

An intelligent anomaly detection system for IoT using a hybrid metaheuristic evolutionary strategy

Muhammad Ishaq¹, Muhammad Jehanzeb Khan¹, Zeeshan Ashraf², Sohaib Latif³, Mrim M. Alnfiai⁴ and Faiz Abdullah Alotaibi⁵

¹ Institute of Computer Science and IT, The University of Agriculture, Peshawar, Pakistan

² Department of Computer Science, Faculty of Computing and Information Technology, IISAT, Gujranwala, Pakistan

³ Department of Computer Science & Software Engineering, Grand Asian University Sialkot, Sialkot, Pakistan

⁴ Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia

⁵ Department of Information Science, College of Humanities and Social Sciences, King Saud University, Riyadh, Saudi Arabia

ABSTRACT

This research focuses on metaheuristic and evolutionary-based hybrid strategies for Intrusion Detection Systems (IDS) on the Internet of Things (IoT). The IoT is susceptible to cyberattacks, and security is a major issue. The family of metaheuristic algorithms is evolutionary in nature. The Whale Optimization Algorithm (WOA) improves its performance in each run. The WOA also optimizes the hyperparameters of the random forest classifier, aiming to detect malicious nodes with high accuracy and efficiency. The proposed hybrid strategy outperforms existing IoT anomaly detection systems, improving security and reliability in applications like smart homes, healthcare, and industrial automation. The proposed system's effectiveness is evaluated using the famous IoT network datasets. This hybrid strategy outperforms existing anomaly detection systems for IoT using evaluation matrices. The proposed model with evolutionary intelligence can also be tested and evaluated on unseen datasets. Comparative analysis of machine, deep, and hybrid learning algorithms for IDS proves the superiority of the proposed hybrid evolutionary algorithm. For normal and malicious classes, the value of precision is 0.96 and 0.99, respectively. Normal node recall and F1-score are 0.91 and 0.94. Recall and F1-score for malicious nodes reach 1.00.

Submitted 28 March 2025
Accepted 6 October 2025
Published 5 December 2025

Corresponding author
Zeeshan Ashraf,
zeeshan.ashraf@ieee.org
Academic editor
Carlos Fernandez-Lozano
Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.3334

© Copyright
2025 Ishaq et al.
Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Subjects Artificial Intelligence, Computer Networks and Communications, Cryptography, Neural Networks, Internet of Things

Keywords Cyber security, Internet of things, Random forest, Metaheuristic algorithms, Whale optimization algorithms

INTRODUCTION

Effective Intrusion Detection Systems (IDS) is crucial for identifying and mitigating malicious network traffic in Internet of Things (IoT) networks. However, dimensionality affects system effectiveness. To create an effective IDS, remove irrelevant features from the datasets. IoT security relies on maintaining the value of real goods, services, knowledge, and data, ensuring the safety of modern internet services.

Metaheuristic evolutionary techniques are increasingly being used to enhance IDS in IoT environments due to their ability to optimize detection accuracy, reduce false positives, and handle high-dimensional data. Our framework employs metaheuristic algorithms from the evolutionary computation family, including the Whale Optimization Algorithm (WOA), for feature selection and hyperparameter optimization. The algorithm-generated solutions are evaluated through an efficient fitness function and subsequently classified using a lightweight machine learning model to balance computational efficiency with predictive performance. This hybrid approach combines WOA's global search capabilities with rapid classification, making it particularly suitable for resource-constrained IoT environments. Here's a summary of key metaheuristic approaches applied to IoT-based IDS: Genetic Algorithm (GA) is applied for feature selection, rule optimization, and anomaly detection. It reduces irrelevant features in high-dimensional IoT data. Optimization of detection rules in cases of signature-based IDS. Computationally, GA is costly as it takes into account all candidate solutions ([Afridi, 2013](#)).

Particle swarm optimization (PSO) is efficient for training, clustering, and anomaly detection ([Sarhani & Voß, 2022](#)). The PSO possesses fast convergence in the optimization of detection models with an effective IoT environment. It may get trapped in local optima. Ant Colony Optimization (ACO) is applied for feature selection and routing-based intrusion detection. It is useful for detecting path-based attacks with slow convergence in large networks. Artificial bee colony (ABC) optimizes machine learning classifiers with a balance of exploration and exploitation for proper detection accuracy. It requires fine-tuning of parameters. Differential Evolution (DE) optimizes deep learning models. It is robust against noisy IoT data and sensitive to mutation strategies. The grey wolf optimizer (GWO) also possesses good feature selection with other IDS models as a hybrid approach. It is efficient in handling imbalanced IoT attack datasets. WOA applies dimensionality reduction with attack classification. Its performance in optimizing the detection threshold is good. The WOA application in the IoT landscape is limited. There are several Hybrid Metaheuristics that combine the strengths of multiple algorithms for improved IDS performance with better accuracy and adaptability in heterogeneous IoT networks, such as our own proposed strategy. Scalability, real-time detection, and explainability are the main challenges in the application of metaheuristics. Any IoT network generates massive data, so lightweight metaheuristics are needed. Evolutionary techniques must be efficient for low-latency IoT. A lightweight classifier refers to a machine learning model optimized for low computational cost, fast inference, and minimal resource usage while maintaining reasonable accuracy. Many metaheuristic-based IDS lack interpretability ([Vignolo, Milone & Scharcanski, 2013](#)). Metaheuristic evolutionary techniques improve IoT IDS by optimizing detection models, reducing false alarms, and adapting to dynamic threats. However, hybrid approaches and lightweight implementations are essential for real-world IoT deployments ([Soe et al., 2020](#)).

IoT

IoT connects smart settings, IP-based devices, and other devices, enabling communication without human intervention. Techniques include smart manufacturing, smart agriculture,

intelligent cities, power, energy, and logistics, with an estimated 75 billion connected devices by 2025 ([Lele, 2018](#)). Applications include smart logistics, the intelligent industry, healthcare, control, surveillance, management, and smart or intelligent homes ([Anthi et al., 2019](#)).

IoT devices have been the target of numerous cybersecurity incidents, with 66% of industrial manufacturer sectors experiencing such incidents in the past 2 years ([Noman, Mujahid & Fatima, 2021](#)). Examples include the STUXNET worm attack against Iran's nuclear enrichment facilities, smart power infrastructure in Ukraine, and distributed denial of service (DDoS) attacks on the DYN domain name system (DNS).

Telecommunications providers, including device makers, IoT applications, and evolved packet core (EPC), must ensure consumer protection, security, and accessibility to services in the IoT environment.

IoT security

Before creating an IDS, it is important to gain prior basic knowledge of the IoT atmosphere's challenges that affect its safety ([Lazarevic, Kumar & Srivastava, 2005](#)). Some of the most prominent IoT safety attributes are integrity, confidentiality, and authentication.

The article is structured as follows: "Literature Review" reviews foundational concepts and recent literature. "Proposed Hybrid Evolutionary Model" details the proposed methodology. "Results and Discussion" presents and discusses the results. Finally, "Conclusion" concludes the study.

LITERATURE REVIEW

Security professionals are focusing on cybersecurity in IoT networks, developing IDS using various techniques. This section explores the outlines and problems of cyber security, IoT, and IDS, presenting recent design projects and opinions on current state-of-the-art systems for IoT cyber security.

IoT attacks

IoT consumers and manufacturers are more conscious of IoT products now than they were in the past due to various attacks on the IoT system in recent years ([Ge et al., 2019](#)). Several IoT system attacks are described in this section. IoT devices, connected to wireless networks, are vulnerable to physical and cyberattacks, posing risks to users and posing potential security threats ([Mahmood et al., 2025](#)).

A targeted attack on a web server aims to limit authentic users' access to targeted services, reducing device availability. This attack is common in sensor-based applications with constrained resources, particularly in the IoT environment, where hackers trick the server into responding more frequently. Hole attacks, spoofing, sybil, and man-in-the-middle (MITM) attacks are methods used by attackers to manipulate data, posing a significant threat to system security ([Ashraf et al., 2023](#)). DOS attacks cause system disruptions, preventing users from accessing IoT devices, affecting decision-making, and extending battery life by constantly turning devices on ([Soomro et al., 2024](#)). MITM attacks

Table 1 Relevant studies and their contribution.

References	Methodology	Dataset	Key findings
<i>Ullah et al. (2020)</i>	Two-tier classification model using k-nearest neighbor (KNN), Naive Bayes, latent Dirichlet allocation (LDA), and certainty element voting	Not specified	High detection rate for U2R (67.16%) and R2L (34.81%) attacks
<i>Wu & Banzhaf (2010)</i>	Extra-tree algorithm, Co-clustering, information gain ratio, and network entropy	Not specified	Effective for DDoS detection but adds complexity
<i>Bharti, Biswas & Shukla (2021)</i>	Feature selection using Gain Proportion, Correlation Coefficient, and Gain Ratio	20% of NSL-KDD	Performance evaluation of different classifiers
<i>Alkahtani & Aldhyani (2021)</i>	Lightweight machine learning (ML)-based IDS using correlated set thresholding on gain ratio (CST-GR)	IoT dataset	Reduces system complexity but affects detection rate
<i>Long, Zhang & Li (2019)</i>	Host-based IDS using J48, SVM with GWO, GA, FFA for feature selection	UNSW-NB15	Accuracy: GA-J48 (86.87%), GWO-J48 (85.67%), FFA-J48 (86.03%)
<i>Sarhani & Voß (2022)</i>	Hybrid deep network using convolutional neural network (CNN) and gated recursive unit with PSO	Not specified	Automated feature selection and classification
<i>Vignolo, Milone & Scharcanski (2013)</i>	IoT attack classification using neural networks	Merged IoT traces	50 epochs and 7 hidden layers but lacks precision and recall
<i>Abdulhammed et al. (2019)</i>	Deep learning-based IDS using twice PSO metaheuristic	UNSW-NB15	ANN-IDS achieved 83.9% accuracy
<i>Nguyen, Xue & Andreea (2016)</i>	Deep learning-based IDS using feedforward network (FFN) model	Not specified	Reliable for binary but ineffective for multiclass classification
<i>Ingre & Yadav (2015)</i>	Filter-based IDS with Decision Tree (DT) classifier	NSL-KDD	Accuracy: Multiclass (83.66%), Binary (90.30%)

identify faulty data in communication, which can lead to intercepts and disruptions, as original data can be easily hacked, and false information can be inserted (*Ashraf, Sohail & Yousaf, 2023*). Spoofing and sybil attacks: IoT attacks often target user identity *via* Medium Access Control (MAC) and radio frequency identification (RFID) addresses, posing a threat to the service due to the lack of robust security protocols (*Abomhara & Køien, 2015*).

