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ABSTRACT
Detecting plant objects from uncrewed aerial vehicle (UAV) aerial images provides
crucial information for applications such as precision agriculture, ecological
monitoring, and urban green space management. Optimizing object detection
models for this task requires addressing unique challenges, including small object
sizes, complex backgrounds, and ensuring lightweight architectures suitable for UAV
systems with limited computational resources. YOLO11, the latest official release in
the You Only Look Once (YOLO) series, serves as the foundation for our study,
where we propose three key modifications to enhance its performance for
UAV-based plant detection. First, we add a P2 detection head and remove the P5
detection head to better leverage high-resolution features for small object detection
while reducing computational cost. Second, we integrate the convolutional block
attention module into the Neck, enhancing multi-scale feature fusion and focusing
on critical plant-related features. Third, we replace the original Complete
Intersection over Union (CIoU) Loss with Shape-Intersection over Union
(Shape-IoU) Loss, improving bounding box regression by incorporating geometric
consistency. Additionally, we combine four valuable single-class plant detection
datasets into a larger, multi-class dataset, providing a more comprehensive
benchmark for UAV-based plant detection. Experimental results on this benchmark
indicate a notable reduction in parameter count and computational cost, with
accuracy comparable to or marginally higher than state-of-the-art YOLO-based
baselines, demonstrating effectiveness in lightweight and resource-constrained
scenarios.
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INTRODUCTION
The use of uncrewed aerial vehicle (UAV) imaging technology to capture real-time aerial
images of the Earth’s surface and detect plant species, locations, and quantities has valuable
applications in precision agriculture, ecological protection and monitoring, disaster
assessment, and urban green space management (Toscano et al., 2024; Lyu et al., 2022; Khan,
Gupta & Gupta, 2022; Li et al., 2025). To achieve this, a growing interdisciplinary research
focus has emerged, combining deep learning with UAV-based plant detection (Lv et al.,
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2024; Bai et al., 2023; Jackulin & Murugavalli, 2022). This field leverages large-scale plant
image datasets to train deep learning models (Singh et al., 2020; Zou et al., 2020; Lu et al.,
2021; Li et al., 2023; Lu et al., 2023; Ye & Yu, 2024), which can be integrated into UAV
control systems to identify key plant features (such as maize tassels or cotton bolls) from
aerial images, allowing for accurate assessment of plant growth conditions and distribution.

Compared to conventional object detection tasks, plant detection in aerial imagery
presents unique challenges for deep learning model optimization (Velusamy et al., 2021;
Kaur & Singh, 2022; Cheng et al., 2023; Zou et al., 2023). For example, in the Cotton Boll
Detection Augmented (CBDA) dataset (Lu et al., 2023), the cotton bolls to be detected and
counted are often partially obscured by dense foliage or appear in tightly clustered
formations, leading to ambiguous object boundaries. Detection tasks typically occur in
natural environments with complex and diverse backgrounds, such as leaves and branches.
Additionally, the small size of the target objects, especially in UAV-captured images,
means they occupy very limited pixels in the frame. These distinct visual characteristics
and task-specific challenges introduce unique difficulties in dataset construction and
model optimization.

To facilitate research in this area, various plant detection datasets have been developed
(Singh et al., 2020; Zou et al., 2020; Lu et al., 2021; Li et al., 2023; Lu et al., 2023; Ye & Yu,
2024). In terms of deep learning model design, the dominant approaches can be classified
into two-stage detectors (Du, Zhang & Wang, 2020), known for high detection accuracy,
and single-stage detectors (Wang et al., 2021), which balance accuracy and computational
efficiency. Since the computational resources in UAV control systems are often limited
(Cao et al., 2023), the single-stage You Only Look Once (YOLO) family of detectors
(Redmon et al., 2016; Sohan et al., 2024), known for its real-time performance and
detection accuracy, has emerged as a promising solution, gaining favor among researchers.
YOLO11 is the latest official release in the YOLO series, while YOLOv8 is the previous
official stable version (Ultralytics, 2023, 2025b; Sohan et al., 2024; Khanam & Hussain,
2024). Additionally, Lu et al. (2023) introduced YOLOv8-UAV, which represents the state
of the art in UAV-based plant detection, and leveraged four valuable single-class datasets
to advance the field (Lu et al., 2023; Li et al., 2023; Ye & Yu, 2024). However, the relatively
small scale and single-class nature of these datasets limit their ability to fully capture the
diversity and complexity of UAV-based plant detection tasks, highlighting the need for
further dataset integration and expansion.

To sharpen the problem and its motivation, we note two persistent obstacles. First, most
available datasets targeting small-object plant detection from UAV imagery are single-class
and modest in scale, which hinders standardized, cross-crop evaluation and controlled
ablation. Second, although YOLO11 is the latest official iteration of the YOLO family,
further lightweighting tailored to resource-constrained UAV deployments remains
feasible. This motivates task-oriented adjustments for small-object plant detection that
maintain a compact design while delivering accuracy comparable to state-of-the-art
methods under reduced compute and memory budgets.

Building on these research trends and the stated motivation, our study proposes several
optimizations tailored to the unique challenges of UAV-based plant detection, using the
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modular architecture of YOLO11. Specifically, we introduce three key improvements to
the YOLO11 framework. First, we enhance small object detection by adding a P2 detection
head and removing the P5 detection head, a modification referred to as P2 Added and P5
Removed (P2AR). This adjustment allows the model to better leverage high-resolution,
low-level feature maps for detecting small plant targets while reducing computational cost.
Second, we integrate the Convolutional Block Attention Module (CBAM) (Woo et al.,
2018) into the Neck, improving the feature fusion process and enabling the model to focus
on critical plant features while suppressing irrelevant background information. Third, we
replace the original Complete Intersection over Union (CIoU) Loss with
Shape-Intersection over Union (Shape-IoU) Loss (Zhang & Zhang, 2023) to improve
bounding box regression by incorporating geometric consistency, particularly for targets
with varying shapes and sizes. In addition to these structural enhancements, we make a
further contribution by combining four recently published, smaller-scale plant detection
datasets (Lu et al., 2023; Li et al., 2023; Ye & Yu, 2024) into a single, larger-scale dataset
named Plant4. This dataset integrates diverse plant categories and provides a more
comprehensive foundation for training and evaluating models. Ablation studies,
comparisons with state-of-the-art methods, and a transfer learning study conducted on the
Plant4 dataset demonstrate the effectiveness and robustness of our proposed approach.

