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ABSTRACT
Accurate localisation and recognition of pomegranate fruits in images with
background interference are crucial for improving the efficiency of automated
harvesting. To address the issues of excessive model parameters, high computational
complexity, and inadequate detection accuracy of the existing pomegranate fruit
detection algorithms, this study proposes a lightweight pomegranate fruit detection
algorithm, You Only Look Once (YOLO) for Pomegranate Lightweight Detection
(PGLD-YOLO), based on an enhanced YOLOv10s framework. First, to reduce the
model’s size, parameter count, and computational complexity, the lightweight
ShuffleNetV2 network is employed to reconstruct the YOLOv10s backbone, thereby
substantially reducing the memory usage and computational cost while
simultaneously enhancing the feature extraction. Second, to mitigate the impact of
occlusion factors in the background and strengthen multi-scale feature fusion, the
C2f_LEMA module is introduced into the neck network, combining partial
convolution with an efficient multi-scale attention mechanism. This enhancement
improves the model’s focus on the target regions, increases detection accuracy and
localisation precision, and further bolsters the model’s robustness to some extent.
Finally, to further reduce the model’s parameter count and size, the GroupNorm and
Shared Head (GNSH) detection head is designed, incorporating shared convolutional
layers and a fusion group normalisation strategy, thus effectively achieving
architectural overhead. The experiment results demonstrate that the improved model
achieves a mean average precision of 92.6% on the Pomegranate Images dataset,
while the parameter count and computational complexity are reduced to 4.7M and
13.8G, respectively, resulting in a model size of 9.9 MB. The generalisation capability
was simultaneously validated on the Apple Object Detection and PASCAL VOC
2007 datasets. Compared with other mainstream detection algorithms, it achieves a
superior balance between detection accuracy, localisation precision, and model
complexity, providing a robust and lightweight reference for pomegranate fruit.
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INTRODUCTION
The pomegranate belongs to the Punicaceae family and is native to Western Asia. Its
flowers are typically red or orange-yellow, while the fruit is generally spherical or pear-
shaped, varying in colour from yellow to deep red when ripe (Ain et al., 2023).
Pomegranate fruits are rich in vitamin C, folic acid, and other nutrients, and can be
processed into juices, jams, and other products with significant commercial and economic
value (Saparbekova et al., 2023). Pomegranates are widely cultivated in China;
nevertheless, most orchards rely on manual assessment of fruit maturity and harvesting,
resulting in low efficiency, high labour intensity, and a high rate of misjudgment,
ultimately impacting fruit quality (Miranda et al., 2023). The development of intelligent
picking robots facilitates the liberation of agricultural labour and the digital-intelligent
transformation of industry, wherein advances in computer vision technology provide
powerful support for the localisation and recognition of these robots (Shi et al., 2023),
optimise harvesting timing, and hold significant research value for enhancing the accuracy
and efficiency of picking operations.

In a natural orchard environment, the vision system of a fruit-picking robot achieves
fruit recognition through image-processing technology, with detection accuracy and
localisation precision serving as the primary metrics for assessing system performance
(He, Qian & Niu, 2024). Owing to the batch-ripening characteristic of pomegranate fruits,
detection algorithms must be capable of assessing ripeness to ensure harvesting accuracy.
However, the marked variations in colour and size of pomegranates across different
growth stages, combined with interfering factors such as mutual occlusion among fruits,
branches, and leaves, complicate the identification process.

Traditional object detection methods predominantly rely on hand-crafted feature
extractors to extract target characteristics such as colour, texture, and shape of the target,
subsequently employing classifiers such as support vector machines (SVM), K-means
clustering, and decision tree algorithms to categorise the target based on feature-matching
outcomes. Abasi et al. (2020) employed a decision tree method to create an apple ripeness
classifier by training a model using reflected light signals and ripeness measures obtained
via visible/near-infrared spectroscopy. Fan et al. (2021) proposed an enhanced
multi-feature block segmentation technique using the K-means clustering algorithm to
efficiently segment apple images for robotic picking. Bhargava & Bansal (2021) proposed a
model for apple quality classification utilising the GrabCut-FCM segmentation framework,
wherein image segmentation is performed via GrabCut segmentation and the fuzzy
C-means algorithm. Following multi-feature fusion and principal component analysis
(PCA) dimensionality reduction, apple quality classification is executed using k-nearest
neighbour (k-NN), logistic regression, SRC, and SVM. However, pomegranates grow in
complex environments, and traditional machine-learning methods are cumbersome and
susceptible to interference from variables such as lighting variations and background noise,
thereby complicating their application in real-world scenarios.

Compared with traditional object detection algorithms, deep learning-based methods
employ convolutional neural networks to autonomously extract multi-level image features,
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offering advantages such as high speed and accuracy and leading to their increasing
adoption by researchers in the domain of fruit detection. The methods are primarily
categorised into two types: two-stage and one-stage. Two-stage detection algorithms,
including region-based convolutional neural network (R-CNN) (Girshick et al., 2014), fast
region-based convolutional neural network (Fast R-CNN) (Girshick, 2015), and faster
region-based convolutional neural network (Faster R-CNN) (Ren et al., 2016), initially
employ a region proposal network (RPN) to generate candidate target regions and then
complete the classification and precise adjustment of bounding boxes after feature
extraction. For example,Wang et al. (2023b) proposed a Transformer-based convolutional
neural network model for masked regions, attaining tomato detection and segmentation
accuracies of 89.4% and 89.2%, respectively. Feng et al. (2023) embedded the CBAM
module between successive bottleneck layers of Residual Network-50 (ResNet-50) to
enhance the detection of mature daylily buds. Liu et al. (2023b) introduced a weighted ECA
channel-attention mechanism into the DetNet backbone, combining max-pooling to fuse
low-level features and optimising the Faster R-CNN model for green persimmon
detection. Shiu, Lee & Chang (2023) employed the Faster R-CNN model to locate and
count hooded fruits, using mask region-based convolutional neural network (Mask R-
CNN) to segment the reticule-covered area and achieving a mean average precision (mAP)
of 73.9% for counting. Two-stage detection methods exhibit high accuracy in fruit
localisation; nevertheless, their complex algorithms result in slow detection speeds.

Consequently, researchers have employed single-stage detection methods for fruit
localisation and recognition. One-stage object detection algorithms, such as Single Shot
MultiBox Detector (SSD) (Liu et al., 2016) and the You Only Look Once (YOLO) series
(Redmon et al., 2016; Redmon & Farhadi, 2017; Redmon, 2018; Bochkovskiy, Wang & Liao,
2020; Ultralytics, 2020; Wang, Bochkovskiy & Liao, 2023; Ultralytics, 2023; Wang et al.,
2024a; Khanam & Hussain, 2024; Tian, Ye & Doermann, 2025), convert the
object-detection problem into a regression task by predicting categories and bounding
boxes on the feature map, without requiring separate region proposals. Agarwal &
Bhargava (2024) used the Darknet-19 network as a feature extractor in combination with
the SSD network to detect and localise mango fruits. Lin et al. (2024) enhanced the YOLO
backbone using Next Generation Vision Transformer (Next-ViT) by integrating the
Global Context Fusion Module (GCFM) to amalgamate local and global information,
achieving a detection accuracy of 90.6% on the citrus-occlusion dataset and a detection
speed of 34.22 frames per second. Nan et al. (2023) designed the WFE-C4 module to
replace the YOLOv3 backbone and optimised multi-scale feature fusion through the
GF-SPP module, which combines average pooling with global average pooling to achieve
efficient detection of multi-class dragon fruit.

