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ABSTRACT

Coal mining causes significant environmental disruptions due to excessive resource
extraction. Real-time monitoring and prediction of mining-induced surface
deformation are critical for ensuring mining safety. Conventional monitoring
methods struggle to achieve large-scale real-time observation and have limitations in
terrain adaptability and weather resistance. Conventional prediction methods are
constrained as follows: numerical simulation is limited by the complexity of physical
parameters; mathematical statistics requires substantial data and struggles to
comprehensively reflect geotechnical properties; hybrid algorithms involve complex
modeling and rely on individual models. This study develops an integrated
framework combining Small Baseline Subset Interferometric Synthetic Aperture
Radar (SBAS-InSAR) and Bayesian optimization-Prophet (BO-Prophet) models for
mining subsidence monitoring and forecasting. Using the Yinying Coal Mine as the
study area, multi-source radar datasets are processed through SBAS-InSAR. This
technique identifies four major subsidence areas and generates time-series
deformation data. Cross-validation confirms the reliability of SBAS-InSAR
monitoring results: the Pearson correlation coefficient between ascending-orbit
(Sentinel-1A) and descending-orbit (Radarsat-2) results of 3,000 high-coherence
points in the subsidence area reaches 0.946; compared with four Global Navigation
Satellite System (GNSS) stations, the maximum absolute errors are 4.684, 3.328,
3.194, and 2.462 mm respectively, with consistent deformation trends, and both
methods confirm its reliability. Comparative analysis reveals superior prediction
accuracy of the BO-Prophet model over Bayesian optimization-long short-term
memory (BO-LSTM) at six characteristic points. The BO-Prophet model achieves a
mean absolute error (MAE) of 2.02 mm, representing a 25.2% reduction from
BO-LSTM (2.70 mm). Its root mean square error (RMSE) measures 2.36 mm,
demonstrating a 35.6% reduction compared to BO-LSTM (3.67 mm). Subsidence
predictions for area B using BO-Prophet show high spatial-temporal consistency
with SBAS-InSAR monitoring results. Correlation analysis demonstrates a
correlation coefficient (R?) exceeding 0.96 between predicted and observed values.
The integration of SBAS-InSAR and BO-Prophet shows strong potential for mining
subsidence monitoring and forecasting. This combined approach enhances early
warning capabilities and supports disaster mitigation strategies in mining areas.
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INTRODUCTION

Coal, as a crucial mineral resource in China, holds absolute dominance in the national
energy structure and plays an irreplaceable role in social development and economic
construction. Shanxi Province contributes approximately one-quarter of China’s coal
production, serving as a vital national energy base (Bai ef al., 2020). However, excessive
coal mining has triggered ground collapse, air pollution, farmland destruction, and
geological hazards like landslides and mudslides, severely threatening local residents’ safety
and quality of life (Chu & Muradian, 2016; Dontala, Reddy ¢ Vadde, 2015; Habib & Khan,
2021). Real-time monitoring and prediction of surface deformation are essential for
preventing geological disasters and ensuring mining safety.

Traditional monitoring methods like precise leveling and GPS measurements face
limitations in terrain adaptability, weather resistance, and spatial coverage (Santos, Cabral
¢ Pontes Filho, 2012; Sevil, Benito-Calvo ¢ Gutiérrez, 2021). These point/line-based
approaches struggle to achieve large-scale monitoring and fail to reflect comprehensive
deformation patterns across mining areas. High costs, low efficiency, and limited coverage
further restrict their application in long-term, large-area subsidence monitoring.

Interferometric synthetic aperture radar (InSAR) overcomes these limitations by
enabling cost-effective, weather-independent large-area monitoring with comprehensive
surface deformation insights (Aobpaet et al., 2013; Wu, Wei ¢ D’Hondt, 2022). D-InSAR
generates interferograms to separate terrain features from deformation signals, supporting
continuous long-term monitoring (Fan et al., 2011; Zhu et al., 2024). However, its accuracy
suffers from image decorrelation and atmospheric delays (Cai et al., 2023). PS-InSAR
achieves high-precision deformation monitoring by identifying persistent scatterers
(buildings, bare rocks) with stable phase characteristics, which effectively mitigates
atmospheric phase errors. However, in mining areas with high vegetation coverage, the
scarcity of such persistent scatterers leads to sparse monitoring points, failing to capture
the overall subsidence patterns (Liu et al., 2022). DS-InSAR improves monitoring point
density by identifying distributed scatterers (vegetated areas with weak scattering targets),
particularly outperforming PS-InSAR in vegetated zones. However, it still struggles with
spatial decorrelation in steep terrains or areas with severe atmospheric delays,
compromising accuracy in mountainous mining regions (Li ef al., 2021). In mining area
subsidence monitoring, SBAS-InSAR demonstrates strong adaptability to complex
environments. For mountainous mining areas with rugged terrain and high vegetation
coverage, SBAS-InSAR effectively reduces temporal and spatial decorrelation by
controlling small spatiotemporal baselines. It generates continuous
high-temporal-resolution deformation time series to capture dynamic subsidence from
mining activities, and adapts flexibly to moderate data volumes, balancing monitoring
accuracy and regional coverage (Du et al., 2021; Khan et al., 2025; Li, Xu ¢ Li, 2022).
Unlike DS-InSAR, which may fail in large deformation zones due to insufficient coherence,
SBAS-InSAR maintains reliable results across diverse mining scenarios. This makes it
more suitable for subsidence monitoring in such complex mining environments compared
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to D-InSAR, PS-InSAR, and DS-InSAR. This SBAS-InSAR approach has gained
widespread recognition in mine monitoring.

