing processing, learning, and throughput.

The presented design architecture requires only three DSPs to calculate the new Q-value.
The design was analyzed based on the implementation results for the most critical resources
for the FPGA. The implementation results for Kintex 7 XC7K325T-2FFG900C FPGA
resources are expressed in terms of look up tables (LUTs), look up table RAMs (LUTRAMs),
flip-flops (FFs), and BRAMs. Tables 1 and 2 illustrate the implementation results obtained
for all scenarios with four actions in terms of hardware resources and power consumption.
Moreover, Tables 3 and 4 illustrate the implementation results obtained for all scenarios with
eight actions, detailing hardware resources utilization and power consumption. Also, the
percentage usage relative to the total available is provided. As well, it contains the result of
throughput in Mega Samples per second in the seventh column (in this work, throughput
was calculated as the number of updated Q-values per time) and the maximum clock
frequency (CLK) in the eighth column.

It is observed that an increase in the number of states and an increase in the bit-width
lead to an increase in the usage of LUTs, LUTRAMs, FFs, and BRAMs of the FPGA board,
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Table 1 Implementation results for different states with 16 bits and four actions.

States LUT LUTRAM FF BRAM Thr. (MSPS) CLK MHz Power (mW)
8 543 0.27% 64 0.10% 724 0.18% 0 779.8 145 21
16 560 0.27% 36 0.06% 932 0.23% 10.22% 703.5 145 28
32 534 0.26% 37 0.06% 664 0.16% 10.22% 604.5 145 27
64 552.0.27% 38 0.06% 669 0.16% 1.50.34% 816.4 190 28
128 568 0.28% 39 0.06% 684 0.17% 1.50.34% 802.8 190 29
256 647 0.32% 43 0.07% 696 0.17% 1.50.34% 540.5 190 31
512 674 0.33% 47 0.07% 987 0.24% 2.5 0.56%  444.02 190 36
1,024 642 0.32% 47 0.07% 719 0.18% 51.12% 437.15 190 40
Table 2 Implementation results for different states with 32 bits and four actions.
States LUT LUTRAM FF BRAM  Thr. (MSPS) CLK (MHz) Power (mW)
8 552 0.27% 48 0.08% 694 0.17% 20.45% 874.98 100 21
16 5550.27% 50 0.08% 706 0.17% 2045% 744.98 94 22
32 593 0.29% 52 0.08% 721 0.18% 2045% 668.5 94 23
64 609 0.30% 54 0.08% 728 0.18% 2.5 0.56% 674 73 24
128 630 0.31% 56 0.09% 740 0.18% 2.5 0.56% 559.1 94 26
256 776 0.38% 62 0.10% 1,032 0.25% 2.5 0.56% 468.9 73 28
512 675 0.33% 60 0.09% 764 0.19% 4.5 1.01% 438.6 73 30
1,024 706 0.35% 63 0.10% 776 0.19% 92.02% 407.5 73 36

Table 3 Implementation results for different states with 16 bits and eight actions.

States LUT LUTRAM FF BRAM THR. (MSPS) CLK (MHz) PWR (mW)
8 623 0.31% 66 0.10% 1001 0.25% 0 254.39 140 25
16 570 0.28% 33 0.05% 929 0.23% 10.22% 156.36 140 27
32 5950.29% 31 0.05% 940 0.23% 1.5 0.34% 157.07 140 30
64 599 0.29% 33 0.05% 942 0.23% 1.50.34% 115.19 140 31
128 614 0.30% 30 0.05% 941 0.23% 1.50.34% 201.28 140 32
256 627 0.31% 31 0.05% 945 0.23% 1.50.34% 390.17 140 33
512 671 0.33% 32 0.05% 947 0.23% 20.45% 368.13 140 35
1,024 706 0.35% 33 0.05% 953 0.23% 3.50.79% 360.01 140 39

Table 4 Implementation results for different states with 32 bits and eight actions.

States LUT LUTRAM FF BRAM Thr. (MSPS) CLK (MHz) Power (mW)
8 642 0.32% 49 0.08% 990 0.24% 1.5 0.34% 400 80 23
16 653 0.32% 50 0.08% 993 0.24% 1.50.34% 700 80 24
32 660 0.32% 49 0.08% 990 0.24% 20.45% 618 90 25
64 668 0.33% 50 0.08% 993 0.24% 20.45% 445.6 90 26
128 684 0.34% 49 0.08% 996 0.24% 2.5 0.56% 385.8 80 27
256 691 0.34% 49 0.08% 999 0.25% 2.5 0.56% 256.9 80 28
512 7350.36% 47 0.07% 1,002 0.25% 4.51.01% 283.7 70 29
1,024 774 0.38% 49 0.08% 1,005 0.25% 92.02% 264.24 70 31
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as shown in Fig. 5. This is justified due to the increased usage to store reward, states, and
state transition matrix tables, as well as an increase in the bit-width, which leads to an
increase in the width of Q-values, resulting in increased memory usage to store the
Q-Matrix and increased processing time. Furthermore, increasing the number of states
and bit length leads to decreased throughputs, as shown in Fig. 6, and requires more time
to reach the optimal policy and achieve QL convergence.