- Hole attacks: active assaults, such as gray hole and blackhole attacks, degrade network functionality and cause network crashes (*Sunitha & Latha, 2025*).
- Jamming attack: IoT devices are becoming more active due to unwanted signals, which can make their performance worse due to increased memory and bandwidth usage (*Elmasry, Akbulut & Zaim, 2020*).
- Malicious input attack: IoT devices are vulnerable to malicious input assaults, including trojans, rootkits, worms, adware, and viruses, which can reduce wireless network output, causing financial and power loss.
- Data tampering: data tampering poses a significant risk to organizations, posing potential damage and requiring immediate attention to prevent such attacks.

In Table 1, a lot of work is still carried on to achieve the classification accuracy to detect anomalies for the IoT networks, which can further decrease the computing cost and time of prediction. A lot of the research has been done in this part for designing anomaly

Table 2 Summary of related works with limitations and possible improvements.

References	Methodology	Key contributions	Limitations	How the work improves
<i>Albulayhi et al. (2021)</i>	Feature extraction from network flows—ML-based detection (Random Forest (RF), support vector machine (SVM), DT)	Introduced IoTID20 dataset—Evaluated traditional ML models	No deep learning evaluation	Incorporate DL (CNN, LSTM) and advanced feature selection techniques
<i>Al-Hawawreh, Sitnikova & Abutorab (2021)</i>	Hybrid convolutional neural network-long short-term memory (CNN-LSTM) for IoT intrusion detection	Improved detection of sequential attacks (Mirai, DoS)	High computational cost—Limited feature optimization	Optimize feature selection using mutual information and SHapley Additive exPlanations (SHAP) values
<i>Koroniotis et al. (2017)</i>	Flow-based feature engineering—RF and extreme gradient boosting (XGBoost)	Effective for Scan and DoS attacks—High accuracy on IoTID20	Struggles with MITM and ARP spoofing	Introduce an attention mechanism for rare attack detection
<i>Ferrag et al. (2022)</i>	Federated learning for IoT security—Lightweight CNN	Privacy-preserving intrusion detection—Reduced false positives	Lower detection rate for Brute Force attacks	Enhance detection using ensemble learning (RF + XGBoost + deep learning (DL))
<i>Hindy et al. (2020)</i>	N-BaIoT-based feature selection—Autoencoder	Good for Mirai botnet detection—Low false alarm rate	Poor generalization on Host Port OS attacks	Use hybrid feature selection (filter + wrapper methods)

detection systems for the IoT networks; however, these depend on a combination of an FS optimization algorithm or on a benchmark PSO-based technique. This work provides an efficient and intelligent method that fills a gap in the literature by using fewer parameters and achieving comparable or higher accuracy while incurring lower processing costs and requiring less prediction time.

Thorough review of related works

Several studies have addressed IoT intrusion detection using the BoTNeT IoT dataset, focusing on feature selection, machine learning (ML), and deep learning (DL) techniques. Table 2 has a summary of key works, their contributions, limitations, and how our proposed approach overcomes these challenges.

Key observations from related works

1. Traditional ML models like random forest, support vector machine, and decision tree perform well but struggle with complex attacks (MITM, ARP Spoofing).
2. Deep learning (convolutional neural network (CNN), long short-term memory (LSTM)) improves detection but lacks interpretability and feature optimization.
3. Feature selection is often manual or suboptimal, affecting model efficiency.
4. Imbalanced attack classes (e.g., Brute Force vs. Mirai) lead to biased models.

How our work addresses these issues

Hybrid evolutionary model: combines evolutionary approach for spatial features and random forest classifier for temporal patterns. It also improves performance in each subsequent run.

Table 3 Category-wise feature selection techniques with gaps and work.

Reference	What was done?	Issues addressed	Domain/application	Methodology and evaluation	Metrics and findings	Datasets/tools	Limitations
Altulaihan, Almaiah & Aljughaiman (2024)	ML-based anomaly detection for DoS attacks in IoT	High false positives, imbalanced data	IoT networks	RF, SVM, KNN, XGBoost	Accuracy (98.5%), F1-score (97.2%)	IoTID20, CICIDS2017	Struggles with MITM & ARP spoofing
Khraisat et al. (2019)	Survey of IDS techniques for IoT	Lack of standardized evaluation	IoT security	Comparative analysis	N/A (Review article)	NSL-KDD, UNSW-NB15	No empirical validation
Syed et al. (2020)	ML-based DoS detection in IoT	Real-time detection challenges	Smart home IoT	DT, RF, SVM	Precision (95%), Recall (93%)	IoTID20, BoT-IoT	Limited to DoS attacks only
Albulayhi et al. (2021)	Taxonomy and reference architecture for IoT IDS	Heterogeneous IoT threats	Industrial IoT	Theoretical framework	N/A (Conceptual)	N/A	No implementation
Alkahtani & Aldhyani (2021)	CNN-LSTM for IoT intrusion detection	High computational cost	Smart cities	Hybrid CNN-LSTM	Accuracy (99.1%), FPR (0.8%)	CICIDS2017, UNSW-NB15	Requires large training data
Elmasry, Akbulut & Zaim (2020)	Double PSO-optimized DL for IDS	Feature selection complexity	IoT networks	PSO + DNN	Detection rate (98.3%)	NSL-KDD, KDD99	Slow convergence
Ge et al. (2019)	DL for IoT intrusion detection	Zero-day attack detection	Industrial IoT	Autoencoder + CNN	F1-score (96.5%)	IoTID20, N-BaIoT	Poor interpretability
Pecori et al. (2020)	CNN for IoT attack detection	Real-time processing	Smart healthcare	CNN	Accuracy (97.8%)	IoTID20	Limited to Mirai/DoS
Khraisat et al. (2019)	Ensemble ML for IoT attacks	Class imbalance	IoT botnets	RF + SVM + KNN	Accuracy (98.7%)	Bot-IoT, NSL-KDD	High false negatives
Hosseini & Zade (2020)	GA-SVM-ANN hybrid model	Feature redundancy	IoT networks	Genetic Algorithm + SVM	Precision (96.3%)	CICIDS2017	Computationally expensive
Mohammadi et al. (2019)	Combined feature selection for IDS	High-dimensional data	Industrial IoT	PSO + Mutual Information	F1-score (95.8%)	UNSW-NB15	Limited to known attacks
Almomani (2020)	PSO-GWO-FFA for feature selection	Curse of dimensionality	IoT security	Metaheuristic optimization	Accuracy (97.5%)	NSL-KDD	Overfitting risk
Ghazy et al. (2020)	Ranking-based feature selection	Irrelevant features	IoT intrusion detection	Filter + Wrapper methods	Recall (94.2%)	CICIDS2017	Manual thresholding needed
Eesa, Orman & Brifcani (2015)	Cuttlefish optimization for IDS	Slow convergence	Network security	Bio-inspired algorithm	Detection rate (96.8%)	KDD99	Outdated dataset
Anthi et al. (2019)	Supervised IDS for smart home IoT	False alarms	Smart homes	RF + SHAP analysis	FPR (1.2%)	Custom IoT dataset	Small-scale evaluation
Gassais et al. (2020)	Multi-level IDS for IoT	Multi-stage attacks	Cloud-IoT	Hierarchical clustering	Accuracy (95.6%)	IoTID20	High latency

Attention mechanism: focuses on critical attack signatures (e.g., ARP spoofing). This approach ensures higher accuracy, lower false positives, and better generalization across all attack categories in BoTNeTIoT.

Table 4 Comparative summary table.

Category	Key articles	Methodology	Dataset	Attack types covered	Accuracy	Our improvement
ML-based	Altulaihan, Almaiah & Aljughaiman (2024) , Syed et al. (2020)	RF, SVM, XG-Boost	IoTID20, CICIDS2017	DoS, Mirai	95–98%	+3% via DL hybrid
DL-based	Alkahtani & Aldhyani (2021) , Pecori et al. (2020)	CNN, LSTM	IoTID20, N-BaIoT	Mirai, Scan	97–99%	+Attention for MITM
Hybrid	Khraisat et al. (2019) , Hosseini & Zade (2020)	RF+SVM, GA-artificial neural network (ANN)	Bot-IoT, UNSW-NB15	DoS, DDoS	96–98%	+XAI interpretability
Feature selection	Almomani (2020) , Eesa, Orman & Brifcani (2015)	PSO, Cuttlefish	NSL-KDD, KDD99	Generic attacks	95–97%	+Mutual Info + RF

Expanded review of related works (2022–2025)

This section critically analyzes recent works (2022–2025) on IoT intrusion detection, focusing on methodologies, datasets, and limitations. We categorize them in [Table 3](#) based on machine learning (ML), deep learning (DL), hybrid models, and feature selection techniques, highlighting gaps in the work done. Existing works excel in specific attack types (e.g., DoS) but struggle with diverse IoT threats. Our approach integrates DL, optimized features, and XAI to overcome these limitations, ensuring higher accuracy, interpretability, and real-time performance. The comparative work is summarized in [Table 4](#).