Surface subsidence prediction methods include numerical simulation, mathematical
statistics, Hybrid algorithms, and machine learning models (Cai et al., 2023; Wang et al.,
2025). Numerical simulation methods analyze stress distribution in mining areas through
numerical modeling, yet their effectiveness is limited by the complexity of physical
parameters (He, Wu ¢» Ma, 2023; Li, Zha ¢ Guo, 2019). Mathematical statistical methods
offer intuitive data-driven solutions; however, they demand substantial observational data
and struggle to comprehensively characterize geotechnical medium properties, thereby
compromising prediction reliability (Hejmanowski ¢ Malinowska, 2009). Hybrid
algorithms enhance accuracy and stability by integrating multiple model outputs, though
they entail complex modeling structures and remain dependent on individual model
performance (Shen, Santosh & Arabameri, 2023).

In recent years, machine learning models have demonstrated remarkable potential in
surface deformation prediction (Deng et al., 2025; Wang et al., 2024; Yang et al., 2025),
particularly in addressing multi-factor induced surface deformations. The large-scale,
high-precision surface deformation data acquired through InSAR technology provides
abundant training samples for machine learning models (Guo et al., 2023; Shi et al., 2020,
2023). Assessing the applicability of machine learning models for mining subsidence
prediction requires comprehensive consideration of environmental characteristics and
data attributes. Grey models (GM) are based on grey system theory. GM suits scenarios
with limited samples or missing information. For example, Shi et al. (2020) integrated
D-InSAR technology with the GM(1,1) model to achieve unified subsidence monitoring
and prediction. However, GM exhibits poor prediction stability and struggles to capture
nonlinear dynamic deformations. Support vector regression (SVR) can map
high-dimensional nonlinear relationships and possesses good robustness. Zhang et al.
(2021) successfully predicted subsidence in Shaanxi mining areas using SBAS-InSAR and
SVR. Nevertheless, SVR demands substantial computational resources. It also shows
insufficient adaptability to sudden subsidence events in long time series. Long short-term
memory (LSTM) networks perform well in learning mining subsidence patterns. Ma, Sui
¢ Lian (2023) confirmed through comparative experiments that LSTM outperforms SVR.
However, Dongwei et al. (2024) noted LSTM’s susceptibility to spatial heterogeneity and
feature deficiencies, these limitations can cause significant accuracy reductions. In contrast,
the Prophet model employs Bayesian curve fitting via a generalized additive model.
Prophet offers notable flexibility and robustness. Its built-in trend decomposition module
accurately distinguishes subsidence caused by natural and anthropogenic factors (Bi et al.,
2024).

Hyperparameter selection significantly impacts prediction model performance.
Research by Chen et al. (2025) demonstrated that hyperparameter optimization effectively
enhances model prediction capability. Subjective hyperparameter selection proves
inefficient and often suboptimal. Therefore, this study introduces Bayesian optimization
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(BO) for hyperparameter tuning. This method efficiently explores the parameter space. BO
achieves relatively optimal parameter combinations with fewer evaluations and lower time
costs. To highlight the advantages of the proposed Bayesian optimization-Prophet (BO-
Prophet) model for mining subsidence prediction, we conducted a comparative analysis.
We compared its performance against Bayesian optimization-long short-term memory
(BO-LSTM), an LSTM model also optimized with Bayesian optimization.

This study focuses on Yangquan’s Yinying mining area, utilizing 34 ascending Sentinel-
1A radar images and 17 descending radar RADARSAT-2 images for SBAS-InSAR
processing. The analysis of multi-source data from June 2023 to August 2024 confirms
result consistency and reliability. To optimize prediction accuracy, Bayesian optimization
adjusts hyperparameters in Prophet and LSTM models. The enhanced models predict
subsidence values at selected characteristic points, comparing performance outcomes to
provide scientific support for early warning systems.