Despite improvements in detection accuracy and speed, the considerable parameter
counts and computational complexity of these models continue to limit their deployment
on resource-constrained edge devices. Consequently, researchers have been redirecting
their study emphasis towards model lightweighting. For example, Zeng et al. (2023)
substituted the original Focus layer with a downsampled convolutional layer and
optimised the YOLOv5 backbone using the MobileNetV3 backbone module, resulting in a
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78% reduction in model parameters and an 84.15% reduction in gigafloating-point
operations per second (GFLOPs). Sun et al. (2023) presented the lightweight C3-light
module alongside the SimAM attention mechanism to improve the apple detection
algorithm, achieving a 45% reduction in model size, a 1.2-fold increase in inference speed,
and a 15.56% decrease in floating-point operations. Zhao et al. (2023b) optimised YOLOv7
by employing GhostNet as the backbone, yielding a 20.58% reduction in model
parameters; however, the mAP declined by 1.6% relative to the baseline. Liu et al. (2023a)
introduced C3Ghost and GhostConv modules into the YOLOv5 backbone and employed
the Depthwise Convolution (DWConv) module in the neck, achieving a 54% reduction in
computational load and a 52.53% reduction in parameter count, albeit with a 0.2% decline
in mAP. Wang et al. (2024b) proposed a lightweight detection model for unripe
pomegranates based on YOLOv8. The model utilises ShuffleNetV2 to reconstruct the
backbone and incorporates DWConv into the neck in place of standard convolution layers.
This approach achieved an 89.9% reduction in model size and a 74.1% increase in
detection speed, with a marginal 1.2% decrease in the mean average precision (mAP).
While these models attain a measure of lightweight efficiency, they inadequately balance
detection accuracy with model complexity, remain susceptible to background interference
in natural environments, exhibit limited robustness, and require improvements in false
and missed detection rates. Therefore, it is essential to design a lightweight algorithm that
satisfies the deployment requirements of edge devices while achieving high-precision
pomegranate detection in natural settings.

To reduce model complexity while maintaining detection accuracy and localisation
precision in natural environments, this study proposes PGLD-YOLO, a lightweight
pomegranate fruit localisation and recognition algorithm based on the YOLOv10s
architecture. PGLD-YOLO balances detection accuracy, localisation precision, and model
complexity to satisfy the deployment requirements on edge devices, such as picking robots,
thereby enabling precise localisation and recognition of pomegranate fruits.

The main contributions of this study are as follows:

(1) The lightweight ShuffleNetV2 network is employed to reconstruct the YOLOv10s
backbone, yielding a model that significantly diminishes size, parameter count, and
computational complexity while enhancing detection accuracy. The reconstructed
model achieves a 22.2% decline in trainable parameters, a 37.9% decrease in FLOPs,
and a 19.9% reduction in model size.

(2) The Light_Block is constructed by integrating partial convolution with an efficient
multi-scale attention mechanism to replace the Bottleneck structure within the C2f
module, thereby forming the C2f_LEMA module. This newly formed module is
subsequently employed to replace the original C2f module in the neck network. The
C2f_LEMA module captures information from both channel and spatial dimensions
simultaneously, enabling a more comprehensive feature representation. While
maintaining the model’s lightweight characteristics, C2f_LEMA bolsters its ability to
focus more precisely on target regions by effectively suppressing redundant
information. This, in turn, mitigates the influence of noise and other environmental
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interferences prevalent in orchard settings, consequently enhancing the model’s
robustness and detection accuracy.

(3) To further curtail the number of parameters and the model size whilst safeguarding
effective feature fusion, a lightweight detection head, termed GroupNorm and Shared
Head (GNSH), is designed by incorporating shared convolutions and replacing the
conventional Batch Normalisation with Group Normalisation. This design enhances
detection efficiency while maintaining overall performance. The optimise model
comprises only 4.7 million parameters, resulting in a compact model size of 9.9 MB.

The subsequent sections of this study are organised as follows: ‘Related Works’ reviews
previous work relevant to this research. ‘Proposed Methods’ presents a comprehensive
description of the proposed PGLD-YOLO model. ‘Experiments and Results’ outlines the
experimental setup and analyses the experimental results. ‘Discussion’ provides heatmap
visualisation, module comparisons, and robustness assessments of the enhanced model.
‘Conclusions’ concludes the article.

RELATED WORKS
Algorithms for fruit recognition based on deep learning
In recent years, deep learning-based detection approaches have made significant advances
in agricultural fruit recognition. These methods derive robust feature representations for
complex scenarios and effectively enhance the accuracy of fruit recognition in natural
environments. Jia et al. (2020) proposed an improved Mask R-CNN framework that
integrates Residual Network (ResNet) and DenseNet, generating regions of interest
through a region proposal network and employing a fully convolutional network to
produce masks for apple localisation and segmentation. Parvathi & Selvi (2021) modified
the Faster R-CNN architecture to detect coconut fruits in complex backgrounds,
employing the ResNet-50 network for characteristic extraction to facilitate the assessment
of coconut fruit ripeness under natural conditions. Chu et al. (2021) devised a novel
suppression Mask R-CNN framework for apple identification, which mitigated the
influence of non-apple features by incorporating suppression branches into a standard
Mask R-CNN, achieving an F1-score detection score of 90.5%. These approaches achieved
notable results in terms of fruit recognition performance; however, the parameter count
and computational complexity remained high due to the adoption of two-stage detection
architectures.

The YOLO series of algorithms has emerged as a leading approach among the object
detection methods due to its combined advantages of high accuracy and low
computational complexity. The architecture has undergone substantial evolution. In 2016,
Redmon et al. (2016) introduced the YOLOv1 algorithm, which uniquely framed object
detection as a regression problem. This enabled end-to-end detection by simultaneously
predicting bounding boxes and class confidence scores, significantly accelerating detection
speed. However, it exhibited limitations in multi-scale detection. Subsequent versions of
YOLOv2 (Redmon & Farhadi, 2017) and YOLOv3 (Redmon, 2018) markedly refined
detection accuracy and multi-scale capability by incorporating batch normalisation (BN),
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anchor box mechanisms, deeper feature extraction networks, and feature pyramid
architectures. Later iterations further refined network structures and training strategies.
For instance, YOLOv4 (Bochkovskiy, Wang & Liao, 2020) incorporated Cross Stage Partial
Network (CSPNet) and spatial pyramid pooling (SPP) modules to optimise feature
integration, while YOLOv5 (Ultralytics, 2020) refined the loss function and adopted
adaptive anchor box calculation. YOLOv6 (Li et al., 2022) and YOLOv7 (Wang,
Bochkovskiy & Liao, 2023) extended the backbone using EfficientRep and extended ELAN,
respectively, to increase learning efficiency. YOLOv8 (Ultralytics, 2023) introduced the
lightweight C2f module, derived from C3, and employed a decoupled head design to
independently train category and bounding box regression branches, thus enhancing
real-time detection performance. Most recently, YOLOv9 (Wang, Yeh & Mark Liao, 2024)
proposed a programmable gradient information mechanism, which ensures the complete
transmission of gradient signals through auxiliary reversible branches, augments learning
efficiency, and detection accuracy.

YOLOv10 (Wang et al., 2024a) incorporated partial self-attention (PSA) modules and
enhanced efficient inference efficiency by removing non-maximum suppression (NMS)
and downsampling. By eliminating redundant computations, it enhances both system
efficiency and precision. Compared with other versions of the YOLO series, it is more
lightweight and particularly well-suited for real-time and edge deployment scenarios.
Recent versions such as YOLOv11 (Khanam & Hussain, 2024), YOLOv12 (Tian, Ye &
Doermann, 2025), and YOLOv13 (Lei et al., 2025) have achieved continuous
improvements in detection performance. YOLOv11 integrated components such as C3K2
and C2PSA into YOLOv10 to enhance gradient flow. YOLOv12 and YOLOv13
incorporated regional attention mechanisms and hypergraph computation to strengthen
attribute extraction and to improve identification performance. However, compared with
YOLOv10, these newer versions introduced more complex network architectures, leading
to increased framework complexity and higher inference latency on resource-constrained
devices. Therefore, this study ultimately opts to build upon YOLOv10.

Based on the advantages of the YOLO series of models in terms of detection efficiency,
researchers have applied them to fruit detection tasks. For example, Tang et al. (2023b)
improved YOLOv4-tiny to develop a real-time oil tea fruit detection algorithm, refining
the bounding box priors using the k-means++ clustering algorithm and enhancing the
feature learning capacity of convolutional kernels to facilitate oil tea fruit detection and
localisation in complex orchard environments. Jia et al. (2023) presented a green fruit
detection method based on an optimised YOLOX-m network, incorporating a null-space
pyramid pooling module to expand the receptive field. They achieved average accuracies of
64.3% and 74.7% on the apple and persimmon datasets, respectively, with detection speeds
of 25.6 and 26.7 ms. Liu et al. (2025) enhanced the neck network of the YOLOv8n model
by incorporating a P2 detection layer and integrating a bi-directional feature pyramid
network (BiFPN) structure, while also introducing the WIoU loss function, thus
developing the PerD-YOLOv8 model for detecting persimmon fruits in complex scenarios.
Wang et al. (2025) introduced an improved lightweight detection architecture, named
ELD-YOLO, based on YOLOv11, designed to detect citrus fruits in complex orchard
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environments. The architecture achieved an accuracy of 89.7% and a recall rate of 83.7% in
citrus fruit detection by employing edge-aware processing and adaptive upsampling
strategies to enhance feature representation capabilities.

