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ABSTRACT
Decision Trees (DTs) remain one of the most important algorithms in machine
learning for their simplicity, interpretability, and often satisfactory performance.
Furthermore, they are critical foundational components for more performant models
such as Random Forests (RFs) and Gradient Boosted Trees. Central to DTs is the
splitting process, where data is partitioned according to criteria traditionally based on
information-theoretic measures such as Shannon entropy or Gini index. In this
article, we propose a novel parametric entropy-based information gain criterion
designed to generalize and extend classical entropic measures to improve
classification performance in DTs and RFs. We introduce a five-parameter entropy
formulation capable of replicating and extending known entropy measures. This new
criterion was incorporated into DT and RF classifiers and evaluated on a collection of
18 benchmarking datasets, including both synthetic and real-world data retrieved
from publicly available repositories. Performance was assessed using 5-fold
cross-validation and optimized via Bayesian hyperparameter search, with weighted
F1-score as the primary metric. Compared to splitting criteria based on existing
entropy/purity measures (e.g., Gini, Shannon, Rényi, and Tsallis), our method
yielded statistically significant improvements in classification performance across
most datasets. On multiclass and imbalanced datasets, such as the Wine Quality
dataset, F1-score improvements exceeded 40% using RF algorithms. Bayesian
signed-rank tests confirmed the robustness of our method, which never
underperformed relative to standard approaches. The proposed entropy-based
splitting criterion offers a flexible and effective alternative to classical
information-theoretic measures, delivering improvements in classification
performance.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Science
Keywords Decision tree, Random forest, Machine learning, Information gain, Entropy

INTRODUCTION
Decision Trees (DTs) are still among the most widely used models in Machine Learning
(ML), despite their roots being traced to as far back as the early 1960s (Morgan & Sonquist,
1963). This enduring relevance is owed to these models’ underlying simplicity and
practical performance. Succinctly, DTs operate by recursively splitting the dataset into
subsets based on feature values, aiming to create groups that are as pure as possible
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concerning a given target variable. Further aiding their adoption, the output of these
recursive operations can be represented in a tree-like flowchart structure, greatly
increasing their interpretability (Kotsiantis, 2013). Moreover, DTs also introduce a low
computational cost and are compatible with both classification and regression tasks, which
has justified their use in a wide range of applications, including, for example, in the
medical, financial, and industrial sectors (Costa & Pedreira, 2023; Mienye & Jere, 2024).

Since their inception over half a century ago, DTs have lost their performance advantage
compared to the best of the supervised learning approaches (James et al., 2021). However,
they remain a critical foundational component of more powerful ensemble methods like
Random Forests (RFs) and Gradient Boosted Trees, which are algorithms that remain
highly competitive, particularly on tabular datasets, against even state-of-the-art neural
network models (Grinsztajn, Oyallon & Varoquaux, 2022; Uddin & Lu, 2024). Moreover,
there has been a newfound interest in the development of DTs due to their interpretability
(Hwang, Yeo & Hong, 2020; Hernández et al., 2021), as the black-box nature commonly
associated with most predictive and classifier models becomes an increasingly greater issue
in an age where explainable machine learning is becoming a necessary condition (Rudin,
2019; Roscher et al., 2020).

Central to the induction (or construction) of DTs is the process of recursive data
partitioning (Costa & Pedreira, 2023), which is guided by the output of a discrete function
over the input attributes (Kotsiantis, 2013). The selection of the most appropriate function
is typically determined by some splitting criteria, such as information gain, the Gini value,
or the Gain ratio (GR), with the selection of these criteria directly influencing the structure
and performance of the resulting tree. In the more (now) classical implementations of DT
models, such as the Iterative Dichotomiser 3 (ID3) algorithm (Quinlan, 1986),
information-theoretic measures (e.g., Shannon entropy) have well-established roles as
splitting criteria. Nonetheless, past research, such as the work done by Nowozin (2012),
shows that potential limitations remain in standard methods, as their performance is not
uniform across different domains, data distributions, or learning objectives.

Recently, there has been additional research in either the development of novel splitting
criteria (Leroux, Boussard & Dès, 2018; Ayllón-Gavilán et al., 2025; Hwang, Yeo & Hong,
2020; Loyola-González, Ramírez-Sáyago & Medina-Pérez, 2023) or in re-adapting existing
methods with less common information-theoretic measures (Ignatenko, Surkov & Koltcov,
2024; Nowozin, 2012;Maszczyk & Duch, 2008; Gajowniczek, Zabkowski & Orłowski, 2015).
In these works, the goal becomes the development of alternative and corrected measures
aimed at improving split balance, reducing overfitting, and enhancing the generalization of
the output DTs, with the adequate selection of the splitting criteria becoming particularly
important in the context of high-dimensional, imbalanced, or noisy datasets. In a detailed
analysis provided in Hernández et al. (2021), it is shown that no one split evaluation
measure is capable of consistently outperforming all others. Alternatively, one approach is
to combine multiple evaluation measures and select the candidate splits that better adapt to
the input data (Loyola-González, Ramírez-Sáyago & Medina-Pérez, 2023).

However, in this article, we introduce an alternative perspective, based on the
development of a more generic notion of entropy that is more parametric than existing
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approaches, and that enables the generalization of existing information-theoretic criteria
most commonly used as the basis of splitting procedures. Through the added degrees of
freedom provided by this approach, it is possible to construct splits that better adjust to
input data. This method, evaluated for both open data repositories and synthetic datasets,
is seen to achieve performance improvements of over 40% in F1-score relative to standard
methods in common datasets such as the ‘Wine Quality’ dataset, when using RF
algorithms. Moreover, we provide a Bayesian statistical analysis to assess that the proposed
method presents a statistically significant improvement while never underperforming,
with at worst, matching the performance of the best standard model.

The remainder of this article is organized as follows. ‘Decision Trees for Classification’,
provides a generic discussion regarding DTs, their construction, and their splitting criteria.
‘Generalized Entropy’, introduces the 5-parameter expression for the generalization of
entropy and its formulation into a target function for its use as a DT splitting criterion.
‘Description of Computational Experiments’, describes the datasets used for
computational experiments, experimental methodology, and result evaluation metrics.
‘Results of Computational Experiments’, provides the summarized results obtained from
the computational experiments and discusses the implementation of a Bayesian statistical
analysis to validate the quality of the introduced method. ‘Discussion’, interprets the
obtained results and statistical analysis. ‘Conclusions’, provides the concluding remarks
regarding the introduced method. ‘Proofs of Known Entropies’, shows the mathematical
proof of the generalizations possible to achieve with the presented parametric entropy
expression. ‘Complete Results for Proposed Method’, provides additional tabular results.

DECISION TREES FOR CLASSIFICATION
Multiple versions of the DT algorithm exist; however, most notable are perhaps their most
“traditional” forms as seen in the case of the original ID3 (Quinlan, 1986), its successor
C4.5 (Quinlan, 1993), and the Classification and Regression Tree (CART) (Breiman et al.,
1984). In these forms, the structure of a DT consists of internal and terminal nodes. The
former represent logical tests (splits) where each split has a binary outcome (true or false);
while the latter are the leaves of the tree and correspond to output predictions (Costa &
Pedreira, 2023). DTs in formulations such as CART are compatible with classification and
regression tasks, hence leaves can correspond to either labels or constant numbers. These
values are selected during the induction of the tree, where, starting at a root node that
contains the full training dataset, this input space is recursively partitioned into
homogeneous regions with respect to a given target variable. This forms the basis for the
splitting process.