STUDY AREA

Yinying Coal Mine is located in Yinying Town, northern suburbs of Yangquan City. Its
geographic coordinates range from 113°27'17.46"E to 113°33'27.684"E longitude and
37°56'22.754"N to 38°0'36.407"N latitude. The area features a temperate continental
monsoon climate with annual average temperatures between 8-12 °C and precipitation
ranging 450-550 mm.

The terrain shows northwest-high and southeast-low topography, classified as low
mountain hills with elevations spanning 660-1,373 m. Surface coverage primarily consists
of forest land and grassland. The mining area covers approximately 19.1 km®.

As a major coal production base, Yinying Coal Mine maintains an average coal seam
thickness of 3.75 m. Coal seams exhibit an average dip angle of approximately three
degrees. Annual production capacity reaches 2.4 million tons.

Key geological characteristics include crisscrossing valleys and densely distributed
gullies formed by historical river erosion. These geomorphological features contribute to
complex mining conditions requiring advanced monitoring systems like SBAS-InSAR for
deformation tracking. Figure 1 shows the geographical location and surface conditions of
the study area.

DATA SOURCES AND METHODOLOGY

Data sources

This study collected ascending synthetic aperature radar (SAR) data from June 23, 2023 to
August 4, 2024 and descending SAR data spanning June 21, 2023 to August 2, 2024. The
descending data is used to verify the reliability of ascending monitoring results. The
ascending dataset comprises 34 scenes of Sentinel-1A IW-mode images with 20 m spatial
resolution. Its 12-day revisit cycle ensures temporal consistency for deformation
monitoring. Descending data contains 17 scenes of RADARSAT-2 XF-mode images
achieving 5 m resolution. The 24-day revisit cycle provides complementary observation
angles. In addition, Precise orbit files were collected to eliminate orbital errors through
ESA’s Precise Orbit Determination (POD) service. A total of 30 m digital elevation model
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Figure 1 Location and current status of the study area: (A) Shanxi province; (B) DEM of Yangquan
City; (C) study area (red box), Yinying Mining Boundary (orange line). Satellite image base map from
TianDiTu (www.tianditu.gov.cn). Full-size K&] DOT: 10.7717/peerj-cs.3327/fig-1

(DEM) data were obtained to remove topographic phase effects. Table 1 shows the
comparison between the two types of data.

SBAS-InSAR

SBAS-InSAR (Small Baseline Subset InSAR) is a time-series InSAR analysis method using
multiple master images, Berardino et al. (2002) proposed this technology in 2002. Figure 2
shows the SBAS-InSAR workflow. The core principle involves organizing numerous SAR
datasets into interferometric subsets. Each subset contains multiple master images. All
interferometric pairs in a subset maintain baseline lengths below critical baseline
thresholds. The time baselines are also minimized. This approach resolves decorrelation
issues in both temporal and spatial dimensions. The method then applies minimum norm
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Table 1 Sentinel-1A data parameters and RADARSAT-2 data parameters.

Sensor Orbital direction Revisit time Polarization mode Imaging mode Resolution
Sentinel-1A Ascending 12d VV + VH w 5m *20m
RADARSAT-2 Descending 24d HH XF 5m*5m
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Figure 2 SBAS-InSAR processing flow chart. Full-size k&l DOTL: 10.7717/peerj-cs.3327/fig-2

criteria for deformation velocity estimation. Singular value decomposition (SVD) helps
obtain time-series deformation of coherent targets. It also generates average deformation
rate maps (Li, Xu & Li, 2022). SBAS-InSAR achieves reliable monitoring results with
relatively small datasets. This technology proves particularly effective for monitoring
surface deformation in mining areas.

BO-Prophet prediction model

This study builds BO-Prophet and BO-LSTM models using PyCharm and Python 3.8,
primarily employing the Pandas, NumPy, Kats and Ax libraries. The BO-Prophet model
combines Bayesian optimization and the Prophet forecasting framework. Facebook
released Prophet as an open-source time series prediction tool in 2017 (Taylor ¢» Letham,
2018).
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The Prophet model uses an additive regression framework. It consists of three core
components: trend, seasonality, and holiday effects. This structure enables Prophet to
handle diverse forecasting problems with unique characteristics (Chang, Yang ¢» Zhang,
2025; Cheérif et al., 2023). It effectively captures trend changes, seasonal patterns, holidays,
and irregular events in time series data. The basic formula of the Prophet model is:

y(t) = g(t) +s(t) + h(t) + &. (1)

In the formula, g() represents the trend component, modeling non-periodic changes
using piecewise linear or logistic regression; s(¢) denotes the seasonality component,
capturing periodic fluctuations like weekly or yearly cycles; h(t) accounts for holiday
effects, addressing impacts from special events; ¢, is the error term, and it is used to
represent unpredicted random fluctuations.

