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ABSTRACT

Background: Intrinsically disordered proteins (IDPs) are proteins that contain
intrinsically disordered regions (IDRs), which lack stable three-dimensional
structures under physiological conditions. These regions are known to play crucial
roles in many biological processes. While IDRs can be predicted from their amino
acid sequences, and several accurate IDR prediction programs have been developed,
such programs often require substantial computational resources, including long
execution times, large databases for homology searches, and advanced computer
architectures. Since DNA sequence data continues to grow rapidly, particularly at a
genomic scale, there is an increasing need for fast and accurate IDR prediction
programs that demand fewer computational resources.

Methods: In this study, we developed DARUMA (Disorder order clAssifier by Rapid
and User-friendly MAchine), an IDR prediction program designed for speed and
ease of use. DARUMA uses a one-dimensional convolutional neural network
(ID-CNN) that processes the physicochemical properties of amino acid residues
instead of relying on sequence profiles. DARUMA employs a simple neural network
that predicts IDRs using the output of 1D-CNN as input features. To ensure easy
installation on users’ systems, DARUMA was written entirely in Python using
standard and NumPy libraries.

Results: DARUMA achieves fast performance by avoiding iterative homology
searches while delivering accuracy comparable to the latest predictors that use
sequence profiles. In addition to the advantage of execution time, DARUMA requires
no additional homology search programs and operates using standard Python
libraries, making it easy to install and run on users’ own environments without the
need for specialized computational resources. DARUMA is available at https://
antepontem.org/daruma/, which also provides the stand-alone distribution.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Software
Engineering, Text Mining, Neural Networks

Keywords Intrinsically disordered protein, Intrinsically disordered region, Machine learning,
Fast prediction, Convolution neural network.

INTRODUCTION

Intrinsically disordered proteins (IDPs) have attracted much attention in protein science
over the past two decades (Uversky, 2002; Wright ¢» Dyson, 1999). IDPs are proteins that
contain intrinsically disordered regions (IDRs), which do not adopt stable 3D structures
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under physiological conditions (Dunker et al., 2001). Despite lacking a stable structure,
IDRs play key roles in essential biological processes, such as transcriptional regulation and
signal transduction, challenging the traditional concept that proteins function solely by
forming stable three-dimensional structures (Dyson ¢ Wright, 2005). Following the
discovery of IDPs, one of the major breakthroughs in molecular biology has been the
development of sequencing techniques (Shendure ¢ Ji, 2008). Advances in next-generation
sequencing have led to an extraordinary surge in DNA sequence data. In 2002, GenBank
housed approximately 17 million sequences in its main section and 170,000 sequences in
the whole genome shotgun (WGS) section. In 2024, these numbers had grown to

250 million in GenBank and 3.4 billion in WGS (NCBI, 2025) (https://www.ncbi.nlm.nih.
gov/genbank/statistics/). Since GenBank primarily stores sequence data for individual or
small groups of genes, while the WGS section contains data from whole genome shotgun
analyses, this trend indicates a shift from sequencing individual genes to genome wide
sequencing. Reflecting the trend, UniProtKB provides 843,388 proteome datasets on
March 8th, 2025 (UniProt, 2025) (https://www.uniprot.org/).

IDR prediction programs have played a crucial role in shaping our understanding of
IDPs since the early stages of IDP research. In particular, proteome-scale predictions of
IDRs have enabled comparisons of IDR ratios between model organisms and facilitated
analyses of sub-cellular localizations, post-translational modifications, and protein-protein
interactions in IDPs (Dunker et al., 2008; Fukuchi et al., 2011; Haynes et al., 2006;
Iakoucheva et al., 2004; Minezaki et al., 2006; Patil ¢» Nakamura, 2006; Ward et al., 2004).
Such research has suggested that eukaryotic genomes encode a substantial number of
IDPs, with 30-40% of residues in eukaryotic proteomes found in IDRs. Additionally, IDPs
are abundant in nuclear proteins and tend to serve as hub proteins with more interaction
partners in protein-protein interaction networks. These insights have become widely
accepted in IDP research, largely based on computational predictions of IDRs (Oldfield ¢
Dunker, 2014). As a result, experimental determination of IDRs is seldom conducted for
annotation purposes, with IDR predictions typically being accepted as annotations. Given
the rapid growth in proteome-scale sequence data and the advantages of large-scale IDR
analysis, the demand for fast and accurate IDR prediction programs continues to rise.

