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ABSTRACT
The rising adoption of artificial intelligence and machine learning in critical sectors
underscores the pressing need for robust systems capable of withstanding adversarial
threats. While deep learning architectures have revolutionized tasks such as image
recognition, their susceptibility to adversarial techniques remains an open challenge.
This article evaluates the impact of various adversarial methods, including the fast
gradient sign method, projected gradient descent, DeepFool, and Carlini & Wagner,
on five neural network models: a fully connected neural network, LeNet, Simple
convolutional neural network (CNN), MobileNetV2, and VGG11. Using the
EVAISION tool explicitly developed for this research, these attacks were implemented
and analyzed based on accuracy, F1-score, and misclassification rate. The results
revealed varying levels of vulnerability across the tested models, with simpler
architectures occasionally outperforming more complex ones. These findings
emphasize the importance of selecting the most appropriate adversarial technique for
a given architecture and customizing the associated attack parameters to achieve
optimal results in each scenario.
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INTRODUCTION
In recent years, artificial intelligence (AI) and machine learning (ML) have gained
considerable popularity and have been integrated into a wide range of sectors,
transforming the way many industries operate by powering applications (Bountakas et al.,
2023) in areas such as image recognition, natural language processing, healthcare, and
autonomous vehicles. These applications rely on algorithms that analyze large volumes of
training data to identify patterns and make predictions. Deep learning (DL), a subfield of
ML, utilizes multilayered neural networks to handle complex data and solve intricate
problems. This capability has proved highly effective in tasks including image classification
and speech recognition (Charalambous et al., 2022).

Despite the remarkable advances in AI and ML, these models exhibit specific
vulnerabilities that can compromise their reliability and robustness. The complexity of
these systems poses significant challenges in ensuring smooth operation while upholding
high-security standards, an issue of particular concern in domains where models support
critical functions. In this context, models face significant limitations arising from their
inherent operational characteristics and the intentional exploitation of these weaknesses
through adversarial techniques (Petihakis et al., 2024).
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From an internal perspective, the sensitivity of DL architectures to minimal
perturbations can result in misclassifications or unpredictable behavior (Suciu et al., 2022).
This challenge becomes even more pressing when models fail to generalize effectively to
real-world conditions, such as noisy or anomalous data, often due to overfitting on curated
datasets. Furthermore, the opacity of these models, often called the black-box problem,
hampers interpretability and undermines trust in the decision-making process. Externally,
adversarial techniques exploit these vulnerabilities by introducing stealthy modifications
that cause models to misbehave at inference time (evasion attacks), corrupt training data
(poisoning attacks), or steal proprietary models or sensitive information (model extraction
and inference attacks) (Bountakas et al., 2023).

A particularly concerning category of attack involves adversarial examples. First
described by Szegedy (2013), these are intentionally crafted inputs containing undetectable
perturbations to subvert the classification process. Subsequent research (Lin et al., 2017;
Dong et al., 2018) has reinforced these findings, demonstrating the ease with which
adversarial examples can compromise real-world systems.

AI-based systems have been linked to various cybersecurity incidents over the years. In
2025, OmniGPT, an AI chatbot service, reportedly experienced a data breach in which a
hacker claimed to have accessed users’ billing information and credentials (Sharma, 2025).
Similarly, in 2024, Muah.AI, a platform for creating AI-generated virtual partners, was
compromised, affecting 1.9 million users, and exposing data suggesting that some
individuals were generating illicit content (Palmer & Church, 2024). Furthermore, a study
by Palisade Research revealed that in strategy games such as chess and go, older AI models
(e.g., OpenAI’s GPT-4o and Anthropic’s Claude Sonnet 3.5) required prompting from
researchers to attempt cheating tactics. However, more recent models, including o1-
preview and DeepSeek R1, pursued exploits without prompting, indicating that AI systems
may develop deceptive or manipulative strategies independently of explicit human
instruction (Booth, 2025).

In response, several defense mechanisms have emerged to enhance the resilience of AI
models against such threats (Bountakas et al., 2023; Pantelakis et al., 2023). A common
strategy is adversarial training (Goodfellow, Shlens & Szegedy, 2014;Hussain, Shang &Hong,
2025), which augments the training dataset with adversarial examples, helping models
recognize and resist malicious inputs. Distillation (Hinton, Vinyals & Dean, 2015; Papernot
et al., 2016) represents another popular approach, wherein outputs from one model are used
to train another, smoothing decision boundaries and diminishing susceptibility to
gradient-based attacks. Additional methods, such as gradient masking (Lee, Bae & Yoon,
2020; Zhang et al., 2025), feature compression (Bhagoji et al., 2018; Chuah et al., 2022), and
noise reduction (Joshi et al., 2022), focus on obfuscating the critical details exploited by
attackers or removing adversarial changes prior to model processing.

Nonetheless, existing defense mechanisms suffer from limitations that constrain their
real-world efficacy. For instance, adversarial training typically targets specific attack types
and thus is less effective against evolving threats. Defensive distillation or similar methods
can reduce a model’s accuracy on benign data, which is problematic for applications
demanding both robustness and high precision. Moreover, computational inefficiency

Zarras et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3330 2/37

http://dx.doi.org/10.7717/peerj-cs.3330
https://peerj.com/computer-science/


remains a concern, particularly in large-scale or real-time applications, where the
significant resource demands of defensive methods can be impractical. These challenges
are compounded by the fragmented manner in which many defenses are tested, focusing
on narrow attack scenarios or specific model types. Such a restricted perspective impedes
our understanding of how diverse models fare across different adversarial conditions.

Overall, the identified AI/ML cybersecurity-related gaps can be summarized as follows:
ðiÞ Adversaries can manipulate inputs to deceive AI/ML models; ðiiÞ AI/ML models often
process sensitive data, making them attractive cybersecurity targets; ðiiiÞ adversaries can
steal, replicate, or exploit proprietary AI models; ðivÞ many AI models function as black
boxes, complicating the detection of malicious activities; ðvÞ excessive reliance on
third-party datasets, libraries, and hardware, which may have been previously
compromised; ðviÞ AI systems are often based on minimal to no prior robustness tests (i.e.,
against adversarial attacks). In response to these gaps, this article investigates the impact of
various adversarial techniques on different neural network architectures. Specifically, we
have designed and implemented EVAISION, a custom evaluation tool engineered to execute
adversarial attacks systematically on selected architectures and evaluate their resilience
using predefined performance metrics1.

In summary, we make the following main contributions:

. We categorize existing adversarial techniques that aim to exploit vulnerabilities in ML
and DL models.

. We define security requirements for tools dedicated to performing adversarial AI attacks
to ensure the tools’ proper functionality and ethical use.

. We design and develop EVAISION, a tool for executing adversarial techniques and testing
models.

. We perform a comparative analysis of adversarial AI evasion attacks in three discrete
datasets (MNIST (Lecun et al., 1998), Fashion-MNIST (Xiao, Rasul & Vollgraf, 2017, and
CIFAR-10 (Krizhevsky, 2009)).

The remainder of this article is organized as follows. ‘Background’ outlines the key
theoretical foundations and provides the contextual background necessary for
understanding this research. ‘Design and Development’ details the methodological
approach. ‘Performance Evaluation’ presents the results and discusses the key findings. In
‘Real-World Impact of Adversarial AI Attacks’, the real-world implications of this study
are examined, while ‘Discussion and Limitations’ discusses the limitations of the proposed
approach and suggests avenues for future research. ‘Related Work’ reviews relevant
literature. Finally, ‘Conclusion’ concludes the article, summarizing the main contributions.

BACKGROUND
The rapid advancement of AI and ML has enabled their adoption across a broad spectrum
of fields, including healthcare, finance, and autonomous systems. Despite these
transformative capabilities, AI models remain susceptible to adversarial threats that can
undermine their integrity and reliability. Consequently, a solid understanding of the

1 The source code of EVAISION can be
found at https://github.com/UniPiSSL/
testing-the-limits-evAIsion.
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foundational principles of AI, its core methodologies, and the associated security
challenges is essential for evaluating the robustness of these models against adversarial
attacks. This section provides an overview of fundamental AI and ML concepts, examining
the key components of DL architectures. Following this, we introduce the concept of
adversarial machine learning (AML), which examines adversaries’ techniques to exploit
model vulnerabilities. By establishing this foundational knowledge, we highlight the
importance of adversarial threats and their broader implications for AI-driven systems.

Fundamentals
AI encompasses the design of computational systems capable of performing tasks that
typically require human intelligence, such as decision-making, problem-solving, and
pattern recognition. At the core of AI lies ML (see Fig. 1), a subset that trains models to
learn patterns from data in order to make predictions or classifications. Within ML, DL
constitutes a specialized subfield that leverages artificial neural networks with multiple
layers to capture complex relationships in data.

DL architectures such as convolutional neural networks (CNNs) are particularly
well-suited for tasks involving image data. These networks transform input data through a
series of interconnected layers, relying on two key operations: ðiÞ convolution, a
mathematical operation that extracts spatial features, enabling the network to detect edges,
textures, and other distinctive patterns (Lecun et al., 1998) and ðiiÞ pooling, which reduces

Artificial Intelligence

Machine Learning

Deep Learning

Figure 1 Correlation among AI, ML, and DL. Full-size DOI: 10.7717/peerj-cs.3330/fig-1
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the spatial dimensions of feature maps while retaining essential information, thereby
decreasing computational complexity (Krizhevsky, Sutskever & Hinton, 2012).

To enable effective learning, activation functions, such as the rectified linear unit
(ReLU), introduce non-linearity by mapping negative inputs to zero, thereby allowing the
model to capture more complex patterns. Another central concept in DL is optimization,
where the model’s parameters are iteratively adjusted to minimize a loss function, such as
cross-entropy loss. This loss function measures the discrepancy between the model’s
predictions and the actual labels, guiding training toward improved performance
(Goodfellow et al., 2016).

