
Detecting hate speech in roman Urdu using
a convolutional-BiLSTM-based deep
hybrid neural network
Muhammad Zohaib1, Ghulam Farooque2, Mohammad Alsulami3,4,
Fazeel Abid2, Ali Alqazzaz5, Mana Saleh Al Reshan4,6,
Jawad Rasheed7,8,9 and Asadullah Shaikh4,6

1 Information Systems, University of Management & Technology, Lahore, Lahore, Pakistan
2 Computer Science and Information Technology, University of Lahore, Lahore, Pakistan
3 Computer Science, Najran University, Najran, Saudi Arabia
4 Emerging Technologies Research Lab (ETRL), Najran University, Najran, Saudi Arabia
5 College of Computing and Information Technology, University of Bisha, Bisha, Saudi Arabia
6 Information Systems, Najran University, Najran, Saudi Arabia
7 Software Engineering, Istanbul Nisantasi University, Istanbul, Turkey
8 Applied Science Research Center, Applied Science Private University, Amman, Jordan
9 Research Institute, Istanbul Medipol University, Istanbul, Turkey

ABSTRACT
The detection of hate speech on social media has become a pressing challenge,
particularly in multilingual and low-resource language settings such as Roman Urdu,
where informal grammar, code-switching, and inconsistent orthography hinder
accurate classification. Despite progress in hate speech detection for high-resource
languages, limited research exists for Roman Urdu content. This study addresses this
gap by proposing a computationally efficient deep learning framework based on a
hybrid convolutional neural network and bidirectional long short-term memory
(CNN-BiLSTM) architecture. The model leverages FastText pre-trained embeddings
to capture subword-level semantics and combines convolutional layers for local
feature extraction with BiLSTM for global context modeling. We evaluate our
approach on a labeled Roman Urdu dataset and compare it with traditional machine
learning models and deep learning baselines. Our proposed CNN-BiLSTM model
achieves the highest performance with an accuracy of 80.67% and an F1-score of
81.47%, outperforming competitive baselines. These findings demonstrate the
effectiveness and practicality of our lightweight architecture in detecting hate speech
in Roman Urdu, offering a scalable solution for multilingual and
resource-constrained environments.

Subjects Data Mining and Machine Learning, Natural Language and Speech, Text Mining, Neural
Networks
Keywords Hybrid neural network, Roman Urdu, Deep learning, Short-term memory,
Convolutional layers, Text data

INTRODUCTION
The number and popularity of social networking websites on the internet have significantly
increased during the past ten years, resulting in an exponential hype in the number of
users. These websites offer users the promising freedom to share their thoughts and engage
with others from different backgrounds, leading to the formation of relationships and the

How to cite this article Zohaib M, Farooque G, Alsulami M, Abid F, Alqazzaz A, Reshan MSA, Rasheed J, Shaikh A. 2025. Detecting hate
speech in roman Urdu using a convolutional-BiLSTM-based deep hybrid neural network. PeerJ Comput. Sci. 11:e3342 DOI 10.7717/peerj-
cs.3342

Submitted 5 May 2025
Accepted 8 October 2025
Published 3 November 2025

Corresponding author
Mohammad Alsulami,
mmalsulami@nu.edu.sa

Academic editor
Siddhartha Bhattacharyya

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.3342

Copyright
2025 Zohaib et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3342
http://dx.doi.org/10.7717/peerj-cs.3342
mailto:mmalsulami@�nu.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3342
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

exchange of ideas (Rizwan, Shakeel & Karim, 2020). Conversely, hostile, offensive,
derogatory, or obscene language is utilized to disseminate, provoke, incite, or justify hate,
violence, and prejudice between individuals based on their ethnicity, religion, gender,
association with specific organizations, or opinions on particular events or topics, such as
politics. Failure to address this type of content has been shown to cause violent acts and
more serious confrontations. This renders it impractical to uphold civil rights, legal
frameworks, and expression, all of which are essential for the establishment of a
non-discriminatory open to democracy culture (Khan, Shahzad & Malik, 2021).

Most social media companies depend on information reporting and manual review by
human personnel. However, this approach is limited by the speed of the reviewers, their
understanding of emerging slang, jargon, and multilingual content, as well as their
experience with such content (Mahmood et al., 2020). In addition to these challenges, it is
worth noting that by the time the manual review process is carried out—a process that
typically takes up to 24 h—the targeted harmmay have already occurred. Furthermore, the
subjective nature of determining what language is considered offensive and constitutes
hate speech raises concerns about the potential for the manual procedure to be misused to
silence minority groups and refrain from criticizing government actions, political
opponents, and religious convictions. Hence, there is a need for the support the
advancement of technologies capable of automatically recognizing inappropriate language
and hate speech (Kovács, Alonso & Saini, 2021).

Recent incidents in Pakistan, including the execution of a student who was subjected to
anti-religious propaganda on the internet, efforts to discredit prominent politicians and
social media influencers, and the frequent targeting and abuse of women who express their
opinions online, have prompted the government to enact legislation prohibiting hate
speech on the internet. In response to attempts to target religious minorities and cause
offense to their religious sentiments, the government has introduced the Nation Protection
Act (Alkiviadou, 2019). These incidents vividly highlight the challenges Pakistan faces in
combatting online hate speech and the need for automated methods are required to handle
such kind of content. The English language has been the primary focus of hate speech and
abusive language, despite Urdu being the country’s national language, while English is the
official language (Mullah & Zainon, 2021). Individuals often use Latin scripts when writing
in Urdu and frequently switch between the two languages during a conversation. This
phenomenon involves the alternation of Urdu and English within the same language,
phrase, sentence, or other linguistic unit (Noor et al., 2015). The term “Roman Urdu” refers
to the distinctive and informal style of the Urdu language that incorporates characteristics
such as colloquial jargon, non-standard grammar, divergent spellings, idiosyncratic
abbreviations, and code-switching. As a result of these features, Roman Urdu is
significantly more challenging to model than formal languages, which typically follow
established grammatical rules and employ standardized terminology (Shakeel & Karim,
2020). It’s recognized that the content and characteristics of hate speech differ among
different socioeconomic groups. Therefore, to enhance research in this area, there is a need
for annotated corpus and models in multi languages to support the analysis of linguistic
materials (Mandl et al., 2019).

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 2/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

Organizations such as Facebook and Twitter are believed to be Each year, they spend
hundreds of millions of euros to counteract hate speech on their platforms. However, these
companies continue to face criticism for not taking sufficient measures to deal with the
problem (Al-Hassan & Al-Dossari, 2022). One reason for the continued criticism of
organizations such as Twitter and Facebook regarding their attempts to oppose hate
speech is the fact that traditional methods for detecting and removing inappropriate online
content rely on manual analysis (Khan et al., 2025). This approach is known to be
arduous, time-consuming, and ultimately unsustainable (Duwairi, Hayajneh & Quwaider,
2021). Research has been motivated by the vital requirement for automated and scalable
hate speech recognition tools, which has led to the development of significant methods
centered on machine learning (ML) and natural language processing (NLP) (Putri et al.,
2020; Khan et al., 2022a). Due to the lack of comparative assessments and the use of
distinct datasets by each study, it is not possible to evaluate the results of their considerable
efforts.