Our contributions are four fold:

. We propose three key optimizations to the YOLO11 architecture to address the unique
challenges of UAV-based plant detection. Specifically, we introduce the P2AR
modification to improve small object detection, integrate the CBAM into the Neck to
enhance feature fusion, and replace the original CIoU Loss with Shape-IoU Loss to
improve bounding box regression by incorporating geometric consistency.

. We combine four single-class plant detection datasets to form Plant4, a larger multi-class
benchmark. This integration creates a more comprehensive and diverse benchmark for
UAV-based plant detection tasks, leveraging the strengths of the original datasets while
addressing their limitations in scale and diversity.

. We validate the effectiveness of our proposed approach through extensive ablation
studies, comparisons with state-of-the-art methods, and a transfer learning study.
Results indicate a notable reduction in parameter count and computational cost, with
accuracy comparable to or marginally higher than state-of-the-art methods.

. We discuss the broader implications and limitations of our work, offering insights for
future research on UAV-based plant detection and model optimization.

RELATED WORK
Object detection and UAV-oriented adaptions
Object detection is a fundamental research area in computer vision, aiming to accurately
and efficiently identify the categories and locations of objects within an image (Trigka &
Dritsas, 2025; Dalal & Mittal, 2025). Contemporary detection methods can be broadly
categorized into two paradigms: two-stage detectors and one-stage detectors (Alhashmi &
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Al-azawi, 2025). Two-stage frameworks first generate a set of candidate regions of interest
through a region proposal stage, and subsequently refine these proposals in a classification
and regression stage to determine object categories and bounding boxes. In contrast,
one-stage detectors treat object detection as a unified task that simultaneously performs
classification and localization across the entire image (Kang et al., 2025; Alhashmi & Al-
azawi, 2025). Owing to these design characteristics, two-stage detectors are renowned for
their accuracy but incur substantial computational and memory costs, making them more
suitable for resource-rich environments. One-stage detectors, by comparison, are
characterized by their lightweight efficiency, which makes them particularly well suited for
deployment on resource-constrained platforms such as UAVs (Laghari et al., 2024).

With the rapid advancement of UAV imaging technologies in recent years, object
detection from UAV imagery has emerged as an active research topic (Leng et al., 2024;
Hua & Chen, 2025). UAV-based detection has demonstrated broad and valuable
applications in diverse domains, including smart city management (Shah et al., 2024),
traffic monitoring (Butilă & Boboc, 2022), emergency response (Khan, Gupta & Gupta,
2022), and precision agriculture (Toscano et al., 2024). Among the available detection
paradigms, the YOLO family has attracted particular attention due to its balance between
lightweight efficiency and detection accuracy, which makes it especially well suited for
deployment on UAV platforms with limited computational resources (Jiao & Abdullah,
2024). Nevertheless, despite these advances, further optimization remains necessary when
adapting YOLO to specific scenarios and tasks where both lightweight design and high
accuracy are critical (Dahri et al., 2024; Luan et al., 2024; Hui, Wang & Li, 2024).

In this context, our research focuses on enhancing the latest official YOLO release,
YOLO11 (Ultralytics, 2025b), by tailoring it to UAV-based plant detection tasks, where the
captured imagery often contains objects with distinctive characteristics such as small sizes,
dense distributions, and frequent occlusions (Lu et al., 2023). These challenges demand
specialized optimization, and our work emphasizes achieving a better trade-off between
lightweight efficiency and detection accuracy under such conditions.

Plant object detection in UAV imagery
UAV-based plant detection at the intersection of aerial imaging and deep learning has
drawn sustained attention. Early momentum came from plant disease detection, with
PlantVillage (Mohanty, Hughes & Salathé, 2016) and PlantDoc (Singh et al., 2020)
providing widely used benchmarks that catalyzed follow-up studies (Pandey et al., 2024;
Selvam & Eldho, 2024; Huan, Chen & Zhou, 2025). Building on this line of work, research
has increasingly focused on detecting specific plant in UAV imagery. Dedicated datasets
have been introduced for cotton boll detection via the Cotton Boll Detection Augmented
(CBDA) dataset (Lu et al., 2023), for rapeseed flower detection via the Rape Flower
Rectangular Box Labeling (RFRB) dataset (Li et al., 2023), for wheat ear detection via the
Wheat Ears Detection Update (WEDU) dataset (Lu et al., 2023), and for maize tassel
detection and counting via the MTDC-UAV dataset (Ye & Yu, 2024).
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On the algorithmic side, the YOLO family has emerged as a strong choice for
resource-constrained UAV platforms, offering competitive accuracy with lightweight
inference (Badgujar, Poulose & Gan, 2024). Closest to our study, Lu et al. (2023)
introduced YOLOv8-UAV, a YOLOv8-based variant targeting improved small-object
plant detection with an efficiency focus. In contrast, our work builds on the latest official
YOLO11 architecture (Ultralytics, 2025b) to achieve a smaller parameter count and lower
computational cost while maintaining competitive accuracy for UAV-based plant
detection. We further harmonize four public single-class UAV plant detection datasets (Lu
et al., 2023; Li et al., 2023; Ye & Yu, 2024) into a unified four-class benchmark named
Plant4. This consolidation increases class diversity and supports consistent ablation studies
and fairer comparisons across crop types within a single evaluation setting.

