

Economic insights into credit risk: a deep learning model for predicting loan repayment capacity

Cheng Qiu¹, Sheng Li² and Xiaodan Zhou³

¹ Guangxi Zhuang Autonomous Region Institute of Metrology and Test, Nanning, China

² Innovation and Entrepreneurship Institute, Guangxi Normal University, Guangxi, China

³ Kunshan Innovative Institute of NeoDyna for Science and Technology, Kunshan, China

ABSTRACT

Accurately predicting loan repayment capacity is critical to effective credit risk assessment in banking, finance, and economic policymaking. This study proposes a novel deep learning architecture, the Gated Transformer, designed specifically for structured credit data. The model integrates categorical and numerical features into a unified latent space and employs multi-head self-attention combined with a token-wise gating mechanism to dynamically capture complex feature interactions while enhancing interpretability. Experiments conducted on the LendingClub dataset demonstrate that the proposed model achieves strong predictive performance, with an accuracy of 92.38%, an area under the receiver operating characteristic curve (AUROC) of 0.8517, and an area under the precision-recall curve (AUPRC) of 0.9213. Further robustness tests across multiple random seeds confirm the model's stability. These findings underscore the model's effectiveness in handling heterogeneous financial data and its potential to support responsible, data-driven credit risk evaluation.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Social Computing, Neural Networks

Keywords Credit risk assessment, Loan repayment prediction, Deep learning, Gated transformer, Attention mechanism

Submitted 19 August 2025
Accepted 7 October 2025
Published 19 December 2025

Corresponding author
Sheng Li,
lishengtougao2025@163.com

Academic editor
Trang Do

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.3339

© Copyright
2025 Qiu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

INTRODUCTION

Predicting loan repayment capacity is a critical issue in financial management, particularly in corporate financial management. A borrower's ability to repay a loan is influenced by a multitude of factors, including socioeconomic, educational, behavioral elements, and others. These factors vary significantly depending on the context and type of enterprise or business activity. Numerous studies in the academic literature have explored these aspects, contributing to the development of models that aim to more accurately predict repayment capacity.

Specifically, several socioeconomic factors have been found to impact loan repayment capacity. For example, age, education level, marital status, and household characteristics were identified as significant factors influencing the repayment behavior of microfinance clients in Ethiopia. Older borrowers generally demonstrated better repayment capacity due to accumulated experience and more stable sources of income (*Abdulahi, Charkos & Haji, 2022*). Moreover, household size was found to have a negative impact on repayment ability,

suggesting that larger families may have more strained financial resources ([Ojiako, 2012](#)). A similar pattern was also observed in studies on cooperative farmers, where factors such as net farm income and the number of years of cooperative membership positively correlated with repayment capacity, while age and level of education showed negative influences ([Ilavbarhe, Aluohai & Keyagha, 2017](#)).

In the business environment, income diversification is considered a key factor in enhancing loan repayment capacity. For instance, multiple income streams from both agricultural and non-agricultural activities can serve as a financial buffer against shocks, thereby improving borrowers' ability to adhere to repayment schedules. For example, the study by [Okonta, Achoja & Okuma \(2023\)](#) on poultry, fish, and arable crop farmers in Nigeria demonstrated a clear hierarchy in repayment capacity based on income diversity and the effectiveness of management practices. Microfinance institutions also emphasize the importance of integrating credit assessment mechanisms to evaluate a borrower's financial health, particularly their ability to generate stable cash flows from multiple income sources ([Okero & Waweru, 2023](#)). Credit risk assessment is another crucial factor in predicting loan repayment, involving an evaluation of the borrower's credit history and financial condition, typically reflected in credit scores obtained from credit reference bureaus ([Okero & Waweru, 2023](#)). A systematic evaluation of these elements enables better insight into default likelihood, allowing financial institutions to adjust their lending strategies accordingly.

Computer-based models employing advanced statistical methods, such as logistic regression and machine learning algorithms, have also been applied to improve the accuracy of loan repayment prediction ([Abdulahi, Charkos & Haji, 2022](#)). Large-scale modelling has also proven effective for policy-relevant forecasting in other domains, reinforcing the importance of principled model design and validation for risk prediction ([Nguyen et al., 2021](#)). Cultural and institutional contexts also significantly shape repayment behavior. The influence of social capital and group lending models has been recognized as instrumental in facilitating repayment success. In Indonesia, community lending models involving collaborative participation among borrowers showed higher repayment rates, largely due to social pressure from group members to fulfill loan obligations ([Indriani et al., 2023; Abdirashid & Jagongo, 2019](#)). Additionally, geographical and economic conditions, including credit accessibility, also play a vital role in assessing repayment capacity within microfinance frameworks ([Dang et al., 2022; Enimu, Eyo & Ajah, 2017](#)).

In a comparative analysis of different contexts, subtle differences in repayment performance between cooperative members and microfinance beneficiaries highlight the importance of contextual adaptation in financial decision-making ([Gudde Jote, 2018](#)). Studies show that when institutions adjust loan terms based on local practices and borrower histories, repayment rates can improve significantly, emphasizing the need for tailored approaches in lending strategies. Moreover, mechanisms for monitoring loan repayments also play a key role in predicting and enhancing repayment capacity. Flexible repayment schedules, as opposed to rigid ones, can facilitate better compliance with repayment obligations. The study by [Field & Pande \(2008\)](#) indicates that while

repayment frequency itself may not significantly affect default rates, flexibility in scheduling can promote more sustainable financial behavior. Furthermore, promoting financial literacy among borrowers has been shown to improve their ability to manage loans effectively, leading to better repayment outcomes ([Kariuki & Namusonge, 2024](#)).

With increasing demand for credit risk assessment, we propose a deep learning-based approach that integrates diverse information such as socioeconomic characteristics, credit history, behavioral factors, and income structure to provide more accurate predictions of loan repayment capacity. Our design is informed by advances in multimodal representation learning, e.g., unified frameworks that couple sequence encodings with predicted structural views *via* contrastive objectives to boost generalization ([Nguyen et al., 2024](#)), and we analogously integrate heterogeneous borrower signals (demographics, credit history, behavioural traces) within a single architecture. The proposed model not only contributes academically by offering deeper insights into borrower behavior, but also has strong practical value in supporting financial institutions to build more precise and context-adaptive credit risk assessment systems. This represents an important step toward developing sustainable lending strategies, minimizing credit risk, and promoting long-term financial stability.

Beyond its academic contributions, this study also carries significant practical implications. For commercial banks and credit institutions, a more accurate prediction of loan repayment capacity enables the development of risk-sensitive lending policies, reducing default rates and improving portfolio quality. By integrating diverse borrower information into a unified predictive framework, financial institutions can refine credit scoring systems, tailor loan products to specific client segments, and design more flexible repayment plans that align with borrower conditions. Furthermore, in the broader context of financial risk management, such predictive models help institutions comply with regulatory requirements, strengthen early-warning mechanisms, and enhance resilience against systemic risks, thereby fostering a more sustainable and inclusive financial ecosystem.