The detection of hate speech in Roman Urdu poses unique challenges due to the
language’s informal structure, heavy use of slang, inconsistent grammar, and frequent
switching between English and Urdu (Ashiq et al., 2024; Khan et al., 2022b). These
characteristics make it difficult for traditional models to effectively capture both the
surface-level and contextual cues present in such texts. As a result, there is a pressing need
for automated solutions that can interpret and learn from these noisy and unstructured
language patterns.

To address this, we adopt a hybrid deep learning strategy that combines the strengths of
convolutional neural network and bidirectional long short-term memory (BiLSTM)
networks. CNNs are well-suited for extracting localized textual features such as offensive
word combinations and repeated patterns, which are often indicative of hate speech. On
the other hand, BiLSTM networks are capable of processing sequential dependencies in
both directions, enabling the model to understand context and semantic flow across entire
sentences. The integration of these two components allows the system to detect nuanced
expressions of hate, even in code-mixed and grammatically irregular input. This
architectural choice ensures a balance between effectiveness and computational efficiency,
which is critical for real-time applications in resource-constrained environments.

This study presents a robust and computationally efficient deep learning framework for
detecting hate speech in Roman Urdu, a domain that remains underrepresented in the
current literature. The key contributions of our work are as follows.

. We incorporate FastText pre-trained word embeddings, trained on large corpora, to
enrich the semantic representation of Roman Urdu text. The model benefits from
subword-level information, which is particularly effective for handling informal,
morphologically complex, and non-standard language tokens.

. We propose a hybrid architecture that integrates a CNNwith a BiLSTM network, further
enhanced with dual global pooling layers. This design enables the model to capture both
localized lexical patterns and long-range contextual dependencies, striking a balance
between accuracy and computational cost.

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 3/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

. Extensive experiments are conducted using multiple classical machine learning
baselines. Our results consistently demonstrate that the proposed model outperforms
these baselines across all standard evaluation metrics, confirming its effectiveness for
real-world applications in low-resource settings.

. In contrast to many existing deep architectures that are computationally intensive, our
model is lightweight and resource-efficient, making it well-suited for deployment in
scenarios where processing power is constrained.

Moreover, while most hate speech detection research focuses on English or other
high-resource languages, our work specifically addresses the linguistic and structural
complexities of Roman Urdu, a code-mixed, colloquial form characterized by informal
spelling, inconsistent grammar, and frequent switching between Urdu and English. This
fills a critical gap in multilingual hate speech detection. The rest of this article is organized
as follows: ‘Related Work’ reviews related work; ‘Proposed Methodology’ describes the
proposed CNN-BiLSTM model; ‘Experimentation and Results Analysis’ outlines the
datasets used; ‘Discussion’ details the experimental setup and results; and ‘Conclusion’
concludes the study.

RELATED WORK
The extensive lexical similarity between disrespectful language and slanderous
remarks poses a significant challenge to the detection disrespectful language (Davidson
et al., 2017). As a result, people have become accustomed to using insulting or vulgar
language for leisure, humor, and sarcasm. Moreover, when a tweet is identified as
hateful, research on anti-black racism indicates that 86 percent of respondents perceived
the post as hostile, which often includes offensive language, making it challenging to
distinguish between instances of disrespectful language and other forms of discourse
(Wang et al., 2014). Previous research on hate speech recognition has established a set of
criteria for identifying problematic tweets (Waseem & Hovy, 2016; Ashraf et al., 2022).
Furthermore, research has indicated that the geographic distribution of website visitors
does not influence the ability to identify objectionable posts. Another study has utilized
statistical assessments to establish a connection between a user’s propensity to propagate
offensive content, such as sexism and racism, and the corresponding labeled categories.
The study found correlations of 0.71 and 0.76 for sexism and racism, respectively
(Waseem, 2016).

In addition to unsupervised methods, several studies have investigated various
approaches for hate speech detection., such as Nobata et al. (2016) and Malmasi &
Zampieri (2017), Several studies have recommended the the utilization of supervised
learning methods for detecting hatred. The first of These research used publicly available
data sources. available sources, including financial and media comments from two distinct
domains, which were utilized to create a corpus of hate speech. Additionally, the study
examined various types of embeddically extracted features and syntactic characteristics. In
comparison, in Malmasi & Zampieri (2017) a supervised classification approach was
employed, utilizing word skip-grams and n-grams in their algorithms, resulting in an

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 4/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

accuracy rate of 78 percent. The study employed three subcategories, including Hatred,
Offense, and Normal, to classify the experimental dataset.

Recent research has demonstrated the performance of deep learning methods for
identifying expressions of hatred. To categorize hate speech, deep learning approaches
utilize deep artificial neural networks (DNNs), which utilize multiple stacked layers to
learn implicit representations from input data. Various feature encodings, including many
used by conventional approaches, may be employed to encode the input. However, these
input features are not immediately utilized for classification. Instead, new abstract feature
representations are added to the multi-layered structure for learning purposes.
Consequently, deep learning systems prioritize the architecture of the network’s topology
to automatically extract valuable properties from a fundamental input feature space. For
instance, Badjatiya et al. (2017), the study utilized long short-term memory (LSTM),
FastText, and CNN in their experimentation, and the research demonstrated that CNN
outperformed LSTM with FastText Embedding. Additional research studies, such as Jha &
Mamidi (2017), have utilized conventional supervised learning techniques, such as support
vector machines (SVM), models that convert sequences to sequences and the most
advanced FastText classifier, to annotate existing Twitter datasets for instances of sexism.
A recently created dataset categorizes tweets into three groups: benevolent, hostile, and
other. In another research on hateful speech identification, a group classifier was
employed, wherein features were extracted via word frequency vectorization and
subsequently fed to classifiers based on neural networks. The researchers claimed that their
ensemble process is superior to current techniques for classifying short messages (Pitsilis,
Ramampiaro & Langseth, 2018).

In addition to research on the English language, there has been additional research on
identifying hate speech in Asian and European languages. Biradar, Saumya & Chauhan
(2021) focused on code-mixed Hindi-English (Hinglish) content and used the multilingual
bidirectional encoder representations from Transformers (mBERT) model for the
detection of sentiment and hate speech. Their findings reinforce the importance of custom
architectures for handling multilingual, informal social media content. For instance, Vigna
et al. (2017), in the instance of the Italian language, collected a media group containing
news articles on politicians, performers, groups, and celebrities was collected. The initial
research aimed to distinguish between strong hatred, weak hatred, and no hatred.
Compared to the initial round of trials, the categories of “strong hate” and Weak offensive
were employed to create a binary categorization problem in the second set. SVM, a
common supervised learning methodology, and LSTM, a deep learning method, were
employed in experiments. SVM, a conventional method, outperformed deep learning
approaches in both instances, with F1-scores of 0.75 and 0.851. The detection of hate
speech in the German language has also been investigated (Eder, Krieg-Holz & Hahn,
2019). This study measures the relative offensiveness of lexical concepts using a vocabulary
of 11,000 entries.