METHOD
Method overview
As shown in Fig. 1A, the original YOLO11 model consists of three main components:
Backbone, Neck, and Head, which are responsible for feature extraction, multi-scale
feature fusion, and object detection, respectively. While YOLO11 demonstrates strong
performance in its overall architecture, it still faces certain limitations when handling small
objects, multi-scale scenarios, and targets with complex geometric shapes. To address these

Figure 1 Comparison of the YOLO11 default configuration (A) and the proposed optimization (B). The dashed boxes highlight the mod-
ifications introduced in our method: (1) the addition of a P2 detection head and the removal of the P5 detection head in the Neck to enhance small
object detection; (2) the integration of CBAM modules in Top-Down Blocks 1 and 2 to improve feature attention; and (3) the replacement of CIoU
Loss with Shape-IoU Loss in the Head to achieve more accurate bounding box regression. Full-size DOI: 10.7717/peerj-cs.3322/fig-1
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challenges, we improved YOLO11 by focusing on three key aspects: detection head design,
feature enhancement, and loss function optimization. The resulting optimized framework
is illustrated in Fig. 1B.

As illustrated in the figure, the first proposed improvement involves removing the
original high-level P5 detection head and adding a P2 detection head to enhance the
detection capability for small plant targets while maintaining lower computational costs.
This modification is referred to as P2 Added and P5 Removed (P2AR) throughout the rest
of this article. The second improvement introduces the Convolutional Block Attention
Module (CBAM) (Woo et al., 2018) into the Neck to enhance the model’s robustness in
detecting small plant targets during the multi-scale feature fusion process. The third
improvement replaces the original CIoU Loss with Shape-IoU Loss (Zhang & Zhang, 2023)
to further improve detection accuracy.

The detailed descriptions of each improvement are provided in the following sections.

Adding P2 and removing P5 detection heads
In small object detection tasks, high-resolution shallow feature maps typically provide
richer positional information and finer details. Based on this observation, we introduced a
P2 detection head in the Top-Down Block 2 of the Neck to leverage lower-level
high-resolution feature maps, thereby enhancing the model’s ability to detect small objects.
Meanwhile, the low resolution and high computational cost of the P5 feature map make it
less effective for small object detection. Consequently, we removed the P5 detection head.
This design reallocates computational resources to the P2, P3, and P4 detection heads,
enabling more efficient and focused detection of small objects.

As illustrated in Fig. 1B, the addition of the P2 detection head was implemented based
on the original Neck structure. Specifically, the features from P3 were further upsampled
through the Top-Down Block 2, followed by a Cross-Stage Partial with kernel size 2 (C3k2)
module and convolutional layers to generate the feature map suitable for the P2 detection
head. The final output is the newly introduced P2 detection head. Additionally, to optimize
resource allocation, we removed the branch corresponding to the P5 detection head from
the Head module, thereby simplifying the overall computational complexity of the model.
This adjustment not only enhances the feature extraction capability for small objects but
also reduces unnecessary computational overhead.

Adding the P2 detection head is expected to significantly enhance the model’s ability to
detect high-resolution small objects, while the removal of the P5 detection head further
reduces computational overhead. Specifically, the P2 feature map provides the model with
finer-grained information, resulting in clearer object boundaries and more precise
localization. Moreover, this optimization strategy does not noticeably impact the detection
performance of medium and large objects, as the P3 and P4 detection heads are already
capable of effectively capturing the critical features of medium and large targets. The
effectiveness of this modification will be experimentally validated in the Experiment
section.
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Enhancing feature attention with CBAM
Attention mechanisms are widely employed in object detection, as they enable models to
focus on significant feature regions, thereby enhancing the representation capabilities of
convolutional neural networks. To improve performance on plant detection datasets, our
model integrates the Convolutional Block Attention Module (CBAM) (Woo et al., 2018)
into the upsampling process of the top-down pathway in YOLO11’s Neck section.

CBAM (Woo et al., 2018) is an attention module that enhances the model’s ability to
detect important regions by selectively focusing on crucial features in the input feature
map while suppressing less relevant ones. As illustrated in Fig. 2, CBAM comprises two
submodules: the channel attention module and the spatial attention module. In our model,
CBAM is applied following the upsampling operation, facilitating improved attention to
critical features, especially for small targets within the images.

In the channel attention module, spatial information from the input feature map F is
aggregated through average-pooling and max-pooling operations, producing two distinct
spatial context descriptors. These descriptors are independently processed by a shared
multi-layer perceptron, and their outputs are combined element-wise. The result is a
channel attention map Mc, which is generated using a sigmoid activation function. This
attention map is then multiplied with the input feature map F to yield a refined channel
feature map F0. The channel attention is formulated as:

McðFÞ ¼ r MLP AvgPoolðFÞð Þ þMLP MaxPoolðFÞð Þð Þ (1)

where r denotes the sigmoid function, MLP is a shared multi-layer perceptron, AvgPool

Figure 2 The architecture of CBAM. CBAM consists of the Channel Attention Module (A) and the
Spatial Attention Module (B). The Channel Attention Module enhances important channels by refining
feature maps based on spatial context, while the Spatial Attention Module emphasizes key spatial regions
by refining feature maps based on channel information. Full-size DOI: 10.7717/peerj-cs.3322/fig-2
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and MaxPool are the average-pooling and max-pooling operations respectively, and F is
the input feature map.

In the spatial attention module, the output feature map F0 undergoes both max-pooling
and average-pooling operations to produce two distinct feature maps. These feature maps
are then concatenated along the channel dimension and processed with a convolution
operation using a filter size of 7, resulting in a single-channel feature map. A spatial
attention map Ms is then generated through the application of a sigmoid activation
function. Finally, an element-wise multiplication between the spatial attention mapMs and
the feature map F0 produces the spatially refined feature map F00. The spatial attention is
computed as:

MsðFÞ ¼ r f ð7�7Þ ½AvgPoolðFÞ;MaxPoolðFÞ�ð Þ
� �

(2)

where f ð7�7Þ represents a convolution operation with the filter size of 7. Then the channel
attention map Mc is multiplied with the input feature map F:

F0 ¼ McðFÞ � F: (3)

Finally, the spatial attention feature map Ms is subjected to an element-wise
multiplication operation with the refined channel feature map F0:

F00 ¼ MsðF0Þ � F0: (4)

By incorporating the CBAM module into the top-down upsampling process within the
Neck section of the model, the proposed approach effectively leverages the contextual
information present in the image, resulting in enhanced feature representation of the target
objects. This integration significantly improves the model’s accuracy and robustness,
particularly in detecting small targets in plant object detection tasks.