Optimization algorithms like stochastic gradient descent (SGD) and Adam help
fine-tune the model’s weights efficiently. While SGD updates parameters incrementally on
small batches of data, Adam employs adaptive learning rates, making it particularly
effective for large-scale datasets. By applying these techniques, CNNs have achieved
exceptional results in image classification tasks. For instance, models trained on the
MNIST dataset, which consists of grayscale images of handwritten digits, are widely used
to benchmark classification accuracy and evaluate resilience to adversarial attacks (Lecun
et al., 1998).

Adversarial machine learning
AML primarily investigates the vulnerabilities of ML models and their capacity to
withstand intentionally crafted inputs, often referred to as adversarial examples
(Bountakas et al., 2023; Farao et al., 2024). These examples involve subtle perturbations
that prompt models to make erroneous predictions, even though the modifications are
nearly imperceptible to the human eye. Adversarial examples can severely undermine ML
systems in numerous domains (Wang et al., 2023); for instance, minimal alterations to an
image can lead a CNN to misclassify the image with high confidence. Even a slight
adjustment to an image of the digit 3 can cause the model to mistakenly recognize it as a 5.

Such adversarial techniques can also be employed in physical settings. Examples include
using laser beams to manipulate traffic sign recognition systems or crafting adversarial
channel state information (CSI) inputs to mislead Internet of Things (IoT)-based deep
neural networks (DNNs). Adversarial attacks may target various stages of the ML lifecycle.
During the training phase, poisoning attacks involve injecting malicious data into the
training set, thereby producing compromised or biased models (Biggio, Nelson & Laskov,
2012). In the testing or inference phase, evasion attacks modify inputs in ways that force
the model to misclassify, even though these modifications are often imperceptible to
human observers (Goodfellow et al., 2016). Furthermore, adversarial methods such as
model extraction and inference attacks directly exploit the model by replicating its
behavior or extracting sensitive information (Tramèr et al., 2016).

To address these threats, researchers are actively exploring various defensive strategies
to bolster model robustness. Wu et al. (2023) systematically review these approaches,
categorizing them based on their position in the ML lifecycle. Their framework highlights
defenses that span pre-training, training, and post-training stages, emphasizing a proactive
and holistic strategy for safeguarding ML systems.
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Adversarial techniques
Adversarial techniques comprise a broad spectrum of methods that exploit vulnerabilities
in ML models to degrade their performance or extract sensitive information. These
methods can manifest at any stage of the ML lifecycle, spanning from the contamination of
training data to the manipulation of model inputs during inference. Moreover, adversarial
methods are often classified by the attacker’s level of knowledge about the model (yielding
white-box and black-box attacks) or by the type of output being manipulated, such as
scores or decisions. In this subsection, we examine the principal categories of adversarial
techniques, including evasion attacks, poisoning attacks, model extraction attacks, and
inference attacks, and underscore how each class exploits distinct vulnerabilities within
ML systems.

Overview of adversarial techniques
Adversarial techniques exploit vulnerabilities in ML models to compromise their
performance or extract sensitive information. These methods encompass various
approaches to deceive or manipulate models at various stages of their lifecycle, from
training to deployment. Adversarial techniques can be categorized using multiple criteria,
including the adversary’s knowledge of the model (i.e., knowledge-based categories), the
type of model output, or the specific goals of the attack, among others.

Based on the adversary’s knowledge of the model, adversarial techniques are commonly
categorized into white-box attacks and black-box attacks (Kotyan, 2023). In white-box
attacks, the adversary possesses comprehensive knowledge of the model, including its
architecture and parameters. Such insight enables the precise crafting of adversarial
examples to exploit the model’s vulnerabilities. A well-known technique in this context is
the fast gradient sign method (FGSM), which calculates the loss gradients with respect to
the input to produce malicious perturbations. In particular, in the white-box pipeline, the
adversary is assumed to possess complete knowledge of the target model, including its
architecture, parameters, and the ability to compute exact input gradients via
backpropagation. Within this setting, the adversarial objective can be formulated as either
untargeted or targeted. In the untargeted case, the adversary seeks to maximize the
classification loss in order to induce any misclassification, whereas in the targeted case, the
objective is to minimize the loss toward a specific target class. Additionally, all adversarial
examples are restricted to the valid input domain to preserve semantic similarity with the
original inputs. Given clean samples and their corresponding ground-truth labels, the
preprocessing steps applied by the model, such as normalization, resizing, or data type
transformations, must be accurately replicated during the attack to ensure correct gradient
computation. The perturbation is then obtained by optimizing the chosen objective
function using gradient-based techniques. The success of generated adversarial inputs is
typically evaluated using metrics such as the accuracy for untargeted attacks, or the
percentage of inputs classified into the desired target class for targeted attacks. Overall, the
white-box attack pipeline represents the most powerful adversarial setting, establishing an
upper bound on model vulnerability and serving as a benchmark for evaluating the
robustness of machine learning systems.
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By contrast, black-box attacks occur when the adversary lacks direct access to the
model’s internal structure and parameters (Bountakas et al., 2023). Instead, the attacker
must rely on querying the model and analyzing its outputs to infer decision boundaries. A
common strategy involves training a surrogate model to approximate the target model’s
behavior, allowing adversaries to develop and evaluate adversarial examples without
explicit knowledge of the original model’s inner workings. More precisely, in the black-box
pipeline, the adversary is assumed to have no access to the internal architecture,
parameters, or gradients of the target model and can only interact with it through its
outputs. Depending on the level of feedback available, black-box attacks can be categorized
into three main strategies. The first is transfer-based attacks, where the adversary cannot
directly query the target model but instead trains a surrogate model on data from a similar
distribution. Adversarial examples are crafted on the surrogate model using white-box
techniques are then transferred to the target model, relying on the transferability property
of adversarial examples. The second category is score-based attacks, where the adversary
can query the target model and obtain confidence scores or logits. In this setting, the
attacker estimates approximate gradients by analyzing the variations in the model’s output
scores when small perturbations are applied to the inputs and then uses these estimated
gradients to iteratively generate adversarial examples. The third category is decision-based
attacks, where only the predicted class labels are accessible. These attacks typically start
from a heavily perturbed input that is already misclassified and iteratively reduce the
perturbation magnitude while ensuring the example remains adversarial, using techniques
such as the Boundary Attack.

While white-box access is typically unattainable in real-world settings, attackers may
still obtain limited information, such as a subset of input features, output class labels, or, in
the case of DNNs, intermediate representations from hidden layers. This partial insight
allows adversaries to develop more informed attack strategies than in black-box settings
while operating under realistic constraints. This is widely known as the gray-box attack.
Here, the adversary has partial knowledge of the target model but lacks full access to its
internal parameters or complete architecture. In this setting, the attacker may know
aspects such as the backbone network, data distribution, preprocessing techniques, or
normalization statistics, but other components, such as task-specific heads or stochastic
defenses, remain unknown. Limited queries to obtain labels or confidence scores may also
be permitted under strict constraints. The attack can be either untargeted, aiming to induce
any misclassification, or targeted, forcing predictions into a specific class, while ensuring
perturbations remain visually imperceptible and valid within the input domain. To exploit
available knowledge, the adversary typically builds a calibrated surrogate model aligned
with the known properties of the target system. When possible, the surrogate is refined
through fine-tuning, synthetic data generation, or distillation from limited queries. For
non-differentiable components or randomized defenses. Compared to white-box attacks,
gray-box scenarios are more challenging but also more realistic, bridging the gap between
fully transparent systems and complete black-box settings.

Adversarial attacks can also be grouped by their strategy, defining their implementation
and objectives. Evasion attacks introduce small, often imperceptible perturbations to data
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during inference to mislead the model. Poisoning attacks compromise the training process
by injecting malicious samples into the dataset. Model extraction attacks replicate a
proprietary model by querying it and subsequently training a substitute. Finally,
inference attacks (e.g., membership or model inference and attribute inference) aim to
glean sensitive information from the model, such as whether a specific record was included
in the training set.

Categories of adversarial techniques
Adversarial techniques exploit specific vulnerabilities in ML models, often targeting their
behavior in various ways. While the spectrum of adversarial methods is extensive, this
section concentrates on four key attack strategies—evasion attacks, poisoning attacks,
model extraction attacks, and inference attacks—that exemplify adversaries’ diverse
approaches to compromise models.

Evasion Attacks. Evasion attacks exploit ML models’ vulnerabilities during inference by
introducing small, carefully designed perturbations to the input data. While these
perturbations usually remain imperceptible to the human eye, they are crafted to deceive
the model into making incorrect predictions or classifications. By targeting a model’s
decision boundaries, attackers can push inputs across these boundaries with minimal
modifications, thereby causing a significant degradation in the model’s performance. For
instance, an adversary could subtly alter an image of a stop sign so that a computer vision
model, potentially integrated into an autonomous vehicle, misclassifies it as a yield sign
(Papernot et al., 2017). Such scenarios can lead to dangerous real-world consequences.

Evasion attacks fundamentally rely on gradient-based methods. Attackers compute the
gradient of the model’s loss function with respect to the input data to determine the
direction that maximally increases the model’s error. By applying a perturbation aligned
with this direction, they create adversarial examples that appear visually unchanged to
human observers. A commonly used formulation for crafting such perturbations is shown
in Eq. (1) (Pantelakis et al., 2023):

Xadv ¼ xþ 2 .signðrxLðx; yÞÞ (1)

where x is the original input, 2 is the perturbation magnitude, which determines the
quantity of noise that is added to the input, and rxLðx; yÞ is the gradient of the loss
function with respect to x.

The effectiveness of evasion attacks stems from deep learning models’ inherent
sensitivity to slight input variations. While this sensitivity facilitates the capture of complex
patterns, it also makes these models vulnerable to adversarial manipulations. A thorough
understanding of evasion attacks helps researchers anticipate potential threats and develop
strategies to fortify model robustness.

