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ABSTRACT
Cursive character (CC) recognition faces challenges owing to multifarious CC
writing styles and complex character structures. Therefore, a universal CC
identification system is essential. This study focuses on Chinese cursive characters
and proposes a novel deep learning-based CC prediction model, along with a
corresponding mobile application for real-time character recognition. The proposed
model comprises three primary steps: data collection (from historical manuscripts,
cleaned to remove noise); image preprocessing (including normalization, resizing,
and augmentation); and prediction (involving hyperparameter optimization,
regularization, and prediction using deep learning models). Transfer learning from
convolutional neural networks such as Residual neural network (ResNet), Densely
Connected Convolutional Networks (DenseNet), very deep convolutional network
(Visual Geometry Group, VGG), and EfficientNet is employed. The model was
trained and evaluated on a curated dataset of 99,296 images across 331 character
classes, derived from Wang Xizhi’s ‘Grass Jue Song and Cursive Thousand
Characters’. Using DenseNet-201, the proposed model achieved superior
performance, with accuracy, precision, recall, and F1-score of 0.92, 0.92, 0.93, and
0.92, respectively. In contrast to existing work, which often focuses on smaller
datasets or different scripts, this study introduces a large-scale recognition
framework tailored for complex and visually similar Chinese cursive characters and
demonstrates its practical deployment through a mobile application.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Mobile
and Ubiquitous Computing, Natural Language and Speech
Keywords Convolutional neural network, Cursive character, Deep learning, Image preprocessing

INTRODUCTION
Cursive penmanship is a form of writing in which the characters, called cursive characters
(CCs), are written in a joined and flowing manner, which generally makes writing faster
than with block characters. Many types of CCs exist, such as English, kanji, Japanese,
Korean, and Urdu. In the case of Korean CCs, historical documents give us a glimpse into
the past and provide valuable resources for exploring the culture, traditions, and general
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lifestyles of the Korean dynasty (Jalali, Kavuri & Lee, 2021). As a result, studies conducted
in this area have provided information about cultural heritage and historical and linguistic
backgrounds and helped interpret the historical writing of the manuscript (Jalali & Lee,
2020). However, these studies have faced challenges due to a lack of uniformity in writing
styles and complex CC structures. Consequently, identifying CCs has become challenging
for people who are unfamiliar with the format and a dearth of datasets to perform
experiments. In addition, CCs are simple, many are very similar, and each person has
intrinsic handwriting. Therefore, extensive reading experience is typically required to be
able to decipher CC.

Considering the complexity of the task at hand and the limited number of prior
studies, existing CC recognition models often focus on specific scripts or small datasets and
rarely support real-time deployment. Moreover, generalization across cursive styles
remains a major challenge, particularly for complex scripts such as Chinese cursive. To
address these issues, we propose a deep learning-based system capable of
recognizing Chinese cursive characters and delivering predictions via a real-time mobile
application.

The model underlying our system is based on convolutional neural networks (CNNs),
which have recently regained attention due to their ability to extract high-level features
directly from raw input data (Zhao et al., 2024; Azimi et al., 2018). Over the past decade,
CNNs have demonstrated excellent performance in various image-related domain,
including classification, segmentation, and medical imaging (Zhang, Cui & Zhu, 2020;
Kamilaris & Prenafeta-Boldú, 2018; Chen et al., 2021; Basu et al., 2022). These
architectures provide high learning capacity, enhanced performance, and improved
generalization (Kamilaris & Prenafeta-Boldú, 2018), especially with advances in
computational hardware (Chen et al., 2021). CNNs are therefore well-suited to capture the
subtle structural variations in cursive characters, particularly in historical scripts.

This study was conducted to develop a mobile-based system that predicts Chinese CCs
with high accuracy. The user provides a CC image, which is pre-processed on the server,
and the prediction result is returned to the application. The dataset used for training
included 99,296 images across 331 character classes, derived from historical texts. To
address data imbalance and improve model generalization, image augmentation
techniques were applied during preprocessing (Goswami & Singh, 2024). The proposed
model was evaluated against conventional CNN architectures using standard metrics such
as accuracy, precision, F1-score, and recall. Experimental results confirm that our model
outperforms other approaches.

The present study makes the following contributions:

. Proposes a deep learning-based model for Chinese cursive character (CC) prediction,
leveraging transfer learning from CNN-based architectures.

. Demonstrates strong predictive performance of the proposed model, achieving 92%
accuracy, 92% precision, 93% recall, and 92% F1-score.

. Implements a real-time mobile application for CC recognition, integrating server-side
preprocessing and prediction to support user-friendly interaction via smartphone input.
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. Constructs and publicly releases a large-scale dataset of 99,296 cleaned and preprocessed
Chinese cursive character images derived from Wang Xizhi’s ‘Grass Jue Song and
Cursive Thousand Characters’ to support transparency, reproducibility, and further
research.