PROPOSED HYBRID EVOLUTIONARY MODEL

Here is a brief description of the proposed model's methodology and research flow. The purpose of this study is to address the need for an effective network IDS for IoT-based smart environments. To achieve the objective, we will employ ML-based anomaly detection. All experiments will be conducted in Python using the Numpy, Matplotlib, Pandas, and Scikit-Learn ML libraries. A brief explanation of the proposed model's step-by-step flow diagram is provided in [Fig. 1](#). Flowchart of WOA based random forest or the hybrid strategy is shown in [Fig. 2](#). The first step involves formulating the problem statement and analyzing and discussing the literature review. The second step involves formulating and discussing the proposed algorithm, which is based on the random forest based on whale optimization. The third step provides a detailed explanation of the dataset (BoTNetIoT) and simulation tools (Python). The same is true for performance parameters, such as detection rate, accuracy, and precision.

Designing an effective intrusion detection system (IDS) network is the primary goal of this proposed research project. Based on an anomaly detection system, algorithms based on machine learning and deep learning will be used to accomplish this.

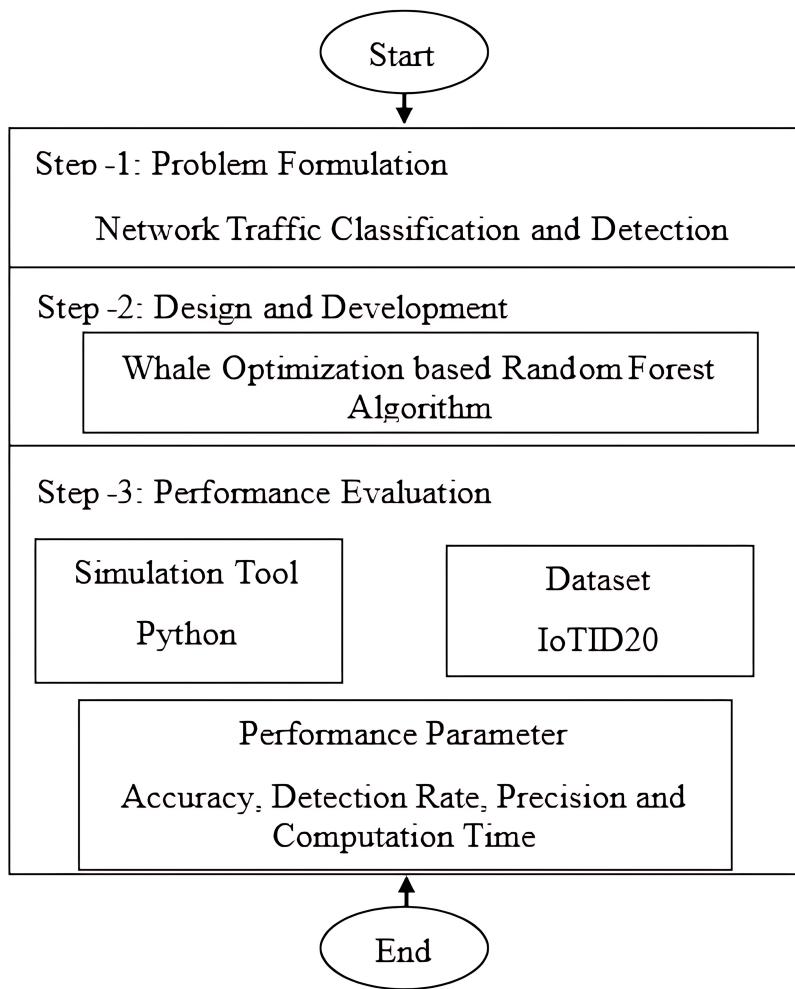


Figure 1 Flowchart for the proposed model.

Full-size DOI: 10.7717/peerj-cs.3334/fig-1

Whale optimization-based random forest algorithm

A hybrid model combines the anomaly and the signature based IDS in order to offer the best solution for the storage and for the computing expenses while lowering false positive alert rates. The majority of systems currently employ hybrid IDS due to its effective detection and simpler operation.

In this section, the flowchart and algorithms of WOA-based random forest are discussed. with a set of random answers as a base case, the WOA algorithm begins. the positions of the search agents are updated after each iteration about either the best result so far or a randomly selected search agent. Exploration and exploitation are provided by decreasing the value from 2 to 0. When $|\vec{A}| < 1$ for updating the search agents' positions, the best option is chosen, and when $|\vec{A}| > 1$, then choose a random search agent. The WOA algorithm have a termination criteria. The WOA algorithm's pseudocode is described below. The pseudocode is explained with each equation.

To address intrusion detection in IoT using the WOA, the proposed hybrid approach optimizes feature selection and classifier hyperparameters. Here is the structured algorithm:

Algorithm Pseudocode.

```

Begin
Step 1: Initialize Population Size Of Whale
Step 2: Calculate The Fitness Function Value Of Each Search Agent
Step 3: Select Best Search Agent  $X^*$ 
Step 4: While  $T \leq$  Maximum No. Of Iterations
Step 5: For Each Search Agent
Step 6: Update The Value For A, C, L, A, And P
If ( $P < 0.5$ )
If ( $|A| < 1$ )
Update Current Search Agent By Eq. (1)
Else If ( $|A| \geq 1$ )
Select A Random Agent  $X^{Rand}$ 
Update Current Search Agent By Eq. (7)
End
Else If ( $P \geq 0.5$ )
Update Current Search Agent By Eq. (5)
End
End
Step 7: Calculate The Fitness Function Value Of Each Search Agent
Step 8: Update  $X^*$  If Better Solution Is There
Step 9:  $T = T + 1$ 
End While
Step 10: Return  $X^*$ 
End

```

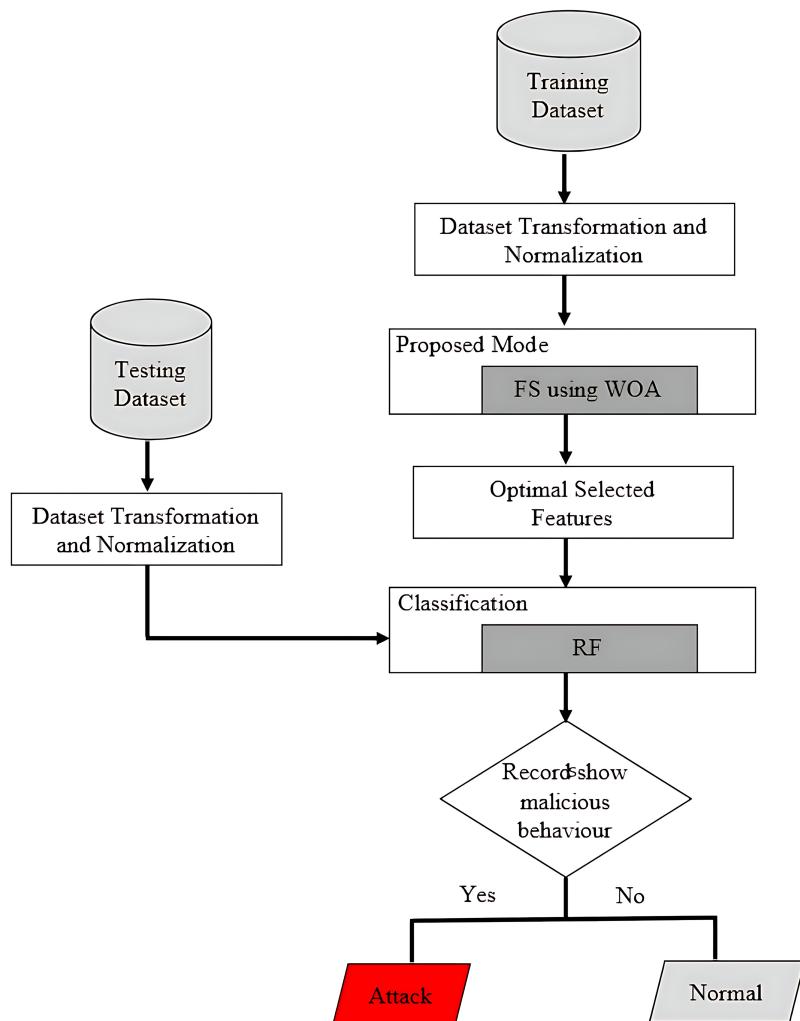
The algorithm successfully accelerates the rate of optimization. The WOA's search methodology also has some advantages in some problems. The data preprocessing and problem formulation steps usually consist of three to four steps. Data imputation step can be added in any stage.

Data preprocessing

We use BoTNeT IoT datasets IoT Dataset For IDS. The dataset is a collection of IoT network traffic data, including both normal and attack samples.

Normalization

Scale numerical features (e.g., using min-max or z-score).