Enhancing bounding box regression with Shape-IoU loss
Bounding box regression in object detection aims to align the predicted bounding boxes as
closely as possible with the ground truth boxes. The default loss function for bounding box
regression in YOLO11, CIoU Loss, primarily focuses on the alignment of position, size,
and overlap between the predicted and ground truth boxes. However, CIoU Loss lacks
sufficient consideration of the geometric consistency of bounding box shapes (e.g., aspect
ratios), which may result in suboptimal localization in complex scenarios, especially when
target shapes vary significantly. To address this limitation, we propose the introduction of
Shape-IoU Loss (Zhang & Zhang, 2023), which further improves regression precision. The
principle of CIoU and Shape-IoU Loss is illustrated in Fig. 3A.

Traditional IoU loss calculates the overlap between the predicted and ground truth
boxes, defined as:

IoU ¼ AreaðBp \ BgÞ
AreaðBp [ BgÞ (5)

where Bp and Bg denote the predicted and ground truth boxes, respectively. The CIoU loss
not only measures the overlap between the predicted and ground truth bounding boxes
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(IoU) but also considers the alignment of their center points and aspect ratios, adding a
shape loss term to reduce the difference in their aspect ratios. It is defined as:

LossCIoU ¼ 1� IoUþ q2ðb; bgtÞ
c2

þ av (6)

where the IoU represents the ratio of the intersection area to the union area between the
predicted and target boxes. In Eq. (6), b and bgt denote the center points of the predicted
and target boxes, respectively, q refers to the Euclidean distance between these center
points, and c is the diagonal length of the smallest enclosing box that covers both the
predicted and target boxes. The term a is a weighting factor used to balance the impact of
the aspect ratio penalty, which is defined as:

a ¼ v
ð1� IoUÞ þ v

(7)

where v is the aspect ratio penalty term, expressed as:

v ¼ 4
p2

tan�1 wgt

hgt

� �
� tan�1 w

h

� �� �2

: (8)

Here, wgt and hgt are the width and height of the target box, while w and h represent the
width and height of the predicted box, respectively.

While IoU measures the overlap, it fails to impose constraints on shape consistency. For
instance, when two boxes have identical IoU but significantly different aspect ratios, CIoU
Loss cannot effectively account for this discrepancy. At the same time, CIoU Loss does not
adequately take into account the effect of the inherent properties of the bounding box
itself, such as shape and scale, on the regression of the bounding box. As shown in Fig. 3B,
all the predicted and target boxes have same biases, with a shape bias of 0, but there are
differences in the IoU values. Differences in IoU values between the regions marked as A
and B in the figure are due to the different shapes of ground truth boxes, and differences in
IoU values between B and C are due to different scalings. In addition, the shape of target

Figure 3 The core principle of Shape-IoU Loss. (A) Comparison between CIoU Loss and Shape-IoU Loss. (B) Analysis of IoU variations under
different conditions. Full-size DOI: 10.7717/peerj-cs.3322/fig-3
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boxes has a more significant effect on the IoU values of small-scale bounding boxes
compared to large-scale bounding boxes.

Figure 3 illustrates the core concept of Shape-IoU Loss and its impact on bounding box
regression. The mathematical formulation begins with the calculation of horizontal and
vertical weight coefficients, ww and hh, which account for the geometric proportions of the
ground truth box:

ww ¼ 2� ðwgtÞscale
ðwgtÞscale þ ðhgtÞscale ; hh ¼ 2� ðhgtÞscale

ðwgtÞscale þ ðhgtÞscale : (9)

Here, wgt and hgt represent the width and height of the ground truth box, while scale
denotes a dataset-specific scaling factor that adjusts for the target’s relative size. These
coefficients effectively balance the contributions of horizontal and vertical directions in
subsequent computations.

To capture the alignment of shapes, the shape distance term distanceshape is introduced,
defined as:

distanceshape ¼ hh� ðxc � xgtc Þ2
c2

þ ww� ðyc � ygtc Þ2
c2

(10)

where ðxc; ycÞ and ðxgtc ; ygtc Þ are the center coordinates of the predicted and ground truth
boxes, respectively, and c represents the diagonal length of the minimal enclosing box. This
term penalizes deviations between the predicted and ground truth centers while taking into
account the geometric proportions of the target.

The shape alignment component, �shape, further refines the loss by quantifying
differences in aspect ratio consistency:

�shape ¼
X
t¼w;h

ð1� e�wtÞh; h ¼ 4 (11)

with ww and wh defined as:

ww ¼ hh� jw�wgtj
maxðw;wgtÞ

wh ¼ ww� jh�hgtj
maxðh;hgtÞ :

(
(12)

Finally, the Shape-IoU Loss is formulated as:

LShape�IoU ¼ 1� IoUþ distanceshape þ 0:5� �shape: (13)

This loss function simultaneously optimizes bounding box overlap and shape
consistency, ensuring superior geometric alignment between predicted and ground truth
boxes. Unlike traditional CIoU Loss, which cannot differentiate between boxes with the
same IoU but differing aspect ratios, Shape-IoU Loss introduces shape-based constraints,
enhancing the precision of bounding box predictions. This is particularly beneficial for
detecting small objects or those with highly variable aspect ratios, where accurate
localization is critical. By incorporating fine-grained error distribution into the regression
process, Shape-IoU Loss significantly improves performance in complex scenarios with
diverse object shapes.
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The introduction of Shape-IoU Loss improves bounding box regression accuracy
without significantly increasing computational overhead. Compared to CIoU Loss,
Shape-IoU Loss is better suited for handling targets with diverse geometric shapes,
enhancing the model’s generalization performance in varied scenarios. The experimental
results in subsequent sections will demonstrate the effectiveness of Shape-IoU Loss in
improving model performance.