RELATED WORKS
Table 1 summarizes related character recognition studies by author, approach, network,
dataset, and dataset description. Chandio, Asikuzzaman & Pickering (2020) presented a
convolutional feature fusion method with multiscale feature aggregation and multilevel
feature fusion networks for Urdu character recognition in natural scenes. The multiscale
feature aggregation network integrates the low- and mid-level convolutional features of
different layers through up-sampling (Kopf et al., 2007) and element-by-element
addition operations. Aggregation features are provided in a multilevel feature
convergence network to be combined with high-level features. Finally, the aggregation and
multilevel features are fused and passed to a SoftMax classifier to generate predictions. The
network performance of Basu et al. (2022) was evaluated on three datasets: Chars74K,
ICDAR03 (Antonacopoulos, Gatos & Karatzas, 2003), and a custom-developed Urdu
character image dataset consisting of 18,500 manually segmented character
images. Stochastic gradient descent (SGD) (Loshchilov & Hutter, 2017) optimization and
sparse categorical cross-entropy loss function were used. The learning rate was optimized
at 0.005, and the number of epochs for training was set to 80.

Clanuwat, Lamb & Kitamoto (2019) proposed KuroNet, a pre-modern Japanese text
recognition model, and verified it experimentally. KuroNet rescales the given image to a
standardized size of 640 × 640 pixels and uses the residual FusionNet of the U-Net
architecture (Ronneberger, Fischer & Brox, 2015). The Japanese dataset used to train and
evaluate KuroNet was created by the National Institute of Japan Literature (NIJL)
(Clanuwat et al., 2018) and released in 2016. It consists of bounding boxes for all character
positions in the text in pixel coordinates. Clanuwat et al. (2018) trained the model for 80
epochs and used the adaptive moment estimation (Adam) optimizer (Soydaner, 2020) with
a learning rate of 0.0001, β1 of 0.9, and β2 of 0.999.

Shi, Bai & Belongie (2017) presented Segment Linking (SegLink) as a novel text
detection method implemented as a simple and efficient CNN model. SegLink uses a
pretrained VGG-16 network as its backbone. Six convolution layers detect segments and

Table 1 Summary of related cursive character recognition studies.

Author Network Dataset Dataset description

Chandio, Asikuzzaman & Pickering
(2020)

Baseline + MSFA + MLFF Network Chars74K, ICDAR03 Urdu and English characters.

Clanuwat et al. (2018) U-net Kuzushiji Contains Japanese characters.

Shi, Bai & Belongie (2017) VGG-16 SynthText, ICDAR2015,
MSRA-TD500, ICDAR2013

Consists of Chinese cursive characters.

Qin et al. (2020) VGG-16 ICDAR2015 Includes Chinese cursive characters.

Hong & Kim (2020) DenseNet-201 Caoshu Contains Chinese cursive characters.
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links, thereby providing high-quality deep features with granularity. SegLink was evaluated
using augmentation with each standard evaluation protocol on three open datasets:
ICDAR 2013 (Karatzas et al., 2013) Incidental Text, MSRA-TD500, and ICDAR 2015
(Karatzas et al., 2015). SegLink was optimized using the SGD algorithm with a momentum
of 0.9. In 5–10 K iterations, the decay was fixed at 1e−3 and separately selected from other
datasets through grid search in the holdout validation set.

Qin et al. (2020) presented a Chinese cursive dataset and combined ancient Chinese
culture and artificial intelligence technology to improve the performance of the SegLink
method. The process improved the feature extraction ability from image text by using
squeeze and excitation operations. The importance of each feature channel is automatically
acquired through learning. According to the importance of the feature channel, which
achieves adaptive correction of the feature channel and improves the feature extraction
ability of the backbone, valuable features are enhanced, and useless features are
suppressed. All the proposed cursive datasets were written by Chinese cursive writers, and
the images were annotated. The training and test set ratio was set to 4:1. The learning rate
was set to 1e−3, the initial number of iterations was 60 k, which was followed by 30 k
iterations.

Hong & Kim (2020) proposed an optimized DenseNet-201-based Caoshu character
recognition model. Image resizing, binarization, and augmentation were performed as
performance optimization techniques. The cross-entropy loss function was used to
optimize the model, and SGD was set to a learning rate of 0.1 and a momentum of 0.9. The
learning rate was set to drop by 0.1 every 30 steps. The Caoshu dataset used consisted of
527 classes from a possible 38,878 classes, and the original size of each image was adjusted
to 224 × 224.

MATERIALS AND METHODS
In this study, we propose a novel CC prediction model that contributes significantly to CC
prediction by solving the data imbalance issue and enhancing the prediction accuracy. The
proposed CC prediction model is illustrated in Fig. 1. It consists of three primary steps:
data collection, image preprocessing, and prediction. In the data collection step, data
collection and cleaning are carried out. Preprocessing is vital because it converts raw data
into a well-organized form by processes such as noise reduction and quality enhancement
to make the data suitable for prediction model algorithms. Finally, the prediction model
uses CNN algorithms to learn from the training data and successfully predict the given
input CC.