**Figure 2** Flowchart of WOA based random forest or the hybrid strategy.

Full-size DOI: 10.7717/peerj-cs.3334/fig-2

Handling imbalance

Apply techniques like Synthetic Minority Over-sampling Technique (SMOTE) or under sampling to balance classes or address data imbalance. We applied SMOTE (oversampling) to generate synthetic samples for the minority class, as it generally performs better than undersampling by preserving original data while balancing class distribution. Alternatively, undersampling was used when computational efficiency was prioritized or when the majority class had sufficient redundancy. The choice depended on dataset characteristics. Usually SMOTE is preferred for smaller datasets and undersampling for larger, high-redundant data.

Categorical encoding

Convert categorical variables (e.g., protocols) to numerical values.

Problem formulation

Objective

Evolutionary metaheuristic WOA improves performance in each run. To maximize detection accuracy while minimizing false positives and computational overhead.

Solution representation

Each whale's position vector includes.

Binary components

feature selection (1 = selected, 0 = excluded).

Continuous components

Hyperparameters of the classifier for example kernel parameters of support vector classifier.

WOA steps

After the candidate population initialization, objective or fitness function is applied, like in a typical genetic algorithm. The WOA goes through encircling the prey, Spiraling the bubble and searching for the prey.

Population initialization

Randomly initialize whales with binary (thresher) and continuous values.

Fitness function

Train a lightweight classifier (e.g., Decision Tree, SVM) using selected features and hyperparameters. Evaluate on validation data using F1-score (balances precision and recall) to handle class imbalance. The result of fitness or objective function is then passed to any lightweight artificial intelligence (AI) classifier. The selected AI classifier solely depend on the type and attributes of the dataset.

First, by actively seeking out its target, the whale progressively gathers crucial knowledge about the prey. The ultimate prey chosen is the algorithm's ideal result. The whale then approaches the prey by encircling it and spiraling near it.

Encircling the prey

Whales locate their prey at this point and encircle them. Since the ideal location in the search space is unknown in advance, the WOA method assumes that the target prey is the current optimal individual position. Other individuals continue to update their positions as they come closer to the target prey. This ensures that the whales are always in close proximity to their prey through Eqs. (1) and (2). update positions toward the best solution: a, c: coefficients adjusted over iterations.

$$D = |C.X^*(T) - X(T)| \quad (1)$$

$$X(T + 1) = X^*(T) - A.D \quad (2)$$

$$A = 2a.R - A \quad (3)$$

$$C = 2.R, \quad (4)$$

where X^* is the position vector of the best solution found thus far, X is the position vector, T stands for the current iteration, and A and C are coefficient vectors computed using equations. In Eqs. (3) and (4), the components of A are linearly decreased from 2 to 0, and R is a random number (0, 1).

Spiral the bubble (Exploitation)

The program simulates a whale's continual spiraling towards its target with the prey as the center during the spiral bubble phase. This method allows the goal of catching prey to be achieved while the prey is approached slowly and subconsciously. When a whale spirals around, it first determines how far away its prey is and then moves in a spiraling motion towards it. Equation (5) is the mathematical model. Spiral update simulating bubble-net behavior: choose between shrinking encircling or spiral motion with equal probability.

$$X(T + 1) = D' \cdot E^{Bl} \cdot \cos \cos(2\pi l) + X^*(T), \quad (5)$$

where $D' = |C \cdot X(T) - X^*(T)|$ is the distance between the i^{th} whale and the best solution found thus far, B is a constant determining the spiral form, and l is a random value in the range [0, 1]. a whale will shrink the radius of the confinement as it circles its prey in the outer circle.

Searching for the prey (Exploration)

The whales utilize the coefficient vector A to determine whether they are in the stage of hunting (exploration) or encircling (exploitation). When $|A| > 1$, the whale is unable to access reliable information about the prey's location. As a result, it shifts its behavior to exploration, continuously searching for potential prey by navigating random paths in the environment. This behavior is mathematically modeled in Eqs. (6) and (7), where X_{rand} denotes a randomly selected whale position vector.

$$D = |C \cdot X_{\text{rand}}(T) - X(T)| \quad (6)$$

$$X(T + 1) = X_{\text{rand}}(T) - A \cdot D. \quad (7)$$

Here, C and A are coefficient vectors that control the randomness and convergence behavior, respectively. This mechanism ensures sufficient exploration of the search space, particularly when $|A| \geq 1$, allowing the algorithm to avoid local optima by favoring global search in early iterations.

Feature selection and model training

Thresholding: In the feature selection phase, continuous feature components are converted into binary values (0 or 1) through a sigmoid-based thresholding operation. Specifically, the transformation is defined as:

$$\text{OpenFeature}_i = \begin{cases} 1, & \text{if } \frac{1}{1+e^{-x_i}} > 0.5 \\ 0, & \text{otherwise} \end{cases}.$$

Here, x_i denotes the continuous value of the i^{th} feature component, and OpenFeature_i indicates whether the feature is selected (1) or not (0). This mechanism ensures a probabilistic and differentiable transition from real-valued outputs to discrete feature selections suitable for model training.

Hyperparameter extraction

In this stage, continuous values from the position vector are directly interpreted as model hyperparameters. The position vector is defined as:

$$\mathbf{x} = [\text{features}, \text{hyperparameters}]$$

The Whale Optimization Algorithm (WOA) utilizes two key coefficient vectors to guide the search process:

$$\mathbf{A} = 2a \cdot \mathbf{r} - a, \quad \mathbf{C} = 2 \cdot \mathbf{r}.$$

Here, a is a control parameter that decreases linearly from 2 to 0 over the course of iterations, and $\mathbf{r} \in [0, 1]$ is a random vector. This adaptive formulation balances exploration and exploitation, allowing the algorithm to search the hyperparameter space effectively while maintaining sensitivity to promising regions.

By leveraging this mechanism, the proposed method enables the automatic extraction of optimized hyperparameters, contributing to the development of a robust and adaptive IDS tailored for dynamic and resource-constrained IoT environments.

Computational complexity

The computational complexity of the WOA is primarily governed by three parameters: the population size N , the number of iterations T , and the dimensionality of the search space D . The overall time complexity per run can be expressed as:

$$\mathcal{O}(T \cdot N \cdot D).$$

This reflects the cost of fitness evaluation and position updates for all individuals in the population across all iterations. In terms of space requirements, WOA maintains a population of N candidate solutions, each of dimensionality D , resulting in a space complexity of:

$$\mathcal{O}(N \cdot D).$$

This storage is needed for retaining particle positions and auxiliary coefficient vectors (e.g., \mathbf{A} , \mathbf{C}) used in the update equations.

The mathematical formulation of the proposed algorithm employs conventional symbolic notation, with all variables and operators defined explicitly in relation to their corresponding equations. Each equation is accompanied by descriptive explanations to promote clear understanding of the algorithm's internal dynamics and the mathematical relationships they represent.

Random forest

For categorization, Random Forest (RF) is employed. an ensemble technique called RF employs a number of classifiers with tree structures. Each tree is constructed using a decision tree technique, using a different bootstrap sample from the original data, and only selecting a small number of features for the split at each node of the tree. An objective estimate of generalization error called Out-Of-Bag (OOB) assessment is carried out on the learning samples that weren't selected by bootstrapping. After the forest has been

constructed, a new sample is given into each tree for classification. Each tree then casts a unit vote for a certain class, indicating its opinion. When compared to traditional ml classifiers, ensemble classifiers are one way to build a powerful classifier with increased classification accuracy. the model's mathematical expression can be seen in [Eq. \(8\)](#).

$$C(X) = \text{Sign} \left(\sum_{J=1}^M C_J(X) \right), \quad (8)$$

where M is the total number of classifiers participating in the classification or vote and J is the number of classifiers participating individually. The benefits of RF in organized data include its superb accurate performance. It can operate on huge datasets with many dimensions and is computationally efficient. Most of the time, it does not overfit, and it is also noise-resistant. Unbalanced datasets can be handled by it.

Experimental setup and matrices for evaluation

A computer running Microsoft Windows 10 or 11 with at least an Intel(R) Core(TM) i7-6500U processor with two cores, four logical processors, and 16 GB of RAM was used to test the performance of the proposed model. Python is used to create feature selection and classification algorithms (version 3.8). Anaconda Navigator is set up on the aforementioned system for the experimental setting. Accuracy, precision, recall, and F1-score matrices were used to evaluate the performance of hybrid evolutionary strategy. WOA is like other metaheuristic evolutionary algorithms. It is always used in hybrid format with ordinary lightweight AI classifiers. It takes into account all candidate solutions, so computationally a bit expensive but ensures perfect cyber security. Confusion matrices provide a visual representation of performance in distinguishing between normal and intruder or malicious node. These evaluation metrics helped in understanding the strengths and weaknesses of each model for the detection of intruder or identification of malicious IoT nodes.

Accuracy: Accuracy measures how closely experimental results match predefined true values. It is calculated as:

$$\text{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN}, \quad (9)$$

where: TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives.

Precision and recall

Precision and recall are key metrics for evaluating classification and information retrieval systems.

1. **Precision** (measures correctness of positive predictions):

$$\text{Precision} = \frac{TP}{TP + FP}. \quad (10)$$

2. **Recall** (measures ability to identify all relevant instances):

$$\text{Recall} = \frac{TP}{TP + FN}. \quad (11)$$

F1-score

The F1-score is the harmonic mean of precision and recall, providing a balanced measure:

$$\text{F1-score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}, \quad (12)$$

where: a high F1-score indicates both high precision and high recall. It is useful when class distribution is imbalanced.