Apart from European languages, research has also been conducted to identify offensive
language content on Arabic social networks (Mubarak, Darwish & Magdy, 2017). Another
study (Ranasinghe & Zampieri, 2020) proposed multilingual offensive language

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 5/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

identification with cross-lingual embeddings, which contributed valuable work in
low-resource settings. Despite significant progress in detecting hate speech across
languages such as Arabic and various European tongues, very limited research has focused
on Roman Urdu, a code-mixed language characterized by non-standard orthography,
inconsistent grammar, and high lexical variability (Khan et al., 2021). This linguistic
complexity presents unique challenges for automated detection methods. To address this
gap, our study constructs a dedicated Roman Urdu hate speech corpus and evaluates the
performance of five traditional machine learning algorithms alongside five deep learning
models. Unlike many existing approaches that require large-scale computational resources
or are tailored for high-resource languages, we propose a lightweight hybrid CNN-BiLSTM
architecture specifically designed for the noisy, low-resource environment of Roman Urdu
social media content.

PROPOSED METHODOLOGY
This section presents the proposed CNN-BiLSTM architecture, illustrated in Fig. 1. The
architecture begins with an embedding layer that transforms each input text message,
treated as a sequence of tokens, into a continuous vector space. This transformation is
accomplished by mapping each word to a real-valued vector that captures its semantic
representation across multiple dimensions.

For this study, we employed 300-dimensional word embeddings generated using a
skip-gram model trained specifically on Roman Urdu text. These embeddings were used to
initialize the weights of the embedding layer. To ensure uniform input length for model
training, each tweet was standardized to a fixed length of 100 tokens—truncating longer
messages and padding shorter ones with zero-valued vectors.

Proposed algorithm
The concatenated convolutional bidirectional long short-term memory network
(CCBLSTM) used for hate speech detection is represented mathematically as follows:

1. Let X ¼ ½x1; x2; x3; . . . ; xn� be the input sequence of text data, where xi represents the ith
word in the sequence,

2. Let E be the word embedding matrix, where Every word has been represented by a
d-dimensional vector. Then, the embedding of the input sequence X is given by:
EmbeddingðXÞ ¼ ½e1; e2; e3; . . . ; en�, where ei ¼ EðxiÞ.

3. Let Wi be the weight matrix and bc be the bias vector of the convolutional layer. The
output of the convolutional layer is given by: ConvolutionðXÞ ¼ ½c1; c2;…; cm�, where
Ci ¼ reluðWc � ei þ bcÞ. Here, relu is the rectified linear unit activation function.

4. Let Wf be the weight matrix and bf be the bias vector of the feedforward layer. The
output of the feedforward layer is given by: Feedf orwardðZÞ ¼ ½f1; f2;…; fn�, where
fi ¼ reluðWf � zi þ bf Þ.

5. LetWf be the weight matrix and bs be the bias vector of the softmax layer. The output of

the softmax layer is given by: Sof tmaxðFÞ ¼ ½y1; y2;…; yk�, where yi ¼ expðWs�fiþbsÞ
sumðexpðWs�fjþbsÞÞ,

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 6/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

for j ¼ 1 to k. Here, k is the number of output classes and exp is the exponential
function.

6. Let H ¼ ½h1; h2;…; hn� be the hidden state of the bidirectional LSTM layer. The output
of the bidirectional LSTM layer is given by: BidirectionalLSTMðXÞ ¼ H.

7. Let Z ¼ ½z1; z2;…; zn� be the concatenated output of the convolutional layer and the
bidirectional LSTM layer, where zi ¼ ½ci; hi�.

8. Let P be the dropout probability. The output of the dropout layer is given by:
DropoutðFÞ ¼ ½f 01; f 02;…; f 0n�, where f 0i ¼ f � ðBernoullið1� PÞÞ. Here, Bernoullið1� PÞ
is a random binary vector with probability P of being 0 and 1�P of being 1.

9. Y ¼ ½y1; y2;…; yk� be the true labels for the input sequence X.
10. The loss function used for training the CCBLSTM model is the cross-entropy loss:

LossðY ; Sof tmaxðFÞÞ ¼ �sumðyi � logðy0iÞÞ, for i ¼ 1 to k Here, y0i is the predicted
probability of the ith class.

The CCBLSTM model is trained to utilize a gradient descent optimization algorithm,
such as Adam, to minimize the loss function and update the model parameters. The
SoftMax function is utilize by the model to predict the probability of the output class for a
new input sequence of text data. To prevent overfitting, After the embedding layer, a
drop-out layer is applied, with a drop-out rate of 0.4. This has the effect of randomly
dropping out a word in a sentence and ensuring that categorization does not rely on
specific words.

Next, two 1D convolutional layers with 100, 64 filters each and a kernel size of 4 with
padding set to “same” are applied to the drop-out layer’s output to make sure the length of
the output matches the length of the input data. Activation is accomplished using the

Figure 1 CNN-BiLSTM network architecture. Full-size DOI: 10.7717/peerj-cs.3342/fig-1

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 7/22

http://dx.doi.org/10.7717/peerj-cs.3342/fig-1
http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

rectified linear unit (ReLU) function. A 100� 100 representation of the input feature space
is generated, and this is further downsampled by a 1D maximum pooling layer with a pool
size of four, resulting in an output of shape 25� 100. There are 25 different dimensions,
each of which has an “extractable feature”.

Convolutional neural networks (CNNs) are a type of deep neural network that is mostly
applied to image-related applications. The block diagram of a convolutional network is
depicted in Fig. 2. Among the various types of CNNs, one-dimensional CNNs are
specialized for processing signal and time series data. In this research, we introduce a
neural network constructed using the one-dimensional CNN architecture for the purpose
of detecting hate speech. Within the hidden layers of the network, convolutions are
executed, employing kernels as filters to retrieve characteristics from the input data. The
convolutional layer typically entails the dot product operation applied to input vectors, and
the ReLU (rectified linear unit) stands out as the most commonly employed activation
function in this context.

y½n� ¼ x½n� � h½n� ¼
X1

k¼�1
x½n� � h½n� kÞ: (1)

To calculate the number of features in the output, the formula below is employed.

nout ¼ nin þ 2p� k
s

þ 1: (2)

In the context provided, nin signifies the count of input features, nout represents the
number of output features, k stands for the convolution kernel size, p denotes the padding
size, and s indicates the stride utilized in the convolution process.

