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ABSTRACT
The rapid increase of containerized applications in cloud environments has
highlighted the critical need for efficient resource management and energy
optimization. This article extends our previous work with an aim to enhance the
performance of cloud systems. We propose an Extended Directed Container
Placement (E_DCP) mechanism, a novel approach designed to enhance container
placement efficiency in cloud systems when the number of container increases
significantly. Leveraging theWhale Optimization Algorithm (WOA), the mechanism
utilizes a scoring mechanism to evaluate various solutions with an aim to identify the
best among them. By optimizing multiple objectives, including search time, resource
utilization and energy efficiency, the mechanism achieves superior outcomes in
heterogeneous and homogeneous cloud infrastructures in comparison to recent
methods. The mechanism optimizes this solution to minimize overutilized physical
machines. Extensive simulations demonstrate significant improvements in search
time and resource utilization with acceptable energy consumption level.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Distributed and Parallel Computing, Mobile and Ubiquitous Computing, Optimization Theory and
Computation
Keywords Container placement, Cloud, CaaS, E_DCP

INTRODUCTION
The swift advancement of cloud computing has revolutionized resource management and
application deployment, enabling dynamic scalability and enhanced cost efficiency (Buyya,
Yeo & Venugopal, 2008). Recently, a wide range of cloud service providers utilize
containerization technology (Pahl, 2015) instead of virtualization technology (Rosenblum
& Garfinkel, 2005) to host a wide range of cloud applications (Alahmad, Daradkeh &
Agarwal, 2018). Lightweight isolation platforms, such as Docker (Merkel, 2014) and LXC
(Randal, 2020), have gained widespread adoption as they enable virtualization without the
need to boot an entire virtual machine. Containers can typically launch within a few
seconds leveraging a user-level engine (Ahmed et al., 2019).

Within Containers-as-a-Service (CaaS) environments, containerized applications have
emerged as a popular choice due to their lightweight and portable nature (Bernstein, 2014).
Containerized applications have emerged as a cornerstone of modern cloud and edge
computing architectures due to their lightweight, portable, and efficient design. Unlike
traditional virtualization styles that rely on full operating system virtualization, containers
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enable isolated execution environments while sharing the host kernel, resulting in reduced
overhead and faster launch times (Pahl et al., 2019). This efficiency makes them highly
suitable for microservices-based systems, which demand rapid scalability and dynamic
resource management (Zhou, Zhou & Hoppe, 2023). Furthermore, the widespread
adoption of container orchestration frameworks has significantly enhanced the
deployment and management of containerized workloads, promoting resilience and high
availability in distributed environments.

However, as containerized workloads grow in complexity and scale, ensuring efficient
resource allocation and performance improvements while minimizing energy
consumption has become a critical challenge. Effective container placement plays a vital
role in dealing with these concerns by optimizing the placement of containers to
physical machines (PMs). Container placement mechanisms can contribute in
performance enhancement in various aspects in data centers such as minimizing
operational costs, reducing energy consumption and/or improving resource utilization
(Ahmad et al., 2022).

Containerized based applications can become complex as large number of isolated
containers may be required in production which necessitates efficiency in container
scheduling and management (Zhou, Zhou & Hoppe, 2023). Various strategies for container
placement have been proposed in recent years, ranging from linear programming models
such as the work byMseddi et al. (2019) to heuristic and metaheuristic algorithms such as
the work by Al-Moalmi et al. (2021). While these methods have demonstrated
improvements in energy efficiency, resource utilization, or network cost reduction, they
often suffer from limitations such as high computational complexity, performance
overhead, or scalability issues in large-scale infrastructures. Hybrid optimization
approaches offer a promising avenue to overcome these challenges by balancing multiple
objectives such as energy efficiency, load balancing, and quality of service (QoS).

In this study, we introduce an Extended Directed Container Placement (E_DCP)
mechanism, a novel container placement that extends our prior research (Alwabel, 2023)
and introduces a scoring-based evaluation strategy leveraging the Whale Optimization
Algorithm (WOA) (Mirjalili & Lewis, 2016). The contribution of this article is as follows.
Firstly, this work proposes a scoring mechanism to evaluate various solutions with an aim
to identify the best among them. By optimizing multiple objectives, including search time,
resource utilization and energy efficiency.