Poisoning attacks. Unlike evasion attacks, which target the model during inference,
poisoning attacks involve intentionally manipulating training data to introduce
vulnerabilities into the model. These attacks exploit the reliance of ML algorithms on clean
and representative datasets by contaminating the training set with maliciously crafted
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samples. The adversary strategically injects these samples to influence the model’s learning
process by degrading its overall performance or inducing specific erroneous behaviors
under targeted conditions.

Poisoning attacks typically exploit vulnerabilities in the data collection and model
training pipeline by leveraging the following mechanisms:

. Label flipping: Adversaries manipulate the labels of training samples to induce incorrect
associations within the model. For example, altered labels in a facial recognition system
may lead the model to misidentify individuals, thereby degrading its classification
accuracy.

. Feature injection: Attackers introduce malicious examples containing irrelevant or
misleading features into the training dataset. Such perturbations distort the model’s
feature space and learning trajectory. For instance, inserting benign-looking but carefully
crafted patterns into spam emails can cause the classifier to misinterpret or overlook
legitimate spam indicators.

. Backdoor attacks: These constitute a specialized class of poisoning attacks, wherein
adversaries embed specific “triggers” within the data that are covertly associated with
particular target labels. During inference, the trigger compels the model to misclassify
inputs, irrespective of their true content.

Poisoning attacks pose a significant threat, mainly when training data is sourced from
unverified or publicly accessible origins. Such vulnerabilities are prevalent in federated
learning frameworks, open-source repositories, and collaboratively curated datasets. In
these contexts, attackers can insert adversarial samples into the data stream, compromising
the resulting model’s integrity and reliability.

Model extraction attacks. These target ML systems by replicating their functionality
through systematic querying. These attacks are particularly concerning for models
deployed via publicly accessible application program interfaces (APIs), where adversaries
can exploit the query-response interface to infer decision boundaries or approximate the
underlying parameters of the target model. Such actions not only compromise the
intellectual property of the model owner but also enable further adversarial activities, such
as evasion attacks.

The tactics employed by attackers are influenced by the type of model outputs available.
When soft labels (i.e., class probabilities) are accessible, adversaries can efficiently
approximate model parameters with relatively few queries. In contrast, when only hard
labels (i.e., predicted classes) are returned, the extraction process becomes more
challenging. Nonetheless, Tramèr et al. (2016) demonstrated that linear and non-linear
models can be effectively extracted even in such constrained settings. Their work showed
that it is possible to replicate a target model’s behavior with high fidelity despite limited
access to output information with carefully crafted queries.

Model extraction is often accompanied by surrogate training, wherein the adversary
uses the collected query-response pairs to train a local model that mimics the
decision-making process of the target system. This surrogate model can be exploited for
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unauthorized deployment, competitive advantage, or as a stepping stone for further
attacks.

Mitigation strategies against model extraction attacks typically involve reducing the
amount of information disclosed through APIs. This may include returning only hard
labels instead of probability distributions, applying rate limiting to restrict the volume of
queries, and incorporating noise or differential privacy techniques to obscure outputs.
These defenses balance system usability with robust protection against unauthorized
model replication.

Inference attacks. Finally, inference attacks target the privacy and confidentiality of ML
systems by extracting sensitive information related to the training data, model parameters,
or other private aspects. These attacks exploit the information revealed through model
predictions and pose significant risks in sensitive domains such as healthcare, finance, and
legal systems, where data confidentiality is paramount.

A prominent category of inference attacks is membership inference, wherein adversaries
aim to determine whether a specific data point was included in the training set (Shokri
et al., 2017). This is typically achieved by analyzing prediction outputs, such as confidence
scores or probability distributions. Membership inference attacks are particularly
concerning in contexts involving personal or medical data, as they may lead to severe
privacy violations.

Another notable variant is attribute inference, where attackers attempt to deduce
sensitive input data attributes, such as demographic information or behavioral
characteristics, even when these attributes are not explicitly present in the dataset.
Furthermore, some inference attacks extend to extracting model parameters, thereby
exposing proprietary configurations and enabling unauthorized replication or exploitation.

Overfitting often facilitates these attacks, as models that memorize training data exhibit
greater vulnerability to inference. Consequently, the susceptibility of ML models to
inference attacks highlights the need for robust defense mechanisms. Techniques such as
differential privacy, which introduces controlled noise to model outputs, can obscure
sensitive information, while output restrictions, such as providing hard labels instead of
confidence scores, can further mitigate information leakage. Additionally, regularization
methods that reduce overfitting enhance model generalization and serve as a preventive
measure against inference-based exploits.

Diving into evasion attacks
Evasion attacks are among the most prominent adversarial strategies that exploit the
vulnerability of ML models to input perturbations at the inference stage. This category of
attacks poses significant challenges, especially in critical applications where reliability is
paramount. In this section of the works, four evasion attack techniques will be studied,
including FGSM, projected gradient descent, DeepFool, and Carlini & Wagner (C&W).
Each of these techniques represents a unique approach to generating adversarial examples.

Fast gradient sign method. The FGSM (Goodfellow, Shlens & Szegedy, 2014) is one of the
earliest and most extensively studied adversarial attack techniques. It exploits the
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sensitivity of DNNs to small, deliberately crafted perturbations in input data, resulting in
misclassification, while the perturbations remain imperceptible to human observers.
FGSM is classified as a white-box attack, assuming the attacker fully knows the model’s
architecture and parameters. The simplicity and computational efficiency of FGSM have
made it a popular choice for adversarial research and benchmarking model robustness.
The core idea behind FGSM is to perturb the input data in the direction of the gradient of
the loss function with respect to the input. This method modifies the input so as to
maximize the model’s prediction error, thereby inducing misclassification. The adversarial
example xadv is computed as detailed below (see Eq. (2)) (Pantelakis et al., 2023):

xadv ¼ x þ e � signðrxLðx; yÞÞ (2)

where x is the original input, e is the perturbation magnitude controlling the amount of
noise added to the input,rxLðx; yÞ denotes the gradient of the loss function L with respect
to the input x, and y is the true label associated with the input x.

The FGSM attack proceeds as follows: the original input x is first passed through the
model to compute the loss Lðx; yÞ using the true label y. Next, the gradient rxLðx; yÞ is
calculated, indicating how changes in the input affect the loss. The sign of this gradient,
signðrxLðx; yÞÞ, is then used to determine the direction in which the loss increases most
rapidly. e scales this directional information to control the perturbation’s magnitude.
Finally, the adversarial example xadv is generated by adding the scaled perturbation to the
original input x.

Due to its effectiveness, speed, and ease of implementation, FGSM is a foundational
technique in adversarial machine learning and is often employed as a baseline for
evaluating the robustness of ML models.

Projected gradient descent. This is an iterative adversarial attack method designed to
generate adversarial examples by optimizing perturbations within a constrained range. It is
considered a more powerful and generalized extension of the FGSM. Projected
gradient descent (PGD) operates by iteratively refining perturbations to maximize
adversarial impact while ensuring that the modified input remains within a specified
e-bounded region around the original input. This makes PGD particularly effective at
crafting adversarial examples that remain imperceptible while successfully misleading the
model.

PGD assumes full access to the target model’s architecture and parameters, and is
therefore categorized as a white-box attack. The attack process involves two key steps:
computing the gradient of the loss function with respect to the input and projecting the
perturbed input back into the allowed e-ball to ensure it remains within the specified
constraint.

The attack begins by adding a small random perturbation d within the e-ball around the
original input x, initializing x0 ¼ x þ d. For each iteration t, the gradient of the loss
function Lðxt; yÞ is computed with respect to the current input xt , where y is the true label.
The input is then updated as follows (see Eq. (3)) (Madry et al., 2017):

xtþ1 ¼ �BeðxÞ xt þ a � signðrxLðxt; yÞÞð Þ (3)
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where a is the step size controlling the magnitude of each perturbation update, �BeðxÞð�Þ
denotes the projection operator that ensures the updated input remains within the e-ball
BeðxÞ centered at the original input x, and rxLðxt; yÞ is the gradient of the loss function
with respect to xt .

After each gradient update, the projection step ensures the perturbed input stays within
the allowable perturbation range. This iterative process continues for a predetermined
number of steps or until the adversarial example causes the model to misclassify the input.

The key strength of PGD lies in its iterative nature, which allows for more precise
perturbation refinement compared to single-step methods like FGSM. As a result, PGD
can generate highly effective adversarial examples that are significantly more challenging
to defend against. Due to its effectiveness and generality, PGD is often regarded as a
benchmark for evaluating model robustness against adversarial attacks.

DeepFool. DeepFool is an iterative adversarial attack that seeks to find the minimal
perturbation required to misclassify an input. Initially proposed by Moosavi-Dezfooli,
Fawzi & Frossard (2016), the core idea involves locally linearizing the classifier’s decision
boundaries at each iteration and progressively perturbing the input towards the nearest
decision boundary until the model’s prediction changes. Unlike gradient-based methods
such as FGSM and PGD, which apply fixed or bounded perturbations, DeepFool is
designed to compute the smallest possible perturbation that causes misclassification. This
often results in adversarial examples virtually imperceptible to human observers due to the
minimal perturbation magnitude.

DeepFool was initially developed for binary classifiers, but its methodology can be
extended to multi-class models. The attack proceeds iteratively by determining the smallest
perturbation that shifts the input across the decision boundary. Let x be the original input,
correctly classified with the true label y, and denote the initial input as x0 ¼ x. At each
iteration t, the classifier’s decision boundary is approximated by linearizing the output
function f ðxÞ at the current point xt . For linear models, this step precisely reveals the
decision boundary; for non-linear models, it yields a local linear approximation of the
decision surface.