The characteristics derived from the initial convolutional layer are subsequently
propagated to LSTM in the BiLSTM layer, where they are treated as individual timesteps,
resulting in the generation of 128 hidden units per timestep. The characteristics taken out
of the secondary convolutional layer are subsequently channeled into the second BiLSTM
layer for further processing.

One type of specialized neural network is the recurrent neural network (RNN) model
tailored for the examining of time series data. This model incorporates a feedback loop,
enabling it to effectively utilize prior information. However, RNN encounters challenges
related to memory limitations and information retention. It has trouble picking up
long-term dependencies and is prone to the vanishing gradient issue. To overcome these
issues, LSTM architecture was developed. LSTM created expressly to address RNN’s
limitations in capturing enduring reliance and mitigating the vanishing gradient problem.
The LSTM architecture employs memory cells to preserve historical data for extended
periods, managing this information by using a gate approach. The LSTM unit has three
types of gates that function: the gate for input (it), the memory gap called forget-gate (ft),
and the gate of outflow (ot), illustrated in Fig. 3. To control the state of the memory cells,
each gate carries out sigmoid function and point-wise multiplication operations. The
present input xt and the output of the preceding layer’s concealed state ht�1 are passed into
all three gates. Forget gate determines which information to retain or discard, utilizing the

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 8/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

sigmoid function to transition information using the current input xt and the earlier stage
of concealment ht�1, forget gate’s output ranges from zero to one: a value close to zero
signifies that the values will be ignored, while a value close to one indicates that more
learning will be retained. The following is the formula for calculating the forget gate:

ft ¼ rðWf � ½ht�1� þ bf Þ (3)

where, r symbolizes the activation of the sigmoid, and b and W represent the bias and
weight of each gate unit, corresponding. The present input-data xt and the preceding
hidden-state ht�1 are fed into the sigmoid function. Through transformation into a scale
ranging from zero to one, The input gate chooses which data should be reused. Here, zero
signifies insignificance, while one signifies importance. The following is the expression for
the input gate formulation as seen in Eq. (4) Khan et al. (2022a):

it ¼ rðWi � ½ht�1� þ biÞ: (4)

Subsequently, the present-input xt and the hidden-state ht�1 values are got through the

tanh operation. At this stage, the condition of the cell Ĉt is computed, and the cell state is
accordingly updated with the revised value. Refer to Eqs. (5) and (6) Zhu et al. (2020).

Ĉt ¼ tanhðWC � ½ht�1; xt� þ bCÞ (5)

Ct ¼ ft � Ct�1 þ it � Ĉt: (6)

Here, tanh denotes the activation function of hyperbolic tangent. The symbol �
represents the dot multiplication operator, and Ct signifies the updated recall cell. The
output gate selects the next concealed state when the operation comes to an end. The
recently updated recall cell Ct and a newly concealed state ht are subsequently forwarded to
subsequent temporal intervals within the series as seen in Eqs. (7) and (8) Renna (2023).

ot ¼ rðWo � ½ht�1; pt� þ boÞ (7)

ht ¼ ot � tanhðCtÞ: (8)

A typical information is handled by LSTM solely from the preceding direction, relying
solely on prior data. In contrary, The BiLSTM architecture consists of two LSTM layers:
one in the backward direction and the other forward. The diagram representation of

Figure 2 Block diagram of the convolutional network. Full-size DOI: 10.7717/peerj-cs.3342/fig-2

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 9/22

http://dx.doi.org/10.7717/peerj-cs.3342/fig-2
http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

BiLSTM is illustrated in Fig. 1. The LSTM in front captures Previous information based on
the input sequence, while the backward LSTM gathers upcoming data details, with the
outputs from the merging of the two concealed layers. Consequently, the hidden-state ht of
the BiLSTM at the present time t encompasses both the upfront component ht

!
and the in

reverse component ht

.

ht ¼ ht
!� ht

: (9)

Here, � represents the component-wise summation operation, utilized to combine the
outputs from both the forward and backward elements. BiLSTM offers superior efficiency
compared to traditional LSTM and RNN models due to its ability to leverage both
preceding and subsequent information in the input sequence.

Reset and update gates are the only two gates in a Gated Recurrent Unit (GRU), whereas
there are three in an LSTM (forget, input, and output gates). Consequently, BiLSTM is a
complicated structure with more trainable parameters. In theory, this slows down training.
After concatenating the outputs of each BiLSTM, A layer known as global max pooling,
and a layer of the global average pooling “flatten” the output size generated by selecting the
biggest and the mean figure for every timestep dimension to form a 1� 100 vector. This
makes an obvious decision to represent a tweet using the qualities with the highest scores.
A 0.4 dropout layer is then followed by a 100-node dense layer with full connectivity. Last
but not least, this vector is used as input by a SoftMax layer to calculate the likelihood
distribution across every potential class (n), in accordance with the databases. To train the
model, we employ The cross-entropy loss function for categories and the Adam optimizer.
Empirical evidence demonstrates that the first loss function is superior to others, including
classification error and sum of the squared error. For classification tasks (McCaffrey &
Colin, 2015) the benefits of two additional popular extensions of gradient descent with
stochasticity to increase the basic stochastic gradient descent’s (SGD) effectiveness, utilized
optimizer (AdaGrad and RMSProp).

Figure 3 An illustrative block diagram of the LSTM network.
Full-size DOI: 10.7717/peerj-cs.3342/fig-3

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 10/22

http://dx.doi.org/10.7717/peerj-cs.3342/fig-3
http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

Model parameters. All other parameters are taken from historical data, except batch,
epochs, and learning rate, which are derived from experimentations. several the basis for
our model’s parameters is earlier documented in experimental results, as previously said
(more information adhere to). Perhaps Not the finest conditions for the best results,which
are always reliant on dataset quality. Later on, we demonstrate, however,
experimentally, that the model yields favorable outcomes with minimal data-driven
parameter adjustment. Comparison with DNNs of a similar kind. Our network structure
resembles that of those mentioned in Ordóñez & Roggen (2016), Djuric et al. (2015),
Tsironi et al. (2017). Major variations encompass: (1) We employ a BiLSTM rather than a
GRU for similar reasons as stated earlier; (2) Using a drop-out layer to make the learning
process more consistent as well as a layer of global max pooling to extract information
from the BiLSTM. since convolutional layers are used to get hierarchical image processing
features. We don’t use such complicated models because we’ve shown that our CNN
+BiLSTM works well for this task and may advantage of both the convolutional
qualities and order information from data that BiLSTM gives us, which proves our
hypothesis. For the same reason, we only use word embeddings to build our model, even
though most people think character-level features are better. Later research shows that this
structure is so good that it does a better job than DNN models that are based on character
embeddings.