Although the YOLO model series demonstrates commendable accuracy and speed in
fruit detection, many approaches overlook deployment considerations for edge devices and
involve considerable model complexity. As a result, researchers are increasingly exploring
more lightweight modelling strategies. For example, Li et al. (2024) developed the
PeachYOLO model for peach detection, which replaces conventional convolutions in the
head and neck of the YOLO architecture with Partial Convolution (PConv) and
deformable convolutions, thereby reducing computational and memory requirements.
This model achieves 5.1 GFLOPs and contains 2.6M parameters. Shi et al. (2024)
integrated YOLOv9s with the C2f, the universal inverted bottleneck (UIB) structure, and
the RepNCSPELAN4 module to enhance the extraction of small-target features, and
replaced AConv with the lightweight spatial-channel decoupled downsampling (SCDown)
layer to maintain accuracy while reducing model complexity. Yu et al. (2024) introduced
the MLG-YOLOmodel for jujube picking, adopting the MobileViT lightweight network in
place of the YOLOv8 backbone, which effectively reduced both parameter count and
computational burden. Yuan et al. (2025) integrated gate-controlled convolution into the
C2f module of YOLOv10, creating a new C2f-gConv structure that significantly
diminished model parameters and computational complexity.

Considering the necessity of model lightweighting for edge devices, such as agricultural
picking robots in the pomegranate fruit detection task, alongside the dual requirements of
detection accuracy and localisation capability in natural environments, this study adopted
the YOLOv10s model as the baseline for lightweight improvement to meet the deployment
needs of edge devices.

YOLOv10s model
YOLOv10 (Wang et al., 2024a), a member of the YOLO series, is optimised for detection
efficiency and aims to accurately predict both the category and location of targets in an
image with low latency, as illustrated in Fig. 1. It comprises three primary components: the
backbone, neck, and head. The backbone centres on the C2f residual block, which is
derived from YOLOv8. It replaces the conventional deep convolutional layer with a
spatial-channel-separated SCDown structure and integrates cost-effective depthwise and
pointwise convolutions to construct the C2fCIB hybrid residual block. A PSA is embedded
at the end of the backbone, significantly enhancing model efficiency and feature
representation through spatial-channel co-optimization and global feature enhancement.
The neck adopts a path aggregation network (PAN) to fuse multi-scale features, producing
feature maps of 80 × 80, 40 × 40, and 20 × 20, which correspond to the detection of small,
medium, and large objects in the image, respectively. This enables multi-scale object
detection by combining spatial detail with high-level semantic information. The head
conducts feature regression to predict object categories and locations. In contrast to
conventional heads, the YOLOv10 head employs a dual-assignment strategy without NMS,
incorporating a one-to-one detection head. During training, both one-to-many and one-
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to-one assignment strategies are used concurrently to optimise supervisory signals and
improve prediction robustness. At inference time, only the one-to-one branch is retained,
eliminating the latency introduced by NMS post-processing and ensuring optimal
detection results.

The researchers designed models with different sizes—n, s, m, b, l, and x—according to
network depth and width, enabling flexible selection based on specific requirements. Given
the constraints on computational power, memory, and storage capacity of edge devices,
YOLOv10s, which struck an effective balance between detection accuracy and model
complexity, was adopted as the baseline model in this study.

PROPOSED METHODS
Although the YOLOv10s model achieves promising results in general object detection
tasks, its performance in fruit identification within natural picking environments is
adversely affected by various interference factors. These include fluctuations in light
intensity, occlusion caused by branches, leaves, or overlapping fruits, and the challenges of

Figure 1 Structure of YOLOv10s. Full-size DOI: 10.7717/peerj-cs.3307/fig-1
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long-distance localisation, all of which lead to reduced accuracy in fruit recognition and
classification. Furthermore, the model’s relatively high complexity constrains its
deployment on edge devices, hence limiting its practicality for real-world applications. To
address these challenges, this study proposes a lightweight pomegranate fruit detection
model, PGLD-YOLO, based on an enhanced YOLOv10s architecture. The proposed
design aims to achieve accurate localisation and recognition of pomegranate fruits in
natural environments, while minimising model complexity, lowering false and missed
detection rates, and enhancing robustness against background interference. The improved
model architecture is illustrated in Fig. 2, with the enhanced components highlighted by
red dashed boxes.

First, the backbone of YOLOv10s is restructured using the basic units of ShuffleNetV2
to decrease model size, parameter count, and computational complexity, enhancing the
efficiency of feature extraction. Second, the PConv and efficient multi-scale attention
mechanism (EMA) are integrated into the C2f_LEMAmodule, which replaces the original

Figure 2 PGLD-YOLO network structure. Full-size DOI: 10.7717/peerj-cs.3307/fig-2
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C2f module within the neck of YOLOv10s. The introduction of PConv effectively
minimizes redundant computation and memory access costs. The efficient multi-scale
attention mechanism incorporates contextual information across multiple spatial scales
through cross-spatial learning, thus mitigating background interference and improving the
architecture’s robustness. Finally, a lightweight detection head, named GNSH, is developed
using group normalisation and shared convolution. This design significantly diminishes
both parameter count and model size while enhancing localisation and classification
performance. The overall enhancements within the model contribute to a marked
reduction in size, parameter count, and computational complexity, while simultaneously
improving detection accuracy and achieving a more favourable balance among detection
accuracy, localisation precision, and model complexity.

Backbone network based on ShuffleNetV2
To satisfy the demands of edge devices for the localisation and recognition of pomegranate
fruit, it is essential to develop a model that is both lightweight and capable of efficient
feature extraction. Although the C2f architecture (Ultralytics, 2023) employed in the
backbone of YOLOv10s demonstrates excellent recognition performance, its deep and
complex network topology imposes substantial computational and memory burdens. To
address this issue, the present study reconstructs the backbone using ShuffleNetV2
(Ma et al., 2018), a lightweight architecture specifically designed for mobile and embedded
platforms, to ensure high efficiency and low computational overhead. ShuffleNetV2 is
composed of a series of stacked basic units (ShuffleNet Unit), primarily comprising
depthwise separable convolution (DSConv) (Chollet, 2017), 1 × 1 convolution, channel
shuffle operation, and feature branches. In each unit, DSConv significantly decreases the

Figure 3 ShuffleNetV2 basic unit and ShuffleNetV2 downsampling unit. (A) Basic Unit.
(B) Downsampling unit. Full-size DOI: 10.7717/peerj-cs.3307/fig-3
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parameter count, while 1 × 1 convolution adjusts channel dimensions to maintain
computational efficiency.

The basic unit of ShuffleNetV2 consists of a standard basic unit and a specialised unit
designed for spatial downsampling, with the network structure illustrated in Fig. 3. When
the stride is set to 1, the basic unit shown in Fig. 3A is applied. The input feature map is
first divided into two branches via a Channel Split operation: one branch remains
unchanged through an identity connection, while the other sequentially passes through a
1 × 1 convolutional layer (including BN+ReLU), a depthwise convolutional layer
(including BN only), and a further 1 × 1 convolutional layer (including BN+ReLU). The
two branches are subsequently concatenated to restore the original number of channels.
Finally, a Channel Shuffle operation is performed to enhance cross-channel feature
interaction. When the stride is set to 2, the downsampling unit, illustrated in Fig. 3B, is
utilised. While the right branch maintains a similar structure to the basic unit, the left
branch incorporates an additional downsampling operation.

In contrast to the original backbone, ShuffleNetV2 introduces the Channel Shuffle
operation to overcome channel isolation within groups, enhancing cross-group feature
interaction and optimising information flow through a dual-branch structure. Moreover,
its constrained design—based on group convolution and the elimination of redundant
memory access—significantly improves computational efficiency on hardware. This
architecture adheres to the principle of minimising redundant computations and
enhancing channel representation, thus enabling efficient feature extraction under
lightweight conditions.