To assess resource utilization, this article introduces the overutilized level threshold
(OLT) metric within its scoring mechanism. The OLT defines a specific utilization level for
a computer machine; if this threshold is exceeded, the machine’s performance can degrade,
compromising overall system performance and service quality (Katal, Dahiya &
Choudhury, 2023). Furthermore, overutilized machines are more susceptible to hardware
failures due to overheating, which increases the frequency of system outages and raises
maintenance costs (Lee, Viswanathan & Pompili, 2017).

Secondly, designing a multi-objective optimization framework to enhance container
placement efficiency in both homogeneous and heterogeneous cloud environments. The
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mechanism develops an optimization method which reduces the number of overutilized
PMs to improve performance. Thirdly, The proposed mechanism enhances container
placement by addressing critical limitations of previous approaches, scalability, search time
inefficiencies, and utilization when the number of containers grows.

The mechanism outperforms recent methods in both heterogeneous and homogeneous
cloud infrastructures in terms of search time and resource utilization, particularly as the
number of containers increases significantly. Extensive simulations demonstrate
significant improvements in search time and resource utilization with acceptable energy
consumption level. This research contributes to advancing the performance of
containerized cloud systems, offering practical insights for large-scale deployments.

The reminder of this article is organized as follows: ‘Related Works’ section discusses
the state-of-art works in container placement area. ‘Proposed Mechanism’ proposes our
mechanism. The findings of this article is presented in ‘Experiments and Evaluation’. The
conclusion of this article is drawn in ‘Conclusion’.

RELATED WORKS
The authors in Piraghaj et al. (2015) addressed a power optimization problem in the CaaS
environment. The proposed mechanism effectively improved energy efficiency by
optimizing container placement and reducing the number of active servers. They
introduced a correlation-aware placement algorithm, demonstrating that overload and
underload threshold algorithms performed better than others, particularly when migrating
larger containers.

A dynamic resource placement mechanism in heterogeneous CaaS data centers was
proposed byMao et al. (2017). The mechanism selects the PM to deploy a container based
on both the available resources and service demand. Performance comparison with similar
approaches demonstrated a more efficient and balanced usage of resources. However,
network consumption was high as a result of employing this mechanism (Carvalho &
Macedo, 2023).

The authors in Zhang et al. (2017) introduced a container placement based on linear
programming model (ILP) for allocating containers to computing nodes, taking into
account various optimization criteria, including energy consumption and network cost.
Compared to Docker Swarm’s binpack strategy, the placement mechanism achieved
approximately a 45% cost reduction. Another ILP based approach was developed byWan
et al. (2018) with an aim to minimize cost. The approach accounted for networking costs
and addressed the scheduling problem in a distributed manner. However, the approach
suffered of high computational complexity and overlooked key optimization factors, such
as energy consumption and response time (Ahmad et al., 2022).

The authors in Shi, Ma & Chen (2018) proposed an energy-based model for optimizing
container scheduling that is based on a particle swarm optimization approach. The results
demonstrated that the proposed method has shown significant improvements in energy
efficiency while maintaining an acceptable level of QoS.
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The authors in Lin et al. (2019) developed an optimization technique that is based on
ant colony optimization algorithm (Dorigo, Birattari & Stutzle, 2006) with an aim to trade
off between resource utilization, network consumption, and failure events of microservices
cloud applications. The proposed mechanism demonstrated efficient outcome in service
reliability, load balancing and network transmission overhead. The mechanism, however,
failed to consider energy consumption.

A novel heterogeneous container placement strategy is presented in Zhong & Buyya
(2020) to enhance the cost efficiency of container orchestration in Kubernetes-based cloud
systems. The experiments demonstrated significant cost savings compared to the default
Kubernetes framework under various workload patterns. However, their work was not
tested under conditions of high service demand.

A article presents a novel locality-aware scheduling model aimed at improving the
performance of containerized cloud services by addressing key challenges in resource
contention and network efficiency (Zhao, Mohamed & Ludwig, 2020). The model
implements load balance heuristic to improve application performance. The performance,
however, the proposed mechanism could dramatically degrade when the workloads scales
up (Deng et al., 2024).

The authors in Santos, Paulino & Vardasca (2020) proposed a novel scaling mechanism
to scale a group of containers to various workloads with an aim to improve quality of
experience (QoE) metrics. Similarly, the work presented in Carvalho & Macedo (2023)
emphasizes improving service scheduling by prioritizing QoE over QoS objectives. It
utilizes deep learning models to incorporate QoE metrics, providing a more accurate
representation of user satisfaction to predict user QoE. Experimental results demonstrated
that the proposed scheduler improved average QoE by about 61.5% compared to
conventional schedulers.