EXPERIMENTATION AND RESULTS ANALYSIS
In the process of developing and training the CNN-BiLSTMmodels, Keras, a popular deep
learning framework, was utilized in conjunction with Tensorflow as the backend. The
Scikit-learn package was used to analyze the data using random forests, naive Bayes,
logistic regression, and SVM. Kaggle notebooks equipped with an NVIDIA GPU P100 and
16 GB of GPU internal memory were used for conducting experiments. Stratified five-fold
cross-validation was employed to evaluate each model. This approach resulted in five
stratified divisions for the corpus, each containing a nearly identical distribution of tweet
classifications. One random partition was selected from each of the five folds as the testing
set, while the remaining dataset served as the training corpus. The average recall, accuracy,
precision, and F1 over all folds were computed for each model. As the dataset was
imbalanced, accuracy was considered unreliable, and therefore F1 was chosen as the
primary evaluation metric in this research. The formulae for these metrics are presented in
the equations. Equation defines accuracy as the percentage of instances properly
categorized relative to the total number of cases (Eq. (10)).

Accuracy ¼ TN þ TP
TP þ FN þ TN þ FP

: (10)

The symbols TP, TN, FP, and FN stand for tests that are positive, true negatives, and
false negatives, respectively, and the number of correctly detected true negatives.
Equation (11) measures the proportion of accurately detected positive instances to the total
number of anticipated positive cases. Remember, as expressed in Eq. (12), quantifies the
proportion of accurately classified positive cases.

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 11/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

Precision ¼ TP
TP þ FP

(11)

Recall ¼ TP
TP þ FN

: (12)

The definition of F-measure is that it is meant to reflect the harmonic mean of recall and
accuracy. Here is another common use of the phrase, as indicated by Eq. (13).

F1-score ¼ 2� Precision� Recall
Precisionþ Recall

: (13)

To ensure reproducibility, we report the key hyperparameters used in training our
CNN-BiLSTM model. The maximum input sequence length was set to 150 tokens. The
model was trained using the Adam optimizer with an initial learning rate of 0.02 and a
learning rate decay factor of 0.2 applied after 5 epochs. A dropout rate of 0.4 was used to
prevent overfitting. The model was trained for a maximum of 50 epochs with early
stopping based on validation loss, using a patience value of 10. The batch size was set to
258, and L1 and L2 regularization were applied to the kernel weights.

Dataset description
The Roman Urdu language lacks sufficient linguistic resources, particularly for identifying
hate speech. In the available literature, only a few corpora exist for Roman Urdu, which is a
language with limited resources. There has been little effort made in this field for Roman
Urdu, which poses challenges due to its informal nature, with frequent misspellings,
elongated letters, and variations in spelling. Additionally, several terms are used
interchangeably in both English and Urdu, further complicating the dataset acquisition
process. As is well known, the scarcity of datasets is a significant challenge in this area of
research. Many previous studies have utilized privately collected datasets to address
various issues. To construct the largest dataset for offensive language, the author annotated
tweets and made the dataset publicly available. The dataset was created by seeking for
tweets that contained commonly appearing phrases, which were then evaluated manually
for hate speech or specific entity identifiers.

Roman Urdu Hate-Speech and Offensive Language Detection (RUHSOLD) database
(Rizwan, Shakeel & Karim, 2020) undergoes meticulous annotation by three distinct
annotators. To handle conflicts, a resolution is achieved through a majority vote among the
annotators. If consensus cannot be reached or if there is inadequate information for
labeling, the tweets in question are excluded and substituted with randomly selected
tweets from the dataset. Two subtasks are defined as the standard for annotation. The first
subtask involves binary labels for Hateful content and Normal content, representing
offensive and inoffensive language respectively. This subtask is referred to as “coarse
classification.” The second subtask involves characterizing hateful content with five
specific descriptions, which are deemed most suitable for the demographics of Roman
Urdu speakers based on relevant research. Table 1 presents the Twitter tags together with
their respective counts.

To highlight the linguistic challenges posed by Roman Urdu, Table 2 provides examples
of hate speech instances in Roman Urdu along with their English translations. Roman

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 12/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

Urdu exhibits characteristics such as inconsistent spelling, lack of grammatical
standardization, and frequent use of colloquialisms, making automated processing
particularly difficult. These examples also reflect the presence of offensive and religiously
charged content, which further complicates classification.

Pre-processing
Pre-processing is a fundamental procedure that plays a crucial part in ensuring the
accuracy of the classification results. Our pre-processing approach begins with
standardizing the information included within each tweet. This involves several steps,
including the removal of punctuation and numbers, conversion of words to lowercase, and
reduction of word variations and accents. Sparse features that are not essential for learning
are removed by eliminating tokens that occur in a document fewer than three times. We
observed that this led to an improvement in classification accuracy. Additionally, we
removed any existing emojis and encoded the class names using the Label Encoder. All of
these tweets were cleaned up using pre-processing techniques, leaving only the natural
language text for use in subsequent phases. Figure 4 below illustrates the steps involved in
our pre-processing strategy.

Table 1 Identifiable counts of tweets, tagged with their respective labels.

Label Count

Sexism 839

Offensive 2,402

Religious hate 782

Profane 640

Normal 5,349

Total 10,012

Table 2 Examples of hate speech in Roman Urdu with English translations.

Roman Urdu text English translation Label

Tum kitni ghatiya aur beghairat aurat ho You are such a vile and shameless woman Offensive

Masjid ko ura do sab kafir hain Blow up the mosque, all are infidels Religious hate

Figure 4 Steps pre-processing. Full-size DOI: 10.7717/peerj-cs.3342/fig-4

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 13/22

http://dx.doi.org/10.7717/peerj-cs.3342/fig-4
http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

RESULTS
This section showcases the outcomes derived from the experiments conducted within this
study, elucidating the efficacy of our proposed model. Concurrently, we analyze the
implications of these findings within the broader scope of our research objectives. Our
results unequivocally demonstrate the superiority of the CNN-BiLSTM model over the
baseline model when evaluated against the five alternative models developed and tested. It
is essential to note that multiple baseline models were established to facilitate
comprehensive comparative analysis.

In the endeavor to identify instances of offensive conversation in Roman Urdu, we have
engineered and trained five distinct machine learning models grounded in the encoded
representations of the comments. Each of these models possesses its unique
hyper-parameter space, encompassing the specific parameters tailored to each learning
model. Following the allocation of a validation set from the training data in each of the five
folds, rigorous manual scrutiny of the hyper-parameters for each model ensues. For
instance, adjustments are made to parameters such as C and kernel in support vector
machines, as well as the number of estimators, tree depth, and criteria for random forests.
The outcomes derived from these five diverse machine learning models are illustrated in
Fig. 5.

To establish additional baseline models for deep learning, we implemented three
models: CNN, BiLSTM, and bidirectional GRU (BiGRU). We then modified our CNN to
construct the proposed model by removing the BiLSTM and replacing it with a BiGRU
network. This made it possible for us to compare the two architectures and see how the
changes affected a core CNN and GRU structure. Furthermore, the second model enabled
us to determine whether GRU can extract relevant order information from short
communications like tweets. These baseline models were applied to the RUSHOLD
datasets, and the results were compared to those obtained by the proposed model, as seen
in Fig. 6.