C2f_LEMA module
The C2f module within the neck of YOLOv10s performs feature fusion through parallel
branch processing and channel concatenation, thus generating more representative

Figure 4 C2f_LEMA module structure. (A) C2f_LEMA module structure. (B) Light_Block module
structure. Full-size DOI: 10.7717/peerj-cs.3307/fig-4
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outputs (Wang et al., 2024a). However, the frequent use of the Bottleneck structure within
this module considerably augments the parameter count and computational burden,
which constrains its deployment and operational longevity on edge devices. To overcome
this limitation, the present study introduces the C2f_LEMA module, derived from the
original C2f structure, as illustrated in Fig. 4, with the enhancements highlighted in red
dashed boxes. This module primarily adopts the custom-designed lightweight Light_Block
in place of the conventional Bottleneck unit. The proposed C2f_LEMA module replaces
the original C2f within the neck, effectively strengthening feature fusion capability while
retaining the lightweight characteristics of the model.

The network structure of the Light_Block module is illustrated in Fig. 4B. Within this
module, PConv is applied in place of traditional convolution to diminish the model’s
parameter count, while BN and SiLU activation are incorporated to mitigate vanishing
gradients and bolster representational capacity. Thereafter, drop-path regularisation is
implemented to mitigate overfitting. Finally, the EMA mechanism is embedded to
suppress the influence of background interference, in turn improving detection accuracy
and robustness. The subsequent section provides a detailed explanation of the PConv and
EMA integrated in this module.

Partial convolution
Partial convolution (PConv) is an optimised convolution operation designed to extract
features efficiently by minimising redundant computations. Its operational principle is
illustrated in Fig. 5. Unlike standard convolution, PConv performs operations only on a
subset of input channels, while the remaining channels are transmitted directly via identity
mapping. This approach reduces unnecessary calculations and memory accesses, lowering
computational complexity and rendering it particularly well-suited to devices with
restricted memory and processing capacity. Accordingly, this study employs PConv in
place of standard convolution within the Bottleneck architecture to achieve a reduction in
model weight. The computational complexities of standard convolution and PConv are
given in Eqs. (1) and (2), respectively:

ConvFLOPs ¼ h� w� k2 � c2 (1)

PConvFLOPs ¼ h� w� k2 � c2p (2)

Figure 5 Standard convolution and partial convolution designs. (A) Standard convolution. (B) Partial
convolution. Full-size DOI: 10.7717/peerj-cs.3307/fig-5
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where h and w denote the height and width of the input feature map, respectively, and k
represents the size of the convolution kernel. The symbol cp indicates the number of
channels involved in the convolution operation. Typically, the number of cp used channels
is one quarter of that in standard convolution, resulting in a computational complexity
that is only one-sixteenth of that of standard convolution operation.

EMA mechanism
In natural environments, excessive or insufficient lighting can result in strong specular
reflections and shadows on the fruit surface, therefore disrupting the consistency of colour
and texture. This, as a consequence, obscures key fruit features and impairs the assessment
of ripeness. When fruits are occluded by branches or leaves, the similarity in colour and
texture complicates contour extraction, making it difficult for feature extraction algorithms
to distinguish fruit boundaries, which may lead to missed detections. Furthermore, under
long-distance detection, image resolution tends to degrade, often accompanied by blurring,
and the intrusion of background elements becomes more frequent, increasing the
complexity of image processing. Attention mechanisms function by generating feature
weight distributions that allocate computational resources to the most relevant
information for a given task. To this end, to mitigate the impact of natural environmental
interference on information extraction, this study incorporates a plug-and-play
cross-space learning EMA mechanism into the improved Light_Block module. This
integration decreases the influence of background noise while maintaining the lightweight
nature of the model and enhances the model’s focus on salient pomegranate fruit features,
enhancing overall robustness.

The core principle of the EMA mechanism is to augment the architecture’s capacity for
feature processing by reorganising the channel and batch dimensions, encoding global
information through parallel branches, recalibrating channel weights, and employing
cross-dimensional interactions to capture pixel-level relationships. Specifically, within the
EMAmodule, the input features are first grouped and then processed through two distinct
branches: one performs one-dimensional global pooling, while the other conducts feature
extraction through a 3 × 3 convolution. After applying Sigmoid activation and
normalisation, the outputs from both branches undergo cross-dimensional interaction to
achieve pixel-level relational modelling. Finally, feature modulation coefficients are
generated through Sigmoid mapping, and the output is produced following the adjustment
of the input features. The structure is shown in Fig. 6.

According to the above, the implementation of the EMA mechanism comprises four
primary components: feature grouping, parallel sub-networks, cross-space learning, and
feature aggregation interaction (Garbin, Zhu & Marques, 2020). In the feature grouping
stage, any input feature map X 2 RC�H�W is divided into G sub-feature maps along the
cross-channel dimension to learn distinct semantic representations. These can be denoted
as X ¼ X0 ;X1; � � � ;XG�1½ �, Xi 2 RC==G�H�W .

In the parallel sub-network stage, the grouped feature maps Xi are processed separately
through the 1 × 1 and 3 × 3 branches. Within the 1 × 1 branch, two 1D global average
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pooling operations are applied along two directions to encode the channels, resulting in ZH
i

and ZW
i , which are computed as shown in Eqs. (3) and (4).

ZH
i Hð Þ ¼ 1

W

X
0�j�W

Xi H; jð Þ (3)

ZW
i Wð Þ ¼ 1

H

X
0�k�H

Xi k;Wð Þ (4)

where Xi denotes the i-th group of input features, H andW represent the height and width
of the input feature map, respectively, and Xi H; jð Þ ; Xi k;Wð Þ are the feature values at
positions H, j, and k, W, respectively.

After applying Concat and a 1 × 1 convolution to features ZH
i and ZW

i , the resulting
feature map is re-segmented along the height and width dimensions, respectively, with
each segment undergoing a Sigmoid activation. The resulting weights are then aggregated
and added to the sub-feature maps Xi to produce X0

i . Subsequently, group normalisation is
applied to X0

i to generate the intermediate feature representation F1 2 RC==G�H�W , as
computed in Eqs. (5) and (6):

X0
i ¼ Xi r Conv1�1 Concat ZH

i ;Z
W
i

� �� �� �� �
(5)

F1 ¼ GN X0
i

� �
(6)

where Conv1�1 denotes a 1 × 1 convolutional layer, s represents the Sigmoid activation
function, and GN denotes the group normalisation operation.

Figure 6 Structure of EMA mechanism. Full-size DOI: 10.7717/peerj-cs.3307/fig-6
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In the 3 × 3 branch, Xi undergoes a 3 × 3 convolution to obtain the intermediate feature
representation F2 2 RC==G�H�W , as calculated in Eq. (7):

F2 ¼ Conv3�3 Xið Þ (7)

where Conv3�3 denotes a 3 × 3 convolutional layer.
In the cross-space learning stage, the intermediate features F1 and F2 are first subjected

to 2D global average pooling. The resulting representations are then passed through the
Softmax function to generate intermediate feature layers F11 2 R1�C==G and F21 2 R1�C==G,
as defined in Eqs. (8) and (9).

F11 ¼ Sof tmax Avg F1ð Þð Þ (8)

F21 ¼ Sof tmax Avg F2ð Þð Þ (9)

Two spatial attention maps are generated by aggregating F1 and F21, as well as F2 and F11
through matrix dot product operations. These maps are subsequently fused and processed
using the Sigmoid function. A weighted summation with the original sub-features Xi is
then performed to obtain the output feature map of the i-th group, denoted as Xi

out . Finally,
the outputs from all G-groups are aggregated to generate the final output Xout , which is
computed as described in Eqs. (10) and (11):

Xi
out ¼ Xi r F1 � F21ð Þð Þ þ Xi r F2 � F11ð Þð Þ (10)

Xout ¼ Concat X1
out;X

2
out; � � �XG�1

out

� �
: (11)

GNSH module
To further reduce the model’s complexity, this study examines the detection head of
YOLOv10s. The model adopts a dual-head architecture with a consistent dual allocation
strategy, whereby the two heads are jointly optimised during training. During inference,
only a single detection head is employed, therefore eliminating the reliance on NMS and
markedly reducing inference overhead (Wang et al., 2024a). Although YOLOv10s refines
the detection head structure for end-to-end deployment, redundant components remain,
resulting in diminished detection performance and efficiency on edge devices.