At iteration t, the algorithm computes the perturbation rt needed to move xt across the
closest linearized decision boundary. This perturbation is calculated using Eq. (4)
(Moosavi-Dezfooli, Fawzi & Frossard, 2016):

rt ¼ jf ðxtÞj
jrf ðxtÞj2

� rf ðxtÞ (4)

where f ðxtÞ represents the classifier’s output at xt , and rf ðxtÞ denotes the gradient of the
output with respect to the input. Once rt is computed, the input is updated as
xtþ1 ¼ xt þ rt , effectively moving it closer to the decision boundary than the previous
input xt . This process of linear approximation, perturbation calculation, and input update
is repeated iteratively until the model’s prediction for xt changes. The total perturbation
required to induce misclassification is then given by r ¼ xt � x, representing the minimal
adversarial adjustment necessary.
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Carlini andWagner (C&W). The adversarial attack proposed by Carlini &Wagner (2017)
is regarded as one of the most effective and extensively studied methods in adversarial
machine learning. This attack is distinguished by its capacity to bypass a broad range of
defense mechanisms while introducing minimal, often imperceptible perturbations. The
C&W attack prioritizes the generation of adversarial examples that are both misclassified
by the target model and minimally altered from the original input, with perturbations
typically constrained under specific norm bounds.

In contrast to simpler gradient-based methods, such as the FGSM, the C&W attack
employs a more rigorous optimization framework. The core of this approach lies in
formulating an objective function that jointly minimizes the perturbation magnitude and
maximizes the likelihood of misclassification. Perturbation size, denoted d, is most
commonly quantified using the L2 norm, which measures the Euclidean distance between
the original input and the perturbed sample. Alternatively, the L1 norm (which captures
the largest absolute change across all pixels) or the L0 norm (which counts the number of
altered pixels, emphasizing sparsity) may be used, depending on the attack variant.

Formally, the adversarial example xadv is computed by adding a perturbation vector r to
the original input x, as shown in Eq. (5) (Carlini & Wagner, 2017):

xadv ¼ x þ r (5)

where the perturbation r is constrained to ensure that its norm does not exceed a specified
threshold, thereby maintaining imperceptibility. The misclassification constraint is
enforced through a tailored loss function that encourages xadv to be confidently assigned to
a target class (for targeted attacks) or simply misclassified (for untargeted attacks). This
objective function is minimized using gradient-based optimization techniques such as
Adam or SGD.

A key aspect of the C&W attack is the incorporation of input validity constraints. For
instance, in image data, pixel values must lie within a valid range, typically ½0; 1�. To satisfy
this, the attack introduces a change of variables, optimizing over an unconstrained
parameter w instead of directly optimizing r. The adversarial example is then obtained via
a transformation involving the hyperbolic tangent function, ensuring the resulting values
stay within permissible bounds, as shown in Eq. (6) (Carlini & Wagner, 2017):

xadv ¼ 1
2
� ðtanhðwÞ þ 1Þ: (6)

The optimization proceeds iteratively until convergence, at which point xadv represents
a minimally perturbed input that causes the model to err. The C&W attack’s precision and
adaptability have made it a benchmark for evaluating the robustness of ML models against
adversarial threats.

DESIGN AND DEVELOPMENT
We design and develop a tool, named EVAISION, to enable the seamless execution and
evaluation of four evasion attacks across various ML models. The current implementation
supports the FGSM, PGD, DeepFool, and C&W attacks, applied to five distinct ML
models, as detailed below. EVAISION facilitates a comprehensive evaluation of the
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effectiveness of these attacks using a range of performance metrics. The development
process leverages the Adversarial Robustness Toolbox (ART) (LF AI Foundation, 2025)
and PyTorch (The Linux Foundation, 2025), which provide foundational functionalities
for adversarial attack implementation.

Description of supported models
EVAISION is implemented with a modular architecture, enabling the seamless integration
and evaluation of various models. Three benchmark datasets were employed for training
and evaluation: MNIST (https://git-disl.github.io/GTDLBench/datasets/mnist_datasets/),
Fashion-MNIST (https://github.com/zalandoresearch/fashion-mnist), and CIFAR-10
(https://www.cs.toronto.edu/∼kriz/cifar.html). The MNIST dataset comprises grayscale
images of handwritten digits, normalized to the range [0, 1]. Fashion-MNIST similarly
contains grayscale images, depicting various clothing items. In contrast, CIFAR-10 consists
of color images with three RGB channels.

Before training, each dataset undergoes a series of preprocessing steps to ensure model
compatibility. These steps include normalization, resizing input images to match
model-specific input dimensions, and data augmentation techniques, such as horizontal
flipping, rotation, and cropping, to enhance model generalization and reduce overfitting.
Then, model training is conducted using a batch size of 64. Optimizers are selected based
on the model architecture and complexity, with commonly used options including Adam
and SGD.

Fully connected neural network
The fully connected neural network (FCNN) serves as a baseline model within the
EVAISION framework. It comprises a sequence of layers that operate on flattened input
vectors, with a straightforward architecture that renders it well-suited for both grayscale
datasets, such as MNIST and Fashion-MNIST, and RGB datasets, such as CIFAR-10,
following appropriate preprocessing. Specifically, this model employs the ReLU activation
function in its hidden layers and utilizes the cross-entropy loss function during training.

In the FCNN, each input image is first transformed into a one-dimensional vector
before propagating through three fully connected layers. ReLU activations are applied
between layers to introduce non-linearity and facilitate learning complex representations.
Due to the network’s requirement for flattened inputs, datasets undergo preprocessing as
follows: ðiÞ MNIST and Fashion-MNIST images are directly reshaped from their original
2D format into 1D vectors and ðiiÞ CIFAR-10 images, originally in RGB format, are first
converted to grayscale to conform to the model’s expected input structure, after which they
are flattened.

The architecture of the FCNN used in this work is composed of the following layers:

1. The first fully connected layer (FC1) maps the flattened input vector to 128 neurons.

2. The second layer (FC2) further reduces the dimensionality by mapping to 64 neurons.

3. The final output layer (FC3) produces 10 outputs, each corresponding to one of the 10
classes present in the MNIST dataset.
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LeNet
LeNet is a classical CNN architecture supported by EVAISION for assessing adversarial
attacks. It comprises a series of convolutional layers followed by max-pooling operations,
which progressively reduce spatial dimensions, culminating in fully connected layers for
classification. The model employs the ReLU activation function and is optimized using the
Adam optimizer to facilitate efficient and stable convergence during training.

Initially designed for grayscale image datasets such as MNIST and Fashion-MNIST,
LeNet has been adapted in this work to support the CIFAR-10 dataset through appropriate
preprocessing steps prior to input into the network.

The LeNet architecture used in this study comprises two convolutional layers and three
fully connected layers. Specifically, for the convolutional layers: ðiÞ Conv1—Applies 6
filters of size 5� 5 with padding to maintain the original spatial dimensions and
ðiiÞ Conv2—Applies 16 filters of size 5� 5 to capture more complex features. Next, for the
fully connected layers: ðiÞ FC1—Transforms the flattened output from the convolutional
layers into a 120-dimensional feature vector, ðiiÞ FC2—Reduces the dimensionality to
84 neurons, and ðiiiÞ FC3—Outputs 10 neurons, corresponding to the number of target
classes in MNIST.

The convolutional layers extract both low-level and high-level features from the input
images. Max-pooling is applied after each convolutional layer to downsample feature maps
and reduce computational complexity. The fully connected layers integrate these features
and perform the final classification.

MobileNetV2
MobileNetV2 utilizes two convolutional layers to extract low- and high-level features from
the images, while a maximum grouping layer helps reduce spatial dimensions after the
second convolution. Its fully connected layers process the extracted features for final
classification. In this article, MobileNetV2 is loaded using the Torchvision library (PyTorch
Foundation, 2025).

Given that MobileNetV2 is designed to process three-channel images, preprocessing
steps were applied to ensure compatibility across all datasets. Input adjustment: Grayscale
images from MNIST and Fashion MNIST were replicated across three channels to
conform to the expected input format. Output adjustment: The original classification head
was replaced with a custom fully connected layer configured to output predictions for 10
classes, corresponding to digits (MNIST), clothing categories (Fashion-MNIST), or object
classes (CIFAR-10).

VGG11
VGG11 is a well-established CNN architecture characterized by a sequential arrangement
of convolutional layers followed by fully connected layers. Its structured and deep design
has proven effective in tasks requiring robustness analysis, such as adversarial evaluation.
In this work, VGG11 was also loaded from the Torchvision library.

To adapt VGG11 for use with all datasets in this study, the following modifications were
implemented. Input layer adjustment: The first convolutional layer was modified to accept
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single-channel grayscale images for the MNIST and Fashion MNIST datasets. Input data
adjustment: All images were resized to 224� 224 pixels to match VGG11’s expected input
dimensions. Output adjustment: The final fully connected layer was replaced with a new
layer configured to output predictions for 10 classes, corresponding to the labels in
MNIST, Fashion-MNIST, and CIFAR-10.

Security requirements
Defining security requirements for an adversarial AI evasion attack tool is essential to
mitigate misuse, uphold ethical research standards, and maintain control over the tool’s
operation. These requirements facilitate controlled access, restrict excessive resource
consumption, and ensure the reproducibility of attacks. Furthermore, they safeguard
sensitive data, preserve the integrity of targeted models, and support forensic analysis to
monitor and address potential risks. Based on recent literature (Pantelakis et al., 2023;
Petihakis et al., 2024), the following security requirements have been identified:

S1—Secure model interaction. The tool must utilize controlled APIs for interaction with
target models, thereby preventing direct filesystem modifications. All inputs and outputs
associated with model queries must be logged and verified through checksums to detect
unauthorized alterations.

S2—Execution integrity.Modifications to the attack code or dynamic tampering of attack
algorithms during execution must be strictly prohibited to ensure the integrity of the tool’s
operation.