In this study, a comprehensive approach was taken, encompassing the training of 10
distinct learning models rooted in the encoded representations of tweets to identify hate
speech in Roman Urdu. Each learning model possessed its distinctive hyper-parameter
space, comprising unique parameters tailored to its specifications. To identify the optimal
hyper-parameters for each model, a validation set was meticulously preserved from the
training data in each of the five folds. These hyper-parameters underwent careful manual
scrutiny and adjustment. For instance, parameters such as penalty, C, and solver for
logistic regression, the number of estimators, tree depth, and criterion for random forests,
as well as penalty, C, kernel, and gamma for support vector machines, Furthermore
adjustments were made to: The parameters for deep models were adjusted, including batch
size, learning rate decay, weight initialization, dropout rate, regularization, and early
stopping. Hyper-parameter optimization was executed with the objective of maximizing
the test set’s F1-score. To comprehensively evaluate the models across all folds, average
accuracy,recall, precision, and F1-score was calculated for each model. Given the corpus is
imbalanced structure, where accuracy might present a misleading picture, F1-score was

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 14/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

employed as the primary evaluation metric, as highlighted in prior research
(Khan, Shahzad & Malik, 2021). The accuracies and loss curves of the proposed
CNN-BiLSTM model are visually shown in Figs. 7 and 8.

Figure 5 Performance analysis of traditional machine learning algorithms.
Full-size DOI: 10.7717/peerj-cs.3342/fig-5

Figure 6 Performance comparison of advanced deep learning algorithms with proposed scheme.
Full-size DOI: 10.7717/peerj-cs.3342/fig-6

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 15/22

http://dx.doi.org/10.7717/peerj-cs.3342/fig-5
http://dx.doi.org/10.7717/peerj-cs.3342/fig-6
http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

As shown in Table 3, deep learning models significantly outperform traditional machine
learning approaches in detecting hate speech in Roman Urdu. The classical models, such as
naïve Bayes, logistic regression, and decision tree, demonstrate notably lower F1-scores,
primarily due to their limited ability to capture complex linguistic patterns, informal
syntax, and code-switching behaviors common in Roman Urdu text. In contrast, deep
learning architectures like CNN, BiLSTM, and BiGRU are capable of automatically

Figure 7 Training and validation accuracy curves. Full-size DOI: 10.7717/peerj-cs.3342/fig-7

Figure 8 Training and validation lose curves. Full-size DOI: 10.7717/peerj-cs.3342/fig-8

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 16/22

http://dx.doi.org/10.7717/peerj-cs.3342/fig-7
http://dx.doi.org/10.7717/peerj-cs.3342/fig-8
http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

learning hierarchical and sequential representations from raw text. The combination of
convolutional layers (for capturing local patterns) and BiLSTM layers (for modeling
long-range dependencies) in our proposed CNN-BiLSTM model further enhances
performance, achieving the highest F1-score of 81.47%. This demonstrates the model’s
robustness in handling noisy, informal language and its superiority in generalizing across
complex data distributions. Additionally, the results highlight the importance of leveraging

Table 3 Comparison of exploited and proposed models for identification of hate speech in Roman
Urdu.

Model Accuracy Precision Recall F1-score

Naïve Bayes 62.06 43.33 28.80 26.30

SVM 75.84 72.14 61.23 65.35

Logistic regression 73.78 73.21 51.28 56.96

Decision tree 72.79 62.08 60.79 61.35

Random forest 75.02 73.14 57.16 62.35

CNN 79.56 80.47 80.92 80.45

BiGRU 78.67 80.03 89.57 80.47

BiLSTM 79.88 80.88 80.94 80.78

CNN-BiGRU 79.83 80.38 81.21 80.71

BERT-CNN-gram (Rizwan, Shakeel & Karim, 2020) 80.0 75.0 74.0 75.0

CNN-BiLSTM 80.67 81.03 82.57 81.47

Figure 9 Confusion matrix of the proposed CNN-BiLSTM model.
Full-size DOI: 10.7717/peerj-cs.3342/fig-9

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 17/22

http://dx.doi.org/10.7717/peerj-cs.3342/fig-9
http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

pre-trained embeddings and end-to-end learning in low-resource and code-mixed
language scenarios like Roman Urdu.

To provide a more detailed analysis of the model’s classification performance, we
include the confusion matrix of the proposed CNN-BiLSTMmodel as shown in Fig. 9. The
matrix offers insights into how well the model distinguishes between hate and non-hate
speech in Roman Urdu. It highlights the distribution of true positives, true negatives, false
positives, and false negatives, allowing us to identify potential areas of misclassification. As
observed, the model achieves strong performance in correctly identifying both classes, with
a relatively low rate of false positives and false negatives, confirming its effectiveness in
handling the nuanced and informal nature of Roman Urdu text.

Computational efficiency: To ensure real-world feasibility, we prioritized a lightweight
architecture in the model design. All experiments were executed on a single NVIDIA P100
GPU with 16 GB VRAM, using Kaggle notebooks. The proposed CNN-BiLSTM model
required approximately 3 min and 17 s for training and 0.425 s for testing. These results
underscore the model’s efficiency and potential for real-time deployment in environments
with limited computational resources.

DISCUSSION
Our comprehensive evaluation demonstrates that the proposed CNN-BiLSTM
architecture exhibits superior performance compared to conventional machine learning
algorithms and competing deep learning frameworks. The hybrid model leverages the
complementary strengths of CNN and BiLSTM networks, enabling simultaneous
extraction of fine-grained semantic patterns and comprehensive modeling of extended
contextual dependencies inherent in Roman Urdu text. This dual-stage feature extraction
methodology proves particularly efficacious for processing low-resource, code-mixed
languages that exhibit substantial linguistic variability and spelling irregularities.

A distinguishing characteristic of the CNN-BiLSTM framework is its demonstrated
resilience to noisy, informal Roman Urdu inputs that commonly manifest inconsistent
spelling conventions, frequent code-switching phenomena, and colloquial linguistic
expressions. The convolutional layers systematically identify salient local linguistic
features, while the BiLSTM component effectively integrates these features within
broader contextual frameworks, thereby facilitating robust generalization across
diverse linguistic phenomena. Furthermore, the initialization with pre-trained Roman
Urdu word embeddings substantially enriches semantic representations, effectively
mitigating the adverse effects of data sparsity while enhancing overall classification
performance. Empirical results across multiple hate speech detection experiments
consistently demonstrate that the hybrid CNN-BiLSTM approach achieves superior
F1-scores relative to baseline models, including standalone CNN and BiLSTM
implementations.

Despite these strengths, certain limitations must be acknowledged. The training process
for the CNN-BiLSTM model requires substantial computational resources, which may
constrain its practical deployment in resource-limited environments. Additionally, while

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 18/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

the proposed approach demonstrates effective generalization on the RUHSOLD dataset, its
transferability and adaptability to other low-resource linguistic contexts require
systematic.