Data collection
The dataset used in this study was created using images fromWang Xizhi’s ‘Grass Jue Song
and Cursive Thousand Characters’. These two documents are used as baseline documents
for CC learners. They contain a total of 1,549 characters (549 and 1,000 characters,
respectively), but only 527 of the 1,549 available characters were used in this study. Each
CC was converted into an image to construct our dataset.
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The performance of most models is considerably affected by class imbalance. Therefore,
we removed character classes with fewer than five available images, as such small sample
sizes were found to contribute to unstable learning and poor generalization. After this
filtering step, the final dataset contained 331 characters.

Each CC was obtained at a spatial resolution of 224 × 224 pixels and stored in the JPG
file format, resulting in a dataset comprising 99,296 images. The CCs contained impurities
that had to be cleaned for further processing; thus, image cleaning is a crucial task during
preprocessing. The cleaning process reduces the number of noise signals in image pixels to
a minimum by determining and removing a maximal amount of noise from the pixel with
the signal from a shower and generating accurate information from the original data
discarded of impurity for further processing (Shayduk, 2013). During the image cleaning
process, red, blue, green (RGB) to grayscale conversion was performed on the CCs (Ojala,
Pietikainen & Maenpaa, 2002). A grayscale image has only one dimension, whereas an
RGB image is composed of three dimensions. This difference in dimensionality implies
reduced computational requirements and simplification of preprocessing and prediction
algorithms given the large amount of data that the RGB format may contain that is not
required by the CC prediction model. After conversion to grayscale, Otsu’s method (Liu &
Yu, 2009) was applied to remove the background other than the CC. Using thresholding,
Otsu’s method divides the image values into two classes: panorama and background.
Figure 2 shows samples of the cleaned CC images used, which are completely different
from the original data, as can be seen.

Figure 2 Sample original cursive characters (CCs) and their cleaned versions.
Full-size DOI: 10.7717/peerj-cs.3332/fig-2

Figure 1 Flow of the proposed cursive characters prediction method.
Full-size DOI: 10.7717/peerj-cs.3332/fig-1
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Image preprocessing
The prediction model step requires well-processed and organized data for further
processing. Therefore, image preprocessing is crucial in our proposed model. Using the
cleaned version of the original image data, the preprocessing step comprises
normalization, image resizing, and image augmentation (Shorten & Khoshgoftaar, 2019).
Normalization involves converting the normal numeric column value in the dataset to a
standard scale [0–1], usually [0–255]. The normalization formula is defined in Eq. (1):

c0 ¼ c� cmin

cmax � cmin
(1)

where cmax and cmin represent the maximum and minimum values found in the images,
respectively. Subsequently, image resizing is used to appropriately adjust the size of the
images. Owing to the performance instability related to the difference in image sizes
observed, for stable performance, the image is resized to a standard size and the 224 × 224
format was selected, as shown in Fig. 3. Finally, image augmentation is performed owing to
the limited training datasets required for the CNN operations. Figure 4 presents six
geometric transformation image techniques: brightness, shear, zoom, height shift, width
shift, and rotation. These augmentation techniques were applied at factors of 0.01, 0.1, 0.2,
0.1, 0.1, and 10, respectively.

Prediction model
The proposed prediction model takes an input image containing a CC and interprets the
picture to predict the CC class in the given image. After proper cleaning and preprocessing,

Figure 3 (A–C) Resizing an actual image. Full-size DOI: 10.7717/peerj-cs.3332/fig-3

Figure 4 (A–F) Result of six data augmentation techniques applied to an original CC image.
Full-size DOI: 10.7717/peerj-cs.3332/fig-4
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a sufficient number of images were noise-free for training, validation, and testing purposes.
We conducted experiments using the proposed model with the transfer learning approach
from various CNN algorithms, including the very deep convolutional network (Visual
Geometry Group, VGG) (Simonyan, 2015), residual neural network (ResNet) (He et al.,
2016), dense convolutional network (DenseNet) (Huang et al., 2017), and EfficientNet
(Tan & Le, 2019). Our dataset was divided into three sets: training, validation, and test. The
training set was used to train our model, validation set was used for hyperparameter tuning
and monitoring overfitting, and performance evaluations were performed on these CNN
algorithms for CC prediction using the test set. The test set comprised previously unseen
instances drawn from the same set of 331 character classes used during training. Although
the test set did not include entirely new classes, it contains visually similar character forms
not present in the training or validation sets, enabling evaluation of the model’s ability to
generalize across intraclass variability.

Table 2 presents the details of the architecture of the various CNN models. VGG-16
consists of 13 convolutional layers, max-pooling layers, fully connected layers, and
SoftMax. ResNet-50 consists of 49 convolutional layers, average pooling, fully connected
layers, and SoftMax. The residual learning network extracts residuals, instead of features.
ResNet-101 consists of 100 convolutional layers, average pooling, fully connected layers,

Table 2 Detailed description of the various CNN models.