In the case of ID3, C4.5, and CART, they all take on greedy approaches to constructing
DTs (Han, Kamber & Pei, 2012), meaning that they will evaluate all possible splits across
all features and select the one that best separates the data according to a predefined
criterion. The most commonly used criteria include information gain (based on
information-theoretic measures), the Gini index, and the gain ratio. These measures assess
the purity of the resulting subsets, aiming to maximize class purity in the child nodes,
where a pure partition would mean that every element would have the same label.
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Information gain (IG), used in ID3, is calculated as the reduction in entropy, e.g., using
the Shannon entropy, before and after the split. Mathematically, this corresponds to
computing (Mienye & Jere, 2024)

IGðS;AÞ ¼ HðSÞ �
X

v2ValuesðAÞ

jSvj
jSjHðSvÞ; (1)

where S is our dataset, A is an attribute of S, ValuesðAÞ are the unique values in attribute A,
Sv the subset of S for which attribute A takes on value v, andH the entropy function, which
in the case of Shannon’s entropy is given by Shannon (1948)

HðSÞ ¼ �
Xn
i¼1

Pi log2Pi; (2)

where n is the number of unique classes in the set S and Pi is the proportion of the samples
in the set that belong to class i. Essentially, the higher the information gain, the more
adequate an attribute is in partitioning the data, as the subsets becomemore homogeneous.
In more advanced DT algorithms, such as C4.5, Gain Ratio is used, a method where IG is
normalized in order to correct its bias toward attributes with many distinct values
(Quinlan, 1993;Han, Kamber & Pei, 2012). The gain ratio for a dataset S and an attribute A
is given by

GainRatioðAÞ ¼ IGðAÞ
SplitInf oðS;AÞ ; (3)

where

SplitInfoðS;AÞ ¼ �
X

v2ValuesðAÞ

jSvj
jSj log2

jSvj
jSj

� �
: (4)

Lastly, the final of the most common splitting criteria is the Gini index (or value or
impurity), employed by the CART algorithm. This metric measures the probability of
misclassifying a randomly chosen instance from the dataset and is defined as Jost (2006)
and Kotsiantis (2013)

GiniðSÞ ¼ 1�
Xn
i¼1

P 2
i : (5)

Once the best split is identified, the dataset is divided accordingly, and the algorithm
recurses on each subset. This process continues until a stopping criterion is met, such as
reaching a maximum tree depth, achieving a minimum number of samples per node, or
obtaining pure nodes (Nowozin, 2012). In classification tasks, each leaf node is assigned the
majority class of the samples it contains.

Currently, DTs are seldom used in isolation, being much more commonly employed as
a component of ensemble models. The most well-known of these is perhaps Random
Forests (RFs), a method based on the induction of multiple DTs and then combining their
outputs to improve predictive accuracy and control overfitting (Breiman, 2001). This
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algorithm operates by training each tree on a different bootstrap sample (random sample
with replacement) of the dataset and using a random subset of features at each split to
ensure diversity among trees. For classification, predictions are made by majority voting
across trees; for regression, predictions are averaged. This combination of bagging
(bootstrap aggregating) and random feature selection makes RFs more robust to noise,
resistant to overfitting, and effective for high-dimensional data. A more comprehensive
insight into these methods can be found in works such as Mienye & Jere (2024) and Costa
& Pedreira (2023).

The focus of this article lies in the development of novel criteria for the splitting of
tree-based algorithms and on surpassing some of the limitations that remain within the
standard methods. In this sense, there have been previous attempts at this issue. For
instance, in Leroux, Boussard & Dès (2018), a balanced gain ratio is discussed, aimed at
addressing the bias towards unbalanced splits in the GR method used by Quinlan (1986),
essentially by correcting the split information by a constant value. Empirically evaluated,
this approach is seen to limit the depth of resulting trees with an improvement in
classification accuracy. In other settings, splitting criteria are adapted to serve particular
tasks. For instance, in Ayllón-Gavilán et al. (2025), a splitting criterion is defined for use
with ordinal classification. Another example can be found in Hwang, Yeo & Hong (2020)
where the main goal is not to achieve the best performance, but rather to lead to the
creation of the most interpretable tree possible.

More in line with the motivation of this article is the work done by Nowozin (2012),
where the classical entropy estimators, such as Shannon entropy or Gini index, are
replaced, in this case, with the Grassberger entropy estimator, enabling an increase in
predictive performance during classification tasks. We can further see the use of
nonclassical entropies for the induction of DTs in Gajowniczek, Zabkowski & Orłowski
(2015) andMaszczyk & Duch (2008). In both of these past examples, the authors employed
Rényi and Tsallis parametric entropies. Introduced by Rényi (1961), the Rényi entropy of
order a of a set S, and with 0 < a <1 and a 6¼ 1, is defined as

HaðSÞ ¼ 1
1�a

log
Xn
i¼1

Pa
i

 !
: (6)

In case a 2 f0; 1;1g, it is defined as

HaðSÞ ¼ lim
x!a

HxðSÞ: (7)

Rényi’s entropy generalizes various other notions of entropy. For instance, as a ! 1
(notation meaning: when a tends to 1 by a valid branch), the Shannon entropy is
recovered. Alternatively, the Tsallis entropy of a set S, introduced by Tsallis (1988), is
defined as

SqðSÞ ¼ k
1

q� 1
1�
Xn
i¼1

Pq
i

 !
; (8)
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where k 2 Rþ and q 2 R. Tsallis’ entropy is also capable of recovering other entropic
definitions. For example, as q ! 1, the Boltzmann–Gibbs entropy is obtained.

Advancements are still occurring in this field, namely in the use of dynamically
adjustable criteria at split time (Loyola-González, Ramírez-Sáyago & Medina-Pérez, 2023),
or in regards to the use of deformed entropies for the improvement of target functions.
One such recent example of the latter can be found in the work by Ignatenko, Surkov &
Koltcov (2024), where the potential use of nonclassical entropies for the computation of
information gain on RFs under classification and regression tasks was studied. In this
work, the nonstandard entropies enabled substantial performance gains (in terms of
accuracy) of models, for the application of Rényi, Tsallis, and Sharma–Mittal entropies.
The Sharma–Mittal entropy (Akturk, Bagci & Sever, 2007) is defined as

SSMðSÞ ¼ 1
1� r

Xn
i¼1

Pq
i

 !1�r
1�q

� 1

2
4

3
5; (9)

and is further capable of retrieving the Rényi entropy for r ! 1 and the Tsallis entropy for
q ! r.

Although these previous works are comparable in motivation to our work, in the
sense that the goal is improving the splitting process of tree-based algorithms through the
use of nonstandard entropies, the implementation substantially differs. Here, the
approach is to develop a new parametric expression that encompasses the classical
methods (e.g., retrieving Shannon entropy or Gini index); however, by the nature of
additional degrees of freedom, it enables the deduction of additional criteria that may be
more suitable for separating data at each split.

