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ABSTRACT

To mitigate the negative impacts of concrete production on the environment while
simultaneously improving its structural performance, innovative approaches are
required to meet the growing demand for environmentally friendly building
materials. This study investigates the integration of regulated dosages of Carbon
Dioxide (CO,) during the concrete mixing process to improve compressive strength
while contributing to carbon sequestration. Further, the study addresses the
challenge of estimating concrete strength by utilizing machine learning algorithms.
Moreover, this is accomplished only by utilizing limited experimental data consisting
of only 270 rows. To make the Machine Learning (ML) model learn patterns well,
Conditional Tabular Generative Adversarial Networks (CTGAN) and Tabular
Variational Autoencoder (TVAE) are utilized to generate high-quality synthetic data,
thereby significantly expanding the training dataset. This allows for avoiding the
limitations associated with small datasets generated from experimentation. The data
generated by CTGAN and TVAE are evaluated to ensure that the characteristics of
the synthetic data are aligned with the original dataset. After data is compiled using
combined real and filtered synthetic datasets, significant improvements in key
performance metrics are achieved. Furthermore, Explainable Artificial Intelligence
(XAI) techniques are incorporated to provide insights into the black-box models,
improving their interpretability and trustworthiness. Results indicate that the Light
Gradient Boosting Machine is the most effective for predicting compressive strength,
achieving an R” value of 0.9872, MAE of 1.1847, and RMSE of 1.3833 on test data.
The approach proposed demonstrates a robust framework for combining data
augmentation and ML to estimate CO, incorporated concrete compressive strength
while effectively addressing challenges related to data scarcity.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Emerging Technologies
Keywords Compressive strength estimation, CO, incorporated concrete, Carbon sequestration,
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INTRODUCTION

The escalating threat of global warming, fuelled primarily by greenhouse gas emissions,
has emerged as one of the most critical challenges (Mariappan et al., 2023; Rashid et al.,
2024; Arif et al., 2025). Among these gases, carbon dioxide (CO,) accounts for around 75%
of total global emissions due to its abundance and persistence in the atmosphere (Sick,
Stokes & Mason, 2022; Yaacob et al., 2024). Cement production, a cornerstone of the
construction industry, significantly contributes to approximately 8% of global CO,
emissions (Chadha et al., 2024). This is mainly attributable to the calcination of limestone
and the energy-demanding procedures involved (Naik, Kraus ¢ Siddique, 2002). With the
increasing demand for concrete, the imperative to mitigate its environmental impact
intensifies. Innovative strategies, including CO, sequestration and utilisation, are being
explored to transform CO, from a liability into a valuable asset, thereby reducing its
impact on climate change (Lippiatt, Ling ¢ Pan, 2020). CO, sequestration in concrete
entails capturing carbon dioxide and integrating it during the mixing or curing phases
(Zhang, Ghouleh ¢ Shao, 2017; Singh et al., 2021). This procedure enables a sequence of
chemical reactions that transform atmospheric CO, into stable calcium carbonate CaCOj3,
which is embedded within the concrete matrix (Qian et al., 2018). These reactions improve
the material’s structural integrity and diminish its porosity (Sharma ¢» Goyal, 2018). The
primary carbonation reactions are as follows:

Reaction during hydration:

2(3Ca0 - $i0;) + 3CO; + 3H,0 — 3CaCO; + 3Ca0 - 28i0; - 3H,0
2(2Ca0 - $i0,) + CO, + 3H,0 — CaCOs + 3Ca0 - 25i0, - 3H,0

Reaction with hydration products:

Ca(OH)2 + C02 — CaCO3 + Hzo

These reactions densify the microstructure of concrete, thereby enhancing its
compressive strength and durability (Savija ¢ Lukovié, 2016). Moreover, carbonation
minimises the overall carbon footprint of concrete by incorporating CO, that would
otherwise aggravate atmospheric pollution (Adesina, 2020).

RELATED WORKS

The potential of incorporating CO, in concrete has been extensively investigated (Chen ¢
Gao, 2020; Suescum-Morales, Ferndndez-Rodriguez & Jiménez, 2022; Ahmed, Ahmad &
Adekunle, 2024). Carbonation has demonstrated the ability to improve both the fresh and
hardened characteristics of concrete while minimising its environmental impact
(Monkman, Grandfield & Langelier, 2018; Monkman & MacDonald, 2017). The
incorporation of CO, in fresh concrete during mixing often reduces slump owing to rapid
water loss resulting from exothermic carbonation reactions (Samniang et al., 2021). The
initial and final setting times of carbonated concrete tend to be prolonged due to the free
water produced during the reaction between Ca(OH), and CO,; however, optimized CO,
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dosages can accelerate the setting process, resulting in a reduction of initial set times by
22-25% and final set times by 21-25% (Monkman, MacDonald & Hooton, 2016;
Monkman, Grandfield ¢ Langelier, 2018). Carbonation in hardened concrete considerably
improves compressive strength by forming nanosized calcium carbonate, which densifies
the matrix and fills microvoids (Monkman, 2018; Shah et al., 2018). Optimal CO, dosages
can increase compressive strength by 14% in 1 day and up to 30.9% in 28 days (Wang, He
¢ Yang, 2018; Kumar et al., 2019). Accelerated carbonation curing has also been found to
enhance early-age strength by 20-26% in 3-58 days (Monkman, MacDonald ¢ Hooton,
2015). Excessive CO, dosages might adversely impact compressive strength, highlighting
the necessity for precise dosage optimisation (Saikia ¢» Rajput, 2024). Another significant
advantage of carbonation is its enhancement of durability. Carbonated concrete exhibits
reduced porosity, lower water absorption, and improved resistance to chloride penetration
and freeze-thaw cycles (Sharma ¢» Goyal, 2022; Zhang ¢ Shao, 2018). Carbonation refines
pore structures, reduces pore sizes, and promotes the formation of stable calcium
carbonate and C-S-H gel, resulting in a denser and more durable matrix (Cui ef al., 2015;
Jang & Lee, 2016). These findings collectively underscore the potential of CO, utilisation to
enhance concrete performance while addressing sustainability objectives.