VGG-16 ResNet DenseNet EfficientNet

16-layers 50-layers 101-layers 152-layers 121-layers 169-layers 201-layers B3

conv-64
conv-64

7 � 7 conv, 64, stride 2 7 � 7 conv, 64, stride 2 3 � 3 conv

conv-128
conv-128

3 � 3 max pool, stride 2 3 � 3 max pool, stride 2 3 � 3,
MBConv1

conv-256
conv-256
conv-256

1� 1; 64
3� 3; 64
1� 1; 256

2
4

3
5� 3

1� 1
3� 3

� �
� 6, 1 � 1 conv, 2 � 2 average

pool, stride 2

3 � 3,
MBConv6
5 � 5,
MBConv6

conv-512
conv-512
conv-512

1� 1; 128
3� 3; 128
1� 1; 512

2
4

3
5� 4

1� 1; 512
3� 3; 512
1� 1; 2;048

2
4

3
5� 4

1� 1; 512
3� 3; 512
1� 1; 2;048

2
4

3
5� 8

1� 1
3� 3

� �
� 12, 1 � 1 conv, 2 � 2 average

pool, stride 2

3 � 3,
MBConv6
5 � 5,
MBConv6

1� 1
3� 3

� �
� 24

1� 1
3� 3

� �
� 32

1� 1
3� 3

� �
� 48

conv-512
conv-512
conv-512

1� 1; 256
3� 3; 256
1� 1; 1;024

2
4

3
5� 6

1� 1; 256
3� 3; 256
1� 1; 1;024

2
4

3
5� 23

1� 1; 256
3� 3; 256
1� 1; 1;024

2
4

3
5� 36

1 � 1 conv, 2 � 2 average pool, stride 2 5 � 5,
MBConv6
3 �3,
MBConv6

1� 1; 512
3� 3; 512
1� 1; 2;048

2
4

3
5� 3

1� 1; 512
3� 3; 512
1� 1; 2;048

2
4

3
5� 3

1� 1; 512
3� 3; 512
1� 1; 2;048

2
4

3
5� 3

1� 1
3� 3

� �
� 16

1� 1
3� 3

� �
� 32

1� 1
3� 3

� �
� 32

1 � 1 conv

max pool,
FC-4,096,
FC-4,096,
FC-331,
SoftMax

2 � 2 global average pool, 331-d FC, SoftMax 2 � 2 global average pool, 331-d FC,
SoftMax

2 � 2 global
average pool,
331-d FC,
SoftMax
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and SoftMax. ResNet-152 consists of 151 convolutional layers, average pooling, fully
connected layers, and SoftMax. DenseNet-121 incorporates 120 convolutional layers,
global pooling, fully connected layers, and SoftMax. This type of network contains four
dense blocks and four transition layers. DenseNet-169 incorporates 168 convolutional
layers, global pooling, fully connected layers, and SoftMax. DenseNet-201 incorporates 200
convolutional layers, global pooling, fully connected layers, and SoftMax. The
EfficientNet-B3 architecture includes 18 convolutional layers, global pooling, fully
connected layers, and SoftMax. The details of the different CNN algorithms used in our
experiments are presented below.

Very deep convolutional network (VGG)

VGG-16 was used in the evaluation because of the extraordinary performance it displayed
at the Large-Scale Visual Recognition Challenge 2014. VGG16 was trained successfully
using a subset of ImageNet, a large and inclusive dataset of over 14 million labelled
high-resolution images belonging to roughly 22,000 categories (Deng et al., 2009). VGG-16
consists of 13 convolutional layers, some of which are followed by max-pooling layers. It
has two fully connected layers with 4,096 neurons and finishes with a 1,000-way SoftMax
classifier. The convolutional layers in VGG-16 use 3 × 3 filters with a stride of one. A 3 × 3
kernel size was chosen for the convolutional filtering. The max-pooling layers employ 2 × 2
filters of stride two to enhance the network robustness to feature position changes, reduce
the size of the parameters, lower the computational cost, and constrain the overfitting
issue. VGG-16 comprises 16 layers with approximately 138 million trainable parameters.

Residual neural network (ResNet)
Driven by the significance of depth, neural networks (NN) are being impacted by several
issues. As the NN gets deeper, it starts converging, faces rapid degradation, and its
accuracy becomes saturated. The deep residual learning framework addresses these
degradation issues. ResNet solves this degradation problem. In ResNet, layers directly fit
the residual mapping instead of stacked layers fitting a specific underlying mapping. The
selected underlying mapping is denoted by H xð Þ, and the mapping fitted by stacked
nonlinear layers is represented by F xð Þ :¼ H xð Þ � x. By recasting the original mapping
into F xð Þ þ x, we hypothesize that the optimization of the original mapping is more
complex than residual mapping. A feedforward neural network can be used with a
“shortcut connection” to implement the original mapping F xð Þ þ x. Shortcut connections
with the characteristics of skipping layers perform identity mapping. ResNet is based on
the repeated use of a module called a building block. The depth of ResNet is defined by the
number of building blocks used. It has increasing accuracy proportional to the increase in
network depth. In this study, experiments were performed using ResNet-50, ResNet-101,
and ResNet-152.