GENERALIZED ENTROPY
This section will now introduce the 5-parameter expression for the generalization of
entropy, first introduced in the authors’ past work in the scope of data complexity
estimation (Costa, Rocha & Ferreira, 2024). Consider a set of probabilities

P ¼ ðP1; . . . ;PnÞ 2 ½0; 1�n with
Pn

i¼1 Pi ¼ 1, the generalized entropy Ê is defined by

Êa;b;c
f1;f2

ðPÞ ¼ ’̂a;b;c
f1;f2

ðPÞ � k0
� �

ðk1 � k0Þ�1; (10)

where ða;b; c; f1; f2Þ 2 ðRþ
0 Þ5 are adequate parameters,

’̂a;b;c
f1;f2

ðPÞ ¼ f2 � ln
Xn
i¼1

Pa
i �f1 � ln Pb

i

� �h ic !
; (11)

and the q-logarithm, for any q 2 Rþ
0 nf1g and x > 0, is given by

q� lnðxÞ ¼ x1�q � 1
1�q

: (12)

For q ¼ 1, the q� lnðxÞ coincides with the natural logarithm lnðxÞ, by computing the
limit as q ! þ1, using the L’Hôpital’s rule, and the fact that d x1�q=dq ¼ � lnðxÞ x1�q.
Constants k0 and k1 represent the minimum and maximum theoretical values of ’̂,
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respectively. Accordingly, k0 ¼ minð’̂Þ, obtained whenever 9j : Pj ¼ 1. Alternatively,

k1 ¼ maxð’̂Þ, occurring whenever each event is equally probable, i.e., Pi ¼ 1
n : Table 1

showcases the required parameter re-configuration to achieve a normalized version of the
most common generalizations of impurity and entropy used as criteria for splitting in DTs.
Proofs for the retrieval of these entropic measures using Ê are given in the Supplemental
File ‘Proofs of Known Entropies’. Note, however, that the list shown in Table 1 is not
comprehensive, in the sense that there are further entropic definitions that can still be
retrieved. Besides generalizing to other entropic estimators, Ê is capable of further
obtaining other entropy estimations through parametric variation. In Fig. 1, some of these
behaviors are plotted.

To employ the measure Ê as a splitting criterion for DTs in classification tasks, it is first
necessary to formulate a target function. Considering (1), the target function will be
formulated in a similar way as seen in the work by Ignatenko, Surkov & Koltcov (2024). In
the case Sj is the set of data points falling into node j, then IGj ¼ IG Sj; SLj ; S

R
j

� �
, where SLj

and SRj are the subsets which fall into the left and right subtrees, respectively. Therefore,
information gain is given by

IGj ¼ ÊðSjÞ �
X

i2fL;Rg

jSijj
jSjj Ê Sij

� �
: (13)

As such, when employing this definition of information gain, each of the five parameters
accepted by Ê will become a new hyperparameter of the DT. To help guide hyperparameter
tuning, a sensitivity analysis was conducted, focusing on parameters a, b, and c.
Parameters f1 and f2 were defined as f1; f2 2 f0; 1g, as this would simplify the analysis
whilst maintaining the generic properties of Ê intact. The analysis was two-stage. First, the
Morris screening method (Morris, 1991; Campolongo, Cariboni & Saltelli, 2007) was
applied to estimate the mean absolute effect, l�, of each parameter in overall importance,
and the standard deviation, r, to quantify nonlinearity and interaction effects. Secondly, a
Sobol variance-based sensitivity analysis (Sobol, 2001; Saltelli, 2002; Saltelli et al., 2010) was
performed to compute both first-order (S1) indices to measure main effects and total-effect
(ST) indices to capture the combined impact of main and interaction effects. Both of these
methods were applied using the implementation made available in the SALib library

Table 1 Required parameter configurations to obtain the most common generalizations of
impurity/entropy.

Parameter Generalization

a β γ f1 f2

0 2 1 0 0 Gini impurity

1 1 1 1 0 Shannon entropy

w 0 0 0 1 Rényi entropy Rw

w 0 0 0 0 Tsallis entropy Tw

q 0 0 0 r�q
1�q Sharma–Mittal entropy
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(Herman & Usher, 2017; Iwanaga, Usher & Herman, 2022) (SALib version 1.4.7 (https://
github.com/salib/salib)).

The comparison of the results yielded from both methods (shown in Figs. 2 and 3)
enables the identification of the parameters with strong and stable influences vs. those
whose effects are driven primarily by interactions. In this case, no single parameter exerts a
predominant influence through main effects, as indicated by the low first-order indexes.
While both a and c exhibit the highest first-order influences, these values remain
considerably less than the total-effect indexes. Suggesting that the behavior of Ê is mostly
driven by interaction between parameters. The results of the Morris analysis for b appear
to suggest a high degree of influence; however, this assumption is contradicted by the Sobol
method, thus suggesting that its interactions are less pervasive or more localized.

Figure 1 Illustration of the behavior of the proposed generalized entropy function Ê for a random
variable with two possible outcomes against Pi, where ¼ ½Pi; 1� Pi�, showing how the entropy value
varies with different parameter settings. In (A), parameters fc ¼ 1; b ¼ 1; f1 ¼ 1; f2 ¼ 0g are fixed,
and a is varied; this includes the Shannon entropy as the special case a ¼ 1. In (B), parameters
fa ¼ 1; b ¼ 1; f1 ¼ 1; f2 ¼ 0g are fixed, and c is varied; again recovering Shannon entropy at c ¼ 1. In
(C), parameters fc ¼ 1; b ¼ 0; f1 ¼ 1; f2 ¼ 0g are fixed, and a is varied with a > 1; the Shannon entropy
is plotted alongside for reference. These visualizations demonstrate the behavior of the proposed entropy
function with changing data distributions and its ability to recover classical entropy measures as special
cases. Full-size DOI: 10.7717/peerj-cs.3319/fig-1
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DESCRIPTION OF COMPUTATIONAL EXPERIMENTS
The proposed splitting criterion was evaluated for classification tasks across two distinct
groups of datasets, namely datasets retrieved from open repositories and synthetically
generated datasets. In the case of the former, these were retrieved from both the UCI
(https://archive.ics.uci.edu) and OpenML (https://www.openml.org) repositories, and
their characteristics are shown in Table 2. In the case of the latter, they were generated
using the make_classification function found in scikit-learn (Pedregosa et al., 2011)
(scikit-learn version 1.6.1 (https://scikit-learn.org/1.6/api/index.html)), and their
description is shown in Table 3. Dataset selection took into account the following
requirements: (i) be reasonably broad in terms of application/problem areas; (ii) have a
reasonably comprehensive combination between number of features/number of instances
across datasets; (iii) validate for both binary and multiclass datasets; (iv) validate for both
balanced and imbalanced datasets (in the case of imbalanced datasets, with varying degrees
of imbalance); and, (v) contain both numerical (continuous), ordinal, and categorical
features across datasets.

Two algorithms were implemented: (i) a (classification) DT, based on the conventional
ID3 architecture, which supported both numeric and categorical features and used as its

Figure 2 Morris screening results showing mean absolute effect l� vs. standard deviation r for
parameters a, b, and c. l� indicates overall parameter influence, while r reflects nonlinearity and
interaction strength. Parameters in the top-right are both influential and involved in interactions.

Full-size DOI: 10.7717/peerj-cs.3319/fig-2

Figure 3 Sobol sensitivity indices for parameters a, b, and c, showing first-order effects (S1) and
total effects (ST). S1 measures the proportion of output variance explained by each parameter alone,
while ST captures both main and interaction effects. Large gaps between ST and S1 indicate strong
interactions. Full-size DOI: 10.7717/peerj-cs.3319/fig-3
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target function the equation defined in Eq. (13); and (ii) a RF based on an ensemble of DTs
with feature bagging and voting based on the most common label values. The source code
for the algorithms used in these experiments was made available (https://doi.org/10.5281/
zenodo.15241909), and was developed with standardization in mind, following the
conventions of the popular Python package of scikit-learn, making it compatible with its
methods. The fixed parameters for DTs were: 2 samples as the minimum number required
to split an internal node; and, minimum impurity decrease set as 0. The foundational DTs
for the RFs were constructed with these same fixed parameters.