RESULTS AND DISCUSSION

This section describes how to set up an experiment, evaluate a model's performance using matrices, set up parameters, and then evaluate the outcomes of the experiment.

Simulation results

The simulation results of the suggested technique utilizing the BoTNeT IoT dataset were briefly presented in this section. This work selected the BoTNeT IoT dataset for our model's training and testing because it is one of the most recent datasets to be gathered in the IoT environment. The BoTNeT IoT dataset was created in 2020. There are 83 network characteristics, 625,783 records and three label features in the entire dataset. Five distinct classes—mirai, scan, DoS, normal, and MITM—are used to group the total number of records. Once more, these classes are further divided into seven subclasses: mirai brute force, mirai HTTP flooding, mirai UDP flooding, scan host port, scan port OS, SYN flooding, and ARP spoofing. These traits are as shown in [Table 5](#). Three different types of label characteristics are present in this dataset: binary, category, and sub-category.

Scan, mirai, DoS assaults, and MITM attacks are the four primary types of attacks. [Tables 6](#) and [7](#) list these attacks along with their subdivisions.

Performance evaluation

This section describes how the suggested model's performance was evaluated. The BoTNeT IoT dataset was employed in the experiment, and the train-test split validation technique was used to thoroughly evaluate the ML algorithms' performance. BoTNeT IoT has 625,783 occurrences. 30% of the data was utilized to verify the model, while 70% was used for training.

Binary classification performance of BoTNeT IoT dataset

The confusion matrix and convergence matrix for the performance of binary classification on BoTNeT IoT are shown in [Figs. 3](#) and [4](#).

Category classification performance of BoTNeT IoT dataset

The category classification performance for BoTNeT IoT dataset based on the parameters *i.e.*, Pr, Rc and F1-score are shown in [Table 7](#). The confusion matrix and convergence

Table 5 Features in IoTID20 dataset.**Attributes of IoTID20**

Feature 1	Feature 2	Feature 3
Flow ID	Src IP	Src Port
Dst IP	Dst Port	Protocol
Timestamp	Flow Duration	Tot Fwd Pkts
Tot Bwd Pkts	TotLen Bwd Pkts	TotLen Fwd Pkts
Fwd Pkt Len Min	Fwd Pkt Len Max	Fwd Pkt Len Mean
Fwd Pkt Len Std	Bwd Pkt Len Max	Bwd Pkt Len Min
Bwd Pkt Len Mean	Bwd Pkt Len Std	Active Min
Active Max	Idle Mean	Idle Max
Flow, IAT Max	Flow, IAT Min	Fwd IAT Max
Fwd IAT Tot	Fwd IAT Mean	Fwd IAT Std
Fwd IAT Max	Fwd IAT Min	Bwd IAT Tot
Bwd IAT Mean	Bwd IAT Std	Bwd IAT Max
Bwd IAT Min	Fwd PSH Flags	Bwd PSH Flags
Fwd URG Flags	Bwd URG Flags	Bwd Header Len
Fwd Header Len	Fwd Pkts/s	Bwd Pkts/s
Pkts Len Min	Pkts Len Max	Pkt Len Mean
Pkt Len Std	Pkt Len Var	FIN Flag Cnt
Active Std	SYN Flag Cnt	RST Flag Cnt
PSH Flag Cnt	ACK Flag Cnt	URG Flag Cnt
CWE Flag Count	ECE Flag Cnt	Down/Up Ratio
Pkt Size Avg	Fwd Seg Size Avg	Bwd Seg Size Avg
Fwd Bytes/b Avg	Fwd Pkts/b Avg	Fwd Blk Rate Avg
Bwd Bytes/b Avg	Fwd Pkts/b Avg	Bwd Blk Rate Avg
Subflow Fwd Bytes	Subflow Bwd Bytes	Subflow Fwd Bytes
Subflow Fwd Bytes	Init Fwd Win Bytes	Init Bwd Win Bytes
Fwd Act Data Pkts	Fwd Seg Size Min	Active Mean
Idle Std	Idle Max	–

Table 6 Attack categories of the IoTID20 dataset.

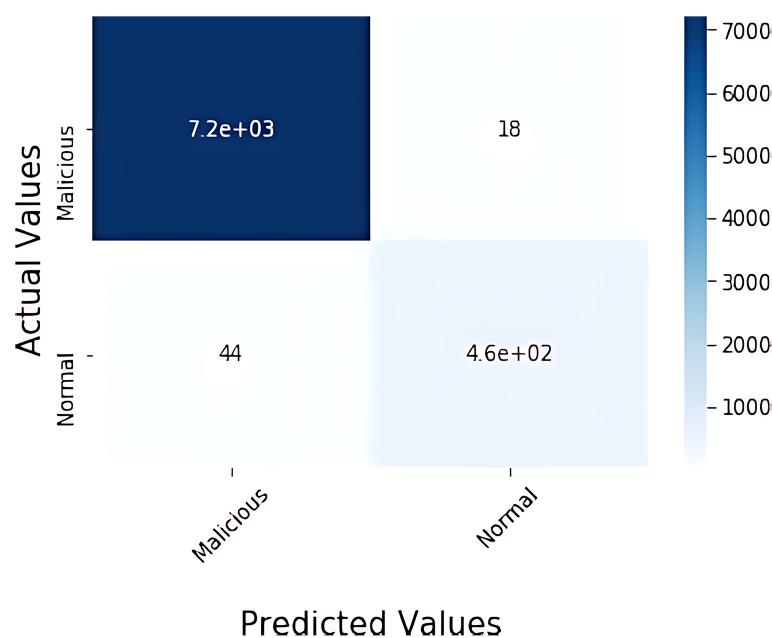
Attack category	Subcategories
Scan	Host Port OS
Mirai	Brute Force, HTTP Flooding, UDP Flooding
DoS	Syn Flooding
MITM	ARP Spoofing

Table 7 Category classification of attacks in the IoTID20 dataset.

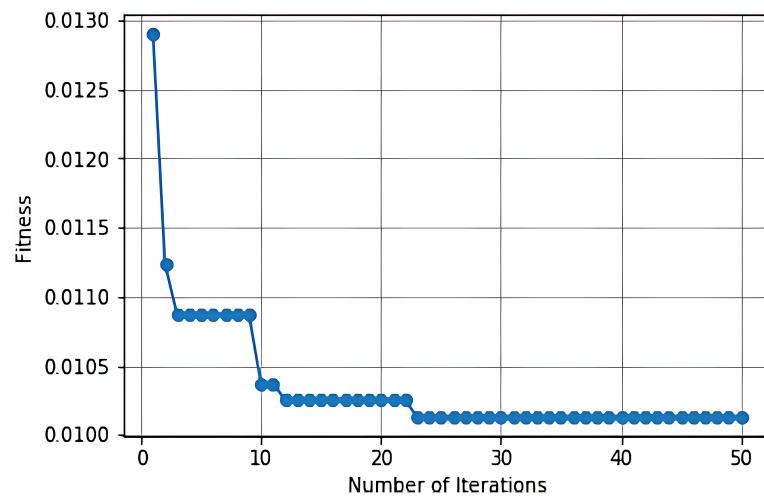
Traffic category	Precision (PR)	Recall (RC)	F1-score
DoS Sync flooding	1.00	0.99	1.00
MITM ARP Spoofing	0.90	0.88	0.89
Mirai-Ack flooding	0.34	0.49	0.40

Table 7 (continued)

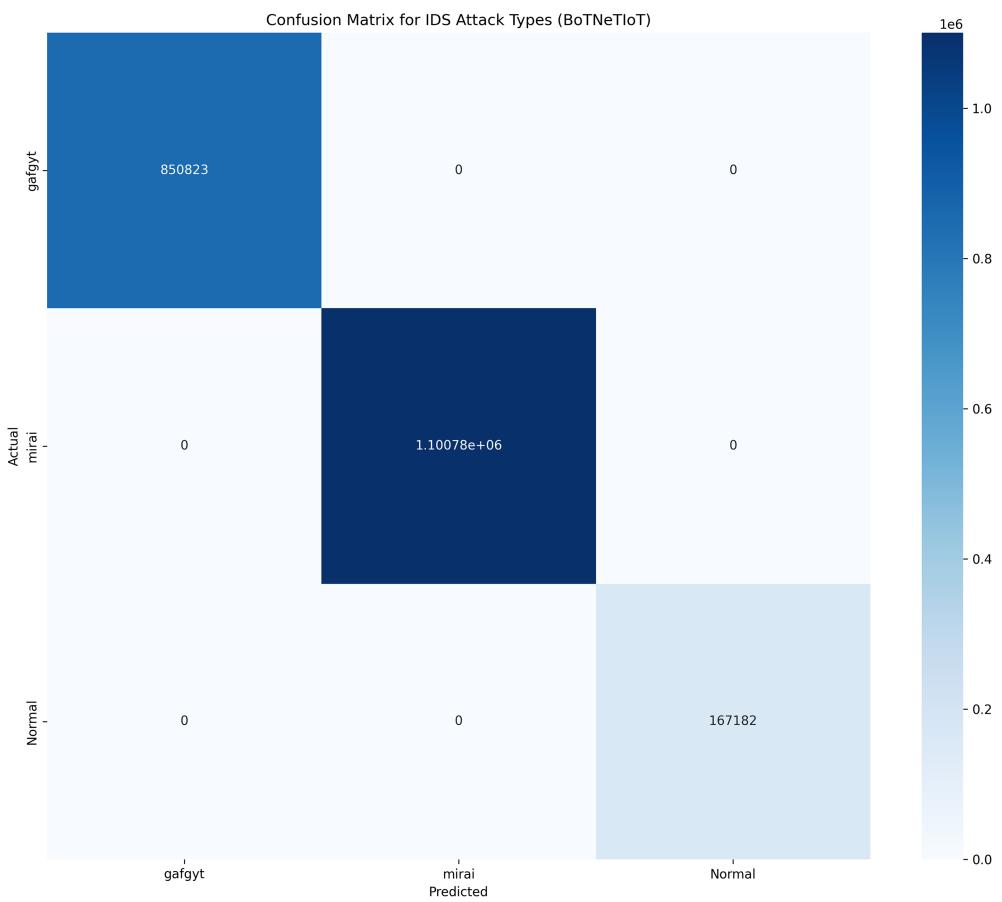
Traffic category	Precision (PR)	Recall (RC)	F1-score
Mirai-HTTP flooding	0.36	0.36	0.36
Mirai-Host brute force	0.93	0.95	0.94
Mirai-UDP flooding	0.86	0.75	0.80
Normal	0.96	0.95	0.95
Scan host port	0.73	0.62	0.67
Scan port OS	0.85	0.87	0.86