Densely connected convolutional networks (DenseNet)
DenseNet is a model that distils insights into a simple connective pattern. The layers are
directly connected to each other to ensure maximum information flow. The feedforward
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nature of the network is preserved by this dense connection and feature mapping between
all subsequent layers. Unlike ResNet, DenseNet never combines features through
summation before passing them into a layer. Instead, it combines features by concatenating
the functions. Each layer receives additional input from the previous convolutional block and
passes its feature maps to the subsequent layers, thereby preserving the feedforward aspect of
the network. DenseNet acquired its name owing to its dense connectivity pattern; the
counter-intuitive effect of this dense connectivity is that fewer parameters are required than
in a traditional CNN, given that redundant feature maps do not need to be retrained.
Consequently, DenseNet has improved the flow of information and gradients throughout
the network, making it easier to train. This study analyzed DenseNet-121, DenseNet-161,
and DensNet-201, with 121, 161, and 201 layers, respectively.

EfficientNet
Scaling up a CNN is widely used to achieve better accuracy. However, the process of scaling
up a CNN is complex. There are many ways to scale CNN dimensions. The most common
methods involve modifying the depth, which defines how deep the network will be (in
other words, the number of layers of the network) (Huang et al., 2016); width, which
specifies how wide the network will become after scaling (Zerhouni et al., 2017); and
resolution, which involves obtaining the appropriate image resolution for better object
detection (Huang et al., 2019). MBConv is a major building block of the EfficientNet
model. It involves a shortcut connection that is formed between the start and end of the
convolution block. The output feature map channels are curtailed by performing 3 × 3
depth-wise and pointwise convolutions. The narrow layers are connected using shortcut
connections, whereas the wider layers are maintained between the skip connections. The
size of the model and the number of operations in the structure are reduced. Unlike
convolutional practices, which arbitrarily scale these factors, EfficientNet utilizes a simple
yet effective compound scaling method. It uniformly scales the network width, depth, and
resolution with a set of fixed scaling coefficients. Intuitively, the compound scaling method
is logical because the more significant the input image, the larger the number of layers
needed to increase the receptive field and more channels to capture more fine-grained
patterns on the larger image.

EXPERIMENTAL FRAMEWORK
Dataset
As stated above, the dataset used in this study was created using images from Wang
Xizhi’s ‘Grass Jue Song and Cursive Thousand Character’. The dataset consists of 99,296
image sample groups in 331 classes. The CC images were cleaned and pre-processed to
obtain accurate data for the prediction model. The dataset contained images with
noticeable differences in sizes; hence, they were resized to 224 × 224 pixels for
uniformity and clarity of CC detection on the image. The CC samples were split into
training, validation, and test sets containing 59,580, 29,786, and 9,930 data samples,
respectively.
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Experimental setup
Deep neural networks such as CNNs require platforms that can provide high
computational performance. The details of the experimental setup used in the experiments
are presented in Table 3. The model was implemented using TensorFlow, which is an
open-source machine learning framework. All experiments were executed on a personal
computer with an Intel Core i7-6850K@3.60 GHz CPU, 62.7 GB RAM, an NVIDIA 1080
Ti GTX GPU, and running 64-bit Ubuntu 18.04 as the operating system. Python version
3.8.0 was used to implement the proposed approach and the TensorFlow 2.5.0 library and
CUDA-Toolkit 11.0 were used on the GPU.

Optimization
This study optimized the hyperparameters of various prediction techniques through grid
search. A grid search is a set indexed by configuration variables and requires a set of values
for each variable. In addition, the number of experiments in the grid search is a factor, as a
grid search creates a set of experiments by making a sequence of all possible values.
Therefore, a grid search is easy to implement and parallelize. The grid search technique
exhaustively searches for each given parameter set and finds the best parameter setting for
each dataset.

To find the parameters that best fit our predictions and the actual outputs, the
proposed model uses the SGD and Adam optimization algorithms. Unlike gradient
descent, SGD estimates each training sample derivative and immediately calculates the
update (Vrbančič& Podgorelec, 2022) at every iteration. Equation (2) defines the operation
of SGD:

W 0  W � g
qL
qW

(2)

where g denotes the learning rate, which determines the size of the steps taken to reach a
(local) minimum W 0represents the update weight, W denotes the current weight, and
qL=qW is the slope of the loss function concerning W.

Adam can be used as another method to calculate the adaptive learning rate for
each parameter. The step size of Adam is not affected by gradient rescaling. Although
the gradient increases, the step size is bounded, and it is possible to stably

Table 3 Experimental setup for performance comparison.

Name Description

RAM 62.7 GB

CPU Intel Core i9-9900k (3.60 Hz)

GPU NVIDIA RTX 3080 Ti × 4

OS Ubuntu 18.04 64 bit

Python version 3.8.0

TensorFlow 2.5.0

CUDA version 11.2.0
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descend for optimization using any objective function. Equation (3) defines the operation
of Adam.

htþ1 ¼ h� gffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂t þ �

p m̂t: (3)

mt and vt are the names of the methods because they are estimates of the first and
second moments of the gradient, respectively. Because mt and vt are initialized as vectors
of zero, the creators of Adam observed that they are biased towards zero, especially during
the initial time steps, particularly when the decay rate is low.

The CC image prediction model was regularized via early stopping (ES) (Dodge et al.,
2020) with an iterative method, in our case SGD, thus avoiding overfitting. Tables 4 and 5
present our model performance evaluation results when tuning the hyperparameters.
Setting up the learning rate is an essential task because training is time-consuming, may get
stuck in a suboptimal solution, and may never converge when the learning rate is too low.
Meanwhile, the model tends to converge too quickly to a suboptimal solution when this
value is too large.