EXPERIMENTS
Datasets
To enable the model to effectively learn diverse, multi-class, and cross-domain small object
plants as well as various scene characteristics, thereby improving its generalization
capability, we combined four publicly available single-class datasets into a larger
multi-class dataset. The four single-class datasets used in this process are the Cotton Boll
Detection Augmented (CBDA) dataset (Lu et al., 2023), the Maize Tassels Detection and
Counting UAV (MTDC-UAV) dataset (Ye & Yu, 2024), the Rape Flower Rectangular Box
Labeling (RFRB) dataset (Li et al., 2023), and the Wheat Ears Detection Update (WEDU)
dataset (Lu et al., 2023). The combined multi-class dataset is referred to as the Plant4
dataset in this study.

The statistics of the images and instances in each dataset are summarized in Table 1. As
shown in the table, the original four single-class datasets suffer from limited image
numbers, with three datasets containing only around 100 training images each. Moreover,
each of the original datasets includes only a single plant species. The limited image count
and the lack of sample diversity may prevent deep learning models from adequately
learning diverse features, thereby constraining their generalization capability and
diminishing their value for optimization studies.

The merged Plant4 dataset consolidates the data from four existing single-class datasets,
resulting in a larger and more diverse dataset. By combining these datasets, the total
number of images exceeds 1,300 high-resolution samples, with more than 130,000
annotated instances, encompassing four distinct crop scenes and plant species. This
increase in dataset size and diversity is expected to address the limitations of the original
single-class datasets, such as insufficient image counts and limited sample diversity, which
may hinder deep learning models from learning comprehensive features and generalizing.
Specifically, the Plant4 dataset integrates four plant categories: cotton, maize, rapeseed, and

Table 1 Overview of individual datasets and the combined Plant4 dataset.

Dataset Img (Tr) Img (Val) Inst (Tr) Inst (Val) Cls

CBDA 120 60 3,584 1,749 1

MTDC-UAV 500 300 28,531 21,460 1

RFRB 127 38 38,875 12,162 1

WEDU 165 71 20,325 9,583 1

Plant4 912 469 91,315 44,954 4

Note:
“Img (Tr)” and “Img (Val)” represent the number of training and validation images, respectively. “Inst (Tr)” and “Inst
(Val)” denote the number of training and validation instances. “Cls” indicates the number of target classes.
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wheat. The combined dataset exhibits substantial variation in visual appearance, spatial
distribution, and object scale across categories, highlighting its potential to support robust
model development by leveraging the richness and heterogeneity of the source data.

Although Plant4 aggregates more images and exhibits greater diversity than each source
dataset, limitations in scale and balance remain. Specifically, the number of images in
Plant4, 1,381, is still modest for training and validation of deep learning models. Given this
limitation and to provide a more complete evaluation, the experiments in this section
comprise ablation and comparison under a from-scratch regime, complemented by a
dedicated transfer learning study.

Moreover, imbalance is evident at both the image and instance levels. Maize images
dominate, accounting for 54.8% of the training split and 64.0% of the validation split, while
the other three classes each occupy 8.1% to 18.1%. At the instance level, rapeseed
contributes a disproportionately large share because individual images contain densely
clustered plants, reaching 42.6% in training and 27.1% in validation. Cotton differs in the
opposite direction, with few images and sparse occurrences, yielding about 4% of all
annotated instances. Such imbalance can induce metric bias and minority underfitting,
which are examined further in the Discussion.

Experimental setup and evaluation metrics
To validate the effectiveness of the proposed method, experiments were conducted on a
workstation equipped with an Intel i5-14600KF CPU and an NVIDIA RTX 3090 GPU.
The models evaluated in the experiments included YOLOv8 (Ultralytics, 2023), YOLO11
(Ultralytics, 2025b), YOLOv8-UAV (Lu et al., 2023), and our optimized model based on
YOLO11. The models used in the experiments were modified from the official YOLO
project provided by the Ultralytics repository (Ultralytics, 2025a). All implementations
were written in Python 3.10 and tested using the PyTorch 2.3 deep learning framework
compiled with CUDA 12.1.

In the experiments, ablation studies and comparisons with state-of-the-art methods
were conducted under a from-scratch regime in which all models were trained for 300
epochs with a batch size of 8 using Ultralytics defaults, and no pretrained weights were
used. To provide a more complete evaluation and reduce potential sensitivity to
initialization, a dedicated transfer learning study was also performed: models were first
pretrained on COCO (Lin et al., 2014) for 200 epochs under the same defaults, then
fine-tuned on Plant4 for 100 epochs with the initial learning rate reduced by half to 0.005.
Protocols, data splits, and metrics were kept identical across settings.

The evaluation metrics included the mean average precision at 50% IoU (mAP50), mean
average precision across IoU thresholds from 50% to 95% (mAP50�95), model parameters
in millions (MParams), and giga floating point operations per second (GFLOPs). These
metrics were chosen to comprehensively assess the models’ performance in terms of
detection accuracy and computational cost. The following paragraphs provide detailed
explanations and mathematical definitions of these metrics.

Zhou and Zhao (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3322 12/23

http://dx.doi.org/10.7717/peerj-cs.3322
https://peerj.com/computer-science/


. mean average precision at 50% IoU (mAP50): mAP50 represents the mean average
precision (AP) across all categories at a threshold of 50% Intersection over Union (IoU).
It evaluates the model’s ability to correctly localize objects when the predicted bounding
box overlaps with the ground truth by at least 50%.

mAP50 ¼ 1
N

XN
i¼1

APiðIoU ¼ 0:50Þ (14)

where N represents the total number of object categories.