Over the past two decades, numerous IDR predictors have been developed and
evaluated in competitions such as CASP5 to CASP10 (Moult et al., 2014; Moult et al., 2003)
and the Critical Assessment of protein Intrinsic Disorder prediction (CAID) (Conte et al.,
2023; Necci et al., 2021). Typically, IDR prediction involves converting amino acid
sequences into feature values, such as the physicochemical properties of amino acid
residues, their secondary structure propensities, and/or sequence profiles (He et al., 2009;
Meng, Uversky ¢ Kurgan, 2017). Although there are many disorder predictors, the CAID2
challenge found that the predictors using sequence profile have the advantage in the
disorder prediction accuracy (Conte et al., 2023). Sequence profiles are created from
multiple sequence alignments, which are generally generated by iterating homology
searches against a reference database. Most profile driven IDR predictors rely on
position-specific scoring matrices (PSSM), a type of sequence profile produced by
PSI-BLAST (Altschul et al., 1997). While sequence profile-driven predictors generally
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achieve high accuracy, they come with significant computational costs due to
resource-intensive process of generating sequence profiles. Homology search programs
typically require a large sequence database as the search target and their iterative processes
to identify remote homologs are time consuming (Altschul et al., 1997).

IDR prediction methods are roughly divided into three categories: machine learning
methods, scoring function methods, and consensus methods. The accumulation of IDR
annotations in IDP databases (Fukuchi et al., 2014; Hatos et al., 2020; Piovesan et al., 2018),
along with advances in machine learning, has enabled the development of more
powerful prediction models. Machine learning-based predictors typically provide
highly accurate predictions but require high-spec hardware, including large amounts
of random-access memory (RAM) and multiple graphics processing units
(GPUs). Additionally, some machine learning-based predictors rely on extra libraries
and packages, making their installations on local environments challenging. Given the
rapid growth of sequence data, particularly proteome data, and the increasing demand for
IDR annotations, a cost-effective, user-friendly program that maintains high accuracy is
highly desirable.

In this study, we developed a fast, accurate, and user-friendly predictor called
DARUMA (Disorder order clAssifier by Rapid and User-friendly MAchine). DARUMA
uses a convolutional neural network (CNN) (Lecun et al., 1998) that processes the
physicochemical properties of amino acid residues instead of relying on sequence profiles.
Written entirely in Python using standard and NumPy libraries, DARUMA’s design
ensures easy installation on users’ systems. Its streamlined specification allows for rapid
predictions, making it especially suitable for large-scale analyses.

MATERIALS AND METHODS

Feature value embedding

To represent the features of amino acid sequences, we used the AAindex database
(Kawashima & Kanehisa, 2000), which provides 20 numerical values for various
physicochemical and biological properties of amino acids. The AAindex database is
divided into three sections, AAindex1, AAindex2, and AAindex3 (Kawashima et al., 2008).
We selected AAindex1, which contains 566 indexes for the physicochemical properties of
each amino acid, including factors such as side chain size and hydrophobicity. We utilized
553 indexes as feature values, excluding all those with N/A values. The values were
normalized to a scale from 0 to 1 across the 20 numerical properties. Consequently, each
amino acid residue was represented by a 553-dimensional vector of physicochemical
properties, and an amino acid sequence with L residues was embedded into an L x 553-
dimensional vector.