CONCLUSION
The proliferation of hate speech on social media platforms has raised serious societal
concerns, necessitating the development of automated and scalable detection techniques.
In this study, we presented a deep learning-based approach, specifically a hybrid
CNN-BiLSTM architecture, for the identification of hate speech in Roman Urdu, a
linguistically complex and underrepresented language. The proposed model effectively
combines convolutional layers to extract local textual patterns and BiLSTM layers to
capture long-range dependencies, resulting in improved classification performance. We
evaluated our method on a Roman Urdu dataset and demonstrated that it consistently
outperforms several traditional machine learning classifiers and baseline deep learning
models in terms of accuracy, precision, recall, and F1-score. Our results highlight the
model’s capability to handle non-standard spellings (e.g., “Khoobsurat,” “Khobsorat,”
“kubsoret”) and informal expressions typical in Roman Urdu content. Additionally, we
investigated the impact of word embedding choices on model performance and discussed
user-centered factors such as posting frequency and social engagement. This work
establishes a foundation for future research in hate speech detection in low-resource,
code-mixed languages. In the future, we aim to extend this study by incorporating
multimodal features and evaluating the model across additional datasets to further assess
its robustness and generalizability.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Deanship of Graduate Studies and Scientific Research at
University of Bisha through the Fast-Track Research Support Program. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Deanship of Graduate Studies and Scientific Research at University of Bisha through the
Fast-Track Research Support Program.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Muhammad Zohaib conceived and designed the experiments, analyzed the data,
performed the computation work, authored or reviewed drafts of the article, and
approved the final draft.

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 19/22

http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

. Ghulam Farooque conceived and designed the experiments, analyzed the data,
performed the computation work, authored or reviewed drafts of the article, and
approved the final draft.

. Mohammad Alsulami conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

. Fazeel Abid performed the experiments, prepared figures and/or tables, and approved
the final draft.

. Ali Alqazzaz conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

. Mana Saleh Al Reshan performed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Jawad Rasheed performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

. Asadullah Shaikh conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The dataset and code are available at Zenodo:
- Zohaib, M. (2025). Roman-Urdu-Hate-Speech-dataset [Data set]. Zenodo. https://doi.

org/10.5281/zenodo.17102699.
- Muhammad, Z. (2025). Roman-Urdu-Hate-Speech-dataset [Data set]. Zenodo.

https://doi.org/10.5281/zenodo.17102709.

REFERENCES
Al-Hassan A, Al-Dossari H. 2022. Detection of hate speech in Arabic tweets using deep learning.

Multimedia Systems 28(6):1963–1974 DOI 10.1007/s00530-020-00742-w.

Alkiviadou N. 2019. Hate speech on social media networks: towards a regulatory framework?
Information & Communications Technology Law 28(1):19–35
DOI 10.1080/13600834.2018.1494417.

Ashiq W, Kanwal S, Rafique A, Waqas M, Khurshaid T, Montero EC, Alonso AB, Ashraf I.
2024. Roman Urdu hate speech detection using hybrid machine learning models and
hyperparameter optimization. Scientific Reports 14:28590 DOI 10.1038/s41598-024-79106-7.

Ashraf N, Khan L, Butt S, Chang H-T, Sidorov G, Gelbukh A. 2022. Multi-label emotion
classification of Urdu tweets. PeerJ Computer Science 8(3):e896 DOI 10.7717/peerj-cs.896.

Badjatiya P, Gupta S, Gupta M, Varma V. 2017.Deep learning for hate speech detection in tweets.
In: Proceedings of the 26th International Conference onWorld Wide Web Companion, WWW ’17
Companion. Republic and Canton of Geneva, CHE: International World Wide Web
Conferences Steering Committee, 759–760.

Biradar S, Saumya S, Chauhan A. 2021. Hate or non-hate: translation based hate speech
identification in code-mixed Hinglish data set. In: 2021 IEEE International Conference on Big
Data (Big Data). Piscataway: IEEE, 2470–2475.

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 20/22

https://doi.org/10.5281/zenodo.17102699
https://doi.org/10.5281/zenodo.17102699
https://doi.org/10.5281/zenodo.17102709
http://dx.doi.org/10.1007/s00530-020-00742-w
http://dx.doi.org/10.1080/13600834.2018.1494417
http://dx.doi.org/10.1038/s41598-024-79106-7
http://dx.doi.org/10.7717/peerj-cs.896
http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

Davidson T, Warmsley D, Macy M, Weber I. 2017. Automated hate speech detection and the
problem of offensive language. Proceedings of the International AAAI Conference on Web and
Social Media 11(1):512–515 DOI 10.1609/icwsm.v11i1.14955.

Djuric N, Zhou J, Morris R, Grbovic M, Radosavljevic V, Bhamidipati N. 2015. Hate speech
detection with comment embeddings. In: Proceedings of the 24th International Conference on
World Wide Web, WWW ’15 Companion. New York, NY, USA: Association for Computing
Machinery, 29–30.

Duwairi R, Hayajneh A, Quwaider M. 2021. A deep learning framework for automatic detection
of hate speech embedded in Arabic tweets. Arabian Journal for Science and Engineering
46(4):4001–4014 DOI 10.1007/s13369-021-05383-3.

Eder E, Krieg-Holz U, Hahn U. 2019. At the lower end of language exploring the vulgar and
obscene side of German. In: Proceedings of the Third Workshop on Abusive Language Online.
Stroudsburg: Association for Computational Linguistics, 119–128.

Jha A, Mamidi R. 2017. When does a compliment become sexist? analysis and classification of
ambivalent sexism using twitter data. In: Proceedings of the Second Workshop on NLP and
Computational Social Science. Stroudsburg: Association for Computational Linguistics, 7–16.

Khan L, Amjad A, Afaq KM, Chang H-T. 2022a. Deep sentiment analysis using CNN-LSTM
architecture of English and Roman Urdu text shared in social media. Applied Sciences 12(5):2694
DOI 10.3390/app12052694.

Khan L, Amjad A, Ashraf N, Chang H-T. 2022b.Multi-class sentiment analysis of Urdu text using
multilingual BERT. Scientific Reports 12(1):5436 DOI 10.1038/s41598-022-09381-9.

Khan L, Amjad A, Ashraf N, Chang H-T, Gelbukh A. 2021. Urdu sentiment analysis with deep
learning methods. IEEE Access 9:97803–97812 DOI 10.1109/access.2021.3093078.

Khan L, Qazi A, Chang H-T, Alhajlah M, Mahmood A. 2025. Empowering Urdu sentiment
analysis: an attention-based stacked CNN-Bi-LSTM DNN with multilingual BERT. Complex &
Intelligent Systems 11:10 DOI 10.1007/s40747-024-01631-9.