. mean average precision at 50–95% IoU (mAP50�95): mAP50�95 is a more stringent
evaluation metric that averages AP across multiple IoU thresholds, ranging from 50% to
95% in increments of 5%. This provides a more comprehensive evaluation of the model’s
localization performance across various levels of overlap.

mAP50�95 ¼
1
N

XN
i¼1

1
10

X0:95
j¼0:5

APiðIoU ¼ jÞ
 !

(15)

where j represents the IoU thresholds.

. Model parameters (MParams): MParams quantify the total number of trainable
parameters in the model, scaled to millions. A lower MParams value indicates a more
lightweight model, which is essential for applications in resource-constrained devices
such as drones or edge computing systems.

MParams ¼ Total Parameters
106

(16)

where the total number of parameters represents the sum of all trainable weights and
biases in the model.

. Giga floating point operations per second (GFLOPs): GFLOPs measure the
computational cost of a model by quantifying the total number of floating-point
operations it performs, scaled to billions. A lower GFLOPs value indicates a more
computationally efficient model, which is critical in resource-constrained environments
like UAV systems.

GFLOPs ¼ FLOPs
109

(17)

where FLOPs is the total number of floating-point operations required to process a single
input.

These metrics provide a comprehensive evaluation of both detection accuracy and
computational efficiency.
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Ablation study
In order to validate the effectiveness of the proposed improvements described in the
Method section, we conducted ablation experiments using the YOLO11s model as our
baseline. Table 2 presents the results. In this table, “P2AR” denotes “P2 Added and P5
Removed”, indicating that a P2 detection head was introduced while the P5 detection head
was removed from the original YOLO11 framework. Meanwhile, “CBAM” and “Shape-
IoU” refer to incorporating the Convolutional Block Attention Module into the YOLO11
neck and replacing the default CIoU loss with the Shape-IoU loss, respectively.

As shown in the table, incorporating the P2 detection head while removing the P5 head
results in a substantial reduction in the YOLO11 model’s parameter count, decreasing
from 9.4 to 3.1 MParams, a 67% reduction. Although the computational cost, measured by
GFLOPs, slightly increases from 21.3 to 24.4, the overall accuracy (mAP50�95) improves
from 41.7 to 43.4. In summary, the P2AR modification successfully reduces parameter
overhead while maintaining a comparable computational load, ultimately enhancing the
model’s accuracy and achieving a more lightweight design.

When introduced on top of the P2AR scheme, CBAM alone does not provide additional
performance gains. In contrast, adding Shape-IoU alone to the P2AR configuration leads
to a marked improvement in detecting Cotton, elevating its AP50 score from 68.6 to 75.9.
Furthermore, incorporating both CBAM and Shape-IoU simultaneously on top of P2AR
not only yields noticeable improvements for Cotton and Maize detection but also achieves
the highest mAP among all evaluated models.

In summary, the YOLO11 model incorporating P2AR, CBAM, and Shape-IoU
simultaneously achieves a substantial and indisputable reduction in parameters while
incurring only a slight increase in GFLOPs. This trade-off results in improved accuracy,
thereby demonstrating the effectiveness of our proposed optimization strategies. In the
next section, we will present a comprehensive comparative study that evaluates the model’s
performance across various parameter and computational scales against state-of-the-art
approaches, further substantiating its suitability from a lightweight and accuracy-balanced
perspective.

Table 2 Ablation study results of the YOLO11s-based models on the Plant4 dataset. The cotton, maize, rapeseed, and wheat columns report AP50

scores for each plant category, respectively. The bottom row (“Diff v.s baseline”) shows the changes observed when all proposed modules are
integrated, relative to the baseline model. The best results are in bold.

P2AR CBAM Shape-IoU Cotton Maize Rapeseed Wheat mAP50 mAP50�95 MParams GFLOPs

67.5 75.4 83.5 92.0 79.6 41.7 9.4 21.3

✓ 68.6 77.5 84.0 92.1 80.6 43.4 3.1 24.4

✓ ✓ 69.3 77.2 83.7 91.2 80.4 43.0 3.2 24.5

✓ ✓ 75.9 77.0 83.5 92.1 82.1 43.2 3.1 24.4

✓ ✓ ✓ 75.9 78.0 83.5 91.6 82.3 43.8 3.2 24.5

Diff v.s baseline (+8.4) (+2.6) (0.0) (−0.4) (+2.7) (+2.1) (−6.2) (+3.2)

Note:
P2AR: removes the P5 detection head and adds a P2 detection head; CBAM: incorporates a Convolutional Block Attention Module into the neck; Shape-IoU: replaces the
default CIoU loss with Shape-IoU loss.
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Comparison with state-of-the-art methods
To comprehensively evaluate the effectiveness of the proposed optimization method in
terms of both lightweight design and accuracy, we selected YOLOv8 (Ultralytics, 2023),
YOLO11 (Ultralytics, 2025b), and YOLOv8-UAV (Lu et al., 2023) as reference baselines
and conducted experiments on the Plant4 dataset. YOLO11 represents the latest official
stable release in the YOLO series, while YOLOv8 is the previous official version. YOLOv8-
UAV, on the other hand, is a specialized variant of YOLOv8, optimized by Lu et al. (2023)
specifically for detecting the four small plant targets included in the Plant4 dataset.

In our experiments, we trained each model in four different variants—“n,” “s,” “m,” and
“l”—representing a progression from lightweight to more complex configurations. The
scaling of model parameters from “n” to “l” follows the official configuration provided by
Ultralytics (Ultralytics, 2025a). The experimental results are summarized in Table 3.

From the table, it can be observed that the detection accuracy for the four plant
categories—cotton, maize, rapeseed, and wheat—as well as the overall mAP50 and
mAP50�95 metrics, generally improve with an increase in model complexity (MParams and
GFLOPs). As baselines, YOLOv8, YOLO11, and YOLOv8-UAV demonstrate a gradual
improvement in mAP50�95, reaching approximately 45% as the model scales from the
lightweight “n” variant to the larger “l” variant. However, this performance improvement
is accompanied by simultaneous increases in parameters and computational cost, with no
significant breakthrough in accuracy gains observed across these scaling variations.