Furthermore, different values for the learning decay and a momentum factor of 0.9,
were tested to obtain optimal solutions. After finetuning our hyperparameters (learning
rate = 1e−2, decay = 1e−8), the prediction accuracy of the DenseNet-201 algorithm on the
test set was at its highest value of 0.92. Table 6 lists the values of the parameters that can be
optimized for various CNN models.

Evaluation metrics
We evaluated the performance of our proposed cursive character (CC) recognition model
using four commonly used metrics: accuracy, precision, recall, and F1-score Eqs. (4)–(7).
These metrics are essential for assessing the model’s performance across various classes of
CCs, capturing different aspects of predictive accuracy.

• Precision measures the model’s ability to avoid false positives:

Precision ¼ TP
TP þ FP

: (4)

Table 4 Stochastic gradient descent (SGD) parameter settings with CC images.

Optimizer Momentum Learning rate Weight decay Accuracy

SGD 0.9 0.1 1e−2 0.79

1e−4 0.89

1e−6 0.90

1e−8 0.89

0.01 1e−2 0.61

1e−4 0.90

1e−6 0.91

1e−8 0.92

Note:
The highest accuracy obtained among the tested parameter settings is shown in bold.
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• Recall quantifies the model’s ability to identify all true positives:

Recall ¼ TP
TP þ FN

: (5)

• F1-score is the harmonic mean of precision and recall:

F1-score ¼ 2� Precision� Recall
Precisionþ Recall

: (6)

• Accuracy measures the proportion of correct predictions across all classes.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: (7)

Here, TP (true positives) refers to correctly predicted instances, FP (false positives) denotes
instances incorrectly flagged as positive, FN (false negatives) indicates missed positive
instances, and TN (true negatives) represents correctly predicted negative outcome.

RESULTS AND DISCUSSION
Experimental results
Experiments were conducted on CC image data using the various CNN models. The
performances of the various CNN models were compared. To improve the CNN model’s
performance, each image size was compared, as well as RGB and grayscale images.
Accuracy, precision, recall, and F1-score indicators were used to evaluate the results.

The results of the CNN models are shown in Fig. 5, where DenseNet-201 (Fig. 5G, also
shown separately in Fig. 6) is clearly observed as the model with the highest performance,
followed by DenseNet-169, DenseNet-121, ReseNet-50, ReseNet-101, ResNet-152,
EfficientNetB3, and VGG-16, with accuracies of 0.92, 0.91, 0.91, 0.89, 0.88, 0.88, 0.87, and

Table 6 Optimizable parameters for various CNN models.

Models Momentum Learning
rate

Weight
decay

Epoch

VGG-16, ResNetV2-50, ResNetV2-101, ResNetV2-152,
DenseNet-121, DenseNet-169, DenseNet-201,
EfficientNet-B3

0.9 0.01 1e−8 80

Table 5 Adam parameters setting with CC images.

Optimizer Momentum Learning rate Weight decay Accuracy

Adam 0.9 0.1 1e−2 0.80

1e−4 0.38

1e−6 0.18

1e−8 0.04

0.01 1e−2 0.76

1e−4 0.87

1e−6 0.87

1e−8 0.82
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Figure 5 (A–H) Accuracy curves of the eight CNN models on CC images, with solid lines for training and dashed lines for validation.
Full-size DOI: 10.7717/peerj-cs.3332/fig-5
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0.70, respectively. The proposed model applies eight different algorithms, VGG-16,
ResNet-50, ResNet-101, ResNet-152, DenseNet-121, DenseNet-169, DenseNet-201, and
EfficientNetB3 to the validation set of the CC samples.

Figure 6 Accuracy and loss curves of the proposed model when using DenseNet-201. Full-size DOI: 10.7717/peerj-cs.3332/fig-6

Table 7 Performance of the proposed approach across various image sizes.

Scaling Accuracy Precision Recall F1-score

75 × 75 × 1 0.86 0.86 0.86 0.86

150 × 150 × 1 0.90 0.90 0.90 0.90

224 × 224 × 1 0.92 0.92 0.93 0.92

75 × 75 × 3 0.85 0.85 0.86 0.85

150 × 150 × 3 0.90 0.90 0.90 0.89

224 × 224 × 3 0.92 0.92 0.92 0.91

Note:
The bold values represent the best performance achieved across different image sizes.

Table 8 Performance metrics comparison of each model on the test set.

Models Accuracy Precision Recall F1-score

VGG-16 0.70 0.70 0.70 0.69

ResNet-50 0.89 0.89 0.89 0.88

ResNet-101 0.88 0.88 0.89 0.88

ResNet-152 0.88 0.88 0.89 0.88

DenseNet-121 0.91 0.91 0.92 0.91

DenseNet-169 0.91 0.91 0.92 0.91

DenseNet-201 0.92 0.92 0.93 0.92

EfficientNetB3 0.87 0.87 0.88 0.87

Note:
The bold values denote the highest evaluation scores among the compared models.
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During our experiments, the CC pixel size was an essential factor to consider.
Therefore, pixel resizing while keeping the internal structures of the images intact was
performed on the image data, and a suitable size was selected for further preprocessing
and then passed to the CNN pipeline. Table 7 lists the impact of the resizing process on
the performance of the model. From the observed results, it can be clearly observed that
the size of 224 × 224 × 1 considered in our final model implementation helps to produce
the highest performance compared to the other pixel resolutions.