The logistic growth model employs a sigmoid function to describe growth patterns. The
logistic function (sigmoid) is expressed as:

_ c()
1+ exp (— (k + a(t)Té) (t — (m + a(t)Ty))) .

In the formula, C(t) indicates the trend’s saturation capacity; k controls the growth rate;

g(t) 2)

m represents the base inflection point parameter of the trend; a(t) serves as the trend’s
changepoint indicator matrix; ¢ represents the trend slope adjustment coefficient; y
represents the trend inflection point time adjustment coefficient.

Prophet incorporates Fourier series to model periodic variations. This approach
represents seasonality through linear combinations of sine and cosine functions:

S(t) = f:(a cos (?) + by sin <¥)) — x(t)p. 3)

n=1

In the formula, a,, b, represent the Fourier coefficients; P indicates the period length;
x(t) serves as the Fourier basis matrix; f§ denotes parameters following a normal
distribution:  ~ N (0, o%); A larger o amplifies seasonal effects, while a smaller o reduces
them.

Hyperparameters are parameters set before training machine learning models. Their
values cannot be learned automatically during training. Researchers select these values
based on experience or experimentation (Bischl et al., 2023). Manual hyperparameter
adjustment is time-consuming and expertise-dependent. BO is an algorithm for finding
optimal solutions to functions. It efficiently explores parameter spaces. This method
identifies strong parameter combinations with minimal trials and time. It is widely used for
hyperparameter tuning in machine learning (Snoek, Larochelle & Adams, 2012). BO builds
a probabilistic model of the objective function. This model guides the search process. The
goal is to find parameter configurations that optimize the objective function. The
algorithm handles complex objective functions with multiple peaks or non-convex shapes.
It performs effectively in many practical applications (Shahriari et al., 2015).
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Figure 3 Flowchart of Prophet prediction model algorithm based on Bayesian optimization.
Full-size Kal DOL: 10.7717/peerj-cs.3327/fig-3

The BO-Prophet framework applies BO to tune Prophet hyperparameters, as shown in
Fig. 3. The process begins by randomly sampling an initial set of hyperparameters. These
hyperparameters initialize the model configuration. The framework then evaluates the
model training outcomes using predefined metrics. A Gaussian process model integrates
historical hyperparameter evaluations and their performance results. An acquisition
function analyzes this probabilistic model. It selects the next hyperparameter set with the
highest potential performance improvement. The system iteratively repeats
hyperparameter selection, model retraining, and performance evaluation. This loop
continues until meeting predefined termination criteria (e.g., maximum iterations or
convergence thresholds).

LSTM prediction model

This study compares the LSTM neural network prediction model with the Prophet model.
LSTM represents a specialized type of recurrent neural network (RNN) (Yu et al., 2019).
Compared to conventional RNNs, LSTM demonstrates superior performance in
processing time-series data with extended intervals between critical events. The LSTM
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architecture incorporates memory cells and three gating units. Memory cells store
historical information systematically. The input gate regulates the integration of current
input data into memory cells. The forget gate manages the elimination of irrelevant
information from memory cells (Smagulova ¢ James, 2019). The output gate controls the
transmission of stored information to subsequent layers. These gating mechanisms
collectively preserve crucial temporal patterns in sequences. They effectively address
long-term dependency challenges in time-series analysis. Additionally, this structure
resolves gradient-related instability problems common in standard RNNs. Figure 4
illustrates the memory unit configuration of the LSTM neural network.

The memory unit structure of LSTM neural networks can be mathematically
represented by the following equations:

fi = o(Wylh1,x] + by) (4)
ir = o(Wilhi—1, x| + b;) (5)
C; = tanh (We[hy_1, %] + bc) (6)
Ct:_ft*ct—l+it*6t (7)
0y = a(Wo[hi—1, %] + bo) (8)
h; = o; x tanh (C). 9)

In the formulas, the notation [h;_, x;] represents the concatenated matrix of the
previous hidden state h;_; and current input x;. The variables f;, i;, and o; denote the forget
gate, input gate, and output gate values at time step t. The operator ¢ indicates the Sigmoid
activation function. Wy, W; and W, are the weight matrices of the forget gate, input gate
and output gate, respectively; W is the weight matrix for the candidate memory cell C,,
acting on the concatenated matrix [, x]. by, b; and b, are the bias terms of the forget
gate, input gate and output gate, respectively; bc is the bias term for the candidate
memory cell C;. C; represents the memory cell state at time step t, which retains
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long-term information by integrating the previous cell state C;_; and the candidate cell
state ét.