A further consideration is the maximum clock frequency. When a certain number of
bits and states are used, the clock frequency remains nearly unchanged. This can be
explained by the small delay between them. Additionally, when both the number of states
increases and the bit length increases, the clock frequency decreases, and a greater effect is
observed for 32 bits compared to 16 bits. As a result, an increase in the complexity of the
environment leads to an increase in state space, and a greater amount of data needs to be
processed. The explanation for this behavior can be found in the growing use of FPGA
resources, such as LUTs, FFs, and BRAMs.
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Implementing QL with the e-greedy policy, it can face a problem, which is that not all
state-action pairs are visited. It means that the agent can get stuck in local optima. In this
work, employing the temporary memory facilitates more comprehensive updates to the
Q-values and succeeds in visiting most state-action pairs, resulting in achieving
convergence quickly.

Power consumption

The eighth column of Tables 1, 2, 3, and 4 shows the dynamic power consumption of the
design for each scenario. It is noticed that increasing the number of states and bit lengths
leads to increased resource utilization. The 16-bit design requires fewer memory (BRAMs)
and registers compared to the 32-bit design, resulting in reduced resource utilization.
However, it reveals higher power consumption due to employing higher clock frequencies,
as shown in Tables 1 and 3. In contrast, the 32-bit design utilized more resources, which
reduced the need for frequent memory access, which is typically a significant power
consumer. Thus, power consumption increases significantly when the number of LUTs
and BRAM s increases, as illustrated in Fig. 7. As evident from the results in Tables 1, 2, 3,
and 4, the proposed design has efficient performance, less resource utilization, and less
power consumption, even with increasing bit length.

Comparison of the state of the art

The architecture proposed in this article is compared with a recent Q-learning hardware
accelerator architecture presented in Sutisna et al. (2023), which was selected due to its
state-of-the-art performance in terms of resource usage and power consumption. The
design in Sutisna et al. (2023) was implemented on the Xilinx Virtex UltraScale+ xcvul3p
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Table 5 Comparison of the proposed architecture in this work with the design proposed by Sutisna

et al. (2023).

Bits States Design LUT LUTRAM FF BRAM CLK Power (mW)
(MHz)
16 512 V1 (Sutisna et al., 2023) 2,164 20 1,930 17 125 72
V2 (Sutisna et al., 2023) 2,111 25 2,177 20 125 48
This work 641 48 959 2.5 150 27
1,024 V1 (Sutisna et al., 2023) 2,173 20 1,932 21 125 82
V2 (Sutisna et al., 2023) 2,114 25 2,178 20 125 52
This work 603 46 688 5 130 21
32 512 V1 (Sutisna et al., 2023) 2,690 20 2,074 17 125 85
V2 (Sutisna et al., 2023) 2,493 24 2,350 22 125 68
This work 653 60 749 4.5 110 41
1,024 V1 (Sutisna et al., 2023) 2,675 20 2,076 21 125 94
V2 (Sutisna et al., 2023) 2,497 24 2,351 24 125 72
This work 677 62 755 9 60 28

FPGA, which offers a specific set of resources such as LUTs, flip-flops (FFs), BRAMs, and
embedded DSPs. To ensure a fair and consistent comparison, the proposed architecture is

also synthesized and simulated on the same FPGA device. Although the work in Sutisna

et al. (2023) uses an SoC, its architecture is the most similar to the proposed design,

enabling an objective evaluation of how the proposed temporary memory enhances

performance.

The comparison is conducted against two variants from Sutisna et al. (2023): V1, which

employs a parallel architecture, and V2, which utilizes parallel and pipelined architectures.
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Table 6 Speed-up comparison of the proposed with the literature.