The researchers in Al-Moalmi et al. (2021), developed a container placement
mechanism based on whale optimization algorithm (Mirjalili & Lewis, 2016) in order to
optimize resource utilization and power consumption in cloud systems. The results
showed that the placement mechanism is superior over other placement mechanism in
heterogeneous test environment. However, the study did not take the performance
overhead such as resource over utilization of this method into consideration.

The authors in Chuqiao Lin et al. (2023) designed a novel multi-objective container
migration strategy based binary grey wolf optimizer algorithm on with an aim to optimize
resource utilization and energy consumption. To enhance the efficiency of container
migration, it established a node coordination matrix model to address resource
fragmentation. The results of this study demonstrate that the proposed strategy
outperformed existing mechanism, indicating its effectiveness in real-world applications.
However, the study did not address the issue of large container and PM number in the
evaluation.

Our previous work in Alwabel (2023) presented a novel container mechanism that
utilizes a meta-heuristic algorithm called whales optimization algorithm with an aim to
minimize energy consumption cloud systems. However, this work has a negative impact
on performance criteria such as service violation and search time.
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The authors in Patra, Sahoo & Turuk (2024) proposed a method for container
consolidation in CaaS cloud systems using fractional pelican hawks optimization. The
proposed approach includes two main modules: a host status module for predicting PM
load and a consolidation module for managing container migration. The method aims to
optimize multiple objectives, including energy consumption, resource utilization, and
costs, to achieving significant efficiency improvements. However, the scalability of the
proposed method in larger, more complex cloud infrastructures was not addressed.

In conclusion, this section discusses several related works and their focus o the area of
task scheduling mechanisms. Table 1 presents a comparison of related works with our
work in terms of power consumption, Qos/QoE, cost reduction, resource utilization and
heavy demand. The next section explains our work in more details.

PROPOSED MECHANISM
While prior methods have achieved significant improvements in energy efficiency and
resource utilization, they often neglect the interplay between search time and performance
degradation in the presence of large number of tasks. The E_DCP mechanism addresses
these gaps through an optimized approach, balancing multiple objectives in both
homogeneous and heterogeneous environments. This mechanism extended our previous
work proposed in Alwabel (2023). Figure 1 depicts the E_DCP mechanism. The first phase
of this algorithm is to create a NW of solutions. Each solution is initialized by placing a list
of containers randomly to a number of PMs. Algorithm 1 illustrates this allocation process.
This process is inspired by the concept of WOA approach.

The mechanism identifies the best solution among this list of solution using the
Algorithm 2. The algorithm employs an evaluation mechanism EV in order to compare
two solutions s1 and s2 to determine which one yields a better outcome using a scoring

Table 1 Comparison of related works and our work.

Work Power-aware QoS/QoE Cost efficiency Resource utilization Heavy demand

Piraghaj et al. (2015) ✓ ✗ ✗ ✗ ✗

Mao et al. (2017) ✗ ✗ ✓ ✗ ✗

Zhang et al. (2017) ✗ ✗ ✓ ✗ ✗

Wan et al. (2018) ✗ ✓ ✗ ✗ ✗

Shi, Ma & Chen (2018) ✓ ✓ ✗ ✗ ✗

Lin et al. (2019) ✗ ✓ ✗ ✓ ✗

Zhong & Buyya (2020) ✗ ✗ ✓ ✗ ✗

Zhao, Mohamed & Ludwig (2020) ✗ ✗ ✗ ✓ ✗

Santos, Paulino & Vardasca (2020) ✗ ✓ ✗ ✗ ✗

Carvalho & Macedo (2023) ✗ ✓ ✗ ✗ ✗

Al-Moalmi et al. (2021) ✓ ✗ ✗ ✓ ✗

Chuqiao Lin et al. (2023) ✓ ✗ ✗ ✓ ✗

Alwabel (2023) ✓ ✗ ✓ ✓ ✓

Patra, Sahoo & Turuk (2024) ✓ ✗ ✓ ✓ ✗

Our work ✓ ✓ ✓ ✓ ✓
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mechanism. The scoring mechanism is based on three evaluation criteria: energy
consumption powe, utilization level olt and number of active PMs apm. The evaluation is
given as follows:

Evðs1; s2Þ ¼ powevðs1; s2Þ þ oltevðs1; s2Þ þ apmevðs1; s2Þ (1)

where powevðs1; s2Þ refers to the evaluation of these two solutions in terms of energy
consumption. It is given as follows:

powevðs1; s2Þ ¼ powðs1Þ � powðs2Þ
powðs2Þ (2)

where powðs1Þ is the total power consumption for a single solution. Energy efficiency plays
a key role in reducing running costs in data centers as well as reducing carbon footprint

start

solutionList.add(s)

initialize s a new
solution

 solutionList.size

 < NW

yes no

iter = 1

find bs as best
solution 

update solutions in
solutionList

iter = iter + 1

yes

find bs as best
solution 

no

optimize bs

end
iter < iterN

Figure 1 The proposed mechanism. Full-size DOI: 10.7717/peerj-cs.3348/fig-1

Algorithm 1 Solution initialization.

1: input: containerList, PMList
2: foreach container in containerList do
3: pm  pmList.getRandom()
4: if pm.canHost(container) then
5: pm.add(container)
6: else
7: go to line 3
8: end if
9: end for

Algorithm 2 Find best solution.

1: input: solutionList
2: bs solutionList.get(0)
3: for each cs in solutionList do
4: if evaluteSolution(cs, bs) <0 then
5: bs ¼ cr
6: end if
7: end for
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(Gill & Buyya, 2019). It is calculated according to the authors in Khan et al. (2019) as
follows:

powðsolutionÞ ¼
Xp
i¼1
ðpmp:idle

i þ ðpmp:max
i � pmp:idle

i Þ � UðpmiÞÞ (3)

where p refers to the total number of PMs in a data center. pmp:idle
i denotes the power

consumption by a PM i when it remains idle. pmp:max
i refers to the maximum power

consumed by this PM. UðpmiÞ denotes the utilization level of this machine and is given as
follows (Alwabel, 2023):

UðpmiÞ ¼ pmcur:cpu
i

pmtot:cpu
i

(4)

where pmcur:cpu
i and pmtot:cpu

i refers to used CPU and total CPU of PM i respectively.
However, the result of using an approach to reduce power consumption can lead to
resources being overutilizaed which leads to performance downgrade (Katal, Dahiya &
Choudhury, 2023). Overutilization of PMs can significantly degrade overall system
performance and service quality. When a PM exceeds a certain threshold resource
capacity, it may lead to an increase in queuing delays, higher response times, and reduced
throughput. Furthermore, overutilized PMs are more prone to hardware failures as a result
of overheating, which can increase the frequency of outages and maintenance costs.

As a consequence, overutilized PMs can negatively affect the performance of hosted
VMs or containers, potentially violating QoS requirements and SLAs (Gao et al., 2013). In
dynamic and time-sensitive applications such performance degradation can be particularly
critical. Therefore, effective resource scheduling mechanisms are essential to reduce the
impact of overutilization and to ensure efficient container placement mechanism in
virtualized environments. Let oltev denote the number of PMs in a solution where each
PM’s utilization level exceeds a certain threshold. It is calculated as:

oltevðs1; s2Þ ¼ oltðs1Þ � oltðs2Þ
oltðs2Þ : (5)

If a utilization level in a server exceeds a certain threshold, this can lead to a negative
impact on the performance of this server (Çağlar & Altılar, 2022). Therefore, we consider
the number of OLT PMs in a solution as an evaluation criteria. It is given as follows:

oltðsolutionÞ ¼
Xp
i¼1

oltPM (6)

where oltPM refers to over level threshold of PM’s utilization level and it is given as
follows:

oltPM ¼ 0 UðpmÞ < ot
1 otherwise

�
(7)

where ot is an overloaded threshold. So if a PM exceeds this threshold, it is considered
overloaded. Improving utilization can lead to reduction in energy consumption when idle
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PMs are set to power mode saving (Manvi & Krishna Shyam, 2014). However, the
downgrade of this approach is that it may cause performance degradation as explained
before. The number of active PM (apm) is introduced in order to balance these two
conflicting factors. The following equation is given to calculate the number of active PMs
of two solutions s1 and s2:

apmevðs1; s2Þ ¼ apmðs1Þ � apmðs2Þ
apmðs2Þ (8)

where apmðsolutionÞ is:

apmðsolutionÞ ¼ 0 UðpmÞ ¼ 0
1 otherwise

�
(9)

The next phase is to update these solutions according to the work proposed byMirjalili
& Lewis (2016) and explained thoroughly by our previous work in Alwabel (2023).
Algorithm 3 details the process of updating solutions. The, best solution is reevaluated
against these updated solutions. If there is a solution which yields a better outcome
according to Eq. (1), then it becomes the new best solution. This step is repeated for a
number of times.