SBAS-INSAR MONITORING RESULTS AND ANALYSIS

Mine surface subsidence monitoring and identification

This study processed 34 Sentinel-1A images covering the study area (June 23, 2023-August
4, 2024) using SBAS-InSAR technology. To effectively reduce temporal and spatial
decorrelation, the temporal baseline threshold was set to 120 days. The spatial baseline
threshold was controlled within 3% of the critical baseline. This configuration generated
134 interferometric pairs (Fig. 5).

During data processing, a coherence threshold of 0.3 was applied. This threshold
selected high-coherence points to ensure stability for subsequent analysis. A 30-m
resolution DEM of the study area was introduced. This DEM removed topographic phase
contributions. Goldstein filtering optimized the interferogram quality. Phase unwrapping
was completed using the minimum cost flow (MCF) method.

Atmospheric delay and residual topographic errors were addressed through two
SBAS-InSAR inversion iterations. The first inversion separated atmospheric phase from
deformation signals. The second inversion further corrected residual errors. This iterative
approach effectively enhanced deformation extraction accuracy.

Vertical deformation dominates surface movements in mining areas. This dominance
justifies converting line-of-sight (LOS) displacements to vertical deformations. The
processing yields annual average vertical deformation rate and cumulative settlement time
series for Yinying Coal Mine.
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Figure 6 displays the annual deformation rate map of the study area from June 23, 2023
to August 4, 2024. The figure reveals annual deformation rate ranging from —115 to
28 mm/yr. The maximum subsidence rate reaches —115 mm/yr. Four distinct subsidence
areas are identified in the study area. Subsidence areas A and B are located within the
mining boundaries of Yinying Coal Mine. Subsidence areas C and D occur in adjacent
mining areas. Area A covers 1.04 km?, and Area B spans 0.64 km®. Field investigations
confirm both areas are active coal mining zones. The observed subsidence patterns align
with on-site geological conditions.

Reliability analysis of monitoring results

To validate the reliability of ascending-orbit SBAS-InSAR monitoring results, this study
employed dual validation methods: cross-validation using ascending/descending data and
comparison with Global Navigation Satellite System (GNSS) measurements (Tran et al.,
2020; Chen et al., 2025). First, 17 descending-orbit RADARSAT-2 images (June 21, 2023 to
August 2, 2024) were processed using SBAS-InSAR with consistent parameters (120-day
temporal baseline, 3% spatial baseline threshold, 0.3 coherence threshold), generating 36
interferometric pairs with the December 30, 2023 image as the master image. Processing
steps followed the same workflow as “Mine Surface Subsidence Monitoring and
Identification”, including DEM-based flat-earth phase removal, Goldstein filtering, MCF
unwrapping, and two inversion iterations for error correction.

Comparative analysis extracts 3,000 high-coherence points from subsidence areas.
Figure 7 demonstrates agreement between ascending (Sentinel-1A) and descending
(RADARSAT-2) orbit SBAS-InSAR results. The Pearson correlation coefficient reaches
0.946. This high consistency confirms the high consistency between both datasets.

Furthermore, we collected GNSS monitoring data from four stations. These stations
were distributed across the subsidence area in the eastern part of the mining area and
residential area west of Region B. We compared GNSS-derived cumulative subsidence time
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Figure 8 Comparison of SBAS-InSAR and GNSS results. Full-size k&l DOT: 10.7717/peerj-cs.3327/fig-8

series against SBAS-InSAR results. Figure 8 shows the comparisons: The maximum
absolute errors between both monitoring results were 4.684, 3.328, 3.194, and 2.462 mm
for points G1, G2, G3, and G4, respectively. GNSS and InSAR deformation trends showed
good agreement.

Both validation approaches confirm SBAS-InSAR result reliability. This technique is
suitable for mining subsidence monitoring applications.
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DISCUSSION

Characteristics of subsidence basin

To further analyze the deformation characteristics and patterns of the subsidence basin,
this study selects Area B as the primary research region. Area B exhibits moderate
cumulative subsidence and average subsidence rates. Although Area D shows larger
surface subsidence values, mining activities in Area D ceased around March 2024. Within
this study’s monitoring period (June 23, 2023 to August 4, 2024), mining only occurred
during the first 8 months in Area D. The subsequent 5 months represented a residual
subsidence phase. Consequently, Area D provides an insufficiently long effective
subsidence time series. Capturing the complete characteristics of surface subsidence during
active mining is difficult with such short data.

In contrast, Area B is the core mining area of the Yinying Coal Mine from 2023 to 2025.
Area B offers a sufficiently long time series within the monitoring period. Furthermore, the
mining advance information for the 150,302 working face within Area B is complete. This
complete data enables better comparison with SBAS-InSAR monitoring results. Such
comparisons better reflect the relationship between subsidence and mining progress.