Construction of training and validation datasets

To construct the training and validation datasets, we used two sources: the DM4229
dataset and the IDEAL database (Fukuchi et al., 2014) (https://www.ideal-db.org/).
DM4229, which was originally used to develop the SPINE D program (Zhang et al., 2012),
provides IDR annotations for 4,229 proteins. IDEAL, an IDP database, offers IDR
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annotations for 981 proteins. To eliminate redundancy between DM4229 and IDEAL, we
performed clustering using BLASTClust (Altschul et al., 1997) with a 25% identity
threshold, resulting in 4,981 clusters containing a total of 5,210 proteins. We selected
representative proteins from each cluster as follows: the longest protein from IDEAL if a
cluster contained multiple IDEAL proteins, an IDEAL protein if the cluster had one
IDEAL protein, and the longest protein if a cluster had no IDEAL protein. IDEAL proteins
were prioritized over those from DM4229 because IDEAL is continuously updated
(IDEAL, 2025) (https://www.ideal-db.org/history.html). The CAID project, which
evaluates IDR prediction programs, provides datasets for performance assessment. Since
we used the CAID dataset as evaluation dataset, we excluded proteins with 25% or greater
similarity to any CAID proteins from the representative proteins. This resulted in a final
set of 4,762 proteins. Of these, 4,286 proteins (3,731 from DM4229 and 555 from IDEAL;
Table S1) were assigned to the training dataset, and 476 proteins (414 from DM4229 and
62 from IDEAL; Table S1) were used for the validation dataset. To further enhance
generalization ability, we included another validation dataset, the SL dataset (https://
mendel.bii.a-star.edu.sg/SEQUENCES/disorder/), provided by Sirota et al. (2010) as a
benchmark set for IDR predictor. We removed redundant proteins with 25% sequence
identity found in the other datasets from the SL dataset.

Construction of evaluation dataset

We used the dataset from the first round of CAID (CAID1) (Necci et al., 2021), DisProt646
and DisProt-PDB646 (https://codeocean.com/capsule/2223745/tree/v1), for evaluation.
While both DisProt646 and DisProt-PDB646 contains 646 proteins from the DisProt
database (Hatos et al., 2020), they follow different policies for disorder annotation. In both
datasets, a residue is labeled as positive if it has a disorder annotation in DisProt. However,
DisProt646 labels a residue as negative if it lacks a disorder annotation in DisProt, whereas
DisProt-PDB646 labels a residue as negative only if it lacks a disorder annotation in
DisProt and is part of a PDB structure. Consequently, DisProt-PDB646 includes residues
labeled as neither positive nor negative (undefined in Table S1), whereas DisProt646
classifies all residues as either positive or negative. For performance evaluations using
DisProt-PDB646, undefined residues were excluded. Additionally, we evaluated our
method using the two datasets from the second round of CAID (CAID2) (Conte et al.,
2023): disorder_nox and disorder_pdb (https://caid.idpcentral.org/challenge/results).
Redundant proteins shared with the training and validation datasets were removed from
these evaluation sets. The disorder_pdb dataset follows the same labeling policies as
DisProt-PDB646. In contrast, disorder_nox labels a residue as positive if it is identified as
disordered by circular dichroism and registered in DisProt, with all other residues labeled
as negative. The detailed statistics of these datasets are provided in Table S1.

DARUMA architecture

DARUMA comprises two units: a feature extraction unit (FEU) and a prediction unit (PU)
(Fig. 1). The FEU employs a CNN featuring three 1D convolutional layers (Lecun et al.,
1998). A query sequence is embedded into an L x 553 vector, which is then zero-padded
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Figure 1 Structure of the DARUMA model. L represents the length of the query sequence. The values in parentheses indicate the dimensions of
each layer. The values added to L at the first dimension in parentheses are the size of the zero-padded region. The boxes, flanking the solid-lined box
and surrounded by dashed lines, indicate the zero-padded region. The figures associated with size and depth denote the size and number of filters,

respectively. The term node refers to the number of nodes that make up the affine layer.