Conventional methods for assessing the compressive strength of concrete necessitate
extensive experimental testing, which is both time-consuming and resource-intensive
(Candelaria, Kee & Lee, 2022; Getahun, Shitote ¢ Abiero Gariy, 2018). Regression
modelling serves as a viable alternative, enabling the prediction of compressive strength
based on key input variables like cement content, water-to-cement ratio, aggregate size,
and CO, dosage (Tam et al., 2022). Regression models utilise statistical techniques and
machine learning (ML) algorithms that enable assessing the mechanical properties of
concrete efficiently, minimising dependence on physical testing (Singh et al., 2023).
Regression modelling has been utilised in various application areas (Haque et al., 2025).
Traditional models such as multiple linear regression and polynomial regression have
proven effective in predicting the strength of conventional concrete but often encounter
difficulties with complicated, nonlinear interactions (Yeh, 1998). Advanced models, such
as support vector regression (SVR) and random forest (RF), have demonstrated efficacy
with high-dimensional data, attaining prediction errors below 5% in strength assessments
(Ly et al., 2021). Artificial Neural Networks (ANN) excel at capturing nonlinearities, with
optimised architectures providing precise predictions for diverse concrete types, such as
recycled aggregate and self-compacting concrete (Chopra, Sharma & Kumar, 2016).

Getahun, Shitote & Abiero Gariy (2018) developed a three-layer ANN model utilising 15
input parameters and attained a Mean Average Precision Error (MAPE) of around 2.09%,
designating cement, water, RHA, and w/c ratio as the most significant factors. In a similar
way, Yan et al. (2013) effectively utilised SVR to predict tensile strength from compressive
strength, hence validating the efficacy of margin-based learners in property mapping.
Hybrid and ensemble models such as Adaptive Neuro-Fuzzy Inference Systems and
ensemble techniques such as Gene-Expression Programming and Extreme Gradient
Boosting (XGB) improve prediction accuracy by combining algorithmic strengths,
outperforming standalone models (Chu et al., 2021; Shamsabadi et al., 2022). Deep neural
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networks enhance the capabilities using extensive datasets, while hybrid and ensemble
approaches perform exceptionally well under varied situations, rendering regression
modelling essential for optimising concrete mix designs. The approaches, such as
Convolutional Neural Network (CNN)-Bidirectional Long Short-Term Memory
(BiLSTM) architectures and RF-optimised back-propagation networks, have been
documented to surpass conventional models, especially in predicting strength at various
curing ages (Leondes, 2002; Bharathi, Manju ¢ Premalatha, 2017).

To mitigate data scarcity challenges in forecasting the compressive strength of concrete,
as experiments are costly and limited, generative models like Conditional Tabular
Generative Adversarial Networks (CTGAN) and Tabular Variational Autoencoders
(TAVEGAN) have emerged as viable solutions (Xu et al., 2019; Apellaniz, Parras ¢» Zazo,
2024). These models produce synthetic but realistic datasets by assimilating the
fundamental distributions of existing data, thereby improving model training. The
integration of synthetic data generation with conventional and sophisticated regression
models enhances predictive efficacy, alleviating the risk of overfitting and broadening the
applicability of ML techniques to specialised concrete types or innovative mix designs. The
implementation of Explainable AI (XAI) techniques enhances the interpretability and
reliability of predictive models by offering transparent insights into their decision-making
processes. XAI methodologies, including SHapley Additive exPlanations (SHAP), facilitate
the identification of essential input variables affecting concrete strength predictions,
thereby enhancing decision-making in construction practices (Lundberg ¢ Lee, 2017). In
the context of CO, curing and accelerated carbonation curing, maturity-based models
have been developed to quantify the synergistic effects of CO, concentration, relative
humidity, and flow rate on early-age strength development, demonstrating that optimal
curing conditions can yield strengths comparable to those of 28-day moist-cured samples
within hours (Xuan, Zhan ¢ Poon, 2018). These models formalise the influence of CO,
dosage and curing environment through logistic-type functions, incorporating
characteristics associated with carbonation kinetics and hydration acceleration. At a
material scale, mathematical modelling has shown that carbonation and CO, uptake are
affected by cement chemistry, SCM content, exposure class, and surface-area-to-volume
ratio, with high surface-area-to-volume elements demonstrating up to 255% more CO,
sequestration capacity compared to normal specimens (Souto-Martinez et al., 2017). These
mechanistic insights underscore the need to integrate CO, curing characteristics with mix
design parameters in ML frameworks to enhance prediction accuracy.

Recent studies in predictive modelling for civil engineering materials increasingly utilise
XAI and data augmentation techniques. SHAP has been pivotal in revealing the impact of
individual features on model outputs, enhancing transparency and trust. For instance, in
the study quantifying compressive strength in limestone powder incorporated concrete,
SHAP was employed to understand the influence of variables like water-to-cement ratio
and limestone dosage (Mishra, 2025). Additionally, the SHAP analysis revealed that
recycled coarse aggregate has an inverse impact on the strength of Fibre-reinforced
recycled aggregate concrete (Alsharari, 2025). Furthermore, SHAP analysis revealed
cement content and curing age as the most significant factors affecting compressive
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strength (Abioye et al., 2025). SHAP explanations reveal interactions among features
during the prediction process. While cement generally has a positive impact on strength, it
also exhibits localised adverse effects. Findings offer valuable insights for guiding the
design of high temperature resistant concrete materials (Meng et al., 2025). Utilising
literature insights and limitations in current approaches, this study proposes an ML
framework for estimating the compressive strength of CO, incorporated concrete.
Advanced regression modelling, synthetic data generation, and model explainability
techniques are used to improve accuracy, solve data scarcity, and deliver actionable feature
contribution insights. This study has the following objectives.

» Evaluates the impact of regulated CO, incorporation during concrete mixing on the
development of compressive strength in concrete formulated with varied water-cement
ratios and cement types (OPC and PPC) at various curing ages.

o It examines the use of regression modelling approaches to estimate the compressive
strength of CO,-incorporated concrete.

e It introduces and compares models to generate high-quality synthetic data for concrete
strength prediction to reduce data scarcity.

e To optimise ML models capable of accurately predicting the compressive strength of
concrete with Incorporated SHAP to interpret the predictions of the models, providing
insights into feature contributions and enhancing the transparency of the models.

The rest of the article is organised as follows: ‘Experimentation and Data Collection’
describes the experimental setup and data collection. ‘System Description’ describes the
problem formulation and algorithm, including the problem statement. ‘Results’ covers the
data quality, data augmentation, ML model performance, and XAI model interpretability.
After discussing the findings, the study concludes in ‘Discussions’.