S3—Controlled access. Prior to execution, the integrity of attack scripts must be verified
through cryptographic signing mechanisms to prevent unauthorized code execution.

S4—Resource and abuse controls. The tool must implement resource usage constraints to
mitigate the risk of Denial-of-Service (DoS) attacks and must be capable of detecting and
halting recursive attack chaining that could result in uncontrolled adversarial retraining.

EVAISION architecture
EVAISION is designed to perform adversarial attacks on ML models through an automated
and modular framework. This design allows users to conduct multiple evaluations and
collect performance metrics without developing separate scripts for each attack scenario.
Its modular architecture ensures seamless integration of additional attacks, models, or
evaluation metrics, making EVAISION inherently extensible for adversarial robustness
testing. Figure 2 illustrates the architecture of EVAISION, highlighting its key components
and their interactions.

The core components of EVAISION include the main script as well as the attack and
evaluation modules.

Attack Manager. The Attack Manager acts as the central coordinator within EVAISION,
overseeing the execution of adversarial attacks. It interfaces between user-defined
parameters and internal components, ensuring a seamless workflow from input handling
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to attack execution and performance evaluation. A critical responsibility of the Attack
Manager is to interface with the Target Model Connector, facilitating communication with
external AI models. It manages the delivery of perturbed inputs and collects corresponding
predictions for analysis. Moreover, the Attack Manager selects appropriate attack
strategies based on user-specified requirements and model access constraints (e.g.,
white-box or black-box). It ensures the Attack Generation Engine operates using the
selected methods, such as gradient-based approaches (e.g., FGSM, PGD). It also monitors
the entire attack lifecycle, from input preprocessing and attack generation to results
aggregation. The Attack Manager works closely with the Evaluation Module to guarantee
accurate and meaningful performance insights, including attack success rates and
perturbation metrics. Its adaptable design allows for straightforward expansion,
accommodating diverse AI models and attack configurations, thereby providing a robust
framework for evaluating model robustness.

Target model connector. This module serves as a standardized interface between
EVAISION and external AI models, supporting both transparent (white-box) and opaque
(black-box) settings. In transparent configurations, the connector enables direct access to
gradients, model parameters, and architecture, facilitating highly optimized attacks. It
supports query-based interactions in opaque scenarios, allowing EVAISION to send crafted
inputs and analyze the model’s outputs to identify vulnerabilities. The Target Model
Connector also ensures input/output compatibility by applying necessary transformations,
such as normalization, encoding, or resizing, tailored to the requirements of the target
model. Overall, this module ensures reliable integration with diverse AI systems, enabling
realistic adversarial testing across various deployment environments.

Attack generation engine. This module generates adversarial perturbations designed to
deceive external AI systems. It implements diverse attack algorithms, categorized into
gradient-based, optimization-based, and query-based techniques. It leverages methods
such as FGSM, PGD, C&W, and DeepFool to exploit model vulnerabilities via carefully
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Figure 2 EVAISION blueprint. Full-size DOI: 10.7717/peerj-cs.3330/fig-2
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crafted input alterations in white-box scenarios. Its flexible design allows EVAISION to
assess model robustness under various attack methodologies and operational conditions.

Data perturbation module. This module ensures that perturbations remain subtle yet
effective in misleading the target model. It preprocesses input data to meet the format
requirements of both the attack algorithms and the target AI system, applying
transformations such as normalization, resizing, and encoding based on the data type (e.g.,
image, text, or structured data). Once preprocessed, the module applies adversarial
perturbations generated by the Attack Generation Engine, adhering to specific norm
constraints to maintain imperceptibility. It incorporates refinement techniques, including
optimization-based adjustments, to balance minimal distortion with high attack success
rates. This module ensures that generated adversarial examples are both realistic and
impactful.

Attack evaluation module. This component evaluates the efficacy of adversarial attacks by
analyzing the impact of perturbed inputs on the target model’s predictions. It provides
quantitative and qualitative metrics, including accuracy, precision, recall, F1-score,
misclassification rate, and mean confidence. Additionally, it measures shifts in prediction
confidence, highlighting how adversarial inputs affect model certainty. The module
supports side-by-side comparisons between clean and adversarial predictions, enabling
detailed analysis of model vulnerabilities. This module strengthens the analysis of
adversarial robustness and supports broader security assessments by providing a
comprehensive evaluation framework.

Processing flow. The tool’s processing pipeline begins with user-defined inputs and attack
parameters, such as attack type (e.g., FGSM, PGD, C&W), perturbation constraints, and
access mode (white-box or black-box). The input data is first processed by the data
perturbation module, which performs necessary preprocessing (e.g., normalization,
resizing, encoding, tokenization). The preprocessed data is passed to the Attack
Generation Engine, which generates adversarial perturbations in accordance with the
selected strategy. In white-box settings, the engine computes gradients to optimize
perturbations; in black-box scenarios, it uses query-based techniques to refine inputs
iteratively. The generated adversarial examples are then passed to the Target Model
Connector, which interfaces with the external AI model to obtain predictions. The Attack
Evaluation Module analyzes these outputs to compute the final metrics. Each attack type
requires specific parameters, summarized as follows:

. FGSM: epsilon

. PGD: epsilon, step size, number of iterations

. DeepFool: maximum iterations, overshoot

. C&W: confidence, learning rate, maximum iterations

Upon completion of the attack, the adversarial examples are used to evaluate the
model’s robustness through the defined metrics.
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FGSM implementation. The run_fgsm function leverages the Adversarial Robustness
Toolbox (ART) (LF AI Foundation, 2025) to implement FGSM. The input is converted to a
NumPy array as ART requires, and the FGSM class is instantiated with the classifier and
epsilon (perturbation strength). The fgsm.generate() method applies perturbations
that maximize the model’s loss.

PGD implementation. The run_pgd function similarly uses ART for PGD. After
converting input data to NumPy arrays, the PGD class is configured with parameters such
as maximum perturbation, step size, and iterations. Adversarial examples are generated
iteratively and returned as PyTorch tensors.

DeepFool implementation. The run_deepfool function implements DeepFool via ART.
It initializes the DeepFool class with the target classifier and generates minimal
perturbations required for misclassification. The outputs are returned to the main pipeline
for evaluation.

C&W implementation. The run_carlini_wagner function uses ART’s
CarliniL2Method class. Inputs are transformed into NumPy arrays, and the class is
configured with confidence and iteration parameters. The generate method applies the
C&W optimization algorithm, and results are returned for further analysis.

PERFORMANCE EVALUATION
The execution of all the attacks and the calculation of the metrics presented below were
carried out on a machine equipped with a 13th Gen Intel Core i7 processor, an NVIDIA
GeForce RTX 4060 graphics card, and 16 GB of RAM, running the Windows 11 Operating
System.

In EVAISION, a set of evaluation metrics was defined to assess the performance of the ML
models against the adversarial techniques employed. These metrics were computed for the
model performance on clean datasets and on the adversarial examples generated by the
attacks. This dual approach ensures a more comprehensive comparison of the results. The
metrics currently included in the evaluation module of EVAISION are described below. To
ensure robustness and mitigate stochastic variability, each adversarial AI attack was
independently executed five times per model-attack pair. The reported results represent
the average performance across these runs, and standard deviations are also provided
where applicable to reflect the statistical consistency of the outcomes. This repetition
enables a more reliable comparison between models and attacks, contributing to the
statistical validity of the evaluation.

Accuracy (see Eq. (7)) measures the proportion of correctly classified samples out
of the total dataset. It also functions as a general indicator of the model’s predictive
capability.

Accuracy ¼ Number of Correct Predictions
Total Number of Samples

(7)
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Precision evaluates the proportion of true positive predictions out of all positive
predictions made by the model (see Eq. (8)). It reflects the model’s ability to avoid false
positives.

Precision ¼ True Positives
True Positivesþ False Positives

(8)

Recall measures the proportion of true positive predictions out of the actual positives in
the dataset (see Eq. (9)). It assesses the model’s ability to identify all relevant instances
without missing any.

Recall ¼ True Positives
True Positivesþ False Negatives

(9)

F1-score is the harmonic mean of precision and recall, providing a single metric that
balances both false positives and false negatives (see Eq. (10)).

F1-score ¼ 2 � Precision � Recall
Precisionþ Recall

(10)

Misclassification rate complements accuracy by measuring the proportion of incorrect
predictions (see Eq. (11)). It is defined as:

Misclassification Rate ¼ 1� Accuracy (11)

Mean confidence measures the average confidence level of the model in its predictions for
the true class labels (see Eq. (12)). If the output probabilities are not normalized, a softmax
function is applied to ensure the values represent proper confidence scores.

Mean Confidence ¼ 1
N

XN

i¼1

PðTrue ClassxiÞ (12)

where PðTrueClassxiÞ is the predicted probability for the true class of sample xi.
Below, we present the overall impact summary per model and per dataset (MNIST,

Fashion-MNIST, CIFAR-10). The impact is calculated as the difference between the metric
value after the attack and the metric value before the attack (see Eq. (13)).

Impact ¼ MetricAfter �MetricBefore: (13)

For our experiments, we carefully selected the hyperparameters of the employed attacks
based on commonly adopted practices in the literature to ensure fair comparisons. More
precisely, for the FGSM, the perturbation magnitude e was set to 0:2, which controls the
maximum allowed distortion added to the input while generating adversarial examples.
Regarding PGD, we used e ¼ 0:1, a step size per iteration of 0:001, and the maximum
number of optimization iterations was fixed at 40. In C&W, we set the confidence
parameter to 0:1 to enforce a small separation margin from the decision boundary, and the
maximum number of iterations was fixed at 10. Finally, for DeepFool, the maximum
number of iterations was set to 100, with an e value of 1e−6 to control the overshoot
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parameter. Additionally, the number of class gradients computed per iteration was set to
10 to efficiently approximate decision boundaries. These hyperparameters were chosen to
balance attack strength and computational efficiency, ensuring a fair evaluation across
different adversarial techniques.