Full-size K] DOTI: 10.7717/peerj-cs.3343/fig-1

with 72 residues on both terminals before inputting into the first 1D convolutional layer.
The filter size and the number of filters for all 1D convolutional layers are set to 9 and 128,
respectively. Each layer uses the rectified linear unit (ReLU) (Hahnloser et al., 2000; Nair ¢
Hinton, 2010) activation function. The vector size decreases by eight residues at each 1D
convolutional layer since the padding layer is not utilized in the FEU. As a result, the
output from the final 1D convolutional layer consists of feature values compressed into an
(L + 120) x 128-dimensional shape, which are then processed by the PU after applying the
sliding window technique. In this sliding window process, the window size and the sliding
step size are set to 121 and 1, respectively. The PU utilizes a neural network (McCulloch &
Pitts, 1990; Rosenblatt, 1958) that includes an input layer with 121 x 128 nodes, two hidden
layers each containing 128 nodes, and an output layer with 2 nodes. The ReLU activation
function is applied to the hidden layers, while the output layer employs the Softmax
activation function (Bridle, 1990). The output from the Softmax node is averaged over 17
residues centered around a residue of interest; if the average exceeds 0.5, that residue is
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classified as disordered. When the 17-window was not applicable at the terminal regions,
values over all residues were averaged. Additionally, IDRs shorter than 10 residues are
relabeled as structured, while structured regions shorter than 10 residues are reclassified as
disordered.

Optimization of DARUMA

We optimized all hyperparameters in DARUMA through a grid search, selecting those that
demonstrated the highest average performance across the two validation datasets.
Additionally, we optimized the size of the sliding window applied to the outputs of the
Softmax node. A detailed description of the hyperparameter selection process is provided
in the additional information.

Evaluation of DARUMA

We selected eight IDR predictors as reference programs: IlUPred3-long, IUPred3-short
(Erdos, Pajkos & Dosztanyi, 2021), SETH (Ilzhofer, Heinzinger ¢ Rost, 2022),
SPOT-Disorder-Single (Hanson, Paliwal ¢» Zhou, 2018), SPOT-Disorder (Hanson et al.,
2017), SPOT-Disorder2 (Hanson et al., 2019), fIDPnn (Hu et al., 2021), and rawMSA
(Mirabello & Wallner, 2019). IUPred3-long, IUPred3-short, SETH, and
SPOT-Disorder-Single do not utilize sequence profiles, and we categorized them as
profile-free predictors. In contrast, SPOT-Disorder, SPOT-Disorder2, and fIDPnn use
sequence profiles and are classified as profile-driven predictors. Since rawMSA uses
homology searching, we categorize it as the profile-driven predictor, although it utilizes
raw multiple sequence alignments without generating profiles. Among these, SETH,
rawMSA, SPOT-Disorder-Single, SPOT-Disorder, SPOT-Disorder2, and fIDPnn

employ machine learning methods, with the first two utilizing CNN, the following three
utilizing long short-term memory methods (Hochreiter ¢ Schmidhuber, 1997), and fIDPnn
employing a deep neural network (Hinton, Osindero ¢ Teh, 2006) consisting of two
fully-connected layers, all as their main model architecture. [IUPred3-long and -short use a
statistical potential to describe intra-chain contacting residue pairs, resulting in shorter
execution times compared to profile-driven predictors (Meszaros, Erdos ¢» Dosztanyi,
2018). To ensure fair comparisons of execution time, all predictors were run on a machine
equipped with an Intel Xeon E5-2697 v4 processor at 2.30GHz and 128GB of RAM,
without the use of a GPU. The execution time was normalized by sequence length as
follows: total execution time across all proteins in a dataset was divided by the total
number of residues and multiplied by 1,000.

To measure the performance of the predictors, we utilized the Matthews Correlation
Coefficient (MCC) (Matthews, 1975), the area under the curve of receiver operating
characteristics (AUCroc) (Hanley ¢ McNeil, 1982), sensitivity, and precision.

MCC, sensitivity, and precision are represented as follows:
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where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively. We utilized the default thresholds from the reference predictors to
differentiate between positive and negative. Portions of this text were previously published
as part of a preprint (https://www.researchsquare.com/article/rs-5414158/v1).