EXPERIMENTATION AND DATA COLLECTION

Materials

The study utilised two cement types: Ordinary Portland Cement (OPC) and fly ash-based
Portland Pozzolana Cement (PPC), adhering to IS: 269-2015 ; equivalent to ASTM C150/
C150M and IS: 1489 (Part 1)-1991 equivalent to ASTM C595/C595M, respectively, with
specific gravities of 3.15 and 3.06 and standard consistencies of 28% and 34%. River sand,
locally sourced and classified as Zone II according to IS: 383-2016; equivalent to ASTM
C33/C33M, was used as fine aggregate, exhibiting a specific gravity of 2.65, a fineness
modulus of 2.82, and a water absorption of 1.60%. Coarse aggregates comprised crushed
stone (20 and 10 mm), assessed in accordance with IS: 383-2016; equivalent to ASTM C33/
C33M, exhibiting specific gravities of 2.68 and 2.77, fineness moduli of 6.00 and 6.95, and
water absorptions of 0.17% and 0.37%, respectively. Potable tap water was used for both
casting and curing. A polycarboxylic ether polymer-based superplasticizer (Fosroc
Auramix 200) complying with IS: 9103-1999 ; equivalent to ASTM C494/C494M, was
employed as an admixture. Furthermore, 99.9% pure industrial-grade carbon dioxide gas
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Table 1 The concrete mixture proportions.

Binder type Binder kg/m’ Water kg/m? Coarse aggregate Fine aggregate Superplasticizer % by CO, content % by
kg/m’ kg/m® cement weight cement weight

PPC 500 175 1,200.63 674.584 0.65 0
PPC 500 175 1,200.63 674.584 0.65 0.05
PPC 500 175 1,200.63 674.584 0.65 0.10
PPC 500 175 1,200.63 674.584 0.65 0.15
PPC 500 175 1,200.63 674.584 0.65 0.20
OPC 400 182 1,200.63 674.584 0.65 0
OPC 400 182 1,200.63 674.584 0.65 0.05
OPC 400 182 1,200.63 674.584 0.65 0.10
OPC 400 182 1,200.63 674.584 0.65 0.15
OPC 400 182 1,200.63 674.584 0.65 0.20
PPC 400 182 1,200.63 674.584 0.65 0
PPC 400 182 1,200.63 674.584 0.65 0.05
PPC 400 182 1,200.63 674.584 0.65 0.10
PPC 400 182 1,200.63 674.584 0.65 0.15
PPC 400 182 1,200.63 674.584 0.65 0.20
OPC 350 193 1,200.63 674.584 0.65 0
OPC 350 193 1,200.63 674.584 0.65 0.05
OPC 350 193 1,200.63 674.584 0.65 0.10
OPC 350 193 1,200.63 674.584 0.65 0.15
OPC 350 193 1,200.63 674.584 0.65 0.20
PPC 350 193 1,200.63 674.584 0.65 0
PPC 350 193 1,200.63 674.584 0.65 0.05
PPC 350 193 1,200.63 674.584 0.65 0.10
PPC 350 193 1,200.63 674.584 0.65 0.15
PPC 350 193 1,200.63 674.584 0.65 0.20

was supplied in high-pressure cylinders (about 300 psi or 20 bar) for the carbonation

process.

Mix design and methodology

The study examined the impact of CO, incorporation during mixing on the compressive

strength of concrete. The data encompassed various concrete mix proportions, binder

types, and CO, dosages, facilitating an extensive assessment. The concrete mixes

comprised two types of binders, OPC and PPC, with binder quantities of 500, 400, and
350 kg/m’. Additional constituents comprised water (175-193 kg/m?), coarse aggregates
(1,200.63 kg/m?), fine aggregates (674.584 kg/m?), and superplasticisers (0.65% by weight
of cement). CO, was injected in concentrations of 0%, 0.05%, 0.10%, 0.15%, and 0.20% by
weight of cement, serving as a critical factor in assessing compressive strength. The input
parameters for regression modelling were binder type, binder content, water-to-binder
ratio, CO, dosage, and testing age. The concrete mixture proportions are listed in Table 1
range of parameters is listed in Table 2.
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Table 2 Range of parameters in the original dataset.

Variables Minimum Maximum
‘WBRatio 0.35 0.55
OPC 0.00 500
PPC 0.00 500
DAYS 7.00 56.0
CO, 0.00 0.20

In this study, CO, was injected directly during the mixing process. High-purity CO, gas
(99.9%) was supplied through a cylinder equipped with a dual-stage regulator, pressure
gauge, and calibrated rotameter to ensure a regulated flow rate of 3.0 & 0.2 L/min. The
injection duration for each batch (30-45 s) was determined based on the mixer capacity
and the required CO, dosage relative to cement weight, ensuring delivery within +2% of
the target. The gas was injected into the concrete mixer through a 10 mm inner-diameter
reinforced hose, with the mixing chamber enclosed by gasket-lined acrylic panels to reduce
leakage, leaving only a narrow, sealed opening for the hose connection and a pressure relief
vent equipped with a one-way valve. The measured CO, was injected consistently,
enabling its reaction with the hydrating cement and promoting carbonation within the
mix. Safety protocols comprised continuous laboratory ventilation to ensure ambient CO,
levels remained below 1,000 ppm, using personal protective equipment (safety goggles,
nitrile gloves, and CO,-rated respirators), leak detection via portable monitors, and
emergency shut-off valves in compliance with ASTM C1768 standards. This process was
essential for achieving the intended interaction between CO, and the binder. Following the
mixing process, the concrete was cast into standard moulds to assess its compressive
strength. Compressive strength tests were carried out at 7, 28, and 56 days, in accordance
with IS: 516-1959 norms; equivalent to ASTM C39, to evaluate the strength of the
CO,-incorporated concrete.