The most commonly used machine learning evaluation metrics were considered to
evaluate the performance of the different models. As shown in Table 8, these models
exhibited various performances, with the DenseNet-201 method exhibiting the highest
performance and VGG-16 exhibiting the lowest. DenseNet-201, which is used in our
proposed model, had an accuracy of 0.92, precision of 0.92, recall of 0.93, and
F1-score of 0.92.

Implementation of mobile application
This section describes the actual implementation of the model in a mobile application and
the test results obtained. The CC image prediction system consists of image preprocessing
and prediction. The CC preprocessing phase comprises two steps: CC preprocessing and
conversion to an array. Image preprocessing includes techniques for cleaning the CC
images. The prediction phase accurately predicts the CC images. A wireless local area
network was configured during the implementation to allow wireless communication
between the mobile client and the server. In this study, one PC was used as a server and
another as the client-side (mobile interface). The mobile device was running on a virtual
device with Android version 9 and the model’s name Nexus 5X, API 28. The server was
built using the Flask web framework provided in Python. The application’s SDK was 30,
and the minimum version was 16, implemented in Android Studio.

Figure 7 gives an overview of the proposed implementation. Image preprocessing
produces image features in the form of an array from an input CC image. First, the user
inputs the CC image onto the user interface of the application. Then, the image undergoes
preprocessing carried out by five modules: conversion of RGB to grayscale, Otsu’s method
application, image normalization, image resizing, and conversion to an array. Converting
an RGB image to grayscale transforms the image into one dimension. The
one-dimensionally transformed image has the non-CC background removed, dividing the
image values into two classes: CC and background. The image on which Otsu’s method is
performed is converted to values between zero and one by image normalization. The
normalized image is then resized to 224 × 224 pixels, saved, and converted to an array
representation.

Figure 8 depicts the CC image prediction application as a snapshot of an Android
smartphone. Figure 8A shows the initial screen, which has a camera button, an album
button, and text instructions. Figure 8B depicts the CC chosen after clicking the album
button. When the prediction button in Fig. 8B is clicked, the prediction result for the CC
selected by the user is obtained, as shown in Fig. 8C. When the application loads the image
and the predicted button is clicked, a request for the image is sent to the server. The

Lee et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3332 15/22

http://dx.doi.org/10.7717/peerj-cs.3332
https://peerj.com/computer-science/


Figure 7 CC prediction implementation overview. Full-size DOI: 10.7717/peerj-cs.3332/fig-7

Figure 8 (A–F) Snapshots of CC prediction implementation.
Full-size DOI: 10.7717/peerj-cs.3332/fig-8
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predicted value of Fig. 8C-① yields a baek-huin class result of 96%, and the predicted

value of Fig. 8C-② yields a bu-anil class result of 3%.

Figure 8D shows what happens if the user clicks the camera button to capture a picture
of a CC. Figure 8E shows the captured image on the screen; then, the prediction button is
clicked to obtain the result shown in Fig. 8F. The prediction value of Fig. 8F-① yields the

dong-hangaji class result of 59%, the prediction value of Fig. 8F-② yields the ha-eojji class

result of 38%, and the prediction value of Fig. 8F-③ yields the han-gahalhan class result of

1%. As the resulting values are similar, the user can select the desired result. The resulting

values are sorted by class in descending order from the first to the fifth, and if the value is

less than one, no output is generated. The resulting image contains the output for each CC,

allowing the desired CC result to be obtained. The result value responds to Android and

displays the result to the user.

DISCUSSION
The study focused on CC data and the application of different CNN models to select the
algorithm with the highest prediction accuracy. Image preprocessing was performed on the
CC image samples to obtain appropriate training samples. To predict CC, eight CNN
models were compared, optimization was performed to improve the performance of the
model, and it was implemented on a virtual Android emulator.

In this study, we used augmentation in our dataset. However, we performed
augmentation except for classes with small sample size. This is because classes with
insufficient data were removed to improve the accuracy. As a result, only 331 of 527 classes
were used in the experiment. Therefore, our implementation could predict only 331 CC
classes. In addition, our study has a limitation in predicting only one CC at a time. To
address this issue, we plan to perform predictions even when inputting multiple CCs. We
intend to recognize multiple CCs by predicting individual CCs separately. However, this
study did not implement a model that predicts multiple CCs because the goal was to
predict only one CC.