To overcome this issue, the present study proposes a lightweight detection head, GNSH
(GroupNorm and Shared Head), which incorporates group normalisation and shared
convolution. BN accelerates training convergence and introduces a regularisation effect by
normalising layer inputs (Garbin, Zhu & Marques, 2020); however, it is sensitive to batch
size variation, and inaccurate estimation of mean and variance during small-batch training
may result in performance degradation. Consequently, Group Normalisation (GN) (Wu&
He, 2018) is adopted in place of BN in this study. GN divides the input channels within a
batch into multiple groups, and computes the mean and variance within each group to
perform normalisation. This approach maintains high accuracy and stability across a range
of batch sizes. The specific operation is shown in Fig. 7. For feature maps within the same
batch, the channels are first divided into several groups. The mean and variance are then
computed within each group, and these statistics are subsequently utilised to normalise the

Lu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3307 15/40

http://dx.doi.org/10.7717/peerj-cs.3307
https://peerj.com/computer-science/


data in a memory-efficient manner, making it well-suited to resource-constrained
environments.

Shared convolution is a common operation in convolutional neural networks (CNNs),
wherein the core concept is that different parts of the network utilise the same
convolutional kernel parameters to extract features. In other words, the convolution
weights are shared across all or part of the network. Building upon this principle, the
present study employs two shared convolutional layers to replace the standard
convolution, with the aim of unifying features across multiple detection layers, reducing
parameter redundancy, and enhancing feature consistency. This design contributes to
lowering both model complexity and computational demands.

This study proposes the GNSH detection head, which combines the advantages of GN
and shared convolution to reduce both parameter count and computational complexity
while preserving effective feature information fusion. The network structure is illustrated
in Fig. 8, with the enhancements indicated by red dashed boxes. The three multi-scale

Figure 7 Schematic diagram of GN operation. Full-size DOI: 10.7717/peerj-cs.3307/fig-7

Figure 8 Structure of GNSH detection head. Full-size DOI: 10.7717/peerj-cs.3307/fig-8
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feature maps, generated from the fusion of features within the neck network, are
sequentially processed through a group-normalised 1 × 1 convolution, followed by two
group-normalised 3 × 3 convolutions. The latter operates as a shared convolution,
substantially reducing the number of parameters. The processed features are
directed to the detection head, where a decoupled architecture is adopted. One branch
undergoes convolution for the regression task, projecting the bounding box regression
values. A scale layer, shared across all detection layers, is employed to mitigate
discrepancies in feature map outputs across different detection layers caused by scale
variations resulting from shared convolution. This facilitates the accurate localisation of
pomegranate fruits. The other branch performs convolution for the classification task,
predicting category probabilities and enabling the classification of pomegranate fruit
ripeness.

EXPERIMENTS AND RESULTS
Experimental environment and setup
The parameters for this experiment are configured as follows: the learning rate is set to
0.01, the batch size is 16, and the input image resolution is 640 × 640. The number of
training epochs is set to 350, the momentum is 0.937, and the weight decay is 0.0005. The
YOLOv10s model is adopted as the baseline. The experimental environment configuration
is detailed in Table 1.

Datasets and preprocessing
Pomegranate images dataset
To accurately assess the ripeness and precisely localise pomegranate fruits, the present
study employs the Pomegranate Images Dataset (Zhao et al., 2023a), which is specifically
collected to observe the developmental stages of pomegranates. The dataset comprises
5,857 images, categorised into five ripeness stages reflecting the pomegranate growth
process: Bud (Bud stage), Flower (Flower stage), Early-fruit (Early-fruit stage), Mid-growth
(Mid-term), and Ripe (Ripening stage). All images are in JPG format with a resolution of
640 × 480 pixels. Representative images of pomegranates at different developmental stages
are shown in Fig. 9.

The dataset maintains a balanced number of samples across all categories, with the
number of images in each class presented in Table 2. The dataset is partitioned into
training, validation, and test sets using a 7:1:2 ratio, resulting in 4,099 images for training,

Table 1 Configuration of the experimental environment.

Name Environment configuration

Operating system Windows 10 × 64

Processor Intel (R) Xeon (R) Platinum 8362

GPU NVIDIA RTX 3090

Programming language Python3.9

Deep learning framework PyTorch2.0.0
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586 for validation, and 1,172 for testing. This dataset not only captures the characteristics
of pomegranate fruits at various growth stages, but also includes several natural conditions
within the orchard, such as strong lighting, backlighting, branch occlusion, leaf occlusion,
fruit occlusion, and long-distance observation. Representative examples of these
conditions are illustrated in Fig. 10.

Figure 9 Images of pomegranates at different ripeness categories in the Pomegranate Images
Dataset. (A) Bud. (B) Flower. (C) Early-fruit. (D) Mid-growth. (E) Ripe.

Full-size DOI: 10.7717/peerj-cs.3307/fig-9

Table 2 Number of samples in different categories in the pomegranate images dataset.

Class Bud Flower Early-fruit Mid-growth Ripe ALL

Number 1,245 1,243 1,007 1,259 1,103 5,857

Figure 10 Images of different background conditions in the Pomegranate Images Dataset. (A) Strong
light. (B) Backlight. (C) Branch occlusion. (D) Leaf occlusion. (E) Fruit occlusion. (F) Long-distance.

Full-size DOI: 10.7717/peerj-cs.3307/fig-10

Lu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3307 18/40

http://dx.doi.org/10.7717/peerj-cs.3307/fig-9
http://dx.doi.org/10.7717/peerj-cs.3307/fig-10
http://dx.doi.org/10.7717/peerj-cs.3307
https://peerj.com/computer-science/


Although the dataset contains a rich variety of pomegranate fruit image features, it
remains insufficient to encompass the full range of characteristics encountered in natural
scenarios. To increase sample diversity and alleviate the risk of overfitting, this experiment
employs the Albumentations library (Buslaev et al., 2020) to conduct offline data
augmentation. A range of techniques is applied, including Affine (radial transform), Flip
(horizontal, vertical, and diagonal), GaussNoise, RandomBrightnessContrast,
RandomFog, RandomRain, RandomShadow, and lRandomSunFlare. These methods are
designed to simulate complex real-world conditions such as lighting variations, occlusions,
blurring, and weather changes, hence strengthening the mode’s robustness. To prevent
data leakage and ensure consistency in data distribution, the aforementioned
augmentation techniques are applied exclusively to the training set. This results in an
expanded training set comprising 11,796 images, while the validation and test sets remain
unchanged. Representative examples of the augmented images are shown in Fig. 11.

Figure 11 Pomegranate images dataset enhancement effect.
Full-size DOI: 10.7717/peerj-cs.3307/fig-11

Figure 12 Different background images in the Apple Object Detection Dataset. (A) Branch occlusion.
(B) Leaf occlusion.(C) Fruit occlusion. (D) Strong light. (E) Backlight. (F) Long-distance.

Full-size DOI: 10.7717/peerj-cs.3307/fig-12
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Generalised dataset Apple Object Detection Dataset
To further evaluate the generalisation capability of the model, additional experiments are
conducted using the publicly available Apple Object Detection Dataset (Zhao, 2024). This
dataset comprises 2,000 JPEG images of red Fuji apples captured in orchard environments,
encompassing various natural conditions such as strong lighting, backlighting, branch,
leaf, and fruit occlusions, as well as long-distance observations. Representative samples are
presented in Fig. 12. To expand the dataset and improve model robustness, several data
augmentation techniques are applied, including flipping, rotation, Gaussian blurring,
shrinking, and the addition of Gaussian noise. The final dataset contains 6,179 images,
which are divided into training, validation, and test sets using an 8:1:1 ratio. Specifically,
the training set consists of 5,052 images, while both the validation and test sets contain 564
images each.

Generalised dataset PASCAL VOC 2007
The PASCAL VOC 2007 dataset (ZARAK, 2017) is a well-established benchmark in the
field of object detection, commonly used to benchmark a model’s effectiveness and
generalisation capability. It comprises 9,950 images depicting a range of real-world
scenarios and covering 20 diverse object categories, including aeroplane, bicycle, bird, boat,
bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person, pottedplant,
sheep, sofa, train, and tvmonitor. To further assess the proposed model’s performance
across diverse detection tasks, this study additionally employs the PASCAL VOC 2007
dataset as a generalisation benchmark. The experimental data are divided into training,
validation, and test sets using a 7:1:2 ratio.