Compressive strength test results

This study examines the impact of CO, incorporation during mixing on the compressive
strength of concrete, assessed at 7, 28, and 56 days to determine both early-age and
long-term strength development. The findings demonstrate that the incorporation of CO,
at regulated dosages during mixing significantly improves the compressive strength of
concrete, especially at reduced water-to-cement (w/c) ratios. The optimum CO,
concentration ranges from 0.05% to 0.10% for the majority of mixes, beyond which a
reduction in strength is observed. This behaviour can be attributed to the carbonation
reactions between CO, and calcium hydroxide (Ca(OH),), which leads to the formation of
calcium carbonate (CaCO3). This reaction optimally refines the pore structure and
enhances the density of the concrete matrix, consequently augmenting strength. However,
excessive CO, exposure may lead to premature carbonation, hindering the hydration
process and reducing the availability of Ca(OH), for further strength development
(Monkman et al., 2018; Monkman ¢ MacDonald, 2016). For the w/c = 0.45 mixes,
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OPC-based concrete exhibited enhanced compressive strength with increasing CO, dosage
up to 0.10%. The control mix demonstrated compressive strengths of 24.25, 37.62, and
39.12 MPa at 7, 28, and 56 days, respectively. The highest strength (50.58 MPa at 56 days)
was observed at 0.10% CO,, indicating that moderate carbonation positively impacted the
microstructure. Nevertheless, beyond 0.10%, a reduction in strength was noted, likely due
to excessive carbonation impeding further hydration (Monkman ¢ MacDonald, 2017).
Similarly, for PPC mixes, the compressive strength improved up to 0.05% CO,, to a
maximum of 55.87 MPa at 56 days, after which the strength began to decrease, especially at
0.15% and 0.20% CO, concentrations. The presence of pozzolanic materials in PPC would
have facilitated early strength development, but prolonged exposure to CO, would have
reduced the efficacy of the long-term pozzolanic reaction (Samniang et al., 2021).

For the w/c = 0.35 mixes, with a reduced water content and inevitably higher strength, a
more significant improvement due to CO, incorporation was observed. The control OPC
mix exhibited compressive strengths of 32.63, 50.19, and 53.20 MPa at 7, 28, and 56 days,
respectively. The highest strength (60.09 MPa at 56 days) was attained at 0.10% CO,,
indicating the improved densification effect resulting from controlled carbonation. A
similar trend was seen for PPC, where 0.05% CO; yielded the highest strength of
59.53 MPa at 56 days. However, beyond this concentration, strength began to decrease,
indicating that excessive carbonation would have led to the formation of a dense outer
layer that impeded further hydration of the cementitious matrix (Xu et al., 2022).
Conversely, the w/c = 0.55 mixes exhibited a comparatively lower strength enhancement
due to CO, incorporation. The control OPC mix had compressive strengths of 18.19,
26.33,and 28.47 MPa at 7, 28, and 56 days, respectively. The compressive strength attained
a maximum of 31.25 MPa at 56 days with 0.05% CO,; however, with higher CO, dosages,
the increase in strength was negligible. A similar pattern was noted in PPC, with the
highest strength (30.95 MPa at 56 days) obtained at 0.05% CO,, followed by a decrease in
strength. This limited strength improvement can be attributed to the higher porosity of w/c
= 0.55 mixes, which would have reduced the effectiveness of CO,-induced densification.
Furthermore, at high w/c ratios, carbonation may progress more rapidly. However, it does
not substantially enhance overall strength development due to the extensive availability of
pore water (Wang et al., 2019).

The results validate that the inclusion of CO, during mixing improves concrete strength
at optimal dosages (0.05-0.10%) owing to the beneficial effects of early-age carbonation.
The regulated formation of CaCO; enhances the packing density of the cement matrix and
decreases porosity, thereby enhancing strength. However, when CO, concentration
exceeds a critical threshold (beyond 0.10%), the carbonation reaction consumes excessive
Ca(OH),, which may interfere with long-term hydration and strength development
(Rashid & Singh, 2023). The impact of the w/c ratio, as shown in Figs. 1A and 1B, is also
evident in the findings, as reduced w/c ratios (0.35 and 0.45) demonstrate a significant
increase in strength. This is attributed to the denser microstructure of low w/c ratio mixes,
which enables regulated carbonation to enhance the pore structure without substantially
reducing hydration (Li et al., 2019). Conversely, high w/c ratio mixes (0.55), as shown in
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Figure 1 Compressive strength results of mixes at 7, 28, and 56 days for different w/c ratios: (A) w/c = 0.35, (B) w/c = 0.49, and (C) w/c = 0.55.
Full-size K&l DOT: 10.7717/peerj-cs.3316/fig-1

Fig. 1C exhibit increased porosity, hence limiting the efficacy of CO,-induced
densification. The comparison between OPC and PPC indicates that PPC typically has
superior long-term strength due to the pozzolanic reaction. However, PPC appears more
sensitive to excessive CO, exposure, as seen from the more pronounced decline in strength
at 0.15% and 0.20% CO, concentrations. The delayed pozzolanic reaction may be impeded
by early carbonation, hence influencing the formation of additional cementitious
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Figure 2 Framework for estimating compressive strength of CO,-incorporated concrete.
Full-size K&l DOT: 10.7717/peerj-cs.3316/fig-2

compounds (Savija & Lukovi¢, 2016). The study indicates an optimal CO, range of 0.05-
0.10% for strength enhancement, beyond which carbonation impacts hydration. The effect
is more pronounced at lower water-to-cement ratios (0.35 and 0.45) and with OPC in
comparison to PPC. These insights can be valuable for developing sustainable cementitious
composites through the integration of regulated CO, utilisation while ensuring optimal
performance.

SYSTEM DESCRIPTION

The methodology presented in Fig. 2 outlines a systematic approach to estimating the
compressive strength of CO,-incorporated concrete using a combination of data
augmentation, ML modelling, and XAI techniques. The process is divided into three
key steps:

1. The workflow begins with model training on experimental data collected. Initial ML
models create baseline performance measures.

2. Synthetic data generation and integration: Two different models generate high-quality
synthetic datasets. After evaluation, the best synthetic data is mixed with the real dataset
to improve model training.

3. Advanced ML models predict concrete compressive strength using the combined real
and augmented dataset. SHAP provides transparency and understanding of feature
contributions in model predictions.

This comprehensive approach not only seeks to boost prediction accuracy but also
improves model interpretability, leading to improvements in sustainable concrete
technology.
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Problem formulation
The primary objective of this study is to develop an Artificial Intelligence (AI) model M
that can accurately forecast the compressive strength of concrete (y € R) based on its mix
proportions. The dataset D € R"*™, where n is the number of samples and m represents
the features, poses challenges due to its limited size (n = 270) and the complex, non-linear
relationships. Moreover, the lack of interpretability in traditional ML models requires
methods to explain predictions, ensuring trust and usability in real-world applications.
This study addresses these challenges through a comprehensive framework that integrates
data augmentation, ML, and model explainability.