In terms of non-fixed parameters, for the tests focused on the DTs, their maximum
depth was varied as max depth 2 f10; 50; 100; 200g. In the case of RFs, the number of
estimators in each forest was varied as n estimators 2 f10; 25; 50g, and the maximum
depth of individual trees was varied as max depth 2 f10; 25g. The search space for the
parameters in Ê was constructed considering preliminary empirical findings, and was
defined as: a 2 f0; 1; 2; 3g; b 2 ½0;…; 3�, with a step size of 0:1; c 2 ½0;…; 3�, with a step
size of 0:1; f1 2 f0; 1; 2; 3g; and, f2 2 f0; 1g. These search spaces were selected based on
the prior sensitivity analysis, where the effect of parameter a was comparatively stable

Table 2 Description of datasets sourced from open repositories. The shown ID is relative to their respective repositories.

Repository Name ID # of
features

# of
instances

# of
classes

Feature type Class proportions (# of instances/class)

UCI Breast Cancer Wisconsin 15 9 699 2 Ordinal 458:241

Iris 53 4 150 3 Continuous 50:50:50

Spambase 94 57 4,601 2 Continuous 2,788:1,813

Statlog (Shuttle) 148 7 58,000 7 Continuous 45,586:8,903:3,267:171:50:13:10

Wine Quality 186 11 4,898 11 Continuous 2,836:2,138:1,079:216:193:30:5

Students’ Dropout and
Academic Success

697 36 4,424 3 Continuous,
Categorical, Ordinal

2,209:1,421:794

OpenML mfeat-morphological 18 7 2,000 10 Continuous,
Categorical

200:200:200:200:200:200:200:200:200:200

diabetes 37 9 768 2 Continuous, Ordinal 500:268

wdbc 1510 31 569 2 Continuous 357:212

wilt 1570 6 4,839 2 Continuous 4,578:261

Titanic 40704 4 2,201 2 Categorical, Ordinal 1,490:711

dataset_31_credit-g 42633 21 1,000 2 Categorical 700:300

phoneme 44087 6 3,172 2 Continuous 1,586:1,586

Table 3 Description of synthetically generated datasets. All of the synthetic datasets are class-balanced
and contain only continuous features.

Name # of features # of informative features # of instances # of classes

synth_1 10 2 100 2

synth_2 10 5 100 4

synth_3 5 2 1,000 2

synth_4 10 5 1,000 2

synth_5 10 5 1,000 4
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while b and c produce large variability in effects predominantly through interactions.
Consequently, a more coarse grid was used for a to concentrate computational effort where
the proposed entropic function Ê is most interaction-sensitive, reducing the risk of missing
narrow high-performance regions while keeping total evaluations manageable.

The search for the best-performing hyperparameters for the proposed splitting criterion
(i.e., for parameters a; b; c; f1; f2) was conducted for all combinations of maximum depth
and number of estimators in the DTs and RFs algorithms, where applicable. Due to the
elevated number of test combinations and datasets, a Bayesian search was conducted over
the search space, using the BayesSearchCV class in scikit-optimize (https://scikit-
optimize.github.io) (scikit-optimize version 0.10.2), with a set number of 100 iterations
(i.e., 100 parameters sampled per dataset per maximum depth, and, in the case of RFs, per
number of estimators). Furthermore, these parameters were evaluated through 5-fold
cross-validation with the target metric set to weighted F1-score, given by

F1weighted ¼
XN
i¼1

niPN
j¼1 nj

� F1i

 !
; (14)

where N is the number of classes, ni represents the support for the i-th class, and F1i is the
F1-score for the i-th class, computed through

F1 ¼ 2 TP
2 TPþ FPþ FN

; (15)

where TP is the number of true positives, FP is the number of false positives, and FN is the
number of false negatives. In addition to the weighted F1-score used for model selection
during the hyperparameter search, complementary evaluation metrics were computed,
namely Balanced Accuracy, Precision, and Recall. Balanced Accuracy is defined as

Balanced Accuracy ¼ 1
N

XN
i¼1

TPi

TPi þ FNi
; (16)

where TPi and FNi are the true positives and false negatives for the i-th class, respectively.
The Precision and Recall for each class are computed as:

Precision ¼ TP
TPþ FP

; (17)

Recall ¼ TP
TPþ FN

: (18)

These metrics were also averaged in a weighted manner according to class support,
ensuring that the performance evaluation reflects the influence of class distribution in the
dataset.

The usage of the weighted F1-score is uncommon in comparable works found in the
literature, which tend to favor reporting accuracy measurements (see, for instance, the
experimental methodology in Nowozin (2012) or Ignatenko, Surkov & Koltcov (2024)).
However, this is disingenuous as the datasets selected for testing frequently show some
degree of class imbalance. For example, the ‘Statlog (Shuttle)’ dataset, used in testing in
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multiple comparable works (including the two previously mentioned), is a seven-class set
with the majority class representing nearly 80% of instances. Hence, the weighted F1-score
is selected as the performance evaluation metric for this work, and thus any mention of
F1-score will be regarding its weighted implementation. The weighted version was selected
(instead of macro or micro extensions) as a compromise, somewhat attenuating the effect
of very low support classes negatively skewing results, while still providing enough
sensitivity for penalizing misclassifications in imbalanced datasets.

The introduced parametric entropies were benchmarked against the known splitting
criteria given by the Gini index, Shannon entropy, Rényi entropy, and Tsallis entropy, as
these are the most utilized in comparable works. The benchmarks were obtained using the
same tree structures and parameters as the introduced method. In the case of Rényi,
parameter a in Eq. (6) was set as a ¼ 2, and, in the case of Tsallis, parameters k and q in
Eq. (8) were set as k ¼ 1, and q ¼ 2.

RESULTS OF COMPUTATIONAL EXPERIMENTS
To aid in interpreting results, in this section only a summary presentation is given (shown
in Table 4), where, for each result obtained, two additional metrics were computed: Lowest
Improvement (LI), and Highest Improvement (HI). Respectively, these correspond to the
lowest and highest percentual gain in F1-scoring of the parametric entropies obtained
using Ê compared to the known entropic measures. The complete results for the
computational experiments can be seen in the Supplemental File ‘Complete Results for
Proposed Method’, these include: results for DTs (shown in Tables S1, S2, S3 and S4);
results for RFs using a maximum depth of 10 for the DTs (shown in Tables S5, S6, and S7);
and, results for RFs using a maximum depth of 25 for the DTs (shown in Tables S8, S9,
and S10).

To more effectively assess the method’s performance, the parameter combination
yielding the highest weighted F1-score for each dataset in the hyperparameter search was
selected. This optimal configuration was subsequently compared with the known entropy
values. The evaluation was carried out using a class-wise stratified 5-fold cross-validation
procedure. In this approach, the dataset is split into five equally sized folds while
preserving the proportion of classes in each fold. For each iteration, the model is trained on
four folds and tested on the remaining one. This process is repeated five times so that each
fold serves once as the test set, and the results are then averaged to obtain the final
performance metrics. The results are presented in terms of the Highest Improvement and
Lowest Improvement observed. For the DT algorithms, these results are shown in Tables 5,
6, and 7, which correspond to Balanced Accuracy, Precision, and Recall, respectively. The
equivalent results for the RF algorithms are reported in Tables 8, 9, and 10.

Bayesian statistical analysis
Comparing the performance of two cross-validated classifiers is traditionally achieved
using Student’s t-test (Nadeau & Bengio, 2003) for the case of comparisons over a single
dataset, or using the Wilcoxon signed-ranked test (Demsar, 2006; Nowozin, 2012) in the
case of comparisons over multiple datasets. Both these tests are based on the
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Table 4 Summarized results obtained for both the DT and RF algorithms. Shown are the percentage of Lowest Improvement (LI) and of Highest Improvement (HI) of the
mean results for the weighted F1-score over the 5 folds (for each dataset). In this sense, LI is the worst-case scenario improvement, comparing the proposed method Ê, with the
best performing of the classical measures. Comparably, HI represents the best-case scenario improvement (compared with the lowest-performing classical measure).