Evaluation metrics
To evaluate the detection accuracy of the proposed model, this study employs precision
(P), recall (R), and mAP as the performance metrics for assessing the effectiveness of the
PGLD-YOLO algorithm. Using pomegranate samples as an example, precision refers to
the proportion of correctly classified pomegranate fruits among all predicted instances; a
higher precision value indicates a lower false detection rate. Recall denotes the proportion
of actual pomegranate fruits that are successfully detected and labelled by the model; a
higher recall value reflects fewer missed detections. The corresponding calculation
formulas are presented in Eqs. (12) and (13):

P ¼ TP
TP þ FP

(12)

R ¼ TP
TP þ FN

: (13)

In Eq. (12), P denotes precision, where TP refers to the number of samples correctly
predicted by the model as positive, and FP indicates the number of samples incorrectly
predicted as positive. In Eq. (13), R denotes recall, where FN represents the number of
samples incorrectly predicted by the model as negative.

The mAP refers to the average of the average precision (AP) values across all categories
and serves to evaluate the overall performance of the model. It is computed as the area
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under the precision-recall curve for each category, reflecting the trade-off between
precision and recall. In the context of pomegranate fruit detection, the AP for each class is
calculated and subsequently averaged to obtain the mAP, as shown in Eqs. (14) and (15):

AP ¼
Z 1

0
P rð Þdr (14)

mAP ¼
Pk

i¼1 AP ið Þ
k

: (15)

To meet the deployment requirements of edge devices, this study adopts three
commonly used metrics to evaluate the lightweight characteristics of the model: model size
(Size), number of parameters (Params), and total floating-point operations (FLOPs). The
number of parameters reflects the quantity of parameters requiring training in the model,
while the model size refers to the final weight file’s storage footprint. A reduction in either
metric typically indicates a more lightweight model architecture, making it better suited for
resource-limited environments. FLOPs are employed to assess the computational overhead
during inference. Lower FLOPs suggest decreased reliance on computational resources,
enhancing the model’s suitability for deployment on edge devices such as picking robots.

Analysis of experimental results
To verify the efficacy of the proposed improvements, this experiment maintains consistent
settings to train and evaluate YOLOv10s and PGLD-YOLO separately on the Pomegranate
Images Dataset. Figure 13 illustrates a comparison of the P-R curves for the original
YOLOv10s and the enhanced PGLD-YOLO in detecting pomegranate fruits across five

Figure 13 Comparison of P-R curves of YOLOv10s and PGLD-YOLO. Full-size DOI: 10.7717/peerj-cs.3307/fig-13
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developmental stages. A larger area under the curve indicates greater detection
performance. As shown in Fig. 13, except for the “Ripe” category—where the detection
precision remains consistent with that of the original YOLOv10s—the enhanced model
shows improved detection accuracy across the other four categories to varying extents. In
addition, the mAP of the enhanced model reaches 92.6%, representing a 2% increase over
the baseline. These results indicate that PGLD-YOLO effectively augments the accuracy of
pomegranate fruit recognition.

Table 3 presents the precision, recall, and mAP of PGLD-YOLO across five
developmental categories and overall pomegranate fruit detection. The mAP@0.5 achieved
by the model for “Bud”, “Flower”, “Early-fruit”, “Mid-growth”, and “Ripe” categories is
91.1%, 93.2%, 89.6%, 92.6%, and 96.7%, respectively. Both precision and recall reach
commendable levels, with values as high as 97.1%. Notably, the enhanced PGLD-YOLO
achieves a precision of 97.1% and an mAP of 96.7% in detecting fruits at the ripe stage.
These results suggest that the improved model precisely identifies pomegranate fruits at
different stages of development and reliably determines their ripeness, thus supporting the
mechanical harvesting of mature fruits.

To further validate the efficacy of the proposed model, this study selects the metrics of
precision, recall, mAP, Params, Size (MB), and FLOPs (G) to compare the original
YOLOv10s with the enhanced PGLD-YOLO. The results are presented in Table 4. As
shown in Table 4, the precision and recall of PGLD-YOLO exceed those of the baseline
model by 0.9% and 2.8%, respectively, with an mAP improvement of 2%. The parameter
count is 4.7M, representing a reduction of 34.7% compared to the original model. The
model size is 9.9 MB, reflecting a decrease of 40.4%, while the FLOPs are lowered by 35.5%.
The best-performing metrics are highlighted in bold. These results reveal that the
enhanced model markedly optimises detection precision, recall, and mAP while notably
reducing model complexity. As a result, it offers a lightweight solution for pomegranate
fruit detection, particularly appropriate for deployment on edge devices to facilitate
pomegranate fruit localisation and recognition.

Ablation experiments
This section adopts the YOLOv10s model as the baseline and incorporates the
enhancements proposed in this study to conduct ablation experiments on the
Pomegranate Images Dataset. These experiments aim to validate the validity of the

Table 3 PGLD-YOLO model detection performance for different ripeness categories.

Class Numbers Precision (%) Recall (%) mAP (%)

All 1172 92.3 85.8 92.6

Bud 312 92.2 81 91.1

Flower 362 91.5 86.1 93.2

Early-fruit 180 88.8 83.8 89.6

Mid-growth 309 92.1 84.5 92.6

Ripe 221 97.1 93.5 96.7
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ShuffleNetV2 backbone, the C2f_LEMA module, and the GNSH module in enhancing
pomegranate fruit detection and diminishing model complexity. The findings of the
ablation experiments are summarised in Table 5, where a “√” indicates that the
corresponding component is applied.

Table 5 indicates that Model 1 corresponds to YOLOv10s and serves as the baseline for
subsequent examinations. Model 2 builds upon the original backbone by integrating
multiple ShuffleNetV2 basic units. The enhanced model achieves a diminution in
parameter count by 1.6M, model size by 3.3 MB, and FLOPs by 8.1G, while recall and mAP
increase by 1% and 1.4%, respectively. This illustrates that the ShuffleNetV2 architecture,
which employs grouped convolutions and channel reorganisation mechanisms, enhances
feature extraction capabilities while effectively lessening computational complexity and
memory access requirements. Model 3 replaces the C2f module in the neck with the
C2f_LEMA module, resulting in an increase of 1.4% in recall and 1.5% in mAP in
comparison with the baseline. This suggests that the integration of the EMA mechanism
enables the model to focus more effectively on the features of pomegranate fruits while
minimising the influence of background factors, thus enhancing detection accuracy.
Furthermore, the model size, parameter count, and computational complexity are all
curtailed, indicating that the introduction of PConv significantly lessens both model
parameters and computational overhead. Model 4 applies the GNSH detection head in
isolation. Following this modification, the recall increases by 2% and the mAP by 1.2%,
along with diminutions in both model parameters and size. These findings indicate that
shared convolution effectively decreases the model size, while the use of GN substantially
enhances the model’s capability to localise and detect pomegranate fruits.

Model 5 incorporates both the ShuffleNetv2 and C2f_LEMA modules, resulting in an
increase in mAP to 92.8% and a rise in recall to 85.3%. This indicates that the combination
of the two modules significantly enhances the detection performance for pomegranate
fruits, enhancing the model’s robustness. Model 6 integrates all three modules, achieving a

Table 4 Comparison of YOLOv10s and PGLD-YOLO model performance. Bold entries indicate the
best results in each column.

Model Precision (%) Recall (%) mAP (%) Params (M) Size (MB) FLOPs (G)

YOLOv10s 91.4 83 90.6 7.2 16.6 21.4

PGLD-YOLO 92.3 85.8 92.6 4.7 9.9 13.8

Table 5 Results of ablation experiments. Bold entries indicate the best results in each column.

Model YOLOv10s ShuffleNetv2 C2f_LEMA GNSH Recall (%) mAP (%) Params (M) Size (MB) FLOPs (G)

Model 1 √ 83 90.6 7.2 16.6 21.4

Model 2 √ √ 84 92 5.6 13.3 13.3

Model 3 √ √ 84.4 92.1 6.7 15.6 19.5

Model 4 √ √ 85.0 91.8 6.8 14.0 23.9

Model 5 √ √ √ 85.3 92.8 5.1 12.4 11.3

Model 6 √ √ √ √ 85.8 92.6 4.7 9.9 13.8
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recall of 85.8%. Simultaneously, the parameter count is diminished to 4.7M, representing a
34.7% curtailment relative to Model 1. The model size is reduced to 9.9 MB, and the FLOPs
are 13.8G. The experimental outcomes indicate that each enhancement yields positive
effects, satisfying both the accuracy requirements for pomegranate localisation and
recognition, and the deployment constraints for edge devices.