RELATED WORK

The rapidly growing field of machine learning and deep learning has witnessed numerous important applications in predicting loan repayment capacity. Recent studies emphasize the effectiveness of various algorithms in enhancing prediction accuracy, thereby improving decision-making processes in loan approvals. In 2022, a prominent study by [Abdulahi, Charkos & Haji \(2022\)](#) demonstrated that the implementation of machine learning techniques, particularly the Random Forest algorithm, significantly improved the accuracy of predicting the repayment capability of small and medium-sized enterprises in Malaysian financial institutions. This aligns with the findings of [Addo, Guegan & Hassani \(2018\)](#), who asserted that machine learning and deep learning models have considerably enhanced the credit risk analysis framework through advanced data-driven predictive capabilities. The integration of these models has enabled the effective utilization of large datasets, allowing for more accurate assessments of default probabilities compared to traditional methods. Furthermore, the study by [Wu \(2022\)](#) highlights the increasing reliance of banks on machine learning to improve both the speed and accuracy of default

predictions, signaling a pivotal shift from manual evaluations to automated systems. In 2023, *Jumaa, Saqib & Attar (2023)* emphasized the potential of deep learning methods in refining credit risk assessment frameworks, asserting that consumer loan default prediction models developed using these techniques deliver higher accuracy and better identification of borrower risks. For example, research by *Liu et al. (2023)* demonstrated that Bayesian deep learning can significantly enhance predictive outcomes by identifying subtle variations in default indicators—factors that are critical for lenders. The optimal application of different machine learning models is also discussed by *Zhou (2023)*, who compared the performance of models such as Logistic Regression, Decision Trees, and XGBoost, thereby illustrating their capabilities in contextualizing borrowers' asset values and financial conditions.

Additionally, alternative approaches have emerged in recent literature. For instance, *Netzer, Lemaire & Herzenstein (2019)* focused on textual analysis of loan applications, showing that qualitative insights extracted from applicants' textual data can substantially enhance the assessment of repayment behavior. This innovative intersection between natural language processing and financial forecasting reflects a trend of complementing traditional numerical analysis with qualitative indicators, providing a more holistic view of borrower risk. Similarly, *Kvamme et al. (2018)* integrated diverse methodological frameworks, employing convolutional neural networks (CNNs) to predict mortgage defaults with impressive results, showcasing the flexibility of deep learning models in handling complex datasets. The study by *Xu, Lu & Xie (2021)* on P2P lending emphasized the benefits of using machine learning methods in assessing repayment risks, effectively leveraging robust datasets to fine-tune prediction criteria. As the field continues to advance, blending machine learning with deep learning appears to be an emerging trend. For instance, *Li, Tian & Zhuo (2023)* explored blended models to improve the accuracy and stability of credit default predictions. Interest in ensemble methods is also on the rise, with (*Hamori et al., 2018*) comparing ensemble learning methods with various neural network architectures. Their results indicate that although deep learning provides advanced predictive capabilities, ensemble methods like Random Forest still offer competitive accuracy and reliability. Such integrated approaches demonstrate how traditional algorithms can be enhanced by modern technologies, providing financial institutions with more powerful toolsets for predicting repayment capacity.

In practical applications, the research by *Bature et al. (2023)* illustrates the development of a credit default prediction system using machine learning, clearly showing how theoretical models can be operationalized into useful applications for financial institutions. This transition from model to real-world implementation is crucial, reflecting the growing trend of applying advanced analytics in day-to-day lending processes. However, challenges remain. The need for more robust feature extraction techniques in deep learning, as discussed by *Aniceto, Barboza & Kimura (2020)*, highlights the inherent complexity of credit data. This complexity calls for ongoing research and innovation in feature selection and extraction as fundamental components in the development of reliable predictive models. As the landscape of credit risk assessment continues to evolve, deepening the integration of machine learning and deep learning technologies holds great promise for

achieving higher predictive accuracy in loan repayment forecasting. Studies by [Turiel & Aste \(2019\)](#) recognize the potential of AI-based models to recalibrate lending practices, underscoring the importance of technological adaptation in modern financial services.

MATERIAL AND METHODOLOGY

Data description and pre-processing

We utilized a dataset from LendingClub (<https://www.kaggle.com/datasets/jeandieunyandwi/lending-club-dataset>), which includes both approved and rejected loan applications. This dataset serves as a valuable resource for analyzing credit risk and predicting loan repayment behavior. It contains borrower demographic information, loan characteristics, and creditworthiness indicators such as FICO scores. Key features include loan amount, interest rate, loan term, borrower income, debt-to-income ratio, FICO score, loan purpose, and repayment status. This dataset supports various tasks such as credit risk modeling, loan approval prediction, and economic behavior analysis.

Given the complexity of the original data, we applied several preprocessing techniques before using it for model training and evaluation:

- **Feature integration:** The original data sources consisted of multiple files containing complementary information. We merged these sources into a single dataset by matching records using a unique borrower identifier.
- **Handling missing and invalid values:** The dataset contained a significant number of missing values (NaN) and invalid entries (e.g., abnormally large values). Missing values were imputed using the mean of the respective feature. For invalid entries, we applied a filtering strategy: if more than 30% of the records in a feature were invalid, the feature was discarded; otherwise, only the affected rows were removed.

After analyzing the processed dataset, we observed an imbalance between negative and positive labels. The number of data points with negative labels was significantly higher than those with positive labels. There are many potential issues and risks associated with using an imbalanced dataset. If we train a classifier on such data, the model may classify all minority class instances as belonging to the majority class, potentially resulting in high test accuracy. However, such a model could be meaningless, as it would lack the ability to recognize samples from the minority class.

After preprocessing the data, we randomly split the dataset into three subsets: training, validation, and test, with respective ratios of 0.6, 0.1, and 0.3. The purpose of this split is to train the model effectively while ensuring reliable evaluation and tuning. The training set is used to fit the model parameters, the validation set is used to optimize hyperparameters and prevent overfitting, and the test set is used to assess the final performance of the model on unseen data. The statistical distribution of the dataset across these subsets is illustrated in [Fig. 1](#).