The last step is further optimize the best best solution. This step assumes that the best
solution produced by the previous step can have some overloaded PMs. Therefore, the
E_DCP utilizes Algorithm 4 to migrate some containers from those PMs to PMs with the
lowest utilization level.

EXPERIMENTS AND EVALUATION
This section presents the results of the proposed container placement approach and
compares them with state-of-the-art mechanisms. The proposed mechanism is compared
with the DCP mechanism (Alwabel, 2023) and the IGA mechanism (Zhang et al., 2019).
The DCP mechanism is a container placement mechanism based on WOA algorithm that
places containers with an aim to reduce energy consumption. Similarly, the IGA
mechanism is a genetic based placement mechanism that places containers on cloud data
centers to reduce power consumption. The mechanisms are evaluated under three criteria:
search time, OLT ad energy consumption.

Configuration
In order to comprehensively investigate the effectiveness of the E_DCP mechanism, the
number of containers in each test run starts with 500 containers. The number of containers
is increased by 500 until it reaches 5,000 containers. Each container has two specifications
which are CPU and RAM parameters. These container’s specifications are classifies into
four types of containers depending on the values of CPU and RAM as it is demonstrated in
Table 2.

The mechanisms are evaluated under two infrastructure types: heterogeneous and
homogeneous data centers. The heterogeneous data center consists of six different PMs
which are listed in Table 3. The table demonstrates the specifications of these PMs and
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Algorithm 3 Solution update.

1: input: cr, bs
2: rs initializeSolution
3: foreach container in cr.getContList do
4: crPMi  cr:getPMidðcontainerÞ
5: bsPMi  bs:getPMidðcontainerÞ
6: rsPMi  rs:getPMidðcontainerÞ
7: rand ¼ getRandomNumberðÞ
8: a rand � 2
9: cf1  2� a� rand�a
10: cf2  2� rand
11: prob getRandomNumberð0; 1Þ
12: dir  cf2 � rsPMi � crPMi

13: if prob < :5 and cf1 < 1 then
14: tarPMi ¼ bsPMi � cf1 � dir
15: else if prob < :5 and cf1 � 1
16: tarPMi ¼ rsPMi � cf1 � dir
17: else
18: z  getRandomNumberð�1; 1Þ
19: dird  bsPMi � crPMi

20: tarPMi ¼ dird � eb�z � cosð2p� zÞ þ bsPMi

21: end if
22: cr:migrateðcontainer; tarPMiÞ
23: end for

Algorithm 4 Solution optimization.

1: input: solution, OLT
2: containerList solution.getContinaerList()
3: pmList solution.getPmList()
4: foreach container in containerList do
5: foreach pm in pmList do
6: pm getMinOLTGap(pmList, OLT)
7: pmList.update(pm)
8: end for
9: end for
10: foreach pm in pmList do
11: if pm:getUtilization ¼ 0 then
12: pmList.remove(pm)
13: end if
14: end for
15: solution.setPMList(pmList)

Table 2 Container types.

Container type MIPS (MHz) RAM (MB)

Small 256, 512 128, 256

Medium 256, 512, 1,024 512, 1,024

Large 1,024, 2,048, 4,096 1,024, 2,048

Multi Small, Medium, Large Small, Medium, Large
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power parameters as it was listed in Alwabel (2023). For homogeneous environment, the
infrastructure has only one PM type which is PM ID 1 in Table 3. Each run tests each
container type with ten different container numbers as mentioned earlier. Therefore, the
total number of test runs is 80 runs.

The experiments are performed a simulated environment implemented in the Java
programming language on a computer machine with a 2.8 GHz Intel Core i7 processor and
16 GB of RAM with a MacOS Ventura OS.

Search time
This section presents our investigation about the search time required to find a solution
among the evaluated mechanisms. The search time refers to the time that is required to
find a solution (i.e. find a hosting PMs to a group of containers). A good mechanism aims
at reducing this time in order to improve the efficiency of cloud systems (Ahmad et al.,
2022).

Figure 2 demonstrates that the proposed mechanism outperformed the DCP and IGA
mechanisms in terms of search time in homogeneous infrastructure. For example, the
search time to in Fig. 2A that was carried out by E_DCP is 3.1 s while it is 54.94 and 7.06 s
for the DCP and IGA mechanisms respectively. Figure 2D shows that Our mechanism
reduced the search time by about 94% compared to the DCP mechanism.