The first step in the proposed framework involves addressing data scarcity by generating
synthetic samples using both CTGAN and TVAE. The CTGAN model Gcrgan and the

TVAE model Gryag are independently trained on the original dataset D to generate

DCTGAN DTVAE

synthetic and synthetic

synthetic datasets , respectively, each consisting of k - n samples,

where k>1 is the augmentation factor. A quantitative and qualitative comparison of the
synthetic datasets is then conducted using evaluation metrics and model performance
metrics when trained on the synthetic data. The framework selects the synthetic dataset
characterised by superior quality and the most representative samples based on this
comparison. The final augmented dataset is then constructed as:

Dcombined =DU DbeSt (1)

synthetic’

where D'S’;;ttheti . is the superior synthetic dataset from either CTGAN or TVAE. This
approach ensures that only the best-quality synthetic data is utilised, leading to improved
model performance and robustness. The ML model M is trained on Dgjereq With the

objective of minimising prediction errors for compressive strength. The training process is

governed by the following mathematical objective function:
rr/{ilnE(xy)/)EDﬁltered l:ﬁ()/’ M(x))] ’ (2)

where £ denotes the loss function, chosen as Mean Squared Error (MSE):

£ MW) =3 0= 3 ®

with y; = M(x;) representing the predicted strength for input x;. The framework
incorporates Explainable AI (XAI) techniques to enhance model interpretability. SHAP is
used to decompose predictions into feature contributions, providing insights into the
relative importance of each feature. The SHAP decomposition is given by:

SHAP(f(x)) = o + D _ . 4)

where ¢, is the base value representing the average prediction, and ¢, quantifies the
contribution of feature i to the prediction for input x. This interpretability ensures
transparency and trust in the model’s predictions, making it suitable for practical
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Algorithm 1 Estimating compressive concrete strength using data augmentation.

Input: Original dataset D € R"*™ with n = 270 rows and m = 6 features.

Output: Optimized model M with explainable insights.

/* Data Preparation */
1 D — ffill(D).
2 D < MinMaxScaler(D).

/* Data Generation l
3 Train CTGAN and TVAE models Gergany and Gryag on D: Gergan <— ﬁt(D), Grvag < ﬁt(D)

; CTGAN TVAE . CTGAN
4 Generate synthetic datasets D, and Do, - DOGiee < Gergan - generate(k - n),

;{/Ylﬁql:énc — Gryag - generate(k - n), where k is the synthetic-to-real ratio.

5 Compare synthetic datasets and select the best quality dataset:

best CTGAN TVAE
Dsynthetic - SeleCt*beSt(D synthetic’ synthetic)'

6 Combine real and selected synthetic data: Dcombined < D U DE;;‘thetic.
/* Training )l
7 Split Dhitered into training (Dyrin) and testing (Dregt) sets.
8 Train ML model M: M «— train(Dyein)-
/* Evaluation l
9 Evaluate M on Dyey:
10 Compute metrics RMSE(M), MAE(M), and R*(M).
/* Optimization */
11 Refine M through iterative retraining and hyperparameter tuning:
12 Moptimized < tune(M).
/* Explainable AI i
13 Apply SHAP to interpret M:
14

SHAP(f(x)) = ¢, +z¢

where ¢; are feature contributions.

applications. Further, the model undergoes iterative optimisation to improve its
performance. This includes hyperparameter tuning and retraining to ensure the model
achieves the best possible accuracy and generalisation. The optimisation process is
reinforced through 10-fold cross-validation, which splits the dataset into 10 subsets,
iteratively training the model on nine subsets while validating on the remaining subset.
This method mitigates overfitting and yields a reliable assessment of the model’s efficacy.
The evaluation metrics used to assess the model’s performance include Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and R?, which are defined as follows:

1< .
MAE = ;Z i = 3l
i=1

S - )
RR=1-"F——
i;(}’i—)_’)z

where y is the mean of the true values y;. The final output is an optimised model M gptimised
that delivers accurate predictions for compressive strength while providing interpretable
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Figure 3 Correlation matrix of dataset features. Full-size K&l DOT: 10.7717/peerj-cs.3316/fig-3

insights into the underlying factors. This framework effectively addresses the challenges of
data scarcity, complexity, and model transparency in concrete strength forecasting.

Algorithm

The proposed Algorithm 1 integrates synthetic data generation to address data scarcity in
concrete strength prediction. It combines real and synthetic data and trains ML models.
Explainable AI methods, specifically SHAP, are employed to interpret feature
contributions, enhancing model transparency.

RESULTS

Data preprocessing and analysis

The original dataset consists of 270 rows and includes the crucial factors affecting concrete
compressive strength. The dataset comprises variables including the Water-to-Binder
Ratio (WBRatio) between 0.350 and 0.550, OPC and PPC with values between 0.000 and
500.0 kg/m>, curing days (DAYS) spanning from 7 to 56 days, and CO, dose varying from
0.000 to 0.200. Every row in the data shows a unique concrete mix configuration that
relates these input variables to the measured compressive strength. The small size of the
dataset and the complexity of the relationships among variables emphasise the need for
synthetic data augmentation to support the training process of ML models and predictive
accuracy. The variable WBRatio exhibits a narrow and consistent distribution, indicating
minimal variability across the samples. Similarly, CO, levels show a tightly clustered
distribution, suggesting well-regulated conditions with limited variability. In contrast,
DAYS, representing the curing age, displays a broader distribution, indicating diverse
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sample ages included in the dataset. The cement variables, OPC and PPC, also show
consistent distributions, with OPC spanning a slightly wider range compared to PPC.
Lastly, STRENGTH, representing material strength, exhibits significant variability between
20 and 60, reflecting the range of structural performance observed.

The correlation matrix in Fig. 3 reveals key relationships among the variables in the
dataset. A strong negative correlation (—0.72) between the WBRatio and material strength
(STRENGTH) indicates that higher water content reduces structural strength, aligning
with known material science principles. Similarly, the strong inverse relationship (-0.96)
between OPC and PPC reflects their complementary roles in material composition. The
moderate positive correlation (0.54) between curing time (DAYS) and strength highlights
the beneficial impact of extended curing on material performance. These findings
emphasise the critical role of controlling the water-binder ratio and curing time to
optimise material strength while highlighting the interplay between OPC and PPC in
mixtures.