In comparison, the proposed improved YOLO11 model, which integrates the P2AR,
CBAM, and Shape-IoU strategies, achieves superior detection performance under
comparable or even lower parameter and computational cost conditions. For instance, as

Table 3 Comparison of different models on the Plant4 dataset.

Model Cotton Maize Rapeseed Wheat mAP50 mAP50�95 MParams GFLOPs

YOLOv8-n (Ultralytics, 2023) 51.6 67.1 82.4 87.4 72.1 36.0 3.0 8.1

YOLOv8-s (Ultralytics, 2023) 70.1 75.0 83.2 91.6 80.0 42.3 11.1 28.4

YOLOv8-m (Ultralytics, 2023) 75.6 77.6 83.6 92.2 82.2 44.7 25.8 78.7

YOLOv8-l (Ultralytics, 2023) 79.5 78.1 84.0 92.8 83.6 46.2 43.6 164.8

YOLO11-n (Ultralytics, 2025b) 47.9 68.0 82.2 88.0 71.5 36.1 2.6 6.3

YOLO11-s (Ultralytics, 2025b) 64.6 74.7 83.2 91.5 78.5 41.2 9.4 21.3

YOLO11-m (Ultralytics, 2025b) 76.7 78.9 83.6 92.9 83.0 45.4 20.0 67.7

YOLO11-l (Ultralytics, 2025b) 77.1 79.3 83.7 92.9 83.2 45.6 25.3 86.6

YOLOv8-UAV-n (Lu et al., 2023) 50.9 71.3 83.4 88.0 73.4 37.6 3.1 13.0

YOLOv8-UAV-s (Lu et al., 2023) 68.7 76.7 83.6 92.0 80.2 43.1 11.1 39.6

YOLOv8-UAV-m (Lu et al., 2023) 77.6 78.5 83.8 91.9 82.9 45.4 25.8 103.4

YOLOv8-UAV-l (Lu et al., 2023) 80.7 79.3 83.8 92.2 84.0 46.8 43.7 213.2

Ours-n 53.5 70.2 82.9 88.2 73.7 37.3 0.96 9.1

Ours-s 75.9 78.0 83.5 91.6 82.3 43.8 3.2 24.5

Ours-m 82.4 80.0 83.4 93.0 84.7 46.5 12.0 84.5

Ours-l 84.1 80.6 83.7 92.5 85.2 46.7 14.9 105.9
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shown in Table 3, the proposed “ours-n” model has only 0.96 M parameters and a
computational cost of 9.1 GFLOPs, yet achieves an mAP50�95 of 37.3%, significantly
outperforming other baseline models with similar or lower GFLOPs. Furthermore, the
“ours-s” model achieves an mAP50�95 of 43.8% with just 3.2 M parameters and 24.5
GFLOPs, approaching or even surpassing several state-of-the-art models with higher
parameters and computational costs. As the model scale increases, the proposed “ours-m”

and “ours-l” continue to exhibit remarkable accuracy improvements. Notably, “ours-l”
achieves an mAP50�95 of 46.7% with 14.9 M parameters and 105.9 GFLOPs,
outperforming most baseline methods under similar parameter or GFLOPs conditions.

To provide a more intuitive representation of the relationship between performance and
resource consumption, we plotted the GFLOPs versus mAP and MParams versus mAP
curves for different models in Fig. 4. From Fig. 4A, which illustrates the relationship
between GFLOPs and mAP, it can be observed that the proposed model’s curve
approaches a high mAP level even in the low GFLOPs range, significantly outperforming
other models. This indicates that our model achieves comparable or even superior
detection accuracy to state-of-the-art methods at the same or lower computational cost.
Similarly, as shown in Fig. 4B, which depicts the relationship between MParams and mAP,
the proposed method achieves a relatively high baseline accuracy with parameters around
the 1M scale. As the parameter count increases, the mAP steadily rises, demonstrating the
efficiency and scalability of our method in lightweight and medium-scale models. The
curves corresponding to all other methods lie below the proposed method’s curve,
indicating that the proposed approach achieves more significant accuracy gains as the
model scale increases. This advantage is particularly pronounced in the lightweight
parameter and computational cost range.

In summary, the proposed method demonstrates significant advantages in balancing
lightweight design and high accuracy. Compared to other state-of-the-art YOLO-based
methods in the experiments, our approach integrates optimization strategies such as the
P2AR structure, CBAM attention mechanism, and Shape-IoU loss, enabling the model to

Figure 4 Performance comparison of different models. Panels show (A) GFLOPs versus mAP50�95

and (B) MParams versus mAP50�95. Each data point corresponds to a model variant at different scales,
ranging from lightweight (“n”) to complex (“l”). Full-size DOI: 10.7717/peerj-cs.3322/fig-4
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achieve high detection accuracy with extremely low parameter counts and relatively low
computational cost. Furthermore, as the model scale increases, the proposed method
maintains an excellent performance growth curve. These characteristics indicate that the
proposed method is not only well-suited for resource-constrained scenarios, such as
real-time detection on edge devices or drones, but also effectively leverages its accuracy
advantages in medium- to high-end configurations. This demonstrates the rationality and
applicability of the proposed optimization strategies.

Transfer learning study
The ablation and comparison experiments reported above adopt a from-scratch training
regime. Such learning is sensitive to random weight initialization and stochastic
optimization, particularly with modest data, creating a risk that observed differences partly
reflect training variability rather than the method. To address this potential confound and
to evaluate robustness under an alternative regime, a transfer learning study is undertaken.

The transfer learning experiments use the “s” scale variants of the compared models,
which balance compactness and accuracy, namely YOLOv8-s, YOLO11-s, YOLOv8-UAV-
s, and the optimized configuration denoted as ours-s. All models are first trained on COCO
(Lin et al., 2014) for 200 epochs under the Ultralytics defaults (Ultralytics, 2025a), where
the initial learning rate is 0.01. Fine-tuning on Plant4 then proceeds for 100 epochs with
the learning rate reduced to 0.005, following the common guideline that transfer learning
benefits from a smaller rate to preserve pretrained features while adapting to the target
domain. Results are reported in Table 4.