Baseline
The initial phase of our evaluation involved measuring the performance of the models
under their original, unperturbed conditions before introducing adversarial AI attacks.
The assessment is based on the aforementioned evaluation metrics. Table 1 summarizes
the baseline performance of the models (i.e., FCNN, LeNet, Simple CNN, MobileNetV2,
and VG11) during their correct operation. Notably, these baseline results were obtained
from experiments conducted five times each in the described environment. Simple CNN
consistently achieved the highest accuracy across all datasets (i.e., MNIST, Fashion-
MNIST, and CIFAR-10). In contrast, LeNet performed the worst on MNIST and Fashion-
MNIST, while MobileNetV2 exhibited the lowest accuracy on CIFAR-10. Although the
evaluation is conducted on widely-used benchmark datasets (i.e., MNIST, Fashion-
MNIST, and CIFAR-10), these datasets are standard in adversarial ML research and
provide a controlled, reproducible environment for rigorous comparison across attack
techniques and models. Their established role in the literature ensures baseline validity
while enabling future extension to more complex, real-world datasets. This pattern is
further corroborated by other metrics, including the F1-score, precision, recall, mean
confidence, and misclassification rate.

FGSM impact summary
The results of the FGSM attack across all evaluated models demonstrate considerable
variability in the degree of impact on performance metrics, thereby highlighting the

Table 1 Baseline metrics (Initial performance on AI models).

Model Value (%)

MNIST F-MNIST CIFAR-10 MNIST F-MNIST CIFAR-10 MNIST F-MNIST CIFAR-10

Accuracy F1-score Precision

FCNN 92 87 39 91 85 35 91 87 37

LeNet 91 82 48 93 81 45 94 82 48

Simple CNN 96 89 61 97 88 59 97 88 62

MobileNetV2 96 84 18 96 83 13 65 85 15

VG11 96 87 50 96 87 48 96 88 49

Recall Mean confidence Misclassification rate

FCNN 93 85 37 91 83 35 7 12 60

LeNet 94 82 45 92 77 36 6 17 51

Simple CNN 98 90 61 96 88 60 3 10 38

MobileNetV2 96 84 17 92 80 16 3 14 81

VG11 97 87 51 97 86 46 3 12 50
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relative robustness and vulnerabilities inherent to different neural network architectures
under adversarial conditions (see Table 2).

A comparative analysis of model performance under FGSM perturbations across all
datasets reveals that susceptibility to adversarial attacks is highly architecture-dependent.
Notably, the Simple CNN exhibited substantial vulnerability in most datasets, though the
FCNN experienced even greater degradation in performance, particularly on the MNIST
dataset. The FCNN’s lack of convolutional layers, and consequently spatial awareness,
forces it to process input as a flat vector, severely limiting its capacity to capture local
patterns and increasing its sensitivity to FCNN’s gradient-based perturbations.

In contrast, while Simple CNN incorporates convolutional layers that provide a degree
of spatial awareness, its shallow architecture limits its capacity for robust feature extraction
and the formation of firm decision boundaries. This inadequacy renders it similarly
vulnerable to adversarial noise, albeit marginally more robust than FCNN.

LeNet, among the simpler architectures, demonstrated the highest resilience. Its use of
convolutional layers and max pooling not only facilitates spatial feature extraction but also
contributes to noise reduction, improving its defense against FGSM perturbations.
MobileNetV2 outperformed LeNet in adversarial robustness, attributable to its more
advanced architectural elements, such as depthwise separable convolutions and residual
connections, which enhance feature extraction efficiency and offer improved resistance to
adversarial inputs.

Among all models tested, VGG11 exhibited the greatest resilience to FGSM attacks. Its
deep architecture allows for hierarchical feature extraction, wherein early layers capture
low-level features and deeper layers abstract complex patterns. This depth and its ability to
form robust decision boundaries provide superior defense against adversarial
perturbations compared to the other architectures evaluated.

Table 2 Impact of the FGSM attack on the model performance metrics.

Model Impact (%)

MNIST F-MNIST CIFAR-10 MNIST F-MNIST CIFAR-10 MNIST F-MNIST CIFAR-10

Accuracy F1-score Precision

FCNN −68 −54 −24 −66 −53 −23 −62 −48 −22

LeNet −11 −43 −29 −11 −40 −26 −12 −39 −32

Simple CNN −84 −64 −43 −83 −62 −43 −83 −60 −43

MobileNetV2 −8 −65 −3 −9 −68 −2 −8 −67 −5

VG11 −4 −60 −31 −5 −58 −33 −3 −52 −34

Recall Mean confidence Misclassification rate

FCNN −67 −53 −25 −67 −50 24 68 54 24

LeNet −10 −41 −27 −13 −39 29 11 43 29

Simple CNN −83 −62 −45 −81 −62 43 84 64 43

MobileNetV2 −9 −69 −3 −9 −62 3 8 65 3

VG11 −5 −60 −34 −5 −58 31 4 60 31
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PGD impact summary
The PGD attack is another adversarial technique evaluated in this study (refer Table 3).
The PGD attack iteratively refines perturbations to maximize their impact on model
predictions. The following analysis summarizes the performance of each model under the
PGD attack.

The results of the PGD attack across all models highlight the varying levels of
vulnerability, as well as the different impacts on evaluation metrics, as presented in Table 3.
The Simple CNN model was the most affected by PGD, similar to the effect of the FGSM
attack. Although the model incorporates convolutional layers, which provide spatial
awareness, its shallow architecture limits its ability to construct robust decision
boundaries. Similarly, the FCNN exhibited significant vulnerability due to its lack of spatial
awareness, processing inputs as flat vectors and relying on global gradients for predictions.
While FGSM caused a notable degradation in FCNN’s performance, the PGD attack, with
its iterative and more targeted perturbations, led to slightly improved performance
compared to FGSM.

Surprisingly, VGG11 did not perform as well under PGD as anticipated, with
considerable drops in evaluation metrics. The deeper architecture, which was expected to
offer resilience, appeared vulnerable to PGD’s iterative perturbations, potentially due to its
reliance on learned patterns that may have become fragile under adversarial manipulation.
In contrast, MobileNetV2 demonstrated strong resistance to PGD, outperforming both the
simpler models (FCNN and Simple CNN) and even VGG11. This is likely attributable to
its use of separable convolutions and residual connections, which enhance its ability to
extract features efficiently.

LeNet performed the best under the PGD attack, exhibiting the smallest performance
drops across all metrics. Its convolutional layers and max pooling mechanisms provide

Table 3 Impact of the PGD attack on the model performance metrics.

Model Impact (%)

MNIST F-MNIST CIFAR-10 MNIST F-MNIST CIFAR-10 MNIST F-MNIST CIFAR-10

Accuracy F1-score Precision

FCNN −33 −24 −32 −34 −26 −30 −31 −25 −31

LeNet −1 −25 −37 −1 −26 −35 0 −21 −37

Simple CNN −86 −45 −43 −85 −44 −45 −85 −42 −46

MobileNetV2 −3 −75 −11 −6 −74 −8 −5 −74 −17

VG11 −15 −74 −38 −15 −75 −37 −13 −73 −37

Recall Mean confidence Misclassification rate

FCNN −32 −25 −33 −32 −23 −23 33 24 32

LeNet −1 −28 −37 −3 −21 −22 1 25 37

Simple CNN −86 −46 −46 −84 −44 −40 86 45 43

MobileNetV2 −5 −73 −8 −3 −72 −8 3 75 11

VG11 −13 −75 −37 −16 −71 −33 15 74 38
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substantial spatial awareness and noise reduction. While lacking the depth of VGG11,
LeNet’s relatively simple architecture may have contributed to its robustness, as it did not
overfit to specific patterns during training.

DeepFool impact summary
The results from the DeepFool attack indicate that all the models tested were significantly
affected, exhibiting substantial degradation across all performance metrics (refer to
Table 4).

The Simple CNN demonstrated the most negligible impact on most metrics among the
models evaluated, outperforming the other architectures tested in this attack. Its relatively
simple decision boundaries limited the ability of the DeepFool-generated adversarial
samples to degrade performance, in contrast to the more complex models. Despite this
relative resilience, the Simple CNN still experienced noticeable reductions in all
performance metrics, as illustrated in Table 4.

The FCNN, while showing a considerable impact from the attack, exhibited
performance comparable to, and in some cases slightly better than, deeper models such as
VGG11 in specific metrics. Its simpler architecture and reliance on global gradients
allowed it to retain a slight advantage in terms of stability under the DeepFool attack
compared to more complex models.

In contrast, LeNet and VGG11 demonstrated similarly compromised performance
under the DeepFool attack. Although VGG11’s deeper architecture and more complex
decision boundaries had previously provided it with some robustness, these features were
insufficient in mitigating the effects of DeepFool’s iterative adjustments. The attack
exploited the model’s complexity, resulting in significant misclassifications. LeNet, a
shallower architecture that had shown resilience against earlier attacks, also failed to
maintain its robustness under DeepFool’s iterative precision.

Table 4 Impact of the DeepFool attack on the model performance metrics.