RESULTS

We compared the performance of DARUMA with that of other predictors. Table 1A
presents the evaluation results using the CAID1 dataset, DisProt646, and DisProt-PDB646.
Among the profile-free programs, DARUMA and SETH, which utilize CNN, achieved the
highest performance in MCC, and DARUMA, SETH, and SPOT-Disorder-Single
exhibited a comparable performance in AUCroc for the DisProt646 dataset. Overall, the
profile-driven predictors achieved high performances, IDPnn especially showed notable
performances in both MCC and AUCroc. A similar trend is observed for the DisProt-
PDB646 dataset, where the profile-driven predictors also demonstrated good performance.
DARUMA excelled among the profile-free predictors and outperformed flDPnn and
rawMSA, which are the profile-driven predictors, in both MCC and AUCroc. Interestingly,
although fIDPnn achieved high performance in the DisProt646 results, it recorded the
lowest accuracy. Table 1B presents the evaluation on the CAID2 dataset. Consistent with
the findings from DisProt646 and DisProt-PDB646, DARUMA performed well among the
profile-free predictors, achieving the highest MCC for both datasets and the highest
AUCroc for disorder_pdb. Overall, among all predictors, including the profile-driven ones,
DARUMA ranked second in MCC for the disorder _nox dataset and the third in MCC and
AUCroc for the disorder_pdb dataset, demonstrating comparable performance of the
profile-driven predictors. Those results show that DARUMA exhibited consistent
performances across all test datasets, indicating its robustness in IDR prediction.

Next, we compared the execution times of the predictors on the CAID1 dataset. To
determine the execution time for each predictor, we calculated the execution time per
1,000 residues across all proteins in the datasets. Figure 2 shows a scatterplot illustrating
the relationship between execution time and MCC. In both datasets, DARUMA, IUPred3-
long and -short emerged as the fastest predictors. Among these, DARUMA showed
comparable performance to the profile-driven predictors in both datasets. Although SETH
showed high performance along with DARUMA, it took 30.19 s, which was 33.5 times
longer than DARUMA. Generally, profile-driven predictors yield good performance but
require more time to execute (Conte et al., 2023). This trend is evident in Fig. 2, particularly
in the case of SPOT-Disorder2. fIDPnn was the fastest among the profile-driven predictors,
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Table 1 Performance metrics for of all predictors evaluated on the CAID1 and CAID2 datasets.
(A) Performance metrics on the CAID1 dataset

DisProt646 DisProt-PDB646
MCC AUCroc MCC AUCroc
Profile-Free DARUMA 0.315 0.753 0.678 0.910
SPOT-Disorder-Single 0.278 0.757 0.614 0.897
IUPred3-long 0.286 0.738 0.591 0.865
IUPred3-short 0.278 0.742 0.562 0.861
SETH 0.329 0.756 0.689 0.894
Profile-Driven SPOT-Disorder 0.309 0.750 0.698 0.917
SPOT-Disorder2 0.332 0.765 0.711 0.924
flIDPnn 0.361 0.814 0.534 0.874
rawMSA 0.327 0.785 0.639 0.902
(B) Performance metrics on the CAID2 dataset
disorder_nox disorder_pdb
MCC AUCroc MCC AUCroc
Profile-Free DARUMA 0.420 0.792 0.738 0.923
SPOT-Disorder-Single 0.371 0.793 0.668 0.917
TUPred3-long 0.377 0.774 0.656 0.885
TUPred3-short 0.332 0.763 0.600 0.873
SETH 0.401 0.793 0.711 0.911
Profile-Driven SPOT-Disorder 0.416 0.799 0.754 0.930
SPOT-Disorder2 0.452 0.786 0.794 0.949
fIDPnn 0.411 0.840 0.544 0.893
rawMSA 0.345 0.798 0.634 0.910

taking 47.13 s, which is about 52 times longer than DARUMA. Overall, DARUMA can
deliver high-speed IDR predictions with accuracy comparable to that of the profile-driven
predictors.