Dataset Decision Tree Random Forest

Depth
estimators

10 50 100 200 10 25

10 25 50 10 25 50

LI (%) HI
(%)

LI (%) HI
(%)

LI (%) HI
(%)

LI (%) HI
(%)

LI (%) HI
(%)

LI (%) HI
(%)

LI (%) HI
(%)

LI (%) HI
(%)

LI (%) HI
(%)

LI (%) HI
(%)

BreastCancer 1.463 1.985 1.463 1.985 1.463 1.985 1.463 1.985 1.030 1.648 0.617 1.233 0.206 1.336 0.414 1.344 0.617 1.028 0.515 1.133

Iris 0 2.976 0 2.976 0 2.976 0 2.976 0 3.594 1.458 2.917 1.469 3.673 1.469 4.302 0 3.673 0.735 2.099

Spambase 0.325 0.650 1.816 3.312 0.863 2.373 1.289 2.793 1.732 3.580 0.449 1.798 0.114 1.362 1.606 4.358 1.575 2.925 0.454 2.497

Statlog 1.807 4.570 0 0.502 0 0.401 0 0.401 5.079 12.817 10.508 14.640 9.211 11.842 9.032 15.778 5.216 12.320 10.560 15.194

Wine Quality 3.473 10.603 5.960 13.411 2.689 11.092 3.477 12.252 13.688 37.262 18.333 36.667 18.116 38.768 20.398 33.167 22.742 40.323 23.344 40.536

Students 1.910 3.138 3.626 5.718 3.905 5.718 3.905 5.718 2.806 5.613 2.541 3.587 0.607 2.580 3.254 4.882 1.783 2.972 0.448 2.990

mfeat-morphological 1.429 4.143 3.730 6.743 3.736 7.615 1.903 5.857 3.698 18.182 2.115 7.855 4.405 7.636 3.762 7.837 1.997 7.373 3.598 8.546

diabetes 4.110 6.164 5.772 8.322 3.306 5.923 5.391 7.951 1.955 6.917 2.392 5.381 0.459 6.279 5.365 10.283 3.907 7.236 2.534 5.067

wdbc 0.528 2.218 0.842 2.526 0.946 2.629 0.946 2.629 0 1.572 0.415 1.350 1.037 1.971 0.210 2.306 0 0.935 0.208 1.249

wilt 0.204 0.714 0.204 0.613 0.204 0.613 0.204 0.613 0.217 0.217 0 0 0 0 0 0.108 0 0.108 0 0.108

Titanic 0 0 0 0 0 0 0 0 4.836 11.807 5.299 10.190 2.286 2.714 4.911 9.686 4.959 6.336 2.680 3.385

dataset_31_credit-g 2.374 4.050 2.917 4.306 3.719 5.096 3.851 5.227 1.495 9.716 1.468 2.936 1.000 2.667 3.324 10.983 1.286 4.341 2.114 2.764

phoneme 0 1.425 0.476 2.143 0.476 2.143 1.065 2.722 1.225 3.554 0.845 1.932 1.202 2.644 2.589 4.192 1.086 2.654 0.601 1.803

synth_1 4.040 4.040 4.040 4.040 4.040 4.040 4.040 4.040 3.061 8.673 3.000 6.000 3.000 5.000 4.040 7.172 2.020 3.030 1.000 5.000

synth_2 18.584 27.655 22.851 31.027 22.851 31.027 22.851 31.027 0 19.770 1.342 24.385 14.675 36.688 12.646 27.635 5.139 27.409 0 26.389

synth_3 0.209 1.885 0 1.157 0 1.157 0 1.157 0.735 2.731 0.520 1.873 0.208 0.833 0.950 1.795 0.730 1.564 0.418 1.461

synth_4 0 1.896 0.589 2.473 0.236 2.128 0.354 2.243 3.496 5.868 1.695 4.722 0.957 3.469 2.270 5.422 2.881 3.962 1.437 2.156

synth_5 2.358 5.548 2.107 6.320 1.135 5.390 1.554 5.791 4.249 8.801 4.403 7.812 4.172 9.179 5.113 15.038 3.026 7.349 3.329 4.993
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Table 5 Summarized results of balanced accuracy obtained for the DT algorithm, when using the
best found parameter configuration after tuning for the weighted F1-score. Shown are the percen-
tages of LI and HI of the mean results over the 5 folds (for each dataset).

Dataset Depth

10 50 100 200

LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%)

BreastCancer 1.998 2.679 1.998 2.679 1.998 2.679 1.998 2.679

Iris 2.174 2.920 2.174 2.920 2.174 2.920 2.174 2.920

Spambase 0.243 0.691 1.822 3.540 0.819 2.521 1.165 2.873

Statlog 5.711 6.411 1.019 12.035 2.431 9.123 2.580 9.282

Wine Quality 7.744 16.516 15.554 35.840 7.285 26.680 7.483 28.863

Students 2.254 3.208 3.458 6.545 3.338 5.984 3.362 6.009

mfeat-morphological 2.632 2.632 2.291 5.695 3.372 7.779 1.722 6.058

diabetes 2.614 5.425 6.495 10.759 4.256 8.430 5.777 10.013

wdbc 0.758 2.443 0.862 2.548 1.180 2.872 1.180 2.872

wilt 1.420 2.893 0.978 2.445 0.978 2.445 0.978 2.445

Titanic 0 0 0 0 0 0 0 0

dataset_31_credit-g 0.148 3.199 1.303 2.447 2.817 5.798 1.464 4.405

phoneme 1.135 1.483 0.490 2.147 0.527 2.185 1.057 2.724

synth_1 4.211 4.211 4.211 4.211 4.211 4.211 4.211 4.211

synth_2 18.421 32.353 28.947 44.118 28.947 44.118 28.947 44.118

synth_3 0.207 1.904 0.643 1.179 0.631 1.166 0.631 1.166

synth_4 0.004 1.933 0.577 2.548 0.210 2.173 0.339 2.305

synth_5 2.225 5.701 1.970 6.834 0.981 5.798 1.398 6.235

Table 6 Summarized results of precision obtained for the DT algorithm, when using the best found
parameter configuration after tuning for the weighted F1-score. Shown are the percentages of LI and
HI of the mean results over the 5 folds (for each dataset).

Dataset Depth

10 50 100 200

LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%)

BreastCancer 1.375 2.049 1.375 2.049 1.375 2.049 1.375 2.049

Iris 1.391 1.942 1.391 1.942 1.391 1.942 1.391 1.942

Spambase 0.3 0.621 1.819 3.382 0.862 2.411 1.209 2.763

Statlog 0.814 2.514 0.049 0.475 0.009 0.415 0.018 0.423

Wine Quality 0.843 8.628 6.403 13.469 2.648 11.222 3.487 12.595

Students 2.782 4.081 4.652 7.005 3.180 5.256 3.204 5.280

mfeat-morphological 2.716 7.648 5.382 9.250 8.365 13.303 1.574 6.203

diabetes 5.193 7.714 6.165 9.408 3.545 6.708 5.625 8.852

wdbc 0.484 2.367 0.798 2.686 0.744 2.632 0.744 2.632

wilt 0.243 0.678 0.251 0.649 0.251 0.649 0.251 0.649

Titanic 0 0 0 0 0 0 0 0
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Null-Hypothesis Significance Test (NHST), which has been argued in Benavoli et al. (2017)
to be inadequate in the comparison of classifiers, particularly when their performance is
near equivalent (possibility of draws). As such, to avoid these shortcomings, here we will
take inspiration from the analysis conducted in Hernández et al. (2021) through the
application of Bayesian statistical analysis methods for the comparison of ML models, as

Table 6 (continued)

Dataset Depth

10 50 100 200

LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%)

dataset_31_credit-g 1.784 3.960 1.967 3.948 3.512 5.523 3.196 5.2

phoneme 1.227 1.481 0.472 2.099 0.529 2.156 1.024 2.659

synth_1 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645

synth_2 25.937 38.572 27.612 43.238 27.612 43.238 27.612 43.238

synth_3 0.173 1.818 0.609 1.123 0.568 1.081 0.568 1.081

synth_4 1.936 1.936 0.383 2.580 0.030 2.220 0.118 2.309

synth_5 2.716 5.796 2.585 7.061 1.657 6.093 2.019 6.471

Table 7 Summarized results of recall obtained for the DT algorithm, when using the best found
parameter configuration after tuning for the weighted F1-score. Shown are the percentages of LI
and HI of the mean results over the 5 folds (for each dataset).