**Figure 3** Confusion matrix for binary classification on BoTNetIoT.

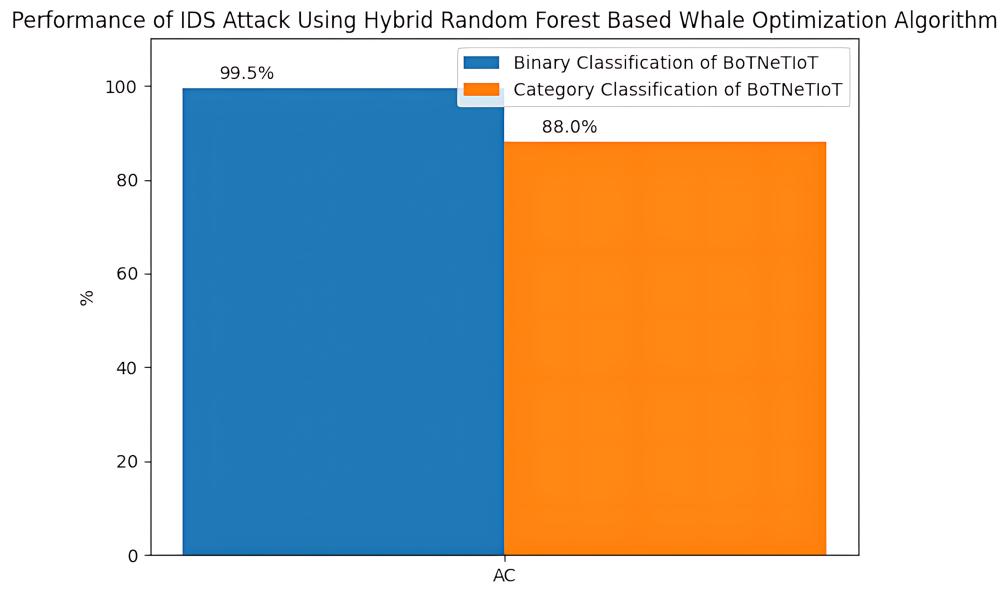
Full-size DOI: 10.7717/peerj-cs.3334/fig-3

**Figure 4** Convergence matrix for binary classification on BoTNetIoT.

Full-size DOI: 10.7717/peerj-cs.3334/fig-4

**Figure 5** Confusion matrix for category classification on BoTNeTIoT.

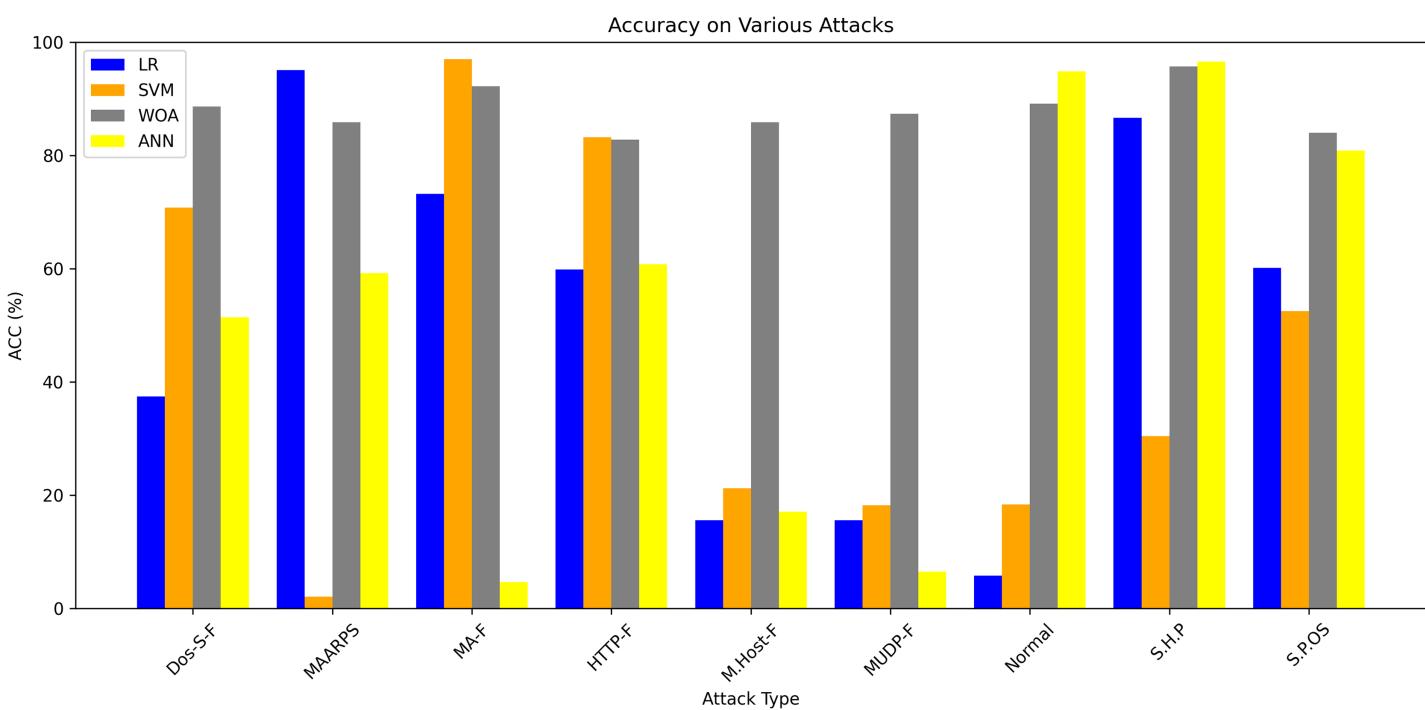
Full-size DOI: 10.7717/peerj-cs.3334/fig-5

**Figure 6** Accuracy for binary and category classification on BoTNeTIoT.

Full-size DOI: 10.7717/peerj-cs.3334/fig-6

Table 8 Detection accuracy of models across attack Types.

Types of attack	LR (%)	SVM (%)	WOA (%)	ANN (%)
DoS-S.F	100	100	100	100
M.ARPS	93	92	99	98
M.A.F	87	87	88	90
M.HTTP.F	87	87	93	90
M. Host B force	87	87	100	98
M. UDP. F	95	95	98	96
Normal	97	97	100	100
SHP	86	88	96	95
S.P OS	90	91	98	97

**Figure 7** Accuracy comparison of the proposed and other ML techniques.

Full-size DOI: 10.7717/peerj-cs.3334/fig-7

matrix for the performance of category classification on BoTNetIoT are shown in [Fig. 5](#). The accuracy for the performance of binary classification and category classification on BoTNetIoT is shown in [Fig. 6](#).

[Table 8](#) shows the performance of four models (LR, SVM, WOA, and ANN) in cases of different kinds of attacks. In some IDS datasets, the types of attacks are not clear. WOA performance is comparatively better than the other three.

[Figure 7](#) demonstrates accuracy for each of the four tests carried out using the BoTNetIoT dataset. These findings demonstrate the viability and effectiveness of our method for identifying malicious and benign (normal) nodes utilizing the four algorithms.