DARUMA offers significant benefits to users, particularly for large-scale analyses.
Figure 3 schematically illustrates the execution time distributions of IUPred3-long,
IUPred3-short, and DARUMA. We utilized the DisProt646 dataset, which comprises 646
proteins, to calculate the execution time for each protein. The execution time are depicted
in the boxplot. DARUMA (multi) represents the execution time distribution when a query
is input in a multiple FASTA file containing a large number of amino acid sequences in
FASTA format. When the number of sequences is N, DARUMA(single) presents the
execution time distribution for a protein based on N independent executions of
DARUMA. In these two processes, DARUMA (multi) performs the initialization process
only once because the parallelization is not implemented even on DARUMA (multi),
whereas DARUMA (single) executes the initiation N times. In the multiple FASTA query,
the execution time per protein is 0.037 s, which is about 12.6 times faster than DARUMA
(single) and 14.9 times faster than the two I[UPred3 predictors. Additionally, the execution
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Figure 2 MCC and execution time of each predictor on the two CAID1 datasets. Execution time and
MCQC for each predictor are plotted on the horizontal and vertical axes. DisProt646 and DisProt-PDB646
are indicated as blue and orange, respectively. Filled and open circles indicate the profile-free predictors
and profile-driven predictors, respectively. The names and execution times of the predictors are displayed
alongside their corresponding markers. Please note that the horizontal axis is presented on a logarithm
scale. Full-size K&l DOT: 10.7717/peerj-cs.3343/fig-2

times of DARUMA (multi) and DARUMA (single) scaled linearly with sequence length,
maintaining consistent differences across individual proteins (Fig. S1). This indicates that
the initialization time of the prediction model accounts for majority of DARUMA’s
execution time. SETH can also accept a multiple FASTA file as an input; however, we could
not include it in Fig. 3 because we could not calculate the execution time for each protein.
DARUMA was 58.4 times faster than SETH in the total execution time for the DisProt646
dataset.

DARUMA is available through a web interface that supports two types of input: single
sequence and multiple sequences (Fig. 4A). For a single FASTA input, DARUMA presents
the results with a graphic chart, displaying the disorder probability for each residue in a
line graph, while highlighting the disordered regions in red on the query sequence
(Fig. 4B). In addition to the graphical outputs, users can download the results in text
format by clicking the button in the upper right corner of Fig. 4B. When sequences are
input in the multi FASTA format, users receive an e-mail containing a URL that leads to a
results list (Fig. 4C). Additionally, DARUMA is provided as a Python pip package, within a
Docker container, and through GitHub for easy installation in local environments. These
services simplify the installation process, allowing DARUMA to run on both Python2 and
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Figure 3 Execution time of each predictor on the DisProt646 dataset. The boxplot provides a sche-
matic representation of the execution time distribution for proteins in the DisProt646 dataset. The green
triangle and orange line indicates the average and median execution time, respectively. The box repre-
sents the quartile range, horizontal bar depicts the full range of the dataset, and circles denote outliers.
DARUMA(single) and DARUMA (multi) represent the execution time for a single protein query and a
query in the multi FASTA format. Full-size K&l DOTI: 10.7717/peerj-cs.3343/fig-3

Python3 with only the standard and NumPy libraries required. Installation packages can
be found at https://antepontem.org/daruma/download.html.

DISCUSSION

DARUMA achieved a high MCC and area under the curve (AUC) (Table 1) among the
profile-free predictors due to its high sensitivity of 0.718 (Table 2). Since the definitions of
positive in DisProt646 and DisProt-PDB646 are the same, the sensitivity, true positives,
and false negatives are identical between these two datasets. Generally, as the number of
residues predicted as positive increases, the number of false positives (FPs) also rises,
conversely, an increase in negative predictions typically leads to a higher count of false
negatives (FNs). In fact, DARUMA had the second-highest number of true positives (TPs)
and the third-highest number of false positives, while fIDPnn, which recorded the highest
MCC and AUCroc (0.361 and 0.814 in Table 1A) in DisProt646, had the highest number
of true negatives (TNs) and FNs. These results indicate that DARUMA tends to yield more
positive predictions, whereas fIDPnn generates more negative predictions. SPOT-Disorder
and SPOT-Disorder2, which are the profile-driven predictors, and SETH, which is the
profile-free predictors, display a similar trend to DARUMA. Considering the trade-off
between the numbers of positive predictions and the risk of misclassifications, it is
important for users to understand the characteristics of each predictor.