Khan MM, Shahzad K, Malik MK. 2021. Hate speech detection in roman Urdu. ACM
Transactions on Asian and Low-Resource Language Information Processing 20(1):1–19
DOI 10.1145/3414524.

Kovács G, Alonso P, Saini R. 2021. Challenges of hate speech detection in social media. SN
Computer Science 2(2):102233 DOI 10.1007/s42979-021-00457-3.

Mahmood Z, Safder I, Nawab RMA, Bukhari F, Nawaz R, Alfakeeh AS, Aljohani NR, Hassan S-
U. 2020. Deep sentiments in Roman Urdu text using recurrent convolutional neural network
model. Information Processing & Management 57(4):102233 DOI 10.1016/j.ipm.2020.102233.

Malmasi S, Zampieri M. 2017. Detecting hate speech in social media. In: Proceedings of the
International Conference Recent Advances in Natural Language Processing. Varna, Bulgaria:
INCOMA Ltd, 467–472.

Mandl T, Modha S, Majumder P, Patel D, Dave M, Mandlia C, Patel A. 2019. Overview of the
HASOC track at FIRE 2019: hate speech and offensive content identification in indo-European
languages. In: Proceedings of the 11th Annual Meeting of the Forum for Information Retrieval
Evaluation, FIRE ’19. New York, NY, USA: Association for Computing Machinery, 14–17.

McCaffrey JD, Colin M. 2015. Why you should use cross-entropy error instead of classification
error or mean squared error for neural network classifier training. Available at https://
jamesmccaffreyblog.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-
classification-error-or-mean-squared-error-for-neural-network-classifier-training/.

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 21/22

http://dx.doi.org/10.1609/icwsm.v11i1.14955
http://dx.doi.org/10.1007/s13369-021-05383-3
http://dx.doi.org/10.3390/app12052694
http://dx.doi.org/10.1038/s41598-022-09381-9
http://dx.doi.org/10.1109/access.2021.3093078
http://dx.doi.org/10.1007/s40747-024-01631-9
http://dx.doi.org/10.1145/3414524
http://dx.doi.org/10.1007/s42979-021-00457-3
http://dx.doi.org/10.1016/j.ipm.2020.102233
https://jamesmccaffreyblog.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/
https://jamesmccaffreyblog.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/
https://jamesmccaffreyblog.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/
http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

Mubarak H, Darwish K, Magdy W. 2017. Abusive language detection on Arabic social media.
In: Proceedings of the First Workshop on Abusive Language Online. Stroudsburg: Association for
Computational Linguistics, 52–56.

Mullah NS, Zainon WMNW. 2021. Advances in machine learning algorithms for hate speech
detection in social media: a review. IEEE Access 9:88364–88376
DOI 10.1109/access.2021.3089515.

Nobata C, Tetreault J, Thomas A, Mehdad Y, Chang Y. 2016. Abusive language detection in
online user content. In: Proceedings of the 25th International Conference on World Wide Web,
WWW ’16. Republic and Canton of Geneva, CHE: International World Wide Web Conferences
Steering Committee, 145–153.

Noor M, Anwar B, Muhabat F, Kazemian B. 2015. Code-switching in Urdu books of Punjab text
book board, Lahore, Pakistan. Communication and Linguistics Studies 1:13–20.

Ordóñez FJ, Roggen D. 2016. Deep convolutional and LSTM recurrent neural networks for
multimodal wearable activity recognition. Sensors 16(1):115 DOI 10.3390/s16010115.

Pitsilis GK, Ramampiaro H, Langseth H. 2018. Effective hate-speech detection in twitter data
using recurrent neural networks. Applied Intelligence 48(12):4730–4742
DOI 10.1007/s10489-018-1242-y.

Putri TTA, Sriadhi S, Sari RD, Rahmadani R, Hutahaean HD. 2020. A comparison of
classification algorithms for hate speech detection. IOP Conference Series: Materials Science and
Engineering 830(3):032006 DOI 10.1088/1757-899x/830/3/032006.

Ranasinghe T, Zampieri M. 2020.Multilingual offensive language identification with cross-lingual
embeddings. ArXiv DOI 10.48550/arXiv.2010.05324.

Renna F. 2023. New insights in machine learning and deep neural networks. Basel, Switzerland:
MDPI-Multidisciplinary Digital Publishing Institute.

Rizwan H, Shakeel MH, Karim A. 2020. Hate-speech and offensive language detection in roman
urdu. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Stroudsburg: Association for Computational Linguistics, 2512–2522.

Shakeel MH, Karim A. 2020. Adapting deep learning for sentiment classification of code-switched
informal short text. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing,
SAC ’20. New York, NY, USA: Association for Computing Machinery, 903–906.

Tsironi E, Barros P, Weber C, Wermter S. 2017. An analysis of convolutional long short-term
memory recurrent neural networks for gesture recognition. Neurocomputing 268(7):76–86
DOI 10.1016/j.neucom.2016.12.088.

Vigna FD, Cimino A, Dell’Orletta F, Petrocchi M, Tesconi M. 2017. Hate me, hate me not: hate
speech detection on facebook. In: Proceedings of the First Italian Conference on Cybersecurity
(ITASEC17). Stroudsburg: Association for Computational Linguistics, 86–95.

Wang W, Chen L, Thirunarayan K, Sheth AP. 2014. Cursing in English on Twitter.
In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social
Computing, CSCW ’14. New York, NY, USA: Association for Computing Machinery, 415–425.

Waseem Z. 2016. Are you a racist or am I seeing things? annotator influence on hate speech
detection on Twitter. In: Proceedings of the First Workshop on NLP and Computational Social
Science. Stroudsburg: Association for Computational Linguistics, 138–142.

Waseem Z, Hovy D. 2016. Hateful symbols or hateful people? predictive features for hate speech
detection on Twitter. In: Proceedings of the NAACL Student Research Workshop. Stroudsburg:
Association for Computational Linguistics, 88–93.

Zhu S, Sun H, Duan Y, Dai X, Saha S. 2020. Travel mode recognition from GPS data based on
LSTM. Computing and Informatics 39(1–2):298–317 DOI 10.31577/cai_2020_1-2_298.

Zohaib et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3342 22/22

http://dx.doi.org/10.1109/access.2021.3089515
http://dx.doi.org/10.3390/s16010115
http://dx.doi.org/10.1007/s10489-018-1242-y
http://dx.doi.org/10.1088/1757-899x/830/3/032006
http://dx.doi.org/10.48550/arXiv.2010.05324
http://dx.doi.org/10.1016/j.neucom.2016.12.088
http://dx.doi.org/10.31577/cai_2020_1-2_298
http://dx.doi.org/10.7717/peerj-cs.3342
https://peerj.com/computer-science/

	Detecting hate speech in roman Urdu using a convolutional-BiLSTM-based deep hybrid neural network
	Introduction
	Related work
	Proposed methodology
	Experimentation and results analysis
	Results
	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