Motivation behind model architecture

The task of predicting loan repayment capacity involves analyzing heterogeneous tabular data composed of both categorical and numerical features with complex

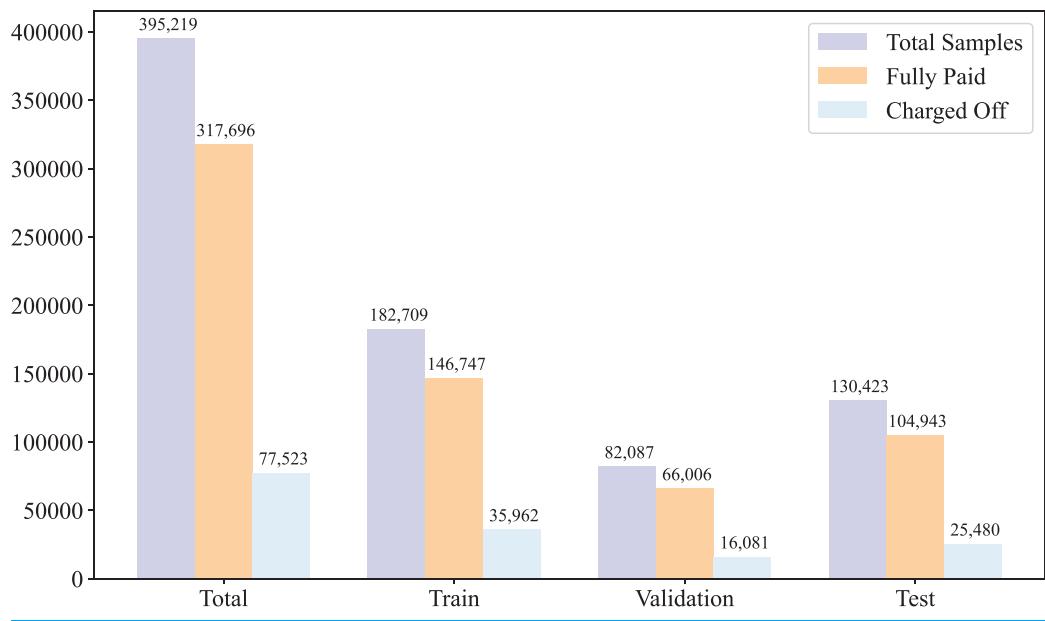


Figure 1 Data distribution.

Full-size DOI: 10.7717/peerj-cs.3339/fig-1

interdependencies. Despite these advances, prior research still exhibits several important limitations. Most existing studies predominantly focus on applying conventional machine learning or deep learning models such as Random Forests, eXtreme gradient boosting (XGBoost), CNNs, or ensemble methods, which often require extensive feature engineering and are limited in capturing complex cross-feature dependencies inherent in tabular credit data. While some works explore innovative directions, such as textual analysis or blended modeling, they generally do not address the challenge of simultaneously integrating heterogeneous feature types within a unified framework. Moreover, the interpretability of deep learning approaches remains underexplored, restricting their adoption in regulatory and high-stakes financial contexts. These gaps motivate the design of our Gated Transformer architecture, which aims to not only achieve high predictive performance but also enhance transparency and adaptability across diverse real-world credit datasets.

We select the proposed Gated Transformer architecture due to its inherent ability to model interactions among diverse feature types *via* multi-head self-attention mechanisms. Unlike conventional models, the Transformer-based approach processes features in a contextual manner, dynamically weighting their contributions based on learned dependencies. Furthermore, the introduction of a token-wise gating mechanism enhances interpretability and allows the model to selectively emphasize relevant features, which is crucial for economic applications where understanding feature importance is key. This architecture also effectively integrates categorical embeddings and normalized numerical inputs within a unified latent space, facilitating end-to-end learning without extensive preprocessing. Overall, the Gated Transformer provides a flexible and powerful framework to extract meaningful economic insights from complex credit data, improving predictive

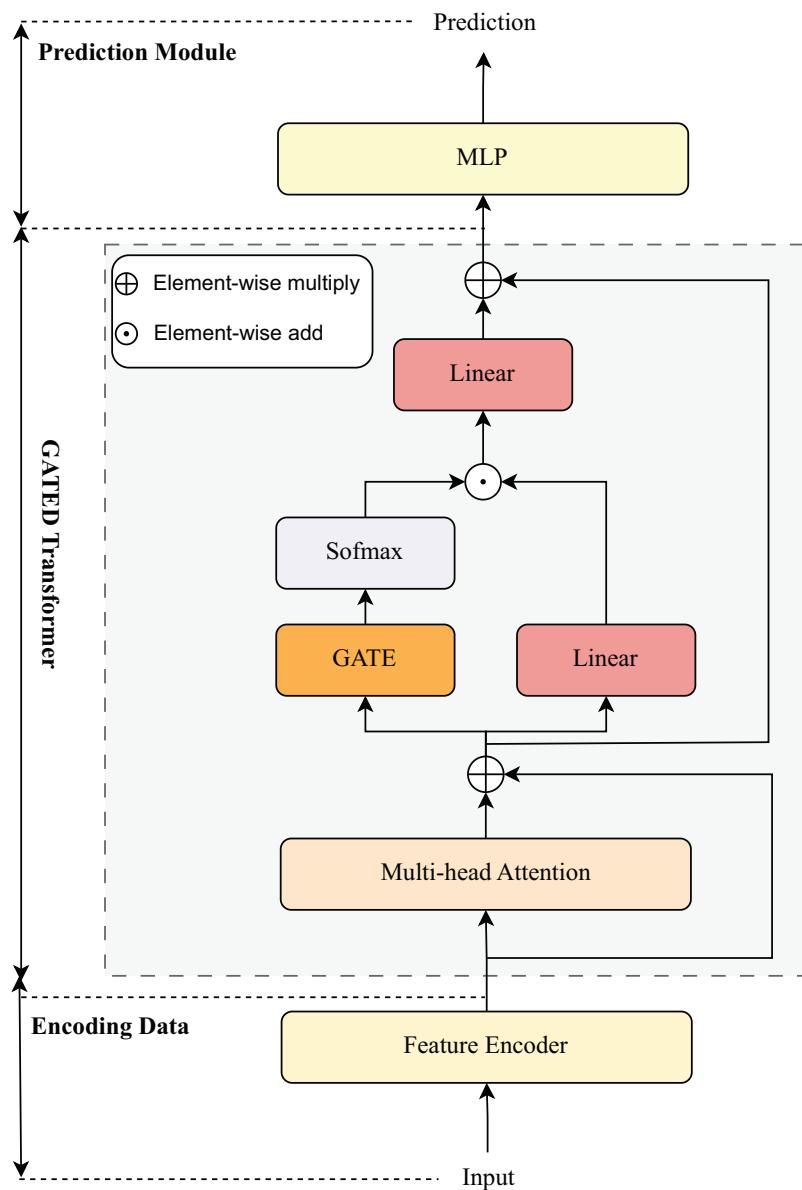


Figure 2 Model architecture visualization.

Full-size DOI: 10.7717/peerj-cs.3339/fig-2

performance while maintaining interpretability necessary for responsible financial decision-making.

Proposed architecture

Our proposed method is a Transformer-based architecture tailored for tabular data, consisting of three main stages: Feature Encoding and Gated Transformer Processing and Prediction Module, as illustrated in Fig. 2. The design effectively integrates both categorical and numerical features into a unified embedding space and leverages gated self-attention mechanisms to capture complex feature interactions.