We also quantitatively and qualitatively compared our results with those of previous
studies. The previous studies by Chandio, Asikuzzaman & Pickering (2020), Clanuwat et al.
(2018), Shi, Bai & Belongie (2017), Qin et al. (2020), andHong & Kim (2020) were included
for comparison. Table 9 compares the quantitative and qualitative results of this study with
those of other studies. We begin with a quantitative comparison of the performance of the
proposed model with those of five studies. The precision, recall, and F1-score evaluation
metrics were used to evaluate the performance of the models. Using 104 classes, the highest
precision, recall, and F1-score across the six studies were 0.90, 0.91, and 0.91, respectively.
However, using 331 classes, our proposed model received scores of 0.92, 0.93, and 0.92 for
precision, recall, and F1-score, respectively. Despite a large number of classes, from the
evaluation results obtained, it can be seen that our proposed model was superior to the
other models.

The following sections provide qualitative comparisons of the datasets used in each
study. The Urdu natural scene text dataset is a collection of 18,500 images containing Urdu
text. Char74k is composed of synthetically generated single-character images and natural
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scene images of Kannada characters. ICDAR contains text images of incidental scenes shot
with Google Glasses without regard to location, quality of the site, or viewpoint. SynthText
dataset was created by combining natural images with rendered text in various fonts, sizes,
orientations, and colors. The Kuzushiji dataset is due to the unique structure of the
Japanese language, which at the time consisted of two types of character sets, a phonetic
alphabet, and non-phonetic kanji characters. The dataset contains 4,645 classes. The
Caoshu dataset contains CC characters in Chinese. There are 527 classes, and there is an
issue of data imbalance. The Caoshu dataset closely resembles our dataset. However, in our
study, classes with insufficient data were removed to address the data imbalance problem,
and the data imbalance issue was addressed through data augmentation. Our proposed
model achieved higher results in terms of accuracy, precision, recall, and F1-score than
those reported by Hong & Kim (2020).

Despite the commendable performance of the proposed model and its successful
deployment as a mobile application, three main limitations remain. First, while the
proposed model leveraging transfer learning demonstrated superior predictive
performance, this study did not conduct an in-depth analysis to explain why the proposed
model outperformed alternative methods. Future work will explore model interpretability
to better understand why the proposed architecture works better. Second, while the mobile
application enables real-time CC prediction, formal usability studies and latency
benchmarks were not performed. Future research will assess the application’s
responsiveness, user experience, and robustness across various conditions. Third, to
address data imbalance, image augmentation was employed to enhance training stability
and generalizability. While this approach proved effective, future work will consider
integrating synthetic oversampling techniques, such as SMOTE or GAN-based methods,
to further enhance the representation of minority classes and perform a comparative
analysis to show the most effective approach among them.

CONCLUSIONS
This article presented a proposed CC prediction approach using a smartphone with
integrated deep learning technology. The image preprocessing step allows the system to

Table 9 Quantitative and qualitative comparison with other studies.

Research Network Dataset Classes Accuracy Precision Recall F1-score

Chandio, Asikuzzaman &
Pickering (2020)

Baseline + MSFA + MLFF
Network

Urdu natural scene text dataset,
Chars74k, ICDAR03

104 – 0.90 0.91 0.91

Clanuwat et al. (2018) U-net Kuzushiji 4,645 – 0.86 0.84 0.85

Shi, Bai & Belongie (2017) VGG-16 SynthText, ICDAR2015,
MSRA-TD500, ICDAR2013

– – 0.86 0.70 0.77

Qin et al. (2020) VGG-16 ICDAR2015 – – 0.90 0.75 0.81

Hong & Kim (2020) DenseNet-201 Caoshu 527 0.88 0.81 0.84 0.83

Our approach DenseNet-201 CC dataset 331 0.92 0.92 0.93 0.92

Note:
The bold entries represent the top-performing method in each performance metric.
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make more accurate predictions. The performance of the proposed algorithm was
compared with that of VGG-16, ResNet-50, ResNet-101, ResNet-152, DenseNet-121,
DenseNet-169, DenseNet-201, and EfficientNetB3 for the same purpose. Based on the
experimental results of the proposed methods on the CC datasets, our model using
DenseNet-201 achieved the highest performance with accuracy, precision, recall, and
F1-score of 92%, 92%, 93%, and 92%, respectively. To avoid biases among image samples,
they were uniformly resized and converted to grayscale to reduce computational
requirements. Noise was removed using Otsu’s method. The CC images used in the
experiments had a shape of 224 × 224 × 1, the number of classes in the dataset was 331, and
data imbalance was resolved using image augmentation. SGD optimization methods have
shown considerable improvement with the finetuning of our hyperparameters in our
model performance.

The current implementation uses one CC as the input data to show multiple predicted
results to the user. Users can input the CC from a photo album or via the camera. The
prediction using an album or the camera yielded results of 96.36% and 59.36%,
respectively. However, because the dataset consists of single CCs, the input data are limited
to one CC. This issue must be addressed in the future and strengthening the dataset could
be a solution. Our dataset is limited in that the CC class is limited to 331 classes. The
experiments were conducted using an input image containing a single CC and producing a
single prediction of the original representation of the CC. In future work, we will increase
the number of recognizable characters by extracting CC data from ancient documents and
books. Subsequently, we plan to extend our current model to predict the original
representations from inputs with multiple CCs on the image input sample.
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