The E_DCP mechanism behaved similarly in heterogeneous cloud systems in term of
search time as it is depicted in Fig. 3. It outperformed other mechanisms in all container
types: small, medium, large and multi as it is demonstrated in Figs. 3A, 3B, 3C and 3D
respectively. When the container number is 5,000 and the container type is large, the
proposed mechanism’s search time is about 3 s while the DCP mechanism scored about
65 s and the IGA scored about 522 s.

OLT
OLT can play an important role in cloud systems as it reflects the performance of such
systems. In this experiment, OLT is measured by two factors: the number of PMs that
exceed a utilization threshold because if a machine’s current utilization exceeds a certain
threshold this can lead to performance degradation which can affect the SLA of cloud
services (Beloglazov & Buyya, 2012). The second factor is the total number of active PMs.
The more nodes working at the same time, the more power consumed by a cloud system.

Table 3 PM types.

PM ID No of cores CPU (GHz) RAM (GB) pidle (watt) pmax (watt)

1 6 3.2 16 15.6 58.9

2 8 3.2 16 21.7 82.8

3 20 2.2 768 127 291

4 32 2.9 512 96.6 377

5 56 2.7 192 48.6 410

6 64 2.2 128 53.2 269
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Figure 2 Search time in homogeneous data center. (A) Small container type; (B) Medium container type; (C) Large container type; (D) Multi
container type. Full-size DOI: 10.7717/peerj-cs.3348/fig-2
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Figure 3 Search time in heterogeneous data center. (A) Small container type; (B) Medium container type; (C) Large container type; (D) Multi
container type. Full-size DOI: 10.7717/peerj-cs.3348/fig-3
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The first factor focuses on the level of service provided to cloud users while the second
ensures the level of energy consumed is kept to the minimum. The utilization level in these
experiments was set to 80% because several studies show that when CPU utilization
consistently exceeds this level, the system may experience performance degradation
(Gregg, 2014).

Tables 4, 5, 6 and 7 demonstrate the results of percentage of OLT PMs and number of
active PMs of applying the mechanisms in homogeneous data centers. The data center
consists of a PM with id 1 listed in Table 3. These tables demonstrate that the E_DCP
mechanism outperformed both the DCP and IGAmechanisms in the number of OLT PMs
by keeping the OLT level at 0%. The more containers to be processed the more PMs
required to host them or the more specifications of these containers. For example, large
container type requires more PMs than all other types provided that the number of
containers remain the same. The E_DCP mechanism utilized less or similar number of
PMs as in the DCP mechanism. For example, the number of used PMs was 416 for the
E_DCP mechanism while it as 449 for the DCP mechanism when the container number

Table 4 OLT results for small container type in homogeneous data centers.

Container # E_DCP PM # E_DCP OLT % DCP PM # DCP OLT % IGA PM # IGA OLT %

500 10 0% 10 0% 79 0%

1,000 19 0% 19 0% 65 0%

1,500 27 0% 27 0% 136 0%

2,000 37 0% 37 0% 200 0%

2,500 46 0% 46 0% 251 0%

3,000 55 0% 55 0% 186 0.53%

3,500 64 0% 64 0% 257 0%

4,000 73 0% 73 0% 266 0.37%

4,500 82 0% 83 0% 285 0.36%

5,000 93 0% 93 0% 308 0.3%

Table 5 OLT results for medium container type in homogeneous data centers.

Container # E_DCP PM # E_DCP OLT % DCP PM # DCP OLT % IGA PM # IGA OLT %

500 41 0% 44 9.09% 156 0%

1,000 78 0% 84 8.33% 279 0%

1,500 120 0% 129 5.43% 394 0.51%

2,000 165 0% 177 3.95% 482 2.07%

2,500 199 0% 213 9.86% 554 3.97%

3,000 246 0% 268 6.72% 634 5.52%

3,500 288 0% 310 4.84% 688 6.1%

4,000 331 0% 360 8.06% 746 8.18%

4,500 367 0% 397 6.55% 768 10.16%

5,000 411 0% 447 6.71% 819 16.24%
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was 5000 for multi container type in homogeneous data centers as it Table 7 depicts. The
IGA mechanism yielded the worst results among others in both OLT number and number
of active PMs.