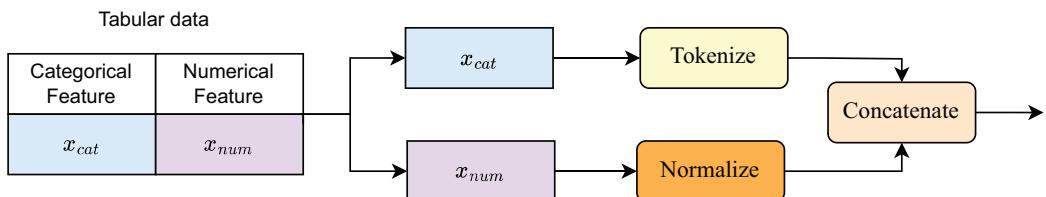


Figure 3 Details of feature encoder.

Full-size DOI: 10.7717/peerj-cs.3339/fig-3

Encoding data

To encode the data before training the model, we construct a processing block called the Feature Encoder. Figure 3 illustrates the data encoding process. Categorical features x_{cat} are tokenized and mapped to embedding vectors *via* an embedding table:

$$\tilde{e}_c = \text{Embedding}(\text{Tokenize}(x_{cat})) \in \mathbb{R}^{d_{emb}}. \quad (1)$$

Numerical features x_{num} , typically scalars or low-dimensional vectors, are first normalized and then projected into the embedding space through a shared linear layer:

$$\tilde{e}_n = W_n \cdot \text{LayerNorm}(x_{num}) + b_n, \quad W_n \in \mathbb{R}^{d_{emb} \times d_{in}}. \quad (2)$$

All features are then combined *via* concatenation, along with a special embedding token $[cls]$:

$$E = \tilde{e}_c \oplus \tilde{e}_n \oplus e_{[cls]} \in \mathbb{R}^{(n+m+1) \times d_{emb}}, \quad (3)$$

where n is the number of categorical features, and m is the number of numerical features.

Gated transformers

The Gated Transformer is a variant of the Transformer (Vaswani *et al.*, 2017) architecture originally introduced in the field of natural language processing. It is modified and fine-tuned to better suit the characteristics of tabular data features. The Gated Transformer consists of two main components: multi-head self-attention layers and gated feedforward layers. The input representation Z is first processed by a multi-head self-attention mechanism to capture interactions among features:

$$Z_{att} = \text{MultiHeadAttn}(Z) = [\text{head}_1, \text{head}_2, \dots, \text{head}_h]W^O, \quad (4)$$

where

$$\text{head}_i = \text{Attention}(Z \times W_i^Q, Z \times W_i^K, Z \times W_i^V), \quad (5)$$

Here, $Z = E$ corresponds to the input embedding of tabular data described in Section Encoding Data, $W^O \in \mathbb{R}^{d \times d}$ is the output projection matrix, and $\{W_i^Q, W_i^K, W_i^V\} \subset \mathbb{R}^{d \times d_h}$ are the learnable projection matrices for the i -th attention head. The attention output Z_{att} is then modulated by a token-wise gating mechanism. Specifically, a gating vector g is computed as:

$$g = \sigma(Z_{att}^{(l)}W^G), \quad (6)$$

where $\sigma(\cdot)$ denotes the sigmoid function, $w^G \in \mathbb{R}^{d \times 1}$ is a learnable parameter, and $g^{(l)} \in [0, 1]^n$ controls the activation strength of each token embedding. The gated output is then passed through two linear projections and combined as follows:

$$Z_{out} = \text{Linear}(g \odot Z_{att}) \oplus \text{Linear}(Z_{att}), \quad (7)$$

where \odot denotes element-wise multiplication, and \oplus indicates residual addition. The resulting output $Z \in \mathbb{R}^{n \times d}$ serves as the input for the MLP layer.

Experimental setup

Traditional ML models

We explore various machine learning models to predict borrower repayment abilities. The machine learning algorithms considered include Logistic Regression, Random Forests, Naive Bayes, Light Gradient Boosting Machine (LightGBM), Neural Networks, K-Nearest Neighbors (KNN), and XGBoost. Some of these models are used in previous studies, while others were selected based on their potential performance. We provide justifications for selecting these algorithms and will present initial experimental results.

- **Random Forests** ([Breiman, 2001](#)) are ensemble learning methods particularly suited for handling imbalanced datasets. By aggregating predictions from a large number of randomized decision trees, Random Forests reduce model variance and mitigate overfitting. The final prediction is made through majority voting (classification) or averaging (regression), formally expressed as:

$$\hat{y} = \text{majority_vote}\{h_b(x)\}_{b=1}^B \quad \text{or} \quad \hat{y} = \frac{1}{B} \sum_{b=1}^B h_b(x). \quad (8)$$

- **Naive Bayes** ([Webb, 2011](#)), in contrast, adopts a probabilistic and generative perspective. Assuming conditional independence among features given the class label, it models the joint probability distribution $P(X, Y)$. According to Bayes' theorem:

$$P(Y = y \mid X_1, \dots, X_n) \propto P(Y = y) \prod_{i=1}^n P(X_i \mid Y = y). \quad (9)$$

- **LightGBM** ([Ke et al., 2017](#)) represents a new generation of gradient boosting algorithms, engineered for extreme efficiency and scalability. Unlike traditional Gradient Boosting Decision Trees that grow trees level-wise, LightGBM grows trees leaf-wise, selecting leaves that yield the largest loss reduction. This strategy substantially accelerates training time and reduces memory consumption, often achieving state-of-the-art results in multi-class classification and ranking problems.

- **K-Nearest Neighbors** ([Kramer, 2013](#)) offers a fundamentally different approach. It is a non-parametric, instance-based learning algorithm that classifies a data point based on the majority label among its k nearest neighbors. Distance between points is often measured using the Euclidean metric:

$$d(x, x') = \sqrt{\sum_{i=1}^n (x_i - x'_i)^2}. \quad (10)$$

- **XGBoost** ([Chen & Guestrin, 2016](#)) stands as a highly optimized implementation of gradient boosting, celebrated for its speed and predictive performance. Unlike basic boosting algorithms, XGBoost explicitly incorporates regularization terms to control model complexity. The objective function typically takes the form:

$$\mathcal{L}(\phi) = \sum_{i=1}^n l(y_i, \hat{y}_i) + \sum_{k=1}^K \Omega(f_k), \quad (11)$$

where $\Omega(f) = \gamma T + \frac{1}{2} \lambda \|w\|^2$ penalizes the number of leaves T and the leaf weights w .

- **CatBoost** ([Dorogush, Ershov & Gulin, 2018](#)) is a gradient boosting algorithm on decision trees, specifically designed to handle categorical features efficiently without extensive preprocessing. Unlike traditional boosting methods, CatBoost employs an ordered boosting strategy to reduce prediction shift and prevent overfitting. Additionally, it uses target statistics with permutation-driven schemes for encoding categorical variables, ensuring unbiased estimation.