Moreover, the subsidence characteristics in Area B closely align with the overall
subsidence pattern of the mining region. This alignment effectively represents typical
subsidence behavior under standard mining conditions. Selecting Area B for
prediction enables a more accurate linkage between mining activity and the subsidence
process. It also provides a reliable scenario for validating the prediction model’s
practicality. Consequently, results obtained from Area B offer greater reference value for
subsidence early warning. Figure 9 illustrates the time-series subsidence plot of this
subsidence basin.

The plot demonstrates progressive expansion of subsidence from northeast to
southwest. Subsidence area B exhibits continuous downward movement between June 23,
2023 and August 4, 2024. A profile line is established along the mining face orientation.
Twenty-five sampling points are selected at 32-m intervals from southwest to northeast
along this profile. The SBAS-InSAR monitoring results provide cumulative subsidence
time series at these points. These time-series data generate the temporal cumulative
subsidence curve along the profile line. Figure 10A displays the time-series cumulative
subsidence curve of the profile line derived from this analysis. Furthermore, six
characteristic points (P1-P6) were selected at uniform 75-m intervals along the profile line.
These points comprehensively cover the subsidence basin’s gradient zone from the center
to the margin. P1 and P2 are located at the subsidence center. This area experiences the
maximum mining impact, reflecting core extraction zone deformation. The surface cover
consists of open woodland. This cover lacks dense root consolidation, making it highly
susceptible to subsidence from coal seam extraction. P3, P4, and P5 lie within the
subsidence transition zone. Moderate subsidence here illustrates the subsidence funnel
expansion process. The surface cover is shrubland. Dense shrub roots provide topsoil
consolidation, mitigating coal mining impacts. P6 is positioned at the subsidence margin.
Minor subsidence here reflects indirect mining disturbance. The surface cover is farmland.
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Loose soil structure and severe erosion make this farmland vulnerable to mining-induced
subsidence. These six points form a uniform distribution along the working face’s
strike-direction profile line. They collectively represent the subsidence center, transition
zone, and margin area. This distribution effectively captures Area B’s subsidence patterns.

Figures 9 and 10 reveal the evolution of surface subsidence in area B corresponding to
the advance of the 150,302 mining face. The mining face advanced from northeast to
southwest starting in June 2023. By July 17, 2023, SBAS-InSAR monitoring detected initial
subsidence near the northeastern end of the face. This subsidence formed a small
funnel-shaped area with a maximum cumulative subsidence of approximately —20 mm.
The surface response was initial at this stage due to the short advance distance.
Subsequently, the mining face continued advancing. By October 9, 2023, SBAS-InSAR
monitoring showed the subsidence area expanding southwestward, covering the extracted
portion of the face. The maximum cumulative subsidence increased to —36 mm, and the
subsidence funnel elongated along the face strike. Simultaneously, slight subsidence
appeared in surrounding areas affected by indirect mining disturbance.

By March 13, 2024, the mining face had advanced to its central section. SBAS-InSAR
monitoring indicated continued subsidence across the affected area. The maximum
cumulative subsidence reached —63 mm. However, the spatial extent of the subsidence area
showed no significant increase compared to February 6, 2024. From March 13, 2024, to
August 2024, the mining face advanced further towards the southwestern end.
SBAS-InSAR monitoring then showed the subsidence area fully covering the mining face
and a surrounding zone within 300 m. The subsidence center moved approximately 80 m
southwestward. The average subsidence value of the subsidence center is =78 mm.
Subsidence continued within the existing surrounding disturbance zone, but no significant
new subsidence areas emerged.
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Table 2 Parameter search spaces for Prophet and LSTM.

Prophet LSTM

Parameter name Search space Parameter name Search space
seasonality_prior_scale 0, 1) hidden_size (1, 64)
weekly_seasonality (True, False) time_window (1, 25)
changepoint_prior_scale 0,1) num_epochs (1, 128)
changepoint_range (0.4, 1) num_layers 1, 3)
seasonality_mode (multiplicative, additive)

Furthermore, Fig. 10A shows higher subsidence rates occurred in the northeastern part
of the face between June 2023 and February 6, 2024. After the mining advance reached the
central section on March 13, 2024, the subsidence rate decreased in the northeastern part
but increased in the southwestern part. This differential subsidence rate further
demonstrates the direct link between surface movement and mining face activity.

In summary, the direction of subsidence area expansion and the migration path of the
subsidence center in Area B, monitored by SBAS-InSAR, synchronized precisely with the
mining face advance. SBAS-InSAR also clearly captured the subsidence response in areas
indirectly disturbed by mining. These observations confirm the spatial and temporal
correlation between mining activity and surface deformation.