As shown in Table 4, under this hyperparameter setting the transfer configuration does
not surpass the from-scratch regime, and the four models exhibit a modest decline of 0.7 to
1.7 points in mAP50�95. The difference largely stems from a substantial gap between the
source and target domains, and the reduced learning rate together with a shorter
adaptation budget on the target data tends to preserve source biases. COCO pretraining
emphasizes ground level objects and broad context, whereas Plant4 focuses on small UAV
crop imagery with distinct scale and background statistics, so alignment is partial. The
detection head is reinitialized for Plant4 classes, so most transferable benefit resides in the
backbone and neck and full specialization proceeds more slowly. These factors are
sufficient to account for the slight shortfall without asserting a change in the relative
ranking of the models.

Crucially, the balance between accuracy and computational cost remains stable across
models in both the from-scratch and transfer settings, and the relative ordering is

Table 4 Transfer learning results on the Plant4 dataset. The best results are in bold.

Model Cotton Maize Rapeseed Wheat mAP50 mAP50�95 MParams GFLOPs

YOLOv8-s (Ultralytics, 2023) 66.5 72.2 73.4 88.3 75.1 41.6 11.1 28.4

YOLO11-s (Ultralytics, 2025b) 58.5 71.3 73.2 87.8 72.7 39.5 9.4 21.3

YOLOv8-UAV-s (Lu et al., 2023) 68.2 72.6 73.7 88.0 75.6 42.1 11.1 39.6

Ours-s 69.3 72.7 73.5 87.9 75.9 42.2 3.2 24.5

Zhou and Zhao (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3322 17/23

http://dx.doi.org/10.7717/peerj-cs.3322
https://peerj.com/computer-science/


unchanged. Our proposed method attains mAP50�95 of 42.2 and mAP50 of 75.9 with
3.2 MParams and 24.5 GFLOPs. Compared with YOLOv8-UAV-s at 42.1 and 75.6,
computation is lower by 38.1 percent in GFLOPs and parameters are lower by about 71
percent at comparable accuracy. Compared with YOLOv8-s at 41.6 and 75.1, accuracy is
higher by 0.6 and 0.8 points with about 71 percent fewer parameters and 13.7 percent fewer
GFLOPs. The relative ordering is consistent with the earlier from-scratch comparison.
YOLO11-s reaches 39.5 and 72.7 with 9.4 MParams and 21.3 GFLOPs, while our proposed
model uses approximately one third of its parameters and improves mAP50�95 by 2.7
points. The relative ordering mirrors the earlier comparison study which was conducted
under a from-scratch training regime, indicating that the effectiveness of the proposed
configuration remains stable across the from-scratch and transfer regimes.

DISCUSSION
Focusing on UAV plant detection, this study optimizes the official YOLO11 (Ultralytics,
2025b) toward a lightweight yet accurate configuration. Four small single-class plant
datasets (Lu et al., 2023; Li et al., 2023; Ye & Yu, 2024) were integrated and annotated to
construct a larger four-class benchmark, Plant4, which supports a comprehensive
evaluation of the optimized method. Experiments on Plant4 verify effectiveness and show
that, under substantially lower parameter and compute budgets, the proposed method
attains detection accuracy comparable to or slightly above state-of-the-art baselines (Lu
et al., 2023; Ultralytics, 2023, 2025b).

Despite the above advances, limitations remain. First, although the annotated Plant4
dataset increases image and instance counts and improves diversity relative to the four
source datasets, limitations in overall scale and class balance persist, as analyzed in the
Datasets subsection. A valuable direction for future work is to enlarge coverage by
collecting additional images and instances from external datasets and real-world
acquisition, and to explore synthetic data and targeted augmentations to mitigate
imbalance and increase effective diversity (Kiefer, Ott & Zell, 2022;Westerski & Fong, 2024;
Clement et al., 2024).

Second, the main contribution of this article is an optimization of YOLO11 that
balances accuracy and efficiency for UAV plant detection. Effectiveness has been validated
under both from-scratch and transfer settings, yet edge conditions lie outside the primary
scope. Occlusion, noisy imagery, and background clutter can stress detectors in ways not
fully reflected by aggregate metrics (Saleh, Szénási & Vámossy, 2021; Liu et al., 2024;Dreyer
et al., 2023). A rigorous study of these borderline cases would require case-level
stratification and targeted evaluation protocols. Future work will conduct systematic stress
tests on curated subsets and, where appropriate, extend annotation to quantify failure
modes and guide refinement (Bolya et al., 2020; Wang et al., 2024).

Finally, the proposed optimization has been assessed in a simulation-based
experimental environment, and deployment on actual UAV hardware for real-world plant
detection remains an important direction. Continued study on on-board compute
modules such as NVIDIA Jetson Orin NX and Jetson Xavier NX would support real-time
inference within tight power and thermal budgets, reduce end-to-end latency, and enable
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closed-loop perception and control in the field (Youvan, 2024; Kortli et al., 2022; Saeed
et al., 2023).

CONCLUSION
This study presents optimization strategies for YOLO11 that deliver a lightweight yet
accurate configuration for UAV-based plant object detection. By combining four existing
single-class datasets, we created a new multi-class dataset, Plant4, to serve as a benchmark
for evaluation. Ablation studies, comparisons with state-of-the-art methods, and a transfer
learning study on Plant4 support the effectiveness of the proposed approach. Results show
a notable reduction in parameter count and computational cost, with accuracy comparable
to or marginally higher than state-of-the-art baselines. The strategies proposed in this
article offer valuable insights for enhancing model performance in UAV-based plant
detection and other small object detection tasks in resource-constrained environments.
Future research could deploy these optimizations on real-world UAV systems with
task-specific tuning, expand multi-class plant detection datasets in both scale and class
balance, and conduct deeper analyses of borderline cases such as occlusion, noisy imagery,
and background clutter.
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