By evaluating these models, we aim to identify the most suitable algorithm for predicting borrower repayment behavior, balancing accuracy, interpretability, and computational efficiency.

Advanced tabular models

Recent advancements in deep learning have markedly improved predictive capabilities for tabular data tasks. In this study, we conduct a comparative analysis of several advanced tabular deep learning architectures, each addressing challenges inherent to tabular datasets, including sparsity and overfitting, while striving to maximize predictive fidelity. These architectures will be designed and implemented for a dataset related to loan repayment capacity prediction. Through this, we will analyze and evaluate the performance of the proposed model in comparison with these advanced tabular models.

- **Multilayer Perceptron (MLP)** ([Lippmann, 1994](#)): As a widely adopted baseline for tabular data modeling, MLP leverages fully connected layers with nonlinear activation functions to learn feature interactions. Despite its simplicity and computational efficiency, MLP often struggle to capture complex dependencies between heterogeneous features compared to more advanced architectures. Nonetheless, they remain a strong reference point for benchmarking due to their robustness and ease of implementation.
- **TabNet** ([Arik & Pfister, 2019](#)): TabNet leverages a sequential attention mechanism to dynamically prioritize relevant features at each decision step, offering an elegant trade-off between predictive power and interpretability. By enforcing sparse attention, TabNet remains resistant to overfitting and enables human-understandable model explanations. Critical hyperparameters such as learning rate and batch size play pivotal roles in governing its convergence behavior and generalization performance. The model's architecture is particularly well-suited for tasks demanding feature importance transparency.
- **TabTransformer** ([Huang et al., 2020](#)): In adapting transformer architectures to the domain of tabular data, TabTransformer introduces column embedding and

self-attention layers to capture intricate feature dependencies more effectively than conventional MLP-based approaches.

- **TabPFN** ([Hollmann et al., 2022](#)): Characterized by its meta-learned, probabilistic foundation, TabPFN stands out by offering rapid and competitive predictions with minimal hyperparameter tuning requirements. Particularly advantageous for small or noisy datasets, TabPFN circumvents overfitting tendencies commonly observed in deep models.
- **FT-Transformer** ([Gorishniy et al., 2021](#)): FT-Transformer revisits the transformer paradigm with feature tokenization to process tabular data as sequences of tokens, each corresponding to an input feature. This allows the model to fully exploit the attention mechanism across heterogeneous feature types. Empirical studies from FT-Transformer demonstrate that FT-Transformer often matches or surpasses tree-based models like XGBoost on benchmark datasets.
- **SAINT** ([Somepalli et al., 2021](#)): SAINT advances the field by introducing both self-attention and inter-sample attention mechanisms to better model feature interactions not only within a single instance but also across the dataset. This dual-attention framework enriches the learned representations and captures complex global dependencies, thereby enhancing predictive accuracy.
- **AutoInt** ([Song et al., 2018](#)): AutoInt leverages the self-attention mechanism to automatically learn high-order feature interactions in tabular data. By stacking multiple interacting layers equipped with residual connections, the model adaptively captures both low- and high-order dependencies without extensive manual feature engineering. The attention-based design not only enhances interpretability by highlighting influential feature interactions but also demonstrates strong performance across diverse real-world tabular prediction tasks.

Tuning parameters

To ensure a fair comparison of model performance, we conducted hyperparameter tuning using the random search strategy. For each machine learning model, a range of critical hyperparameters was systematically explored to identify the optimal configuration. [Table 1](#) summarizes the machine learning models employed in the loan repayment capacity prediction task, together with their key hyperparameters and corresponding tuning ranges. Additionally, [Table 2](#) provides the hyperparameter tuning details for advanced tabular models applied to this task. The hyperparameters of these advanced models were selected based on insights from relevant research articles and official implementation source codes.

Evaluation metrics

In this section, we introduce multiple evaluation metrics to assess model performance, each providing different insights into prediction quality. The formulas of the metrics are described as follows.

- **Area Under the Receiver Operating Characteristic Curve (AUROC)**

$$AUROC = \int_0^1 TPR(FPR), dFPR \quad (12)$$

Table 1 Hyperparameters for machine learning models.

Model	Hyperparameter	Tuning values
Random Forest	n_estimators	100, 200, 500
	max_depth	10, 20, 30
	min_samples_split	2, 5
Naive Bayes	var_smoothing	1e-9, 1e-8, 1e-7, 1e-6
	fit_prior	[0.5, 0.5]
LightGBM	num_leaves	50, 100, 150
	learning_rate	0.01, 0.05, 0.1, 0.2
	max_depth	-1, 10, 20, 30
	feature_fraction	0.7, 0.8, 0.9, 1.0
K-nearest neighbors	n_neighbors	3, 5, 7, 9
	Metric	Euclidean, manhattan
	Weights	Uniform, distance
XGBoost	learning_rate	0.01, 0.1, 0.2, 0.3
	max_depth	3, 6, 9, 12
	Subsample	0.5, 0.7, 1.0
CatBoost	learning_rate	0.01, 0.1, 0.2, 0.3
	Depth	3, 6, 9, 12
	Iterations	50, 100, 150

- **Area Under the Precision-Recall Curve (AUPRC)**

$$PRAUC = \int_0^1 Precision(Recall) dRecall \quad (13)$$

- **Accuracy (ACC)**

$$ACC = \frac{TP + TN}{TP + TN + FP + FN} \quad (14)$$

- **Matthews Correlation Coefficient (MCC)**

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} \quad (15)$$

- **F1-score**

$$F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}. \quad (16)$$

Computational environment

All experiments were conducted on a machine equipped with an Intel Core i9-12900K processor, 64 GB of RAM, and an NVIDIA RTX 3090 GPU. The operating system used was Ubuntu 20.04 LTS. The software environment consisted of Python 3.9, with key libraries including Scikit-learn (version 1.6) PyTorch (version 2.0.0). Model training and evaluation were performed using Visual Studio Code with integrated support for Jupyter notebooks. The CUDA toolkit version 11.4 was employed to leverage GPU acceleration for

Table 2 Hyperparameters for advanced tabular models.