Bayesian optimization-based hyperparameter tuning
To optimize hyperparameters for Prophet and LSTM models, this study randomly selects
10 high-coherence subsidence points in the study area. SBAS-InSAR-derived time-series
subsidence data are acquired for these points. The first 27 steps form the training set, while
the last seven steps serve as the testing set. Mean absolute error (MAE) is selected as the
evaluation metric for prediction performance.

The parameter search spaces for Prophet and LSTM are defined as specified in
Table 2. The Bayesian optimization framework yields the following optimal
configurations: Prophet (seasonality prior scale = 0.008, weekly seasonality = True,
changepoint prior scale = 0.69, changepoint range = 0.5, seasonality mode = ‘additive’);
LSTM (hidden size = 17, time window = 18, num epochs = 61, num layers = 2).

Model prediction and results analysis

Characteristic point prediction and model performance comparison

This study extracted time-series cumulative subsidence data of six characteristic points in
subsidence area B using SBAS-InSAR technology. The first 27 steps of data for each
characteristic point served as the training set, and the subsequent seven steps as the
validation set. The Prophet model and LSTM model with hyperparameter optimization
were employed to predict subsidence for the subsequent 12 steps, The first seven steps of
the prediction results were compared with the validation set, while the last five steps were
used to demonstrate the future deformation trends. Two accuracy metrics were introduced
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Figure 11 Comparison of prediction results of each prediction model for each characteristic point.
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to evaluate model performance: MAE and root mean square error (RMSE). The formulas
are defined as follows:

1 n
MAE:;Z‘%—)A/J (10)
i=1

(11)

In these formulas, y; represents measured values, y; denotes predicted values. Using
MAE and RMSE, this study systematically compared the Prophet and LSTM models. The
analysis revealed performance differences in subsidence prediction, providing a scientific
basis for model selection.

Figure 11 illustrates the comparative performance of the prediction models. The
BO-Prophet model exhibits specific error distribution characteristics across seven
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Table 3 Comparison table of the accuracy of each prediction model.

Point BO-LSTM BO-Prophet
MAE/mm RMSE/mm MAE/mm RMSE/mm
P1 3.08 4.16 2.18 2.52
P2 2.52 3.65 2.69 3.26
P3 2.96 3.81 2.46 2.85
P4 2.59 3.44 1.90 2.31
P5 2.34 3.52 1.25 1.45
P6 2.69 341 1.63 1.79
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Figure 12 Correlation analysis between SBAS InSAR and prediction results: (A) 12d; (B) 24d; (C) 48d; (D) 72d; (E) 84d; (F) R? changes over
different time spans. Full-size K&] DOT: 10.7717/peerj-cs.3327/fig-12

Yu (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.3327 18/24


http://dx.doi.org/10.7717/peerj-cs.3327/fig-12
http://dx.doi.org/10.7717/peerj-cs.3327
https://peerj.com/computer-science/

PeerJ Computer Science

113°30'0"E 113°30'30"E 113°3l0‘0"E 113°39‘30“E 113°30'0"E 113°30'30"E
N N N
-
2 Al 47 A
2 &l S
0 o« 0
o o L
o~ ©~ ~
on o o
Y
&+
Z z & ’
54 > 54
o0 0P 0
o 4 o
=l o 0.2 0.4 km < =l o 0.2 0.4 km
[ [
(A) ©
113°30'0"E 113°30'30"E 113°30'0"E 113°30'30"E
MAE(mm)
z z -0 -2
ISy & Q
% 50
¢ Z 2 -4
] o
4-7
[17-9
[19-11
Z z
2 5 E11-13
af 2
& & Bl 13-15

(D)

(E)

Figure 13 The spatial distribution map of prediction errors in area B. (A) 12d; (B) 24d; (C) 48d; (D) 72d; (E) 84d.

Full-size K&l DOT: 10.7717/peerj-cs.3327/fig-13

prediction periods for six characteristic points. The maximum absolute error values for
each characteristic point are 4.35, 5.38, 4.45, 3.72, 2.33, and 2.63 mm. Notably, the
maximum absolute error for all characteristic points (except P4) concentrates in the third
prediction step. This trend aligns with significant subsidence observed in Area B from June
17 to June 29, 2024.

The minimum absolute errors of the BO-Prophet model at six points are 0.59, 0.09, 0.79,
0.15, 0.27, and 0.48 mm. These values confirm high consistency between the BO-Prophet
predictions and SBAS-InSAR monitoring data. Visual comparisons demonstrate strong
agreement between predicted results and monitoring data.