Tables 8, 9, 10 and 11 reported the OLT results when employing the mechanisms for
heterogeneous data centers. The E_DCP mechanism achieved minimum OLT level at 0%
for all test runs except for container number was 5,000 for multi container type, the OLT
level was just above 1%. However, the number of active PMs was higher than that of the
DCP mechanism in most of the test runs. The increase of number of active PMs by the
E_DCP mechanism in comparison to the DCP mechanism was between 0% to 13% while
the increase of OLT PMs by the DCPmechanism in comparison to the E_DCPmechanism
was between 0% to 50% in heterogeneous data centers. The experiments in both
environments confirm that our proposed approach achieved much less number of OLT
PMs but at a cost of more active PMs which may affect power consumption as it is
discussed in the next section.

Table 6 OLT results for large container type in homogeneous data centers.

Container # E_DCP PM # E_DCP OLT % DCP PM # DCP OLT % IGA PM # IGA OLT %

500 75 0% 78 0% 249 0.4%

1,000 144 0% 153 2.61% 429 0.7%

1,500 222 0% 238 1.68% 576 3.13%

2,000 297 0% 317 0.63% 676 6.07%

2,500 359 0% 382 1.31% 752 10.51%

3,000 444 0% 473 1.69% 828 15.58%

3,500 511 0% 545 2.02% 870 23.01%

4,000 584 0% 622 2.73% 909 31.35%

4,500 657 0% 698 2.44% 935 40.75%

5,000 744 0% 795 2.39% 966 54.35%

Table 7 OLT results for multi container type in homogeneous data centers.

Container # E_DCP PM # E_DCP OLT % DCP PM # DCP OLT % IGA PM # IGA OLT %

500 43 0% 46 4.35% 168 0%

1,000 86 0% 93 3.23% 297 0%

1,500 124 0% 132 6.82% 395 0.25%

2,000 164 0% 179 3.91% 480 1.46%

2,500 205 0% 224 4.46% 565 2.65%

3,000 253 0% 274 5.47% 636 5.19%

3,500 294 0% 322 6.21% 692 7.23%

4,000 336 0% 365 5.48% 744 9.95%

4,500 367 0% 399 7.02% 778 11.57%

5,000 416 0% 449 7.8% 821 17.54%
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Table 8 OLT results for small container type in heterogeneous data centers.

Container # E_DCP PM # E_DCP OLT % DCP PM # DCP OLT % IGA PM # IGA OLT %

500 3 0% 2 50% 58 0%

1,000 4 0% 3 33.33% 62 0%

1,500 5 0% 5 0% 135 0%

2,000 6 0% 5 40% 138 0%

2,500 7 0% 7 57.14% 155 0%

3,000 9 0% 8 37.5% 211 0%

3,500 9 0% 9 44.44% 220 0%

4,000 11 0% 10 40% 240 0%

4,500 12 0% 11 45.45% 280 0%

5,000 13 0% 12 50% 311 0%

Table 9 OLT results for medium container type in heterogeneous data centers.

Container # E_DCP PM # E_DCP OLT % DCP PM # DCP OLT % IGA PM # IGA OLT %

500 8 0% 8 13% 170 0%

1,000 12 0% 12 17% 287 0%

1,500 19 0% 19 26% 399 0%

2,000 26 0% 23 39% 490 0%

2,500 37 0% 34 21% 565 0.71%

3,000 42 0% 40 40% 634 0.47%

3,500 50 0% 46 33% 684 0.88%

4,000 59 0% 53 34% 736 1.77%

4,500 64 0% 62 37% 765 1.96%

5,000 71 0% 65 37% 803 2.99%

Table 10 OLT results for large container type in heterogeneous data centers.

Container # E_DCP PM # E_DCP OLT % DCP PM # DCP OLT % IGA PM # IGA OLT %

500 13 0% 13 23.08% 256 0%

1,000 27 0% 26 26.92% 438 0%

1,500 45 0% 39 35.19% 570 0.53%

2,000 57 0% 53 30.19% 678 0%

2,500 70 0% 62 41.94% 757 1.59%

3,000 83 0% 78 37.18% 816 2.94%

3,500 95 0% 89 35.96% 861 2.56%

4,000 109 0% 101 36.63% 894 5.82%

4,500 121 0% 115 33.04% 927 5.29%

5,000 133 0% 126 34.92% 944 6.89%
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Energy efficiency
Energy efficiency is an important factor in cloud systems for two reasons. The first is to
reduce running costs and the second is to reduced the negative impact of these systems on
the the environment.