Model	Hyperparameter	Tuning values
MLP	Learning rate	0.01–0.05
	Dimension	256, 512
	Number of layers	3, 5
	Activation function	ReLU, LeakyReLU
TabNet	Learning rate	0.01–0.05
	Batch size	512, 2,048
	Decision steps	3, 10
	Sparsity regularization	1e-5, 1e-3
TabTransformer	Number of attention heads	4–8
	Hidden size	128, 512
	Number of transformer layers	4, 8
	Learning rate	1e-4, 1e-3
TabPFN	Learning rate	1e-4, 1e-3
	Hidden size	128, 512
	Number of attention heads	4, 8
	Embedding dimension	32, 128
FT-Transformer	Number of transformer layers	2, 4
	Number of attention heads	4, 8
	Dropout rate	0.1, 0.3
	Learning rate	1e-4–3e-4
SAINT	Number of attention heads	4, 8
	Dropout rate	0.1, 0.3
	Number of layers	4, 8
	Learning rate	1e-4–3e-4
AutoInt	Number of attention heads	4, 8
	Embedding dimension	128, 256
	Learning rate	1e-4–3e-4

deep learning tasks. On average, the training process for our model required approximately 40 min, while inference latency per sample was around 215 milliseconds, ensuring suitability for real-time applications. During training, RAM consumption remaining stable at around 4 GB.

RESULTS AND DISCUSSION

Ablation study

To validate the contribution of each component in our proposed architecture, we performed a detailed ablation study. Specifically, we investigated the effect of three critical modules: (1) Feature Encoder, (2) the Multi-head Attention, and (3) the Gated Transformer layers. For each ablation setting, we systematically removed or replaced the corresponding component and evaluated the model under the same experimental setup as described earlier.

Table 3 Ablation study on key components of the proposed model.

Model variant	AUROC	AUPRC	ACC	MCC	F1
Without feature encoder	0.8291	0.9017	0.9028	0.6512	0.9462
Without multi-head attention	0.8356	0.9078	0.9102	0.6623	0.9501
Gated Transformer → Transformer	0.8402	0.9054	0.9157	0.6705	0.9471
Full model (Ours)	0.8517	0.9213	0.9238	0.6942	0.9617

As presented in [Table 3](#), removing the Feature Encoder and directly feeding raw features into the Gated Transformer resulted in a notable drop in AUROC (0.8291 *vs.* 0.8517) and ACC (0.9028 *vs.* 0.9238), confirming the necessity of embedding alignment across heterogeneous feature types. Excluding the Multi-head Attention from the Gated Transformer led to a significant performance degradation across all metrics, particularly MCC (0.6623 *vs.* 0.6942), indicating that attention plays an essential role in stabilizing feature interactions. Finally, replacing the Gated Transformer with a standard Transformer reduced both F1 (0.9471 *vs.* 0.9617) and AUPRC (0.9054 *vs.* 0.9213), suggesting its effectiveness in capturing global contextual information for robust classification. Overall, these results demonstrate that each component contributes meaningfully to the final performance, with the gated self-attention mechanism providing the largest performance gain. This highlights the importance of both architectural refinements and embedding strategies in achieving good results for tabular data modeling.

Results of ML models comparison

[Table 4](#) present the comparative performance of various machine learning models against our proposed method across multiple evaluation metrics. Overall, our model consistently outperforms all baselines. For AUROC, our approach achieves a score of 0.8517, representing a significant improvement over the second-best model, CatBoost, which attains 0.7636. Similarly, for AUPRC, our model records the highest value of 0.9213, surpassing all other methods, with CatBoost again being the closest at 0.9012 and Naive Bayes (0.8929). In addition, our method also demonstrates superior classification performance, achieving the highest ACC (0.9238), MCC (0.6942), and F1 (0.9617). Notably, while models such as LightGBM and XGBoost show competitive results, particularly in ACC and F1, they still lag behind our model by a noticeable margin across all metrics. These results collectively highlight the robustness and effectiveness of our proposed method compared to existing baseline models.

Results of advanced models comparison

In order to further assess the effectiveness of our proposed method, we conducted a comprehensive comparison against several advanced models specifically designed for tabular data. As shown in [Table 5](#), our model achieves a score of 0.8517, outperforming the best-performing model, FT-Transformer (0.8294), by a margin of 2.7%. Similarly, for AUPRC, our method records 0.9213, compared to 0.9027 achieved by SAINT and AutoInt (0.8932). Moreover, our model exhibits the highest ACC (0.9238), outperforming TabPFN

Table 4 Performance comparison between baseline models and our proposed method.

Model	AUROC	AUPRC	ACC	MCC	F1
Random Forest	0.7241	0.8819	0.8889	0.6119	0.9351
Naive Bayes	0.7514	0.8929	0.8641	0.5412	0.9173
LightGBM	0.7289	0.8837	0.8899	0.6153	0.9356
K-Nearest Neighbors	0.7125	0.8778	0.8632	0.5128	0.9187
XGBoost	0.7345	0.8859	0.8891	0.6109	0.9348
CatBoost	0.7636	0.9012	0.9091	0.6445	0.9438
Ours	0.8517	0.9213	0.9238	0.6942	0.9617

Table 5 Performance comparison between advanced tabular models and our proposed method.

Model	AUROC	AUPRC	ACC	MCC	F1
MLP	0.7513	0.8851	0.8725	0.6338	0.9072
TabNet	0.8023	0.8782	0.8921	0.6215	0.9382
TabTransformer	0.8157	0.8859	0.8973	0.6321	0.9425
TabPFN	0.8235	0.8927	0.9056	0.6587	0.9491
FT-Transformer	0.8294	0.8993	0.9031	0.6523	0.9478
SAINT	0.8171	0.9027	0.8992	0.6409	0.9447
AutoInt	0.8011	0.8932	0.8819	0.6320	0.9318
Ours	0.8517	0.9213	0.9238	0.6942	0.9617

(0.9056) and FT-Transformer (0.9031). For the MCC and F1, two critical indicators for balanced performance in classification tasks, our method also yields the best results, indicating improved predictive stability and robustness. Overall, these comparisons highlight the superiority of our proposed approach over existing advanced techniques for tabular data modeling.

Stability and robustness study

To assess the stability and reliability of our proposed method in predicting loan repayment capacity, we performed experiments across 15 different random seeds. Each seed represents a distinct initialization of the random number generator used in the model training process, ensuring that the evaluation captures the inherent variability and robustness of the model under different starting conditions. The results, presented in **Table 6**, show that the model's performance metrics remain relatively stable across all trials. The mean values for key evaluation metrics including AUROC, AUPRC, ACC, MCC, and F1 are consistently high, with means of 0.8522, 0.9207, 0.9244, 0.6945, and 0.9610, respectively. This indicates that the model is robust to variations in initialization, as it maintains a strong predictive ability for loan repayment capacity regardless of the random seed used during training. The standard deviations for these metrics are also relatively low, ranging from 0.0042 to 0.0069. These small variations suggest that the model's performance is not highly sensitive to small changes in initialization, further demonstrating its stability and reliability. Specifically, the low standard deviation in

Table 6 Stability study across 15 random seeds.