Dataset Depth

10 50 100 200

LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%)

BreastCancer 1.516 1.978 1.516 1.978 1.516 1.978 1.516 1.978

Iris 2.174 2.920 2.174 2.920 2.174 2.920 2.174 2.920

Spambase 0.283 0.640 1.820 3.409 0.875 2.449 1.229 2.809

Statlog 1.421 3.508 0.048 0.457 0.002 0.394 0.010 0.399

Wine Quality 1.756 7.892 5.318 11.580 2.054 9.186 3.411 10.983

Students 2.013 3.944 4.222 6.772 5.255 7.443 5.288 7.476

mfeat-morphological 2.632 2.632 2.291 5.695 3.372 7.779 1.722 6.058

diabetes 5.572 7.763 6.496 8.919 3.352 5.703 6.120 8.534

wdbc 0.567 2.276 0.941 2.657 0.943 2.659 0.943 2.659

wilt 0.211 0.701 0.211 0.658 0.211 0.658 0.211 0.658

Titanic 0 0 0 0 0 0 0 0

dataset_31_credit-g 3.863 5.217 5.180 6.250 5.036 6.105 5.755 6.831

phoneme 1.135 1.482 0.491 2.147 0.528 2.185 1.056 2.722

synth_1 4.211 4.211 4.211 4.211 4.211 4.211 4.211 4.211

synth_2 18.421 32.353 28.947 44.118 28.947 44.118 28.947 44.118

synth_3 0.210 1.921 0.635 1.170 0.635 1.170 0.635 1.170

synth_4 1.932 1.932 0.592 2.536 0.237 2.174 0.355 2.295

synth_5 2.263 5.702 2.0 6.886 1.0 5.838 1.429 6.287
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Table 8 Summarized results of balanced accuracy obtained for the RF algorithm, when using the best found parameter configuration after
tuning for the weighted F1-score. Shown are the percentages of LI and HI of the mean results over the 5 folds (for each dataset).

Dataset 10 25

Depth estimators 10 25 50 10 25 50

LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%)

BreastCancer 0.224 1.667 0.007 0.649 0.119 0.119 1.180 1.180 0.423 1.290 0.526 0.526

Iris 1.460 1.460 0.704 2.878 0.714 1.439 0.719 4.478 0 0 0.714 1.439

Spambase 1.146 1.146 1.214 1.214 1.432 2.410 1.257 1.257 0.567 2.841 0.285 2.514

Statlog 15.051 56.367 0.791 12.131 9.526 22.152 7.614 16.073 10.970 35.527 9.785 26.675

Wine Quality 16.573 29.998 15.264 35.021 19.801 46.307 51.036 88.412 55.639 102.701 54.338 97.229

Students 0 0 0.566 1.297 0.580 0.580 0.193 3.998 0.955 2.245 0.390 1.684

mfeat-morphological 0.976 4.370 3.343 9.237 2.161 7.953 3.292 7.173 1.615 2.483 0.601 4.528

diabetes 5.041 10.8 0.010 2.650 1.566 1.566 1.769 6.213 0.707 3.686 1.331 1.941

wdbc 0.562 0.878 0.646 0.854 0.262 0.766 0 0 0.152 0.556 0.309 0.390

wilt 0 0 0 0 0 0 0.380 0.380 0.376 0.376 0.377 0.377

Titanic 7.110 7.110 0.587 0.587 0.055 0.361 1.847 2.370 0.418 8.352 0.121 0.636

dataset_31_credit-g 2.289 3.151 1.276 1.276 0.419 1.458 0.474 3.872 0 0 0.563 0.563

phoneme 0.239 1.670 0.038 0.273 0.192 0.891 0.555 3.465 0 0 0.114 0.114

synth_1 1.064 7.955 2.128 2.128 2.105 2.105 2.151 7.955 0 0 1.042 2.105

synth_2 0 0 0 0 0 0 8.108 8.108 6.452 6.452 2.564 11.111

synth_3 0.5 2.385 0.113 0.316 0 0 0.430 0.430 0.519 1.919 0.094 0.423

synth_4 1.281 2.120 2.299 2.299 2.059 3.559 1.577 3.615 0.364 2.388 0 0

synth_5 0.817 4.559 0 0 2.486 6.199 10.052 12.678 0.202 0.202 1.441 2.167

Table 9 Summarized results of precision obtained for the RF algorithm, when using the best found parameter configuration after tuning for
the weighted F1-score. Shown are the percentages of LI and HI of the mean results over the 5 folds (for each dataset).

Dataset 10 25

Depth estimators 10 25 50 10 25 50

LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%)

BreastCancer 0.280 1.352 0.104 0.537 0.006 0.173 0.615 0.615 0.269 0.866 0.227 0.227

Iris 1.256 1.256 0.637 1.827 0.356 1.528 0.856 3.286 0 0 0.082 0.929

Spambase 0.572 0.572 0.435 0.435 0.794 1.335 0.799 0.799 0.191 1.308 0.029 1.208

Statlog 2.733 13.548 4.281 7.797 1.482 20.6 1.034 2.501 4.670 6.982 2.885 5.179

Wine Quality 0.474 27.1 11.910 39.5 19.167 45.395 4.645 51.624 9.330 35.216 11.167 50.746

Students 0 0 0.136 6.086 0.659 0.892 1.870 5.320 0.409 1.408 0.570 4.405

mfeat-morphological 0.818 7.128 4.433 8.806 4.668 6.939 2.228 6.798 1.234 3.546 0.134 0.350

diabetes 6.410 11.507 2.217 2.217 2.687 3.296 2.365 7.2 2.280 4.052 1.813 5.232

wdbc 0.435 0.524 0.5 0.528 0.197 0.495 0 0 0.138 0.450 0.135 0.381

wilt 0 0 0 0 0 0 0.020 1.193 1.177 1.177 0.020 0.020

Titanic 1.845 25.020 1.559 1.559 0.341 0.641 1.246 14.221 3.699 4.256 0.3 0.3

dataset_31_credit-g 3.248 3.850 6.862 6.862 1.532 4.795 1.061 7.128 1.203 1.203 0.031 10.180

phoneme 1.190 1.718 0.007 0.007 0.013 0.582 0.538 3.295 0 0 0.093 0.093
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proposed in Benavoli et al. (2017) (which is a recommended work for additional details).
Namely, we will employ the Bayesian signed-rank test, which enables the comparison of
cross-validation performance of two classifiers for a group of datasets, effectively replacing
the traditionally used Wilcoxon signed-rank test.