Data augmentation

The original dataset undergoes preprocessing, ensuring consistency and compatibility for
subsequent steps. Small datasets often lead to models that are prone to overfitting, where
the model learns specific patterns in the data rather than general trends, resulting in
suboptimal performance. This can compromise the reliability of insights and predictions.
To overcome data scarcity, CTGAN and TAVE are employed to generate synthetic data,
which expands the dataset by producing samples that mimic the statistical properties of the
original data. The process commenced with metadata detection using the Metadata
method from the SDV library. Metadata serves as a critical component in preserving the
structural integrity of synthetic data by capturing schema definitions, data types, and
interdependencies among variables. This ensures that the generative model adheres to the
logical and statistical constraints inherent in the original dataset. Both models were
subsequently trained on the original data using 1,000 epochs to ensure convergence and
learning of the underlying data distributions. The model generated 10,000 synthetic
samples; the samples are filtered, and substantially high-quality data augment the dataset
to enable more robust model development. The filtering process utilised Cook’s Distance
to ensure the reliability of the generated synthetic data. Following the application of a
linear regression model to the integrated real and synthetic dataset, we calculated Cook’s
Distance for each synthetic sample to assess its impact on the model fit. Samples exhibiting
a Cook’s Distance value exceeding 4/n were classified as high-influence outliers and
subsequently excluded. This enabled the removal of synthetic samples that, although not
definitive statistical outliers, had the potential to distort learning and diminish model
robustness.

Synthetic data quality was evaluated through diagnostic and statistical similarity
measures as shown in Table 3. Through data quality assessment reports for CTGAN and
TVAE, it is evident that both models attain perfect scores in data validity, data structure,
and general basic data quality, each scoring 100%. However, on closer examination of data
structure elements, one finds notable variations. In both column shapes (97.42% vs.
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Table 3 Comparison of data quality evaluation for CTGAN and TVAE.

Evaluation metric CTGAN (%) TVAE (%)
Data validity 100.0 100.0
Data structure 100.0 100.0
Overall 100.0 100.0
Column shapes 85.79 97.42
Column pair trends 62.97 94.59
Overall 74.38 96.01

Table 4 Comparison of column-wise data quality metrics for CTGAN and TVAE.

Column Metric CTGAN score TVAE score
WBRatio KSComplement 0.765777 0.997833
OPC TVComplement 0.985947 0.989000
PPC TVComplement 0.966797 0.978800
DAYS TVComplement 0.969233 0.951067
CO, KSComplement 0.714700 0.982300
STRENGTH KSComplement 0.744969 0.946000
Note:

TVComplement, Total variation complement; KSComplement, Kolmogorov-Smirnov complement.

85.79%) and column pair trends (94.59% vs. 62.97%), the TVAE model outperforms
CTGAN. As a result, TVAE’s (96.01%) general data structure score is rather better than
CTGAN’s (74.38%). Although both models preserve fundamental data integrity, TVAE
generates synthetic data with a more accurate representation of feature distributions and
relationships. Further, Column-wise data quality assessments, as in Table 4, confirm that
TVAE consistently outperforms CTGAN across all evaluated criteria. The TVAE model
demonstrates exceptional capability in maintaining the distributional integrity of the
WBRatio (0.9978), OPC (0.9890), and CO, (0.9823), achieving nearly perfect scores across
the majority of columns. Conversely, CTGAN demonstrates challenges in capturing
intricate relationships among these variables, evidenced by its relatively poor performance,
particularly in the CO, (0.7147) and STRENGTH (0.749) columns. The WBRatio exhibits
the most significant disparity (0.656 vs. 0.9978), indicating that TVAE provides a more
authentic synthetic representation of this crucial attribute. TVAE’s a superior ability to
generate high-quality synthetic data that closely mirrors the statistical properties of the
actual dataset. However, recognising that not all synthetic samples may accurately
represent the original distribution. In such cases, outliers are removed, and only synthetic
samples closely aligned with the original data distribution are retained.

Machine learning modelling

Once the data preparation is complete, the final dataset obtained is split into training and
testing sets in a (80:20) ratio. We utilised a 10-fold cross-validation strategy during the
training phase to ensure robust model evaluation and prevent overfitting. This approach
involves dividing the training data into ten subsets of equal size. In each iteration, nine
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Table 5 Model performance on original dataset.

Model MAE RMSE R?

LGBM 2.5954 3.1579 0.9356
GBR 2.6934 3.2865 0.9299
RF 2.8967 3.5157 0.9216
KNN 2.9203 3.5510 0.9171
ADA 3.0062 3.7472 0.9079
ET 3.1587 3.8622 0.9049
XGBoost 3.2000 3.8744 0.9042
DT 3.2426 3.9587 0.9003
LR 4.7495 5.7305 0.7850
EN 49119 6.0493 0.7528

folds are allocated for training, while the remaining fold serves for validation. This
procedure is executed ten times, guaranteeing that each data point is utilised for validation
precisely once. The resulting data is analysed using regression models, including a diverse
range of ML models, including advanced algorithms such as Light Gradient Boosting
Machine (LGBM), Gradient Boosting Regressor (GBR), RF, and K-nearest Neighbors
Regressor (KNN). Ensemble techniques like AdaBoost Regressor (ADA) and Extra Trees
Regressor (ET), along with Extreme Gradient Boosting (XGBoost), were also evaluated for
their predictive performance. Traditional tree-based models, such as the Decision Tree
(DT), were considered alongside linear models, including Linear Regression (LR) and
Elastic Net (EN), to accurately estimate the compressive strength of CO,-incorporated
concrete. The models are rigorously evaluated using performance metrics, including MAE,
RMSE, and R,

The model performance using the original dataset is initially assessed to obtain the
overall improvement in the model predictability after data augmentation. The Table 5
presents a comprehensive comparison of various regression models. The results highlight
LGBM as the best-performing model across metrics, achieving the lowest MAE (2.5954)
and RMSE (3.1579), as well as the highest R? score (0.9356). This suggests LGBM’s
superior ability to capture patterns in the data with minimal error. This suggests that
LGBM not only reduced errors but also accounted for the greatest percentage of variance
in the target variable, thereby illustrating its generalisation and robustness. GBR and RF
also demonstrate strong performance, though slightly less optimal compared to LGBM.
Ensemble models, such as ADA and ET, show moderate performance. On the other hand,
simpler models like LR and EN exhibit significantly higher errors and lower R? scores,
indicating their limited capability. These results suggest that linear models struggled to
capture the underlying relationships within the dataset.