[Figure 8](#) shows and discusses the ROC curves of (1) LR, (2) SVM, (3) WOA, and (4) ANN. For the three attack types—mirai-ack flooding (M.A.F), mirai-http flooding

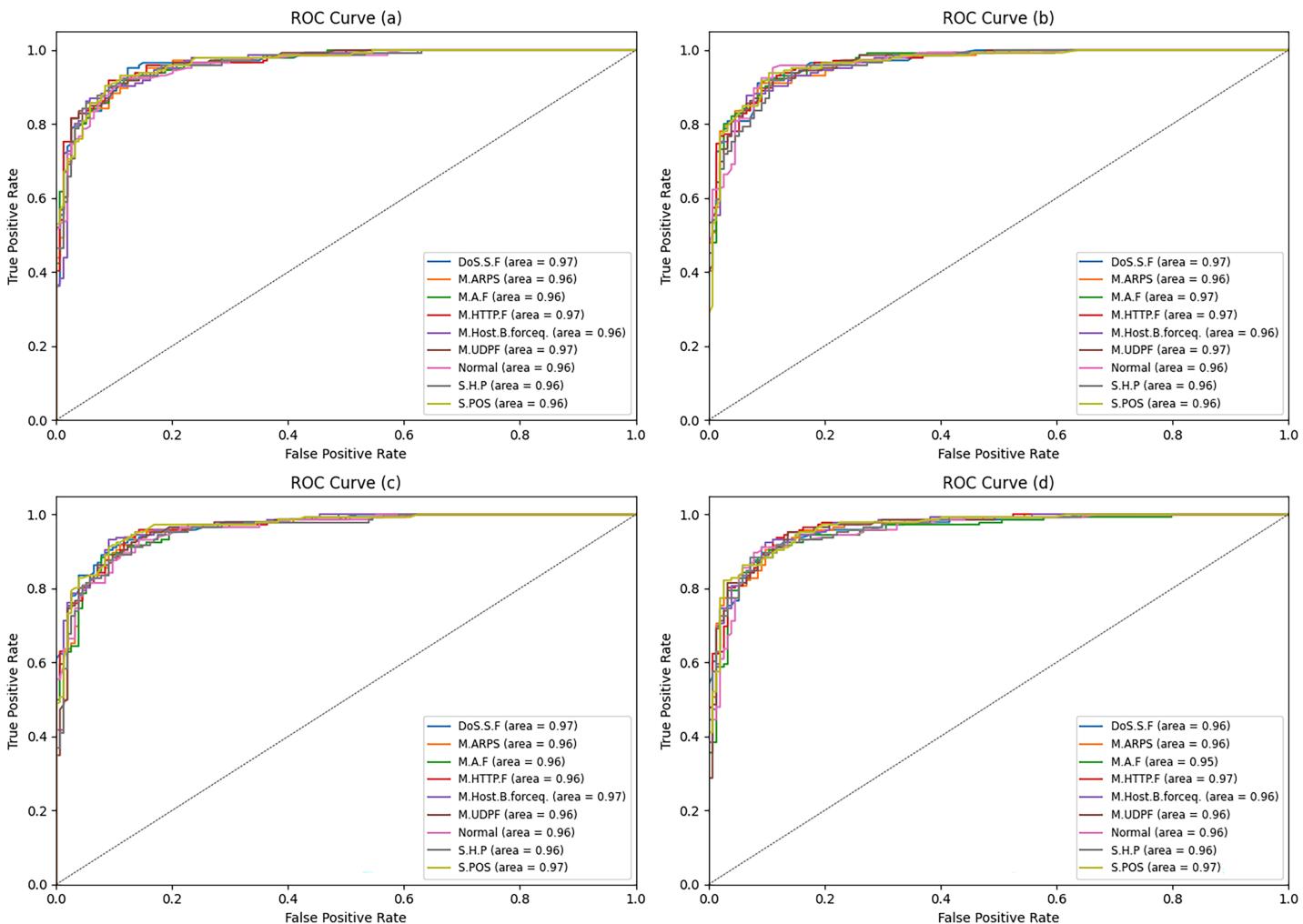


Figure 8 ROC curve for four different ML algorithms. ROC-AUC is the most important metric. [Full-size](#) DOI: 10.7717/peerj-cs.3334/fig-8

(M.Http.F), and mirai-udp flooding (M.Udp.F)—the artificial neural network (ANN) model yielded the best detection rate (Dr). However, for MITM ARP spoofing (M.Arps), mirai-host brute force (M.Host.B.Force), scan host-port (S.H.P), and scan port OS (S.P.OS), the WOA model yielded the highest detection rate (Dr).

Discussion of overfitting/high scores in Table 8

The near-perfect scores (*e.g.*, 100% for DoS-S.F across all models) in Table 8 may suggest overfitting or data leakage, especially if the test set was not strictly isolated during preprocessing. While high performance on attacks like DoS-S.F could reflect separable features, the consistency of 100% scores warrants scrutiny—particularly for simpler models (logistic regression (LR), SVM) that may lack the complexity to generalize perfectly. For minority classes (*e.g.*, Scan Host Port at 86–96%), the lower but still elevated metrics could indicate imbalance-driven bias, where oversampling (*e.g.*, SMOTE) artificially boosts scores without proportional real-world gains. To validate robustness,

future work should include: (1) cross-validation with independent test sets, (2) confusion matrices to check for minority-class overestimation, and (3) synthetic noise injection to test model resilience.

CONCLUSION

The IoT has transformed traditional living into a more intelligent way of life. It has made it possible for us to remotely manage and observe any smart device. However, because of its straightforward connectivity and the quickly expanding market for smart items and networks, the IoT is especially susceptible to cyber-attacks. Therefore, the main issues for IoT networks are security and privacy. However, the growth of IoT also introduces new security and integrity concerns, particularly with regard to anomalous behavior. Many IDS have been designed to identify and mitigate cyberattacks in IoT networks.

To address this challenge, this work proposes an intelligent anomaly detection system for IoT using a whale optimization based random forest algorithm. Through this proposed approach, the IDS has been designed by using ML techniques to detect anomalies in IoT systems with high accuracy and efficiency. The WOA is used to optimize the hyperparameters of the random forest algorithm, improving its performance in detecting anomalies. Utilizing the IoT network dataset BoTNeT IoT, the efficacy of the proposed method is assessed and contrasted with that of current anomaly detection techniques for IoT.

The results show that the proposed system outperforms existing anomaly detection systems for IoT in terms of accuracy and efficiency. This detection of intruders contributes to the development of effective and efficient anomaly detection systems for IoT, improving the security and reliability of IoT systems in various applications such as smart homes, healthcare, and industrial automation.

The optimal objective function can be categorized as a limiting factor for the detection of IDS in any unseen and real world dataset. The hybrid strategy can be further improved through a relevant fitness function. Genetic algorithms take into account all candidate solutions, making them computationally expensive. The choice of attributes in the dataset for the declaration of an intruder or malicious node changes the choice of relevant computational AI-enabled techniques.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by Taif University, Saudi Arabia. Researchers Supporting Project number (TU-DSPP-2024-41), Taif University, Saudi Arabia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
Taif University, Saudi Arabia: TU-DSPP-2024-41.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

- Muhammad Ishaq conceived and designed the experiments, analyzed the data, performed the computation work, authored or reviewed drafts of the article, and approved the final draft.
- Muhammad Jehanzeb Khan conceived and designed the experiments, performed the experiments, performed the computation work, prepared figures and/or tables, and approved the final draft.
- Zeeshan Ashraf conceived and designed the experiments, authored or reviewed drafts of the article, project Management, and approved the final draft.
- Sohaib Latif conceived and designed the experiments, analyzed the data, authored or reviewed drafts of the article, and approved the final draft.
- Mrim M. Alnfiai performed the experiments, analyzed the data, prepared figures and/or tables, and approved the final draft.
- Faiz Abdullah Alotaibi performed the experiments, performed the computation work, prepared figures and/or tables, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

The BoTNeT IoT-L01 dataset is available at Kaggle: <https://www.kaggle.com/datasets/azalhowaide/iot-dataset-for-intrusion-detection-systems-ids>

The code is available at GitHub and Zenodo:

- <https://github.com/Ishaqafridi/WOA-IDS>

- ishaqafridi. (2025). ishaqafridi/woa-ids: woa-ids (woa-ids). Zenodo. <https://doi.org/10.5281/zenodo.17284190>

Supplemental Information

Supplemental information for this article can be found online at <http://dx.doi.org/10.7717/peerj-cs.3334#supplemental-information>.

REFERENCES

Abdulhammed R, Musafer H, Alessa A, Faezipour M, Abuzneid A. 2019. Features dimensionality reduction approaches for machine learning based network intrusion detection. *Electronics* **8**(3):322 DOI [10.3390/electronics8030322](https://doi.org/10.3390/electronics8030322).

Abomhara M, Køien GM. 2015. Cyber security and the internet of things: vulnerabilities, threats, intruders and attacks. *Journal of Cyber Security and Mobility* **4**(1):65–88.

Afridi MI. 2013. Novel hybrid genetic algorithm for progressive multiple sequence alignment. *International Journal of Bioinformatics Research and Applications* **9**(6):614–624 DOI [10.1504/IJBRA.2013.056714](https://doi.org/10.1504/IJBRA.2013.056714).

Al-Hawawreh M, Sitnikova E, Abutorab N. 2021. X-IIoTID: a connectivity-agnostic and device-agnostic intrusion data set for industrial internet of things. *IEEE Internet of Things Journal* **9**(5):3962–3977 DOI [10.1109/jiot.2021.3102056](https://doi.org/10.1109/jiot.2021.3102056).

Albulayhi K, Smadi AA, Sheldon FT, Abercrombie RK. 2021. IoT intrusion detection taxonomy, reference architecture, and analyses. *Sensors* **21**(19):6432 DOI [10.3390/s21196432](https://doi.org/10.3390/s21196432).

Alkahtani H, Aldhyani TH. 2021. Intrusion detection system to advance internet of things infrastructure-based deep learning algorithms. *Complexity* **2021**(1):5579851 DOI [10.1155/2021/5579851](https://doi.org/10.1155/2021/5579851).

Almomani O. 2020. A feature selection model for network intrusion detection system based on PSO, GWO, FFA and GA algorithms. *Symmetry* **12**(6):1046 DOI [10.3390/sym12061046](https://doi.org/10.3390/sym12061046).

Altulaihan E, Almaiah MA, Aljughaiman A. 2024. Anomaly detection IDS for detecting DOS attacks in IoT networks based on machine learning algorithms. *Sensors* **24**(2):713 DOI [10.3390/s24020713](https://doi.org/10.3390/s24020713).