Performance comparison of different algorithms
Performance comparison of mainstream object detection algorithms
To evaluate the effectiveness and generalisation capacity of the proposed PGLD-YOLO
algorithm, comparative experiments are conducted on the Pomegranate, Apple Object
Detection, and VOC2007 datasets against several representative models. These include
the two-stage detector Faster R-CNN (Ren et al., 2016); mainstream one-stage
detectors such as SSD (Liu et al., 2016), RT-DETR (Zhao et al., 2024), YOLOv5, YOLOv7,
YOLOv8, YOLOv10, and YOLOv11; as well as lightweight detection models including
EfficientDet-D0/D1 (Tan, Pang & Le, 2020) and MobileNetV3-SSD (Howard et al., 2019).
The experimental findings are presented in Tables 6, 7, and 8.

Table 6 shows that the proposed PGLD-YOLO exhibits better performance regarding
model parameter count, size, and computational complexity in comparison to previous
object detection algorithms. The two-stage object detection algorithm Faster R-CNN has
substantially higher parameter counts, model size, and FLOPs, making it challenging to
deploy effectively on resource-constrained edge devices due to its large computational
complexity and memory requirements. Relative to the popular single-stage object
detection algorithms SSD, RT-DETR, YOLOv5, YOLOv7, YOLOv8, YOLOv10, and
YOLOv11, the PGLD-YOLO attains a parameter number of merely 4.7M, a model size of
only 9.9 MB, and FLOPs of only 13.8G, indicating that it achieves the best results for all
three complexity metrics. In addition, when in comparison with RT-DETR, YOLOv5,
YOLOv8, YOLOv10, and YOLOv11, PGLD-YOLO records higher recall values of 0.3%,
1.7%, 1.2%, 2.8%, and 1.7%, respectively, and higher mAP values of 1.3%, 1.2%, 1.0%, 2.0%,
and 0.8%, respectively. These results suggest PGLD-YOLO has better detection
performance at lower missed detection rates, accurate and efficient localisation of
pomegranate fruits, and classification of ripeness levels in an orchard setting.

Although the recall andmAP values of PGLD-YOLO are lower than those of the SSD and
YOLOv7 algorithms, its parameter count is reduced by 80.5% and 87.1% respectively, with
model size decreases by 82.2 and 64.9 MB, and FLOPs lessened by 261.1G and 89.4G,
respectively. Conversely, although the EfficientDet-D0/D1 and MobileNetV3-SSD
algorithms offer advantages in terms of parameter count, model size, and FLOPs, their mAP
values—71.9%, 74.8%, and 52.0%, respectively—are insufficient to meet the high-precision
requirements of pomegranate fruit detection. Overall, these results indicate that the
PGLD-YOLO algorithm surpasses other mainstream object detection methods in terms of
overall performance. It accurately assesses fruit maturity under natural backgrounds,
achieves precise localisation and recognition of pomegranate fruits, effectively minimises
missed detections and model complexity, and is therefore well-suited for application and
deployment in embedded devices such as pomegranate harvesting robots.
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Table 6 Performance comparison of different object detection algorithms on Pomegranate Images
Dataset. Bold entries indicate the best results in each column.

Model Recall (%) mAP (%) Params (M) Size (MB) FLOPs (G)

Faster R-CNN 63.9 61.4 136.8 521.7 401.8

SSD 86.7 92.8 24.1 92.1 274.9

RT-DETR 85.5 91.3 41.9 86.1 129.6

YOLOv5 84.1 91.4 9.1 18.5 23.8

YOLOv7 89.1 94.1 36.5 74.8 103.2

YOLOv8 84.6 91.6 11.1 22.5 28.4

YOLOv10 83 90.6 7.2 16.6 21.4

YOLOv11 84.1 91.8 9.4 19.2 21.3

EfficientDet-D0 75.5 71.9 3.8 15.0 3.7

EfficientDet-D1 79.1 74.8 6.6 25.6 5.8

MobileNetV3-SSD 70.6 52.0 2.7 10.5 0.3

PGLD-YOLO 85.8 92.6 4.7 9.9 13.8

Table 7 Performance comparison of different object detection algorithms on Apple Object
Detection Dataset. Bold entries indicate the best results in each column.

Model mAP (%) Params (M) Size (MB) FLOPs (G)

Faster R-CNN 58.2 136.7 521.4 401.7

SSD 86.9 23.6 90.1 273.2

RT-DETR 89.3 41.9 86.1 129.5

YOLOv5 88.5 9.1 18.6 23.8

YOLOv7 90.3 36.5 74.8 103.2

YOLOv8 88.9 11.1 22.5 28.4

YOLOv10 88.9 7.2 16.6 21.4

YOLOv11 88.8 9.4 21.3 19.2

EfficientDet-D0 71.2 3.8 15.0 3.7

EfficientDet-D1 76.8 6.6 25.6 5.8

MobileNetV3-SSD 46.0 2.7 10.5 0.3

PGLD-YOLO 89 4.7 9.9 13.8

Table 8 Performance comparison of different object detection algorithms on the PASCAL VOC2007
dataset. Bold entries indicate the best results in each column.

Model mAP (%) Params (M) Size (MB) FLOPs (G)

Faster RCNN 66.4 136.7 521.4 401.7

SSD 60.2 23.6 90.1 273.2

RT-DETR 69.9 41.9 86.1 129.6

YOLOv5 70.6 9.1 18.6 23.8

YOLOv8 71.5 11.1 22.5 28.4

YOLOv10 71.0 7.2 16.6 21.4

YOLOv11 71.4 9.4 21.3 19.2

PGLD-YOLO 71.3 4.7 9.9 13.8
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Figure 14 shows the FLOPs-mAP efficiency frontier of PGLD-YOLO relative to other
mainstream object detection techniques. The size of each label in the figure corresponds to
the model’s FLOPs value, with larger regions signifying higher FLOPs. The red line denotes
the efficiency frontier curve, connecting points on the Pareto frontier, where no other
model achieves a higher mAP under the same or lower FLOPs conditions. This signifies
that these models attain the optimal balance between performance and resource
consumption. As shown in Fig. 14, the PGLD-YOLO algorithm lies on the efficiency
frontier curve, further substantiating the superiority and effectiveness of the proposed
model in balancing accuracy and computational efficiency.

Tables 7 and 8 show that the PGLD-YOLO proposed in this study achieves a slight
enhancement in mAP relative to the YOLOv10s algorithm on the Apple Object Detection
and VOC2007 generalisation datasets, despite substantial diminutions in parameter count,
model size, and FLOPs. The findings in Table 8 show that PGLD-YOLO outperforms the
other detection methods across three key metrics. Although the parameters and FLOPs of
PGLD-YOLO in Table 7 exceed those of EfficientDet-D0/D1 and MobileNetV3-SSD, its
mAP is significantly higher, indicating that PGLD-YOLO achieves an effective balance
between detection accuracy and a lightweight design. These findings further confirm that
the lightweight strategy introduced in this study maintains strong performance in both
intra-domain fruit detection and cross-domain object detection, highlighting considerable
generalisation capability.

Performance comparison of fruit recognition detection algorithms
To further assess the practical utility and application value of the PGLD-YOLO algorithm
in the fruit detection tasks, this experiment compares it with several existing fruit detection

Figure 14 Efficiency frontiers of various object detection models.
Full-size DOI: 10.7717/peerj-cs.3307/fig-14
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models. These include CA-YOLOv5 (Yang et al., 2024) and AD-2023 (Kong et al., 2024)
for apple detection; YOLOv7-plum (Tang et al., 2023a) for plum detection; YOLO-Jujube
(Xu et al., 2023) for jujube detection; YOLOv7-Peach (Liu & Yin, 2023) for peach
detection; DSW-YOLO (Du et al., 2023) for strawberry detection; YOLOv7-CBAM (Wang
et al., 2023a) for tomato detection; HAT-YOLOV8 (Tang, Yu & Shao, 2025) for fruit
ripeness detection; and SCD-YOLOv5s (Zhou et al., 2025) for passion fruit detection. The
comparative outcomes are presented in Table 9.