The LGBM model’s robust performance is collectively illustrated by the Fig. 4 that has
been presented. The model’s performance is illustrated by the learning curve Fig. 4A,
which demonstrates strong generalisation capability with minimal overfitting as the
number of training epochs increases. This is evidenced by the convergence of training and
validation scores. This equilibrium implies that the model is neither overfitting nor
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Figure 4 Performance of LGBM utilising original data (A) learning curve, (B) prediction error plot,
(C) residuals plot and (D) validation curve. Full-size k4] DOI: 10.7717/peerj-cs.3316/fig-4

underfitting. The model’s strong predictive accuracy and calibration are further
emphasised by the high R? value (0.913) and the tight clustering around the identity line in
the prediction error plot Fig. 4B, which compares the predicted values () to the actual
values (y). By visualising the distribution of prediction errors, the residuals diagram Fig. 4C
provides an additional layer of diagnostic analysis. The model predictions show no
significant bias, as evidenced by the random dispersion around the zero line. The
histogram’s roughly normal error distribution suggests that the model performs well
without systematic deviations. The validation curve Fig. 4D offers a comprehensive
understanding of the impact of the max_depth hyperparameter on the model’s
performance. It illustrates that the model obtains optimal performance at a max depth of
approximately 4-6, the parameters utilised are presented in Table 6.

In comparison to the original dataset, the performance of ML models on the augmented
dataset exhibits a significant improvement in all evaluation metrics, as illustrated in
Table 7. The augmented dataset improved the R? of the majority of models and reduced
estimation errors. LGBM maintains its lead in performance, with an MAE of 1.1847, an
RMSE of 1.3833, and an R? of 0.9872. In the same way, other ensemble models, including
ET, GBR, and RF, exhibit robust performance, with R? values that are nearly identical,
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Table 6 Hyperparameters for LightGBM model.

Parameter Value Description

boosting_type gbdt Boosting algorithm type (Gradient boosted decision trees)
learning_rate 0.4 Step size shrinkage to prevent overfitting
num_leaves 150 Maximum number of leaves per tree
max_depth -1 Maximum tree depth

n_estimators 20 Number of boosting iterations
feature_fraction 0.5 Fraction of features used in each iteration
bagging_fraction 0.9 Fraction of data used for bagging

bagging freq 3 Frequency of bagging

min_child_samples 6 Minimum number of samples per leaf
min_child_weight 0.001 Minimum sum of instance weight per leaf
min_split_gain 0.3 Minimum loss reduction to make a split
reg alpha 0.005 L1 regularization term on weights

reg lambda 0.0005 L2 regularization term on weights
random_state 123 Random seed for reproducibility
folding_strategy KFold(10) 10-fold cross-validation

Table 7 Model performance on augmented dataset.

Model MAE RMSE R?

LGBM 1.1847 1.3833 0.9872
GBR 1.2657 1.5108 0.9848
RF 1.1849 1.3843 0.9872
KNN 1.2665 1.5335 0.9843
ADA 1.9324 2.3998 0.9616
ET 1.1850 1.3846 0.9872
XGBoost 1.1848 1.3842 0.9872
DT 1.1850 1.3847 0.9872
LR 3.9731 4.8093 0.8458
EN 5.6742 7.8864 0.5851

ranging from 0.9872 to 0.9848. Interestingly, KNN also demonstrates improved
performance (MAE = 1.2665, RMSE = 1.5335, R* = 0.9843), which is a significant
improvement from its original dataset performance. However, ADA exhibits less
improvement, with an increase in R? from 0.9079 to 0.9616, but it continues to lag behind
the dominant models. The weakest performers are linear models, including LR and EN,
despite the augmentation of the dataset. Although the R* of LR has slightly improved from
0.7850 to 0.8458, EN continues to struggle with an R? of 0.5851. This validates the idea that
the data’s complexity still necessitates more advanced, non-linear modelling methods.
The LGBM model exhibits a significant improvement in performance against the
original dataset on the augmented dataset, as illustrated in Fig. 5. The learning curve
Fig. 5A emphasises a robust generalisation capability as the training and cross-validation
scores closely converge. This improved performance is further substantiated by the
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Figure 5 Performance of LGBM utilising augmented data (A) learning curve, (B) prediction error
plot, (C) residuals plot and (D) validation curve. Full-size 4] DO 10.7717/peerj-cs.3316/fig-5

prediction error plot Fig. 5B, which displays an R? value of 0.988. This enhancement
suggests that the model trained on the augmented data is capable of predicting values with
a significantly higher degree of precision. The model calibration is improved by the denser
and more consistent distribution of points along the diagonal, which implies a reduced
number of outliers. The distribution of residuals is more densely concentrated around the
zero line in the residuals plot Fig. 5C than in the original dataset. Further, demonstrates a
more concentrated and symmetrical distribution, while the residuals exhibit less variance.
The validation curve Fig. 5D suggests that the model’s performance is less susceptible to
fluctuations in the max-depth hyperparameter on the augmented dataset. The validation
score remains high across a broader range of max-depth values, indicating that the
augmented data not only enhanced performance but also increased model robustness and
reduced the risk of overfitting.

Explainable artificial intelligence

The SHAP summary graphs from both the original Fig. 6 and augmented data Fig. 7
provide a comprehensive visualisation of the significance of features and their influence on
the model’s predictions. Consistency in the model’s interpretation of feature influences is
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indicated by the identical feature rankings and SHAP value distributions in the analysis of
both plots. The most influential features of PPC, OPC, CO,, DAYS, and WBRatio were
analysed. The strong predictive power of the model is demonstrated by the broad
distribution of SHAP values. OPC and CO, exhibit substantial impacts, as evidenced by
the extensive SHAP value ranges that indicate their critical roles in shaping the model
output. In contrast, the SHAP value distributions of DAYS and WBRatio are more
restricted, which indicates a more modest impact on predictions and potentially less
predictive strength.