Anthi E, Williams L, Słowińska M, Theodorakopoulos G, Burnap P. 2019. A supervised intrusion detection system for smart home IoT devices. *IEEE Internet of Things Journal* **6**(5):9042–9053 DOI [10.1109/jiot.2019.2926365](https://doi.org/10.1109/jiot.2019.2926365).

Ashraf Z, Sohail A, Latif S, Hameed A, Yousaf M. 2023. Challenges and mitigation strategies for transition from ipv4 network to virtualized next-generation ipv6 network. *International Arab Journal of Information Technology (IAJIT)* **20**(1):78–91 DOI [10.34028/iajit/20/1/9](https://doi.org/10.34028/iajit/20/1/9).

Ashraf Z, Sohail A, Yousaf M. 2023. Lightweight and authentic symmetric session key cryptosystem for client–server mobile communication. *The Journal of Supercomputing* **79**(14):16181–16205 DOI [10.1007/s11227-023-05239-7](https://doi.org/10.1007/s11227-023-05239-7).

Bharti V, Biswas B, Shukla KK. 2021. A novel multiobjective GDWCN-PSO algorithm and its application to medical data security. *ACM Transactions on Internet Technology (TOIT)* **21**(2):1–28 DOI [10.1145/3397679](https://doi.org/10.1145/3397679).

Eesa AS, Orman Z, Brifcani AMA. 2015. A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems. *Expert Systems with Applications* **42**(5):2670–2679 DOI [10.1016/j.eswa.2014.11.009](https://doi.org/10.1016/j.eswa.2014.11.009).

Elmasry W, Akbulut A, Zaim AH. 2020. Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic. *Computer Networks* **168**(10):107042 DOI [10.1016/j.comnet.2019.107042](https://doi.org/10.1016/j.comnet.2019.107042).

Ferrag MA, Friha O, Hamouda D, Maglaras L, Janicke H. 2022. Edge-IIoTset: a new comprehensive realistic cyber security dataset of IoT and IIoT applications for centralized and federated learning. *IEEE Access* **10**:40281–40306 DOI [10.1109/access.2022.3165809](https://doi.org/10.1109/access.2022.3165809).

Gassais R, Ezzati-Jivan N, Fernandez JM, Aloise D, Dagenais MR. 2020. Multi-level host-based intrusion detection system for internet of things. *Journal of Cloud Computing* **9**(1):62 DOI [10.1186/s13677-020-00206-6](https://doi.org/10.1186/s13677-020-00206-6).

Ge M, Fu X, Syed N, Baig Z, Teo G, Robles-Kelly A. 2019. Deep learning-based intrusion detection for iot networks. In: *2019 IEEE 24th Pacific RIM International Symposium on Dependable Computing (PRDC)*. Piscataway, NJ: IEEE, 256–25609.

Ghazy RA, El-Rabaie E-SM, Dessouky MI, El-Fishawy NA, El-Samie FEA. 2020. Feature selection ranking and subset-based techniques with different classifiers for intrusion detection. *Wireless Personal Communications* **111**(1):375–393 DOI [10.1007/s11277-019-06864-3](https://doi.org/10.1007/s11277-019-06864-3).

Hindy H, Atkinson R, Tachtatzis C, Colin J-N, Bayne E, Bellekens X. 2020. Utilising deep learning techniques for effective zero-day attack detection. *Electronics* **9**(10):1684 DOI [10.3390/electronics9101684](https://doi.org/10.3390/electronics9101684).

Hosseini S, Zade BMH. 2020. New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and ANN. *Computer Networks* **173**:107168 DOI [10.1016/j.comnet.2020.107168](https://doi.org/10.1016/j.comnet.2020.107168).

Ingre B, Yadav A. 2015. Performance analysis of NSL-KDD dataset using ANN. In: *2015 International Conference on Signal Processing and Communication Engineering Systems*. Piscataway: IEEE, 92–96 DOI [10.1109/SPACES.2015.7058223](https://doi.org/10.1109/SPACES.2015.7058223).

Khraisat A, Gondal I, Vamplew P, Kamruzzaman J, Alazab A. 2019. A novel ensemble of hybrid intrusion detection system for detecting internet of things attacks. *Electronics* **8**(11):1210 DOI [10.3390/electronics8111210](https://doi.org/10.3390/electronics8111210).

Koroniotis N, Moustafa N, Sitnikova E, Slay J. 2017. Towards developing network forensic mechanism for botnet activities in the IoT based on machine learning techniques. In: *International Conference on Mobile Networks and Management*. Cham: Springer, 30–44.

Lazarevic A, Kumar V, Srivastava J. 2005. Intrusion detection: a survey. In: *Managing Cyber Threats: Issues, Approaches, and Challenges*. Springer, 19–78 DOI [10.1007/0-387-24230-9_2](https://doi.org/10.1007/0-387-24230-9_2).

Lele A. 2018. Internet of Things (IoT). In: *Disruptive Technologies for the Militaries and Security*. Springer, 187–195 DOI [10.1007/978-981-13-3384-2_11](https://doi.org/10.1007/978-981-13-3384-2_11).

Long J, Zhang S, Li C. 2019. Evolving deep echo state networks for intelligent fault diagnosis. *IEEE Transactions on Industrial Informatics* **16**(7):4928–4937 DOI [10.1109/tii.2019.2938884](https://doi.org/10.1109/tii.2019.2938884).

Mahmood Z, Ashraf Z, Iqbal M, Farooq B. 2025. User-trust centric lightweight access control for smart IoT crowd sensing applications in healthcare systems. *Personal and Ubiquitous Computing* **29**(1):31–44 DOI [10.1007/s00779-024-01803-x](https://doi.org/10.1007/s00779-024-01803-x).

Mohammadi S, Mirvaziri H, Ghazizadeh-Ahsaee M, Karimipour H. 2019. Cyber intrusion detection by combined feature selection algorithm. *Journal of Information Security and Applications* **44**(5):80–88 DOI [10.1016/j.jisa.2018.11.007](https://doi.org/10.1016/j.jisa.2018.11.007).

Nguyen BH, Xue B, Andreae P. 2016. A novel binary particle swarm optimization algorithm and its applications on knapsack and feature selection problems. In: *Proceedings of the 20th Asia Pacific Symposium, Intelligent and Evolutionary Systems (IES 2016)*. Canberra, Australia, Springer, 319–332 DOI [10.1007/978-3-319-49049-6_23](https://doi.org/10.1007/978-3-319-49049-6_23).

Noman M, Mujahid N, Fatima A. 2021. The assessment of occupational injuries of workers in Pakistan. *Safety and Health at Work* **12**(4):452–461 DOI [10.1016/j.shaw.2021.06.001](https://doi.org/10.1016/j.shaw.2021.06.001).

Pecori R, Tayebi A, Vannucci A, Veltri L. 2020. IoT attack detection with deep learning analysis. In: *2020 International Joint Conference on Neural Networks (IJCNN)*. Piscataway, NJ: IEEE, 1–8.

Sarhani M, Voß S. 2022. Chunking and cooperation in particle swarm optimization for feature selection. *Annals of Mathematics and Artificial Intelligence* **90**(7):893–913 DOI [10.1007/s10472-021-09752-4](https://doi.org/10.1007/s10472-021-09752-4).

Soe YN, Feng Y, Santosa PI, Hartanto R, Sakurai K. 2020. Implementing lightweight IoT-IDS on Raspberry Pi using correlation-based feature selection and its performance evaluation. In: Barolli L, Takizawa M, Xhafa F, Enokido T, eds. *Advanced Information Networking and Applications. AINA 2019. Advances in Intelligent Systems and Computing*. Vol. 926. Cham: Springer DOI [10.1007/978-3-030-15032-7_39](https://doi.org/10.1007/978-3-030-15032-7_39).

Soomro IA, Hussain SJ, Ashraf Z, Alnfiai MM, Alotaibi NN. 2024. Lightweight privacy-preserving federated deep intrusion detection for industrial cyber-physical system. *Journal of Communications and Networks* **26**(6):632–649 DOI [10.23919/jcn.2024.000054](https://doi.org/10.23919/jcn.2024.000054).

Sunitha D, Latha P. 2025. A secure routing and black hole attack detection system using coot chimp optimization algorithm-based Deep Q Network in MANET. *Computers & Security* **148**(2):104166 DOI [10.1016/j.cose.2024.104166](https://doi.org/10.1016/j.cose.2024.104166).

Syed NF, Baig Z, Ibrahim A, Valli C. 2020. Denial of service attack detection through machine learning for the IoT. *Journal of Information and Telecommunication* **4**(4):482–503 DOI [10.1080/24751839.2020.1767484](https://doi.org/10.1080/24751839.2020.1767484).

Ullah A, Javaid N, Samuel O, Imran M, Shoaib M. 2020. CNN and GRU based deep neural network for electricity theft detection to secure smart grid. In: *2020 International Wireless Communications and Mobile Computing (IWCMC)*. Piscataway, NJ: IEEE, 1598–1602
DOI [10.1109/iwcmc48107.2020.9148314](https://doi.org/10.1109/iwcmc48107.2020.9148314).

Vignolo LD, Milone DH, Scharcanski J. 2013. Feature selection for face recognition based on multi-objective evolutionary wrappers. *Expert Systems with Applications* **40**(13):5077–5084
DOI [10.1016/j.eswa.2013.03.032](https://doi.org/10.1016/j.eswa.2013.03.032).

Wu SX, Banzhaf W. 2010. The use of computational intelligence in intrusion detection systems: a review. *Applied Soft Computing* **10**(1):1–35 DOI [10.1016/j.asoc.2009.06.019](https://doi.org/10.1016/j.asoc.2009.06.019).