Model Impact (%)

MNIST F-MNIST CIFAR-10 MNIST F-MNIST CIFAR-10 MNIST F-MNIST CIFAR-10

Accuracy F1-score Precision

FCNN −91 −76 −27 −90 −73 −26 −90 −70 −27

LeNet −93 −72 −27 −94 −74 −25 −94 −75 −25

Simple CNN −72 −83 −44 −70 −83 −43 −61 −85 −44

MobileNetV2 −96 −54 −11 −95 −52 −12 −94 −49 −11

VG11 −93 −78 −31 −93 −78 −30 −92 −79 −30

Recall Mean confidence Misclassification rate

FCNN −91 −74 −29 −53 −46 −11 91 76 27

LeNet −94 −74 −27 −52 −35 −10 93 72 27

Simple CNN −72 −82 −45 −50 −42 −22 72 83 44

MobileNetV2 −96 −54 −17 −54 −37 −3 96 54 11

VG11 −94 −77 −33 −49 −41 −14 93 78 31
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Lastly, MobileNetV2 experienced the most significant degradation across all
datasets, particularly in key metrics such as accuracy and mean confidence. Despite the
advantages of residual connections in improving stability under simpler attacks like
FGSM or PGD, these mechanisms did not provide the same level of protection against
the DeepFool attack. Consequently, MobileNetV2’s performance was substantially
impaired.

C&W impact summary
The results of the C&W attack highlight varying levels of impact across the
tested models, demonstrating their relative robustness to adversarial perturbations
(see Table 5).

The C&W attack (see Table 5) induced varying degrees of disruption across the models,
revealing their resilience to these adversarial perturbations. As expected, the Simple CNN
model exhibited the greatest susceptibility, experiencing substantial performance drops
across most metrics. While its convolutional layers provided some spatial awareness, its
shallow depth and weak decision boundaries rendered it particularly vulnerable to this
attack. LeNet, with its combination of convolutional layers and max pooling, displayed
moderate robustness compared to other models; however, the targeted nature of the C&W
attack ultimately led to misclassifications, as its simple decision boundaries were
insufficient to resist the perturbations. MobileNetV2 also suffered a noticeable
performance degradation under the C&W attack, positioning it below the FCNN in terms
of robustness. Despite its separable convolutions and residual connections, which enhance
feature extraction, MobileNetV2’s architecture was not optimized for handling highly
targeted perturbations like those induced by the C&W attack. Interestingly, the FCNN
performed better than some more advanced models, including MobileNetV2. Its simple
architecture and linear decision boundaries, typically seen as disadvantages, may have

Table 5 Impact of the C&W attack on the model performance metrics.

Model Impact (%)

MNIST F-MNIST CIFAR-10 MNIST F-MNIST CIFAR-10 MNIST F-MNIST CIFAR-10

Accuracy F1-score Precision

FCNN −11 −32 −12 −12 −32 −9 −11 −31 −6

LeNet −6 −28 −18 −8 −28 −17 −7 −27 −17

Simple CNN −86 −78 −45 −87 −78 −44 −85 −77 −46

MobileNetV2 −17 −75 −5 −19 −74 −2 −16 −73 −3

VG11 −2 −13 −15 −2 −15 −16 −1 −12 −14

Recall Mean confidence Misclassification rate

FCNN −11 −32 −11 −5 −16 −5 11 32 12

LeNet −8 −28 −19 −3 −13 −5 6 28 18

Simple CNN −87 −80 −46 −60 −51 −25 86 78 45

MobileNetV2 −18 −74 −5 −10 −46 −1 17 75 5

VG11 −2 −15 −16 −1 −9 −8 2 13 15
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made it less sensitive to the precise nature of C&W perturbations. In contrast, VGG11
demonstrated the highest resilience to the C&W attack. Its deep architecture and
hierarchical feature extraction effectively resisted targeted perturbations.

In comparison, the performance of various attacks showed distinct patterns. DeepFool
caused the most consistent and severe performance drops, whereas PGD was effective but
less reliable, particularly impacting simpler models. FGSM had a similar effect on simpler
architectures but had minimal impact on deeper models. The C&W attack exhibited the
least consistent impact, significantly affecting simpler models but leaving more complex
models largely unaffected.

REAL-WORLD IMPACT OF ADVERSARIAL AI ATTACKS
In this section, we analyze the application of AI in critical infrastructures, such as
healthcare, transportation, and security systems, highlighting the potential impact of
adversarial AI attacks within these environments.

Self-driving vehicle systems that rely on AI/ML employ a combination of computer vision,
sensor integration, and DL techniques to accurately perceive their surroundings and make
timely driving decisions. These systems typically use CNNs to recognize road signs (e.g.,
STOP signs), detect pedestrians, and identify lane markings, while radar sensors help
measure distances and detect objects (e.g., parked vehicles) in three-dimensional space.
Through extensive training on large datasets, AI models learn to associate specific visual
and sensory inputs with appropriate driving behaviors, such as stopping at red lights or
maintaining a safe distance from other vehicles (Fang, Chen & Fuh, 2003). However,
adversarial AI attacks can exploit vulnerabilities in these models by introducing subtle,
carefully crafted modifications to road signs, camera inputs, or sensor readings, which may
lead to misinterpretations and result in unsafe driving behavior (Clark, 2025). For example,
a stop sign that has been subtly altered may appear visually identical to an observer,
causing it to be misinterpreted as a speed limit sign. This could result in the vehicle failing
to stop at an intersection, potentially leading to severe traffic accidents, including loss of
life (Chowdhury et al., 2020; Cui et al., 2019).

Healthcare systems that leverage AI rely on advanced deep learning models to analyze
medical images, such as X-rays, MRIs, and CT scans, to identify and diagnose various
diseases (Algarni & Thayananthan, 2025; Shaheen, 2021). These models are trained on
large datasets of labeled medical images, enabling them to recognize patterns associated
with conditions like cancer, pneumonia, and fractures. By accurately identifying
abnormalities, AI assists radiologists in making faster and more reliable diagnoses, thereby
minimizing errors and improving patient outcomes. However, evasion-based adversarial
attacks, including FGSM, PGD, C&W, and DeepFool, pose significant risks by subtly
altering medical images, leading to incorrect diagnoses (Mahimai et al., 2025; Sharma &
Kaushik, 2025). For instance, an altered MRI scan of a cancerous tumor might cause the AI
model to incorrectly classify it as benign, resulting in a false negative and delaying critical
treatment, thereby endangering the patient’s life. Conversely, adversarial attacks may lead
to false positives, erroneously identifying a healthy individual as having a serious illness,
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which could lead to unnecessary treatments, emotional distress, and increased
healthcare costs.

Surveillance and security systems that utilize AI employ advanced DL models to
analyze video feeds, recognize faces, detect anomalous behavior, and identify potential
threats in real time. These models are trained on vast datasets containing images of people,
objects, and actions, enabling them to differentiate between normal and suspicious
activities. AI-powered security systems are deployed in high-stakes environments,
including airports, banks, smart cities, and military bases, to enhance public safety by
detecting threats more rapidly than human operators (Ardabili et al., 2023). However,
evasion adversarial attacks can manipulate input images or video frames by subtly
modifying pixel values, allowing the attacker to deceive the AI model without detection by
human observers (Ahmed & Echi, 2021). For instance, an adversary might alter their facial
features using adversarial perturbations, causing the system to mistakenly identify them as
an authorized individual, thereby circumventing biometric authentication (Dazed, 2025).
Similarly, tampering with an object, such as concealing a weapon, may result in the system
failing to recognize the threat, leading to significant security breaches. In high-pressure
environments, such as national security, banking, and critical infrastructure protection,
these attacks could lead to unauthorized access, security threats, and potential harm to
public safety.

DISCUSSION AND LIMITATIONS
Testing ML models with various architectural designs and features against adversarial
samples generated by different techniques provides critical insights into the resilience and
robustness of these models. In this study, five models were evaluated on image
classification tasks using adversarial samples generated by four distinct techniques: the
FGSM, PGD, DeepFool, and C&W. The findings revealed significant variation in the
effectiveness of these techniques, which was influenced by the architectural differences of
the models and the specific mechanisms employed by each attack. As a result, specific
attack methods were more effective on some models than others, highlighting the nuanced
relationship between attack characteristics and model architecture.

FGSM and PGD were more effective on simpler models, such as the FCNN and Simple
CNN, causing a notable reduction in their performance. On the other hand, C&W, a more
sophisticated attack, did not consistently produce the greatest performance degradation
across all models. It appeared to be more effective against more complex models like
MobileNetV2, which caused significant damage, whereas simpler architectures like FCNN
were less affected. This discrepancy is likely because the C&W attack does not rely heavily
on gradients, which are pivotal in the decision-making process of simpler models. The
relative resilience of simpler models, like FCNN, under the C&W attack is particularly
noteworthy, as these models exhibited pronounced vulnerability under the other attack
techniques. The simplicity of their decision boundaries likely made them less susceptible to
the highly optimized C&W attack. DeepFool, by contrast, demonstrated exceptional
effectiveness across all tested models, successfully exploiting simple and complex
architectures. However, the perturbations introduced by DeepFool were more visually
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perceptible to human observers, indicating a trade-off between the effectiveness of the
attack and its subtlety.

The implications of these findings are significant for understanding the resilience and
robustness of ML models. The varying effectiveness of different adversarial techniques
underscores the importance of selecting appropriate methods for evaluating and
strengthening model robustness, particularly in applications where model reliability is
critical. This study also emphasizes the need for tailored defense strategies against specific
adversarial attacks. For instance, defenses against DeepFool may focus on enhancing
boundary robustness, whereas defenses against C&W may prioritize detecting and
correcting subtle noise in the input.

However, it is important to acknowledge the limitations of this study. First, the attack
configurations were fixed, which may have constrained the full potential of some
adversarial techniques. Parameters such as the step size for PGD or the optimization
bounds for C&W were not fine-tuned for each model. Optimizing these parameters could
enhance the effectiveness of the attacks, particularly on more advanced models such as
MobileNetV2 and VGG11.