The uniform influence of features on model predictions in both scenarios is
underscored by the consistent SHAP value range of —10 to 10 across plots. The correlation
between the magnitude of the feature and the direction of the prediction is facilitated by
the colour gradient from low to high feature values. For instance, positive SHAP values,
indicated by darker colours, indicate a direct relationship with the model’s output. The
vertical dispersion observed in PPC and OPC suggests potential feature interactions or
non-linear influences effectively represented by the model, while the balanced SHAP value
spread for CO, suggests a linear or consistently influential relationship across its value
range. The model’s feature attributions remain unaltered, as evidenced by the identical
nature of both SHAP plots. This consistency suggests that the data augmentation
procedure maintained the same feature distributions and relationships.
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Figure 8 (A) Feature importance plot for the dataset and (B) SHAP force plot demonstrating feature
contributions to model prediction. Full-size K&l DOT: 10.7717/peerj-cs.3316/fig-8

The interpretability and predictive capacity of the model, as illustrated in Fig. 8A, are
considerably enhanced, as demonstrated by the feature importance plot for the augmented
dataset. The CO, feature’s dominance is the most significant observation, as it has a
variable importance score of approximately 300, indicating that it has a substantial impact
on the model’s predictions. Other features, including DAYS, WBRatio, OPC, and PPC,
also influence the model’s decision-making to a lesser extent. The model’s comprehensive
visualisation of the contribution of individual features to a specific estimation is illustrated
in the SHAP force plot in Fig. 8B. The model anticipates a value of 24.72, which is
significantly lower than the base value of approximately 35.25. The estimated value is
substantially reduced by the most influential feature in this prediction, DAYS, which has a
value of 7. The estimation is pushed toward a lower outcome as a result of the significant
negative impact indicated by the blue bar associated with DAYS. This implies that the
estimation value is significantly reduced by higher values of DAYS, underscoring the
model’s sensitivity to this feature. Furthermore, the estimation is also adversely affected by
the CO, feature, which has a value of 0, although to a lesser extent than DAYS. The
predicted value is further reduced by the narrower blue bar associated with CO,, which
reinforces its modest yet tangible impact.

The plot effectively distinguishes the direction of influence, with blue indicating features
that contribute to a reduced estimation error. The absence of red bars indicates that no
features in this instance influenced the prediction to a higher value, indicating a cumulative
downward influence on the estimated output. The model’s prediction is reduced from the
base value of 35.25 to 24.72 as a result of the combined effects of DAYS = 7 and CO, =0,
which highlights the extent of these features’ influence. The plot improves the
interpretability of the model by clarifying the impact of feature values on specific
predictions from a practical standpoint. A DAYS value of 7 is indicative of an early-stage
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curing period, which is typically associated with lower strength values in applications such
as concrete strength estimation. This value is consistent with the reduced estimation.
Likewise, a CO, value of 0 indicates that the environmental or compositional conditions
are additional factors that contribute to the lower strength outcomes. The insights obtained
from this force plot not only enhance comprehension of the model’s decision-making
process but also offer practitioners actionable information. For example, strategies that
involve changing feature values, such as optimising curing time (DAYS) or managing CO,
exposure, have the potential to enhance predicted outcomes.

Interpreting SHAP for concrete mix design

The SHAP analysis not only identifies the most significant variables in forecasting
compressive strength but also offers prescriptive guidance for optimising concrete
mixtures. The uniform feature rankings in both datasets indicate that the model is
consistent in domain-specific correlations. Specifically, CO, demonstrates the greatest
SHAP value magnitudes, signifying a substantial impact on strength. Positive SHAP results
at moderate CO, concentrations show that regulated CO, curing can improve strength;
however, negative SHAP values at zero or minimal CO, exposure imply a decline in
performance. This suggests that implementing CO, curing at optimised dosages enhances
results, while preventing high amounts that may lead to declining strength. Likewise,
curing time (DAYS) has an inverse correlation in the initial stages: substantial negative
SHAP values for brief curing durations (e.g., 7 days) signify diminished strength,
consistent with cement hydration dynamics. Prolonging curing beyond initial stages,
especially for mixtures with significant early age sensitivity, can enhance forecasts
favourably, therefore augmenting performance. Binders like OPC and PPC have extensive
SHAP value distributions, indicating significant interaction effects with curing time and
CO, dosage.

DISCUSSION

This study presented a framework for predicting the compressive strength, enhanced
through synthetic data generation using the TVAE model. The approach addresses data
scarcity challenges by augmenting limited experimental datasets with statistically validated
synthetic samples. Further, integration of a filtering mechanism using Cook’s Distance to
eliminate synthetic outliers that could compromise model reliability. The models
demonstrated high predictive accuracy. These findings suggest that the proposed
framework can serve as a scalable and efficient tool for early-stage mix design evaluation,
potentially reducing the need for extensive laboratory testing in standard design scenarios.
Despite the promising results, the study has certain limitations that warrant consideration.
While the validity of the synthetic data was evaluated statistically and a small subset of
generated mixes was experimentally verified. The experimental compressive strengths of
selected synthetic designs were within +10% of the predicted values. However, such partial
validation does not account for more complex phenomena, such as carbonation-induced
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alterations in hydration kinetics. Furthermore, the models were trained exclusively on
OPC and PPC-based concretes with defined water-to-binder ratios and curing regimes. As
a result, the models are applicable primarily for interpolation within this domain, and
extrapolation to high-performance concrete, ultra-high-performance concrete,
self-compacting concrete, or varying environmental exposures (e.g., humidity and
temperature) should not be assumed without retraining and independent validation using
representative datasets. Future studies should incorporate multi-source experimental data
that includes various binder systems, admixtures, and curing methods to improve
generalizability.

CONCLUSION

This study focuses on the incorporation of CO, during mixing as an effective carbon
sequestration strategy, contributing to the reduction of atmospheric CO,. The regulated
integration of CO, during mixing improves concrete compressive strength, with optimal
results reported at 0.05-0.10% CO, dosage. The improvement in strength is more
significant in mixes with reduced water-cement ratios (0.35 and 0.45). Beyond 0.10% CO,
dosage leads to a decline in strength owing to carbonation-induced interference with
hydration. OPC mixes demonstrate superior sensitivity to higher CO, dosages compared
to PPC, which is also depicted from ExAI results. Further, it successfully demonstrates a
robust approach for estimating the compressive strength of CO, incorporated concrete by
integrating advanced ML techniques with synthetic data generation. The proposed
framework effectively addresses the challenges associated with limited experimental data
by generating and rigorously validating synthetic data. The exceptional predictive
performance of the model, with an R* value of 0.9872 exhibiting 5.52% improvement,
MAE of 1.1847 indicating 54.35% improvement, and RMSE of 1.3833 with 56.20%
improvement, underscores the efficacy of combining synthetic data augmentation. The
incorporation of XAI techniques bridges the gap between the model’s complexity and its
interpretability, fostering confidence in its deployment within the construction, materials
science and industries. Future research will focus on broadening the applicability of this
framework to other domains facing similar data scarcity challenges, exploring its potential
in diverse research and industrial applications.
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