According to the error indicators presented in Table 3, the BO-Prophet model achieves
MAE values of 2.18, 2.69, 2.46, 1.90, 1.25, and 1.63 mm across the six characteristic points.
The RMSE values are 2.52, 3.26, 2.85, 2.31, 1.45, and 1.79 mm. Compared to the BO-LSTM
model, the BO-Prophet model shows lower errors in both MAE and RMSE. These results
validate the higher accuracy and stability of the BO-Prophet model in predicting surface
subsidence.

To comprehensively assess prediction accuracy, the BO-Prophet model generated
subsidence forecasts across area B. These predictions were compared with SBAS-InSAR
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measurements through correlation analysis. Figure 12 demonstrates strong consistency
between predicted values and SBAS-InSAR values across multiple time spans (12d, 24d,
48d, 72d, 84d). All correlation coefficients exceed 0.96, confirming the model’s
effectiveness in large-scale subsidence prediction. Further analysis examines correlation
coefficient variations under different time spans. As shown in Fig. 12F, the coefficients
gradually decrease over time. This trend indicates diminishing prediction accuracy with
increasing forecast duration.

Distribution of errors

The study investigates spatial error patterns by overlaying BO-Prophet predictions with
SBAS-InSAR measurements in area B. This process absolute error distribution map.
Figure 13 reveals two critical trends. First, prediction errors progressively increase over
time. Second, errors predominantly cluster in the northwestern sector of area B. This area
corresponds to the marginal slow subsidence zone of the depression basin. These findings
demonstrate BO-Prophet’s superior short-term forecasting capability. However, error
accumulation becomes evident with extended prediction horizons. The spatial error
concentration suggests systematic biases in specific geological subregions.

CONCLUSIONS

This study focused on the Yinying Coal Mine, utilizing SBAS-InSAR technology to obtain
the annual average subsidence rate results and the time-series cumulative subsidence
results of Yinying Coal Mine. Then, the study applied the BO-LSTM and BO-Prophet
prediction models to forecast subsidence in the mining area, with each model implemented
independently for comparative analysis. Key findings are summarized below:

(1) SBAS-InSAR monitoring results: The SBAS-InSAR monitoring results revealed an
annual average subsidence rate of up to 115 mm/yr and a maximum cumulative
subsidence of 121 mm between June 23, 2023, and August 2, 2024. Both values fell
within normal ranges for mining-induced subsidence.

(2) Validation using multi-track data and GNSS: The reliability of SBAS-InSAR results
was validated through independent processing of multi-track datasets (ascending and
descending tracks) and comparison with GNSS measurements. A Pearson correlation
coefficient of 0.946 confirmed high consistency between ascending and descending
datasets. Comparisons with four GNSS stations showed maximum absolute errors of
4.684, 3.328, 3.194, and 2.462 mm, with good agreement in deformation trends.

(3) Spatial analysis of subsidence area B: Longitudinal profile analysis of Subsidence area B
showed continuous growth in subsidence over time. The deformation exhibited a distinct
funnel-shaped pattern, aligning with typical mining-induced subsidence characteristics.

(4) A comparative analysis evaluates two prediction models using standard performance
metrics. The BO-Prophet (MAE = 2.02 mm, RMSE = 2.36 mm) demonstrates superior
prediction accuracy over the BO-LSTM (MAE = 2.70 mm, RMSE = 3.67 mm). Further
examination confirms high consistency (R* > 0.96) between BO-Prophet predictions
and SBAS-InSAR monitoring results; BO-Prophet has a better prediction effect in
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short-term predictions. This integration enables effective monitoring and forecasting
of mining-induced subsidence. Implementing BO-Prophet with SBAS-InSAR
technology enhances early warning systems for mining hazards. It supports disaster
prevention and mitigation strategies in mining areas.

Future studies will focus on enhancing the model’s robustness, generalizability, and
rigor through integrated efforts. We will expand cross-site validation in diverse mining
areas—including other Loess Plateau regions, high-steep mountain zones, and major
coal-producing regions in Shanxi, Shaanxi, and Inner Mongolia—to verify its applicability
beyond Yinying. We will also compare Bayesian optimization with alternatives
(e.g., genetic algorithms) to identify the most robust hyperparameter tuning strategy for
varied scenarios. Additionally, we will strengthen multi-source validation by optimizing
GNSS deployment and integrating supplementary ground data (leveling, uncrewed aerial
vehicle (UAV) photogrammetry) to boost reliability of both monitoring and prediction.
Finally, we will advance the framework with physics-constrained deep learning and
spatiotemporal attention mechanisms to address long-term error accumulation and
sensitivity to geological heterogeneities. These efforts will refine early warning capabilities,
support data-driven disaster prevention, and promote sustainable mining practices.
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