Furthermore, this study did not incorporate or evaluate any defense mechanisms
commonly employed to mitigate and detect adversarial attacks (Bountakas et al., 2023). On
the one hand, regarding implementation of mitigation techniques such as: ðiÞ adversarial
training that improves the model’s robustness by incorporating both benign and
adversarial examples into the training dataset (Goodfellow, Shlens & Szegedy, 2014; Abou
Khamis, Shafiq & Matrawy, 2020); ðiiÞ defensive distillation, where a DNN learns using
knowledge distilled from amore complex DNN, enabling the transfer of information to DL
models with constrained computational resources (Hinton, Vinyals & Dean, 2015;
Papernot et al., 2016); ðiiiÞ ensemble methods where multiple ML algorithms are combined
to solve a learning problem (Apruzzese et al., 2020; Jiang, Lin & Kang, 2022), and ðivÞ pre-
processing that encompasses existing works employing pre-processing techniques (e.g.,
feature reduction) to enhance model robustness against adversarial attacks (Rosenberg
et al., 2019; Xu, Evans & Qi, 2017). On the other hand, regarding detection techniques, the
following techniques could be investigated: supervised/semi-supervised learning methods
that detect adversarial ML, deploying an auxiliary ML/DL model that has been trained
using supervised or semi-supervised learning (Pawlicki, Choraś & Kozik, 2020; Taheri
et al., 2020), and distance-based detection that is performed by measuring the distance
between adversarial and original samples (Meng & Chen, 2017; Paudice et al., 2018).
Integrating such defenses would provide a clearer understanding of the models’ practical
robustness in real-world applications where adversarial threats are prevalent.

RELATED WORK
This section provides an in-depth examination of prior works for the EVAISION adversarial
attacks and, offers a concise comparison of them against our work.

Villegas-Ch, Jaramillo-Alcázar & Luján-Mora (2024) investigated the effectiveness of
three popular adversarial attack methods (i.e., FGSM, PGD, and C&W). Their experiments
used image-classification models such as VGG16 and ResNet and reviewed the impact of
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adversarial perturbations on accuracy. Their study emphasized the model’s vulnerability to
adversarial inputs and proposed defensive strategies like image compression and Gaussian
blurring to mitigate attacks. Furthermore, authors in Ayub et al. (2020) performed a model
evasion attack against the built MLP network for IDS using an adversarial ML technique
known as JSMA method. Their experimental results show that the model evasion attack is
capable of significantly reducing the accuracy of the IDS. Also, their findings supported
that neural network-based IDS is susceptible to model evasion attacks, and attackers can
essentially use this technique to evade IDS effectively.

Ahmed & Neeru (2024) analyzed gradient-based, decision-based, and
optimization-based adversarial techniques. Its authors evaluated methods such as FGSM,
DeepFool, C&W, and zeroth order optimization (ZOO) across multiple models, including
Logistic Regression, Support Vector Machines (SVM), and Gradient Boosting Classifiers.
Their results include that Logistic Regression and SVM showed notable weaknesses in the
face of all attack strategies, while Random Forest and Gradient Boosting models were more
robust than simpler models.

Rahman et al. (2025) evaluated the robustness of several DNN models, such as
ResNet152, VGG11, and DenseNet201 against four well-known adversarial attacks, FGSM,
PGD, Basic Iterative Method (BIM), and DeepFool. The evaluation was performed on
ImageNet, CIFAR-10, CIFAR-100 and SVHN data sets, while the authors proposed two
ensemble adversarial attacks that combined three individual attacks. The ensemble
methods were based on mean and weighted ensemble techniques and demonstrated a
greater performance drop, namely 58%, compared to 39% of individual attacks.

Sen & Dasgupta (2023), employed the FGSM and adversarial patch attack on several
CNN image classifiers, such as ResNet-34, GoogleNet, and DenseNet-161 to evaluate their
robustness. To accomplish this, the ImageNet dataset was used and the results indicate that
FGSM severely impacts the classification task, resulting in up to 97% classification error.
Hassan et al. (2022) utilized FGSM attack on InceptionV3, AlexNet, ResNet18, and
VGG16 CNN. The experiments performed on the ImageNet dataset and resulted in 99%
misclassification accuracy.

In addition, in the postgraduation study that presented in Sarkar et al. (2024), the
authors explored the vulnerabilities of deep neural networks to adversarial attacks.
Specifically, they evaluated the performance of three widely used CNN architectures,
including ResNext50, DenseNet201, and VGG19, in adversarial examples generated by the
FGSM and C&W. The authors also tested the defensive distillation method as a
countermeasure to the FGSM and C&W attacks.

Table 6 compares EVAISION with existing works in terms of the assessed ML models, the
adversarial methods implemented, the datasets deployed and the impacts of the adversarial
methods in the deployed ML models. This current work goes beyond the works mentioned
by conducting a comprehensive comparative analysis of four adversarial attacks, including
FGSM, PGD, DeepFool, and C&W, on five machine learning models with diverse
architectural designs (i.e., FCNN, Simple CNN, LeNet, MobileNetV2 and VGG11). In
contrast to the aforementioned works, this work evaluates the impact of these attacks
under uniform conditions using the MNIST, Fashion-MNIST, CIFAR-10 datasets. The
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evaluation methodology utilizes multiple performance metrics, including accuracy,
precision, recall, F1-score, and mean confidence, to provide a more holistic perspective on
model performance.

Apart from the aforementioned works, there is a notable contribution in literature
focusing on the security of large language models that continues to evolve and be used in
various topics, raising at the same time security threats. Aguilera-Martínez & Berzal (2025)
presents a categorization of attacks targeting LLMs, distinguishing between those that
occur during the training phase and those that target deployed models. The study also
reviews corresponding defense strategies and evaluates the effectiveness of existing
mechanisms against various security threats. Also, Ning et al. (2024) introduces the
CheatAgent that leverages human-like capabilities of LLM to target LLM-powered RecSys.
Specifically, it identifies the insertion position for maximum impact with minimal input
modification then generates adversarial perturbations using an LLM-based agent.
Moreover, authors in Xu et al. (2023) propose the PromptAttack to audit LLM’s adversarial
robustness, transforming textual adversarial attacks into crafted prompts, inducing the
LLM to generate adversarial samples to fool itself. To ensure semantic consistency, a
fidelity filter is used, while the attack strength is further enhanced by ensembling
adversarial examples across varying levels of perturbation. Finally, Li et al. (2025) presents
a taxonomy of attacks targeting agent-based systems, categorizing them by threat actors,
objectives, entry points, attacker observability, attack strategies, and inherent
vulnerabilities of agent pipelines. It is complemented by illustrative attacks on widely used
open-source and commercial agents, highlighting the immediate and practical
implications of these security weaknesses.

Furthermore, there is significant progress in game-theoretical approaches in adversarial
ML. In particular, Gao et al. (2023) provides an overview of existing game-theoretical
approaches in adversarial ML for adaptively defending against adversarial attacks. To
assess these methods, the authors proposed a set of evaluation metrics that highlight their
respective strengths and limitations. Also, Dasgupta & Collins (2019) offers a

Table 6 Comparison of EVAISION with existing works including the top performance reduction compared to baseline.

Approach Assessed deep learning models Adversarial methods Datasets Reduction

Villegas-Ch, Jaramillo-Alcázar &
Luján-Mora (2024)

VGG16, ResNet FGSM, PGD, C&W MNIST, CIFAR-10 35%

Ahmed & Neeru (2024) Logistic Regression, SVM, Gradient
Boosting

FGSM, DeepFool,
C&W, ZOO

MNIST 98.47%

Rahman et al. (2025) DNN (ResNet152, DenseNet201) FGSM, PGD,
DeepFool, BIM

ImageNet, CIFAR-10, CIFAR-
100, SVHN

58%

Sen & Dasgupta (2023) ResNet34, GoogleNet, DenseNet-161 FGSM, adversarial
patch attack

ImageNet 97%

Hassan et al. (2022) InceptionV3, AlexNet, ResNet18,
VGG16

FGSM ImageNet 99%

Sarkar et al. (2024) ResNet50, DenseNet201, VGG19 FGSM, C&W ImageNet 97%

EVAISION FCNN, Simple CNN, LeNet,
MobileNetV2, VGG111

FGSM, PGD,
DeepFool, C&W

MNIST, Fashion-MNIST,
CIFAR-10

96%

Zarras et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3330 30/37

http://dx.doi.org/10.7717/peerj-cs.3330
https://peerj.com/computer-science/


comprehensive survey of techniques that enhance the robustness of ML algorithms against
adversarial attacks through the application of game-theoretic frameworks. Finally, in
Dritsoula, Loiseau & Musacchio (2017), the authors model the interaction as a game
between a defender who selects a classifier to distinguish between attacks and normal
behavior based on a set of observed features.

CONCLUSION
This study presented a comparative analysis of the impact of four adversarial techniques
(i.e., FGSM, PGD, DeepFool, and C&W) on five distinct models, each characterized by
different architectural designs. Various performance metrics were employed to
comprehensively assess how each model responded to adversarial samples. The
effectiveness of the adversarial example generation techniques varied considerably
depending on the model architecture. The FGSM attack notably compromised the
performance of simpler models, such as FCNN and Simple CNN. Similarly, PGD primarily
affected simpler architectures but exhibited a more pronounced impact on VGG11 when
compared to FGSM. This suggests that the iterative nature of PGD allowed it to degrade
the performance of even more complex models. On the other hand, the C&W technique,
being a more advanced attack method, was expected to affect all models more severely.
However, it caused a more substantial performance degradation in more complex models
like MobileNetV2, while simpler models like FCNN experienced less impact than
anticipated. In contrast, FGSM and PGD had a more significant effect on FCNN.
DeepFool, however, demonstrated the most substantial effect across all tested models, with
all performance metrics being notably degraded. Despite this, the adversarial samples
generated by DeepFool were more easily distinguishable to the human eye, as the
modifications it induced were more pronounced than those of other techniques. The
fixed parameters in the adversarial attacks may have limited their full potential impact.
Additionally, the study did not explore the effect of defensive strategies, such as adversarial
training or input preprocessing. Future research incorporating these defense mechanisms
could provide valuable insights into enhancing the resilience and robustness of models
against adversarial attacks.
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