In the evaluation using DisProt-PDB646, the accuracy of all predictors improved
compared to their performance with DisProt646. In DisProt646, residues with disordered
annotations are labeled as positive, while others are labeled as negative. In contrast, in
DisProt-PDB646, only residues with ordered annotations are labeled negative, with the
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Table 2 Additional performance metrics for all predictors on the DisProt646 and DisProt-PDB646

datasets.
Sensitivity Precision TP TN FP FN

DisProt646

Profile-Free DARUMA 0.718 0.313 39,182 196,163 85,828 15,422
SPOT-Disorder-Single  0.556 0.329 30,384 220,025 61,966 24,220
IUPred3-long 0.638 0.312 34,829 205,135 76,856 19,775
IUPred3-short 0.557 0.329 30,415 219,870 62,121 24,189
SETH 0.770 0.310 42,041 188,399 93,592 12,563

Profile-Driven ~ SPOT-Disorder 0.713 0.309 38,685 195,091 86,358 15,608
SPOT-Disorder2 0.742 0.331 36,651 161,985 73,967 12,777
flDPnn 0.507 0.439 27,667 246,597 35,322 26,893
rawMSA 0.660 0.340 36,034 211,959 70,032 18,570

DisProt-PDB646

Profile-Free DARUMA 0.718 0.826 39,182 114,203 8,263 15,422
SPOT-Disorder-Single  0.556 0.887 30,384 118,590 3,876 24,220
IUPred3-long 0.638 0.778 34,829 112,504 9,962 19,775
IUPred3-short 0.557 0.807 30,415 115,209 7,257 24,189
SETH 0.770 0.797 42,041 111,771 10,695 12,563

Profile-Driven  SPOT-Disorder 0.713 0.857 38,685 115,925 6,469 15,608
SPOT-Disorder2 0.742 0.847 36,651 106,382 6,610 12,777
fIDPnn 0.507 0.814 27,667 116,078 6,316 26,893
rawMSA 0.660 0.823 36,034 114,725 7,741 18,570

remainder categorized as undefined. Therefore, the negative residues in DisProt646 are
divided into negative and undefined categories in DisProt-PDB646. Since annotations are
based on experimental evidence, the undefined residues in DisProt-PDB646 are those
lacking any experimental validation. In this context, DisProt-PDB646 serves as a
conservative dataset by excluding uncertain negative labels. These undefined residues may
contain cryptic IDRs, and the residues in these regions can exhibit IDR properties. When a
predictor identifies these residues as positive due to such IDR characteristics, this leads to
false positives when evaluated against the DisProt646 dataset. The CAID experiment
demonstrated that this characteristic of the dataset was one of the reasons for the increased
accuracy (Necci et al., 2021).

While DARUMA, SETH, and rawMSA adopt CNN architectures for their prediction
models, the input feature values differ among them. DARUMA, SETH and rawMSA utilize
the physicochemical properties of each amino acid, the embedding values generated by the
protein language model ProtT5, and raw multiple sequence alignments. Despite these
differences, the overall performances of these predictors were comparable (Fig. 2).

Although we used eight predictors as reference predictors in the development of the
DARUMA model, we compared the performance of DARUMA with 34 predictors
available from CAID2 (https://caid.idpcentral.org/challenge/results) (Table S3). In order
to ensure a fair comparison of execution time, we ran DARUMA on the Intel Xeon
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Table 3 Comparison of execution times across various computing configurations.