Succinctly, the Bayesian signed-rank test functions by comparing two classifier models
(M1 and M2) for a selected performance measure (in this case, weighted F1-score) over
multiple cross-validation folds and multiple datasets. The output for the Bayesian test is a

Table 9 (continued)

Dataset 10 25

Depth estimators 10 25 50 10 25 50

LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%)

synth_1 0.350 8.270 1.757 2.280 1.743 1.937 1.972 7.004 0 0 0.785 1.743

synth_2 7.965 7.965 1.764 1.764 3.135 3.135 0.640 15.250 19.820 19.820 7.574 28.616

synth_3 0.365 2.097 0.112 0.307 0 0 0.231 0.231 0.458 1.849 0.105 0.518

synth_4 0.054 1.333 2.407 2.407 2.023 3.210 1.325 3.320 0.452 2.254 0 0

synth_5 1.426 6.108 0 0 2.794 6.984 8.851 13.087 0.224 0.224 0.398 2.143

Table 10 Summarized results of recall obtained for the RF algorithm, when using the best found parameter configuration after tuning for the
weighted F1-score. Shown are the percentages of LI and HI of the mean results over the 5 folds (for each dataset).

Dataset 10 25

Depth estimators 10 25 50 10 25 50

LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%) LI (%) HI (%)

BreastCancer 0.298 1.359 0.150 0.596 0.002 0.152 0.001 0.753 0.295 0.894 0.148 0.148

Iris 1.460 1.460 0.704 2.878 0.714 1.439 0.719 4.478 0 0 0.714 1.439

Spambase 0.926 0.926 0.824 0.824 1.089 1.845 0.987 0.987 0.397 2.039 0.173 1.853

Statlog 3.860 8.295 0.021 3.307 2.843 4.760 2.873 4.864 5.782 9.301 4.722 8.347

Wine Quality 7.561 12.798 6.827 19.283 9.536 25.987 13.059 27.313 16.629 35.921 17.573 36.318

Students 0 0 0.640 0.640 0.320 0.320 1.671 4.303 0.282 1.590 0.346 0.536

mfeat-morphological 0.976 4.370 3.343 9.237 2.161 7.953 3.292 7.173 1.615 2.483 0.601 4.528

diabetes 3.984 6.816 1.715 1.715 0.570 1.337 1.307 4.041 1.285 2.818 0.565 2.281

wdbc 0.564 0.565 0.549 0.553 0.185 0.554 0 0 0.187 0.553 0.002 0.370

wilt 0 0 0 0 0 0 0.022 0.022 0.022 0.022 0.022 0.022

Titanic 4.093 4.093 0.927 0.927 0.061 0.061 1.119 2.129 0.980 3.451 0.122 0.306

dataset_31_credit-g 1.288 1.724 0.714 0.714 0.142 0.712 0.422 3.030 0 0 0.142 0.571

phoneme 0.237 1.669 0.040 0.273 0.192 0.889 0.555 3.466 0 0 0.116 0.116

synth_1 1.064 7.955 2.128 2.128 2.105 2.105 2.151 7.955 0 0 1.042 2.105

synth_2 0 0 0 0 0 0 8.108 8.108 6.452 6.452 2.564 11.111

synth_3 0.536 2.404 0.105 0.316 0 0 0.431 0.431 0.526 1.919 0.105 0.423

synth_4 1.339 2.159 2.302 2.302 2.063 3.571 1.579 3.624 0.372 2.402 0 0

synth_5 0.810 4.538 0 0 2.5 6.187 10.017 12.650 0.148 0.148 1.439 2.174
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tuple of three posterior probabilities ðdl; de; drÞ, where each posterior indicates that it is
probable thatM1 is better thanM2ðdlÞ,M1 andM2 are equivalent ðdeÞ, or thatM2 is better
thanM1ðdrÞ. In Benavoli et al. (2017) it is further defined the term “practically equivalent”.
In this sense, it is defined by the region of practical equivalence (ROPE). For example, a
ROPE of 0.01 (assuming a performance metric ranged in ½0; 1�) represents that two
classifiers whose mean difference of performance metric is less than 0.01 (or 1%) are
practically equivalent. Moreover, to enable sensible automatic decisions based on the three
posterior probabilities returned by the Bayesian signed-rank test, it is suitable to define a
threshold e, such that

. M1 � M2 if PðM1 >M2Þ > e, M1 is better than M2,

. M1 � M2 if PðM1 <M2Þ > e, M2 is better than M1,

. M1 ¼ M2 if PðM1 ¼ M2Þ > e, M1 and M2 are equivalent,

otherwise, no decision can be made.
The Bayesian signed-rank test was thus applied to the cross-validation results using the

baycomp (https://baycomp.readthedocs.io/en/latest/) Python package (baycomp version
1.0.3). Test results are shown in Table 11 for the DT algorithms and in Table 12 for the RF
algorithms. We considered e ¼ 0:95 as in Benavoli et al. (2017) and performed tests for a
ROPE of 1% and 2%. Moreover, for the proposed method Ê and the classically established
entropies C, we consider that

Table 11 Bayesian signed-rank test for the DT algorithms across cross-validation results of all
datasets for the weighted F1-score. Here, ROPE ¼ f0:01; 0:02g; e ¼ 0:95; W represents a significant
win for Ê; D represents a significant draw for Ê; and, L represents a significant loss for Ê. For the case of
significant wins, the posterior probability value is shown in bold.

C Depth ROPE = 1% ROPE = 2%

P (Ê > C) P(Ê ¼ C) P(Ê < C) Results P(Ê > C) P(Ê ¼ C) P(Ê < C) Results

Gini 10 0.99422 0.00578 0 W 0.11896 0.88104 0 –

50 1.00000 0 0 W 0.92820 0.07180 0 –

100 0.99842 0.00158 0 W 0.40562 0.59438 0 –

200 0.99984 0.00016 0 W 0.61030 0.38970 0 –

Shannon 10 0.99682 0.00318 0 W 0.36518 0.63482 0 –

50 0.99858 0.00142 0 W 0.61088 0.38912 0 –

100 0.99630 0.00370 0 W 0.40206 0.59794 0 –

200 0.99976 0.00024 0 W 0.48300 0.51700 0 –

Rényi 10 0.99994 0.00006 0 W 0.54572 0.45428 0 –

50 1.00000 0 0 W 0.84586 0.15414 0 –

100 0.99994 0.00006 0 W 0.67818 0.32182 0 –

200 1.00000 0 0 W 0.62926 0.37074 0 –

Tsallis 10 0.99326 0.00674 0 W 0.11070 0.88930 0 –

50 1.00000 0 0 W 0.87864 0.12136 0 –

100 0.99664 0.00336 0 W 0.30874 0.69126 0 –

200 0.99964 0.00036 0 W 0.49862 0.50138 0 –

Costa et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3319 18/25

https://baycomp.readthedocs.io/en/latest/
http://dx.doi.org/10.7717/peerj-cs.3319
https://peerj.com/computer-science/


. PðÊ >CÞ > e, is a significant win (W) for Ê,

. PðÊ1 ¼ CÞ > e, is a significant draw (D) for Ê and C,

. PðÊ <CÞ > e, is a significant loss (L) for Ê.

DISCUSSION
Through the analysis of Table 4, it is possible to see that the introduced method shows
improvements in comparison with classical entropies across almost all tree structures and
datasets. Even with a relatively reduced number of search iterations (100 iterations), we
were able to frequently outperform existing methods. These improvements are less
noticeable, as expected, in the case of the weaker learner (DTs), where a higher proportion
of null LI is found. Nonetheless, it must be considered that metric LI provides a worst-case
scenario outcome, where comparisons are always made with the best performance of the
existing entropic measures. Generally, the combination of the proposed method with RFs

Table 12 Bayesian signed-rank test for the RF algorithms across cross-validation results of all datasets for the weighted F1-score. Here,
ROPE = f0:01; 0:02g; e ¼ 0:95;W represents a significant win for Ê; D represents a significant draw for Ê; and, L represents a significant loss for Ê.
For the case of significant wins, the posterior probability value is shown in bold.