Trial	AUROC	AUPRC	ACC	MCC	F1
1	0.8517	0.9213	0.9238	0.6942	0.9617
2	0.8425	0.9152	0.9291	0.6827	0.9543
3	0.8571	0.9254	0.9167	0.7023	0.9635
4	0.8493	0.9137	0.9278	0.6912	0.9587
5	0.8659	0.9294	0.9223	0.6985	0.9682
6	0.8481	0.9186	0.9312	0.6881	0.9594
7	0.8564	0.9247	0.9245	0.6967	0.9618
8	0.8432	0.9161	0.9193	0.6854	0.9537
9	0.8603	0.9282	0.9267	0.7002	0.9659
10	0.8518	0.9194	0.9232	0.6949	0.9608
11	0.8578	0.9227	0.9205	0.6973	0.9626
12	0.8475	0.9171	0.9286	0.6892	0.9575
13	0.8612	0.9268	0.9257	0.7015	0.9664
14	0.8504	0.9202	0.9221	0.6935	0.9591
15	0.8551	0.9238	0.9240	0.6957	0.9610
Mean	0.8522	0.9207	0.9244	0.6945	0.9610
Std	0.0069	0.0048	0.0045	0.0050	0.0042

metrics such as AUROC and F1 is an important indicator of how consistently the model can discriminate between repaying and non-repaying loan applicants, which is a crucial aspect of predicting loan repayment capacity accurately.

In conclusion, the stability across different random seeds is particularly significant in the context of loan repayment prediction, as it implies that the model is not overfitting to particular subsets of the data or to specific random initialization conditions. This robustness ensures that the model is likely to perform well on new, unseen loan data, making it a dependable tool for financial institutions in assessing the repayment likelihood of loan applicants.

Limitations

While the proposed Gated Transformer model achieves strong predictive performance on the LendingClub dataset, its applicability has several constraints. First, the model's training and evaluation on a single platform-specific dataset may limit its generalizability to other financial institutions, credit products, or regional contexts without further adaptation. Second, as with most real-world credit data, historical biases in lending decisions and socioeconomic disparities may be embedded in the features, posing risks of perpetuating unfair outcomes if bias detection and mitigation are not implemented. Third, although the token-wise gating mechanism improves interpretability relative to conventional deep learning models, the architecture remains more complex than traditional statistical approaches, which may hinder adoption in regulatory environments requiring clear, transparent decision-making.

CONCLUSION

In this article, we introduced a novel Gated Transformer-based deep learning model tailored for tabular data in the domain of credit risk assessment. By effectively integrating categorical and numerical features into a unified embedding space and leveraging multi-head self-attention with token-wise gating, our model captures complex feature interactions and improves interpretability, addressing key challenges in economic predictive modeling. Experimental results demonstrate that our approach outperforms advanced tabular data models across multiple metrics, including accuracy, AUPRC, MCC, and F1, highlighting its robustness and predictive power. This work provides a flexible and powerful framework for extracting meaningful economic insights from complex credit datasets, facilitating more informed and responsible financial decision-making. In addition, future research should systematically evaluate the model's transferability across diverse datasets and financial contexts to address the current limitation of platform dependency. Another important avenue lies in developing robust bias detection and mitigation strategies to prevent the reinforcement of historical socioeconomic disparities. Finally, simplifying the model architecture while preserving predictive performance may enhance its acceptance in highly regulated financial environments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by National Social Science Foundation of China in 2022: Research on Evaluation System and Guarantee Mechanism of Labor Rights and Interests of Flexible Employees in Platform Enterprises (22XJY004). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
National Social Science Foundation of China in 2022: Research on Evaluation System and Guarantee Mechanism of Labor Rights and Interests of Flexible Employees in Platform Enterprises: 22XJY004.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

- Cheng Qiu conceived and designed the experiments, performed the experiments, analyzed the data, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Sheng Li conceived and designed the experiments, performed the experiments, analyzed the data, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.

- Xiaodan Zhou conceived and designed the experiments, performed the experiments, analyzed the data, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

The code and data are available in the [Supplemental Files](#).

Supplemental Information

Supplemental information for this article can be found online at <http://dx.doi.org/10.7717/peerj-cs.3339#supplemental-information>.

REFERENCES

Abdirashid AA, Jagongo AO. 2019. Group lending and loans performance in micro-finance institutions in Nairobi City County, Kenya: case of kenya women microfinance bank limited. *International Journal of Current Aspects* 3(III):96–110 DOI 10.35942/ijcab.v3iiii.33.

Abdulahi A, Charkos M, Haji A. 2022. Socio-economic determinants of loan repayment capacity of Somali microfinance clients in Kebridahar town, Somali regional state, Ethiopia. *Journal of Financial Risk Management* 11(03):658–676 DOI 10.4236/jfrm.2022.113032.

Addo P, Guegan D, Hassani B. 2018. Credit risk analysis using machine and deep learning models. *Risks* 6(2):38 DOI 10.3390/risks6020038.

Aniceto MC, Barboza F, Kimura H. 2020. Machine learning predictivity applied to consumer creditworthiness. *Future Business Journal* 6(1):37 DOI 10.1186/s43093-020-00041-w.

Arik SO, Pfister T. 2019. TabNet: attentive interpretable tabular learning. ArXiv DOI 10.48550/arXiv.1908.07442.

Bature HJ, Wisdom DD, Dufuwa TT, Ayetuoma IO. 2023. Credit default prediction system using machine learning. *Computology: Journal of Applied Computer Science and Intelligent Technologies* 3(1):51–60 DOI 10.17492/computology.v3i1.2305.

Breiman L. 2001. Random forest. *Machine Learning* 45(1):5–32 DOI 10.1023/A:1010933404324.

Chen T, Guestrin C. 2016. XGBoost: a scalable tree boosting system. In: *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16*. ACM, 785–794.

Dang QV, Tran VTT, Pham H, Vuong Q. 2022. Determinants of loan repayment of the shrimp households: an empirical study in CA MAU province. *VIETNAM Financial and Credit Activity Problems of Theory and Practice* 5(46):271–281 DOI 10.55643/fcaptp.5.46.2022.3881.

Dorogush AV, Ershov V, Gulin A. 2018. Catboost: gradient boosting with categorical features support. ArXiv DOI 10.48550/arXiv.1810.11363.

Enimu S, Eyo EO, Ajah EA. 2017. Determinants of loan repayment among agricultural microcredit finance group members in Delta state. *Nigeria Financial Innovation* 3:21 DOI 10.1186/s40854-017-0072-y.

Field E, Pande R. 2008. Repayment frequency and default in microfinance: evidence from India. *Journal of the European Economic Association* 6((2–3)):501–509 DOI 10.1162/jeea.2008.6.2-3.501.

Gorishniy Y, Rubachev I, Khrulkov V, Babenko A. 2021. Revisiting deep learning models for tabular data. ArXiv DOI 10.48550/arXiv.2106.11959.

Gudde Jote G. 2018. Determinants of loan repayment: the case of microfinance institutions in Gedeo Zone, SNNPRS, Ethiopia. *Universal Journal of Accounting and Finance* 6(3):108–122 DOI 10.13189/ujaf.2018.060303.