The results demonstrated that the proposed mechanism managed to consume less
power in comparison to the DCP mechanism when it was applied to a homogeneous cloud
system as it is depicted in Fig. 4. The worst scenario is when the container type is large and
the number of containers is 5,000 because it will require more PMs to host high container
requirements and large number of them. In this case, the E_DCP improve energy efficiency
by about 5%. Similar improvements occurred in medium and multi container types.
However, the energy consumed by our method is exactly the same as the DCP mechanism
when the mechanisms were used in the small container type. This is because the
requirements of this type of containers is quite low which leads to a similar behavior in
these two mechanisms.

The total power consumed by a heterogeneous system yielded a different outcome. The
DCP mechanism outperformed our mechanism by reducing consumption as it is
illustrated in Fig. 5. This because our approach aims at reducing the number of OLT PMs
which leads to more active PMs as it was explained in the previous subsection. The increase
of active PMs means more energy consumption.

High service demand
Previous sections briefly outlined the implications of high service demand. This section
provides a more rigorous analysis of the behavior of the E_DCP mechanism under such
conditions. High service demand, defined as the increasing number of containers (Alwabel,
2023), poses a considerable challenge to system performance. As illustrated in Fig. 6A, the
proposed mechanism achieves a substantial reduction in search time compared to the DCP
and the IGA mechanisms, while sustaining comparable power consumption levels
(Fig. 6B). Furthermore, Fig. 6C indicates that the E_DCP mechanism consistently

Table 11 OLT results for multi container type in heterogeneous data centers.

Container # E_DCP PM # E_DCP OLT % DCP PM # DCP OLT % IGA PM # IGA OLT %

500 11 0% 11 18.18% 162 0%

1,000 19 0% 18 27.78% 284 0%

1,500 27 0% 26 23.08% 401 0%

2,000 36 0% 33 30.3% 479 0%

2,500 40 0% 39 23.08% 566 0.35%

3,000 50 0% 46 34.78% 646 0.62%

3,500 58 0% 52 40.38% 696 1.29%

4,000 66 0% 59 32.2% 737 2.17%

4,500 75 0% 67 35.82% 769 1.82%

5,000 84 1.19% 75 42.67% 812 1.72%
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Figure 4 Energy efficiency in homogeneous data center. (A) Small container type; (B) Medium container type; (C) Large container type; (D) Multi
container type. Full-size DOI: 10.7717/peerj-cs.3348/fig-4
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Figure 5 Energy efficiency heterogeneous data center. (A) Small container type; (B) Medium container type; (C) Large container type; (D) Multi
container type. Full-size DOI: 10.7717/peerj-cs.3348/fig-5
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Figure 6 Impact of high demand. (A) Search time; (B) Power consumption; (C) OLT.
Full-size DOI: 10.7717/peerj-cs.3348/fig-6
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maintains OLT levels at a minimum, highlighting its ability to ensure efficiency and
scalability under intensive workloads.

CONCLUSION
Although containerized cloud services provide dynamic scalability and enhanced cost
efficiency, it poses new challenges such as resource utilization and power consumption.
This article presents a container placement mechanism that focuses on enhancing the
performance of cloud systems by reducing search time and improving resource utilization
while maintaining an acceptable level of power consumption in the case of large number of
containers. The article employs WOA to find the best solution to place containers on PMs.
The best solution is evaluated based on a scoring approach which this article discusses.
Finally, the best solution is optimized to improve resource utilization with minimum affect
on performance. The experiments demonstrate that our mechanism outperformed other
mechanisms in terms of search time and resource utilization.

The E_DCP mechanism is evaluated in two cloud environments: homogeneous and
heterogeneous. The experiments consider the large scale of workload (i.e., the number of
containers become quite high). The results demonstrated that the mechanism outperform
the DCP and IGA mechanisms in both performance and resource utilization in both cloud
environments. However, the price of this improvements is the increase of power
consumption in comparisons to the DCP mechanism.

There are three major future research directions with this work. Firstly, the mechanism
should consider resource availability as an evaluation criteria in the presence of failure
events. In addition, a dynamic and migration approaches should be employed to further
enhance the proposed method in terms of energy consumption. However, the overhead of
migration should be taken into account in this study. Lastly, the evaluation approached
presented in this article consider there factors and treat them equally. A work can
investigate the effectiveness of assigning various weight for each factor in order to study if
it can yield a better outcome.
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