Reference Q-matrix (M x N) CLK (MHz) Throughput (MSPS) Proposed throughput (MSPS) Speed-up
Da Silva, Torquato & Fernandes (2019) 120 19.67 19.67 802.8 40.8x
Meng et al. (2020) 64 * 4 No information 189 816.4 4.3x
Menyg et al. (2020) 1,024 * 4 No information 187 437.15 2.3%x
Spano et al. (2019) 256 * 4,16 156 156 540.5 3.5%
Spand et al. (2019) 256 * 4, 32 110 110 468.9 4.3x

Also, the results were selected that had the same number of states and actions. Table 5
illustrates the comparison between the proposed design and the two methods presented in
Sutisna et al. (2023), encompassing the utilization of LUTs, LUTRAMSs, FFs, BRAMs, and
power consumption.

The proposed design significantly reduces BRAM usage compared to previous designs
by replacing BRAM operations with LUTRAM. As a result, the number of LUTRAMs used
is higher. This shift enables a distributed memory architecture, which helps minimize
routing delays and enhances processing speed, particularly in parallel and pipelined
implementations.

The proposed design consumes less power and fewer FPGA resources compared to both
methods V1 and V2 of Sutisna et al. (2023), as shown in Table 5. The proposed design has
fewer LUTs compared to V1 and V2. The V1 utilizes 2,173, the V2 utilizes 2,114 at 1,024
states for 16 bits, while the proposed design utilizes 603. Similarly, for the most
complex configuration (1,024 at 32 bits), the proposed design has nine BRAMs, while V1
uses 21 and V2 uses 24. Additionally, the proposed design consumes fewer FFs compared
to V1 and V2. Further, for throughput, they did not determine the throughput for each
state but rather provided 31.11 MSPS for V1 and V2; they achieved 148.55 MSPS and
145.46 MSPS at 16 bits and 32 bits, respectively. Meanwhile, the proposed design achieved
various throughputs for different numbers of states at 16 bits and 32 bits, as shown in
Tables 1 and 2. The most complex (1,024 for 32 bits) achieved 407.5 MSPS of throughput.
Thus, the presented design of this work is more power efficient than those presented in
Sutisna et al. (2023).

Clock frequency decreases when the number of states and actions increases, while
resource usage and power consumption increase. Even though the clock frequency
decreases with an increase in the number of states and actions, the proposed design still
achieves low resource usage and power consumption. By reducing both resource
utilization and energy requirements, the proposed work enables practical deployment in
embedded systems and Internet of Things (IoT) devices, where power and hardware
resources are highly constrained.

For completeness, the metrics that can be used to compare are the achieved throughput
and speed, as shown in Table 6. The most closed elements (M x N) are chosen. The
research in Da Silva, Torquato ¢ Fernandes (2019) showed another FPGA implementation
of QL, where the Q matrix has 120 elements. In this case, it achieved a throughput of about
19.67 MSPS. Similar scenarios can be found in Meng et al. (2020) with M = 64 and N = 4
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(256 elements) and M = 1,024 and N = 4 (4,096 elements); they achieved 189 MSPS and
187 MSPS, respectively. Meanwhile, the architecture proposed obtained a throughput of
about 816.4 MSPS and 437.15 MSPS, i.e., speedup about 4.3x and 2.3x, respectively.
Likewise, the work in Spano et al. (2019) achieved 156 MSPS of throughput at M = 256 and
N = 4 for 16 and 110 MSPS of throughput at M = 256 and N = 4 for 32. Conversely, the
present achieved 540.5 MSPS and 468.9 MSPS of throughputs, respectively. Table 6 shows
the speed-up comparison achieved by this work with the strategies presented in Da Silva,
Torquato & Fernandes (2019), Meng et al. (2020), and Spano et al. (2019). The accelerator
presented in this article has a higher speedup than those references.

The proposed architecture is well-suited for applications that need many states or
actions, as well as those that prioritize efficient resource utilization and rapid information
processing. Based on the design results, the presented architecture of the implemented QL
is fast, has fewer resources, high throughput, low processing time, and low power.

CONCLUSIONS

Q-learning is an RL algorithm that can obtain an optimal policy by interacting with the
environment without requiring any prior knowledge of the system model. This work
proposes a temporary memory to minimize memory access for updating Q-values. This
method reduces processing time and enables faster convergence. This results in much
higher throughput, requiring fewer resources, and consuming less power. Furthermore,
this design achieves an optimal policy with an epsilon value of 0.01, demonstrating better
performance compared to previous works. Additionally, the architecture of this work has
been compared with the current literature on the state of the art. The optimization method
in this article significantly improves performance and successfully reduces processing time.
It improved speed by 4.3x and achieved 816.4 MSPS throughput over prior works. Also,
the design results demonstrate that it can implement a fast QL accelerator.
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