Hamori S, Kawai M, Kume T, Murakami Y, Watanabe C. 2018. Ensemble learning or deep learning? Application to default risk analysis. *Journal of Risk and Financial Management* 11(1):12 DOI 10.3390/jrfm11010012.

Hollmann N, Müller S, Eggensperger K, Hutter F. 2022. TabPFN: a transformer that solves small tabular classification problems in a second. ArXiv DOI 10.48550/arXiv.2207.01848.

Huang X, Khetan A, Cvitkovic M, Karnin Z. 2020. TabTransformer: tabular data modeling using contextual embeddings. ArXiv DOI 10.48550/arXiv.2012.06678.

Ilavbarhe K, Alufohai G, Keyagha T. 2017. Assessment of loan repayment capacity of cooperative farmers in bayelsa state, Nigeria. *Journal of Advance Research in Business Management and Accounting* 3(03):1–17 DOI 10.53555/nnbma.v3i3.64.

Indriani E, Irawan N, Hartawan H, Khristiana Y. 2023. Increasing solvency by moderating social capital: a study on group lending model from community empowerment trust fund—INDONESIA. *Business: Theory and Practice* 24(2):312–324 DOI 10.3846/btp.2023.16735.

Jumaa M, Saqib M, Attar A. 2023. Improving credit risk assessment through deep learning-based consumer loan default prediction model. *International Journal of Finance & Banking Studies* (2147–4486) 12(1):85–92 DOI 10.20525/ijfbs.v12i1.2579.

Kariuki P, Namusonge M. 2024. Multi-borrowing practices and loan repayment of micro and small enterprises in trade sector in Meru county, Kenya. *International Journal of Business Management, Entrepreneurship and Innovation* 6(3):169–191 DOI 10.35942/01jrc668.

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. 2017. Lightgbm: a highly efficient gradient boosting decision tree. In: *Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17*. Red Hook, NY, USA: Curran Associates Inc, 3149–3157.

Kramer O. 2013. *K-nearest neighbors*. Berlin Heidelberg: Springer, 13–23.

Kvamme H, Sellereite N, Aas K, Sjursen S. 2018. Predicting mortgage default using convolutional neural networks. *Expert Systems with Applications* 102:207–217 DOI 10.1016/j.eswa.2018.02.029.

Li Y, Tian Y, Zhus J. 2023. Credit default prediction based on blending learning model. *Applied and Computational Engineering* 8:726–733 DOI 10.54254/2755-2721/8/20230112.

Lippmann R. 1994. Book review: “neural networks, a comprehensive foundation”, by Simon Haykin. *International Journal of Neural Systems* 5(4):363–364 DOI 10.1142/s0129065794000372.

Liu S, Guan M, Ji J, Li Y, Wang M, Zhu H. 2023. A Bayesian deep learning method based on loan default rate detection. In: Palanisamy Muthuramalingam A, Subramaniam K, eds. *Second International Conference on Algorithms, Microchips, and Network Applications (AMNA 2023)*. SPIE, 4.

Netzer O, Lemaire A, Herzenstein M. 2019. When words sweat: identifying signals for loan default in the text of loan applications. *Journal of Marketing Research* 56(6):960–980 DOI 10.1177/0022243719852959.

Nguyen T, Adnan M, Nguyen BP, de Ligt J, Geoghegan JL, Dean R, Jefferies S, Baker MG, Seah WK, Sporle AA, French NP, Murdoch DR, Welch D, Simpson CR. 2021. COVID-19 vaccine strategies for Aotearoa New Zealand: a mathematical modelling study. *The Lancet Regional Health—Western Pacific* 15(11):100256 DOI 10.1016/j.lanwpc.2021.100256.

Nguyen LD, Nguyen QH, Trinh QH, Nguyen BP. 2024. From SMILES to enhanced molecular property prediction: a unified multimodal framework with predicted 3D conformers and contrastive learning techniques. *Journal of Chemical Information and Modeling* **64**(24):9173–9195 DOI [10.1021/acs.jcim.4c01240](https://doi.org/10.1021/acs.jcim.4c01240).

Ojiako IA. 2012. Economic analysis of loan repayment capacity of small-holder cooperative farmers in Yewa North Local Government Area of Ogun State, Nigeria. *African Journal of Agricultural Research* **7**(13):2051–2062 DOI [10.5897/ajar11.1302](https://doi.org/10.5897/ajar11.1302).

Okero EO, Waweru FW. 2023. Credit risk assessment and loan repayment among development financial institutions. A case of Kenya industrial estates limited. *International Journal of Finance and Accounting* **2**(1):21–29 DOI [10.37284/ijfa.2.1.1197](https://doi.org/10.37284/ijfa.2.1.1197).

Okonta NP, Achoja FO, Okuma LO. 2023. Willingness and capacity of borrowers for loan repayment among farmers in Delta State Nigeria. *GSC Advanced Research and Reviews* **17**(2):112–125 DOI [10.30574/gscarr.2023.17.2.0429](https://doi.org/10.30574/gscarr.2023.17.2.0429).

Somepalli G, Goldblum M, Schwarzschild A, Bruss CB, Goldstein T. 2021. SAINT: improved neural networks for tabular data via row attention and contrastive pre-training. ArXiv DOI [10.48550/arXiv.2106.01342](https://doi.org/10.48550/arXiv.2106.01342).

Song W, Shi C, Xiao Z, Duan Z, Xu Y, Zhang M, Tang J. 2018. AutoInt: automatic feature interaction learning via self-attentive neural networks. ArXiv DOI [10.48550/arXiv.1810.11921](https://doi.org/10.48550/arXiv.1810.11921).

Turiel JD, Aste T. 2019. P2P loan acceptance and default prediction with artificial intelligence. ArXiv DOI [10.48550/arXiv.1907.01800](https://doi.org/10.48550/arXiv.1907.01800).

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. 2017. Attention is all you need. ArXiv DOI [10.48550/arXiv.1706.03762](https://doi.org/10.48550/arXiv.1706.03762).

Webb GI. 2011. *Naïve Bayes*. Cham: Springer US, 713–714.

Wu W. 2022. Machine learning approaches to predict loan default. *Intelligent Information Management* **14**(05):157–164 DOI [10.4236/iim.2022.145011](https://doi.org/10.4236/iim.2022.145011).

Xu J, Lu Z, Xie Y. 2021. Loan default prediction of Chinese P2P market: a machine learning methodology. *Scientific Reports* **11**:18759 DOI [10.1038/s41598-021-98361-6](https://doi.org/10.1038/s41598-021-98361-6).

Zhou Y. 2023. Loan default prediction based on machine learning methods. In: *Proceedings of the 3rd International Conference on Big Data Economy and Information Management, BDEIM 2022, BDEIM. EAI*.