C Depth Estimators ROPE = 1% ROPE = 2%

(Ê > C) (Ê ¼ C) (Ê < C) Results (Ê > C) (Ê ¼ C) (Ê < C) Results

Gini 10 10 1.00000 0 0 W 0.99812 0.00188 0 W

10 25 0.99998 0.00002 0 W 0.89364 0.10636 0 –

10 50 1.00000 0 0 W 0.99958 0.00042 0 W

25 10 0.99886 0.00114 0 W 0.34598 0.65402 0 –

25 25 0.99954 0.00046 0 W 0.57040 0.42960 0 –

25 50 0.99992 0.00008 0 W 0.58474 0.41526 0 –

Shannon 10 10 1.00000 0 0 W 0.99990 0.00010 0 W

10 25 1.00000 0 0 W 0.95558 0.04442 0 W

10 50 1.00000 0 0 W 1.00000 0 0 W

25 10 1.00000 0 0 W 0.97280 0.02720 0 W

25 25 1.00000 0 0 W 0.93018 0.06982 0 –

25 50 0.99996 0.00004 0 W 0.84228 0.15772 0 –

Rényi 10 10 1.00000 0 0 W 0.99954 0.00046 0 W

10 25 1.00000 0 0 W 0.95534 0.04466 0 W

10 50 1.00000 0 0 W 0.99986 0.00014 0 W

25 10 1.00000 0 0 W 0.95498 0.04502 0 W

25 25 0.99968 0.00032 0 W 0.55596 0.44404 0 –

25 50 0.99886 0.00114 0 W 0.55484 0.44516 0 –

Tsallis 10 10 1.00000 0 0 W 0.99944 0.00056 0 W

10 25 1.00000 0 0 W 0.99930 0.00070 0 W

10 50 1.00000 0 0 W 0.99992 0.00008 0 W

25 10 0.99998 0.00002 0 W 0.81052 0.18948 0 –

25 25 0.99994 0.00006 0 W 0.42182 0.57818 0 –

25 50 0.99962 0.00038 0 W 0.81208 0.18792 0 –
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yields a more substantial increase in performance, with a reduced number of null LI, with
the notable exception being the ‘wilt’ dataset, in which almost all methods showed similarly
high performance. Moreover, in terms of HI, it is possible to see improvements of over
40%, especially in the case of the stronger RF models, particularly in the case of the ‘Wine
Quality’.

In general terms, the highest performance gains seem to occur on multiclass and
imbalanced datasets (e.g., ‘Wine Quality’, ‘Statlog’), where the choice of performance
metric (weighted F1-score) would be most unfavorable. Another example can be seen in
the case of the synthetic datasets, namely ‘synth_2’ and ‘synth_5’, which are the two
synthetic sets with the highest performance increase, and, simultaneously, the only two
multiclass synthetic datasets, albeit with balanced classes. Regarding data types, the
performance of the proposed method does not seem to suffer negatively. For instance, in
datasets with mixed datatypes (e.g., ‘Students’), the introduced criterion is still able to
outperform classical methods. The results for the remaining metrics, namely Balanced
Accuracy, Precision, and Recall (seen in Tables 5-10) generally show a lesser improvement
of the proposed method, compared to the standard methods. This is, however, expected as
these metrics do not accurately reflect the large data imbalance that exists in multiple of the
tested datasets. Nevertheless, the results provide some additional insights into the
method’s behavior. Specifically, the gains in weighted F1-score appear to stem not only
from a modest overall improvement in classification balance, as reflected in the slight
increases in Balanced Accuracy, but also from an improved detection of minority classes,
as indicated by the relative improvements in Recall for underrepresented categories.

The largest advantage of the proposed method as a splitting criterion is that it never
introduces a performance penalty, and, at worst, it is only capable of equalling the classical
measures. This is more clearly shown in Tables 11 and 12. When using the ROPE value of
1% (as suggested in Benavoli et al. (2017) and later applied in Hernández et al. (2021) for
the comparison of split criteria), our method is seen to win against all other methods in the
case of DTs and RFs. When increasing ROPE to 2%, we are still able to significantly win
half the tests when using the RFs. Note that draws were never significant and that the
proposed method never lost against classical ones. Furthermore, the statistical results in
Table 12 show that using Ê as a splitting criterion is particularly advantageous on shallow
tree ensembles. A possible interpretation for this occurrence is that the low maximum
depth, in combination with our criteria Ê, makes it so that the classifier can more easily
generalize to unseen data.

Although the proposed method suffers from implementation challenges, since the
foundational structure for the devised DTs/RFs is not on the level of optimization as seen
in established works such as scikit-learn, resulting in considerably higher computing times,
it could nonetheless be integrated through the addition of the proposed split criterion
component within the algorithms. As such, there had to be a compromise in terms of the
number of sampled hyperparameters (both from the introduced parametrization and for
conventional DT/RF parameters). Moreover, compared with, for instance, Gini, the
computational cost of Ê is much greater due to the introduction of logarithmic functions.
This, however, seems like a reasonable middle ground considering the added flexibility
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introduced by our method. This can be of particular value when in combination with
solutions such as that discussed in Loyola-González, Ramírez-Sáyago & Medina-Pérez
(2023), where the dynamic selection of splitting criteria at each split could greatly benefit
from a unified parametric expression that could be easily searched through, for instance, a
genetic search algorithm.

CONCLUSIONS
Tree-based classifiers are widely used in practical machine-learning applications. The DT,
in particular, despite its simplicity, can have reasonable performance while being easily
interpretable. It is also the foundational component for other stronger learning models,
such as RFs. These factors still motivate research into the further development of DTs. The
work described in this article focuses on the data-splitting process, which is one of the key
algorithmic mechanisms of DTs. For this, we introduced a 5-parameter expression that
aims to generalize entropies traditionally employed as target functions to partition data at
DT nodes. This expression, Ê, is capable of, for instance, retrieving the Gini impurity,
Shannon entropy, Rényi entropy, and Tsallis entropy. However, because of its flexibility,
other entropic estimators can also be extracted from parametric manipulation.

To test its applicability as a splitting criterion, a target function was formulated based on

Ê and employed in both DTs and RFs. This criterion was then validated against the most
common information-theoretic measures of entropy on multiple datasets (both synthetic
and derived from open data repositories), using 5-fold cross-validation and parameter
tuning through a reduced 100-iteration Bayesian search. From the preliminary results, two
main conclusions can be drawn: (i) performance improvements could reach upwards of
40% in F1-score compared to classical measures of entropy; (ii) in the worst-case scenario,
no performance penalization would be introduced through the use of Ê (it would only be
equivalent to the best method). To validate the latter of these claims, an additional
Bayesian statistical analysis was conducted (signed-rank test), showing that for the
conventional ROPE value of 1%, our method only produced significant wins against
comparable alternatives. Furthermore, our method never suffered from any significant
loss, assessing its assurance to worst-case match performance. These findings underscore
the importance of careful selection of a splitting strategy.

As future research paths, multiple potential advancements can be identified, but
perhaps the most relevant are: a deeper study into the influence of each parameter in Ê in
the overall performance of the classifier, guiding prospective practitioners and reducing
computational costs of extensive search spaces; the adaptation of this target function into
regression problems; the combination of this method with the dynamic selection of split
criteria (as discussed in Loyola-González, Ramírez-Sáyago & Medina-Pérez (2023)), taking
further advantage of the flexibility introduced by Ê; and, the application of the proposed
method in streaming data scenarios through the incorporation of Ê into the internal
operating structure of Hoeffding Trees.
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