Configuration Predictor Minutes Seconds per 1,000 residues
Xeon E5 128 G IUPred3-long 182.01 0.96
IUPred3-short 180.13 0.95
DARUMA (multi) 13.72 0.072
Xeon Silver 92 G(on WEB) DARUMA (multi) 27.25 0.14
Core i3 4 G 2nd Gen DARUMA (multi) 39.15 0.21
Xeon Gold with GPU DARUMA (multi) 1.93 0.010

E5-2697 v4 processor at 2.30 GHz with RAM limited to 47 GB, which matches the RAM
size used in the CAID2. Some profile-free predictors, such as SETH-0, metapredict, and
DARUMA, show comparable performance, although the predictors demonstrating high

performance were mostly profile-driven ones. DARUMA achieved high speed prediction
than other two among these three. Figure S2 showed that DARUMA is a well-balanced

IDR predictor in terms of both prediction accuracy and execution time.

We demonstrated in the results section that DARUMA can quickly process a file in the
multi FASTA format. Fast predictions are particularly useful for large-scale analyses, which
are often conducted on local computer environments. In such cases, execution time
depends on the specifications of the running devices. Table 3 presents the execution time of
four devices: the Intel Xeon E5-2697 v4 processor at 2.30 GHz with 128 GB of RAM (Xeon
E5 128 G), the Intel Xeon Silver 4214R processor at 2.40 GHz with 92 GB of RAM (Xeon
Silver 92 G), the Intel Core i3-2120 processor at 3.30 GHz with 4 GB of RAM (Core i3 4 G
2nd Gen), and the Intel(R) Xeon(R) Gold 5222 CPU @ 3.80GHz with GPU of RTX2080ti
(Xeon Gold with GPU). Among these, the Xeon Silver 92 G is the device used for the web
interface. The experiments were conducted using sequences from the human proteome,
which includes 20,371 proteins (UniProt, 2025) (https://www.uniprot.org/). The execution
times for processing the human proteome were 13.72, 27.25, 39.15 and 1.93 min on the
Xeon E5 128 G, Xeon Silver 92 G, Core i3 4 G 2nd Gen, and Xeon Gold with GPU,
respectively, resulting in per 1,000 residues execution times of 0.072, 0.14, 0.21 and, 0.010 s.
Although the Xeon processors exhibited high performance in terms of speed, the Core i3 4
G 2nd Gen, a consumer-grade CPU released over a decade ago, demonstrated a practical
execution time of less than an hour for the human proteome. The human proteome can be
processed in less than 2 min by running DARUMA on a GPU. It shows that it is beneficial
for large-scale analyses. These results indicate that DARUMA enables fast predictions on a
wide range of processors, from consumer-grade to server-grade. Therefore, many users can
run DARUMA in their respective environments.

Although we evaluated the performance of DARUMA with the programs locally
installed in our environment, there are programs only available via the web interface.
RIDAO (Dayhoff ¢ Uversky, 2022) is the website to provide results of six disorder
predictors and the consensus score. We could refer the execution time in its article
(Dayhoff & Uversky, 2022), which can process about 420 million residues in 42 min due to
multi-threaded execution. We calculated the execution time of DARUMA for the same
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dataset, resulting in an execution time of 77.5 min. Since DARUMA conducts its
prediction on a single GPU (Xeon Gold with RTX2080ti GPU) environment at present, we
conducted a performance test using multiple GPUs (Xeon Gold with two RTX2080ti
GPUs) on the same dataset, and we found that the execution time was significantly reduced
to 39.2 min. This result showed that the multiple thread version of DARUMA is expected
to enhance its usability, and it will be available in the near future.

CONCLUSIONS

In this study, we developed DARUMA, a tool capable of delivering high-speed IDR
predictions with accuracy comparable to that of state-of-the-art predictors. DARUMA is
accessible via a web interface that accommodates both single protein queries and
proteome-wide searches. Additionally, DARUMA is offered in several installation
packages, enabling users to easily install the software in local environments. Users can
benefit from high-speed predictions with DARUMA across a range of devices, from
consumer-grade processors to sever-grade systems. DARUMA is accessible at https://

antepontem.org/daruma/.
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