In Table 9, compared with the algorithms proposed in previous studies
(Yang et al., 2024; Xu et al., 2023; Liu & Yin, 2023; Du et al., 2023; Wang et al., 2023a;
Tang, Yu & Shao, 2025; Zhou et al., 2025), PGLD-YOLO exhibits significant advantages in
terms of model parameters, model size, and FLOPs, while also achieving improvements in
detection precision and recall to varying degrees. These findings suggest that the model
proposed in this study shows lower missed and false detection rates for pomegranate fruits
under natural conditions and provides superior performance in both detection accuracy
and computational efficiency. Compared with AD-2023 and YOLOv7-plum, although the
PGLD-YOLO algorithm achieves a slightly lower mAP, it substantially reduces the
parameter count, model size, and FLOPs. This suggests that the proposed PGLD-YOLO
algorithm is better suited for deployment on edge devices, while maintaining an acceptable
level of detection accuracy, an aspect of critical importance in practical applications.
Overall, the results indicate that PGLD-YOLO outperforms other mainstream models and
is capable of accurately localising and recognising pomegranate fruits in natural
environments, demonstrating strong potential for real-world deployment.

Visual comparison of results
In orchard environments, variations in lighting and occlusion from branches and leaves
present a dual challenge. Fluctuating illumination leads to fruit colour distortion and the
loss of surface detail, hindering the accurate assessment of ripeness. Occlusion, on the
other hand, results in missing contour features, blurring fruit boundaries, and reducing the
accuracy of localisation and recognition. Consequently, the pomegranate fruit detection

Table 9 Performance comparison of different fruit object detection algorithms. Bold entries indicate
the best results in each column.

Model Recall (%) mAP (%) Params (M) Size (MB) FLOPs (G)

CA-YOLOv5 82.7 89.8 7.8 – 16.6

AD-2023 – 94.1 43.96 – 93.6

YOLOv7-plum 93.2 94.9 – 71.4 –

YOLO-Jujube 81.7 88.8 5.2 – 11.7

YOLOv7-Peach 73 80.4 – 51.9 –

DSW-YOLO 82.1 86.7 32.4 – 99.5

YOLOv7-CBAM – 87.8 36.58 – 103.8

HAT-YOLOV8 – 88.9 – 35.7 –

SCD-YOLOv5s 84.7 88.4 – 12.6 14.3

PGLD-YOLO 85.8 92.6 4.7 9.9 13.8
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algorithm must exhibit both localisation capability and high precision in ripeness
classification. To more clearly illustrate the improvement in detection performance offered
by the PGLD-YOLO algorithm, this study evaluates and compares the performance of the
YOLOv10s model and the enhanced PGLD-YOLO across four challenging conditions:
strong light, backlight, occlusion, and long-distance scenes. The evaluation is conducted
using both the Pomegranate Images Dataset and the Apple Object Detection Dataset. The
findings are presented in Figs. 15 and 16, which display the predicted bounding boxes,
ripeness categories, and confidence scores.

Figures 15 and 16 show that the YOLOv10s model exhibits varying degrees of missed
detections on both the Pomegranate Images Dataset and Apple Object Detection Dataset.
Figure 15 presents the visualisation outputs under four different background conditions
within the Pomegranate Images Dataset, where YOLOv10s registers four missed detections
and one false detection, misclassifying a “Bud” as a “Flower” under strong lighting. In
contrast, PGLD-YOLO records neither missed nor false detections, achieves higher
confidence scores, and generates bounding boxes that more accurately align with the

Figure 15 YOLOv10s and PGLD-YOLO models on the Pomegranate Images Dataset for
visualisation comparison. Full-size DOI: 10.7717/peerj-cs.3307/fig-15
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pomegranate fruit contours. Figure 16 displays the visualisation output for the Apple
Object Detection Dataset, revealing eleven missed detections by YOLOv10s and four by
PGLD-YOLO. In the backlight scenario, the similarity in colour between fruit and foliage
leads YOLOv10s to falsely detect two leaves as apples, whereas PGLD-YOLO makes no
such errors. Taken together, these results demonstrate that PGLD-YOLO surpasses the
original YOLOv10s in both pomegranate localisation and ripeness assessment under
natural conditions, offering improved confidence scores and substantially minimising
occurrences of missed and false detections.

DISCUSSION
Comparative experiments on attentional mechanisms
To enhance the model’s focus on the key feature information of pomegranate fruits and
reduce the interference of background factors, this study incorporates attention
mechanisms into the baseline model, thereby improving its robustness to environmental
distractions. Different attention mechanisms offer varying levels of improvement to the

Figure 16 YOLOv10s and PGLD-YOLO models on the Apple Object Detection Dataset for
visualisation comparison. Full-size DOI: 10.7717/peerj-cs.3307/fig-16
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model’s performance. To investigate which mechanism is most suitable for the
pomegranate fruit detection task, comparative experiments are conducted by integrating
several approaches: Coordinate Attention (CA) (Hou, Zhou & Feng, 2021), Simple
Attention Module (SimAM) (Yang et al., 2021), Squeeze-and-Excitation (SE) (Hu, Shen &
Sun, 2018), Enhanced Squeeze-and-Excitation (eSE) (Lee & Park, 2020), and EMA
(Ouyang et al., 2023). The findings are presented in Table 10, with the optimal metrics
highlighted in bold.

The comparison results in Table 10 indicate that incorporating an attention mechanism
significantly enhances the model’s detection performance. Among the tested mechanisms,
embedding EMA yields gains of 2.7%, 0.5%, and 1.5% in precision, recall, and mAP,
respectively, while incurring only a minimal increase in parameter count and
computational cost, demonstrating its superiority over other mechanisms. This suggests
that EMA effectively mitigates the influence of background noise and irrelevant regions
such as branches and leaves, strengthens the discriminative capacity of pomegranate fruit
feature regions, minimises inter-channel information loss, and enhances both localisation
and ripeness assessment. Accordingly, this study integrates the EMA mechanism—

identified as having the best overall performance—into the C2f_LEMA module, enabling
the model to better focus on pomegranate fruit regions and increase both detection
accuracy and localisation precision.

To provide an intuitive illustration of the model’s attention to different regions
following the integration of various attention mechanisms, this study generates heat maps
for visual analysis. In these maps, variations in colour intensity represent the distribution
of the model’s attention: warmer colours signify higher attention to the target. The results,
presented in Fig. 17, show that the model exhibits greater attention to the target fruits in
their natural environment after the introduction of an attention mechanism. Compared
with the baseline and those incorporating the CA, SimAM, SE, and eSE mechanisms, the
heat maps with EMA display higher and more concentrated brightness in the principal
regions and local features, indicating that the model with EMA can identify pomegranate
fruits with greater accuracy. Accordingly, EMA exhibits superior performance.

Performance comparison of different lightweight network detection
To verify the efficacy of reconstructing the backbone using the ShuffleNetV2 network, this
study compares its performance with that of other lightweight networks, namely

Table 10 Comparative experiments of different attention mechanisms. Bold entries indicate the best
results in each column.

Model Precision (%) Recall (%) mAP (%) Params Size (MB) FLOPs (G)

YOLOv10s 91.4 83 90.6 7,219,935 16.6 21.4

YOLOv10s+CA 93.1 83.1 91 6,732,967 15.6 19.3

YOLOv10s+SimAM 93.8 83.1 91.4 6,724,575 15.6 19.3

YOLOv10s+SE 93.8 83.2 91.5 6,729,183 15.6 19.3

YOLOv10s+eSE 94 82.6 91.7 6,761,759 15.6 19.3

YOLOv10s+EMA 94.1 83.5 92.1 6,730,495 15.6 19.5
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MobileNetV4 (Qin et al., 2025), FasterNet (Chen et al., 2023), EfficientNet (Tan & Le,
2019), and GhostNetV2 (Tang et al., 2022). Each network is employed to reconstruct the
backbone, and the comparative findings are presented in Table 11. As shown in Table 11,
employing ShuffleNetV2 to construct the backbone yields gains of varying magnitudes
across multiple performance metrics relative to the original YOLOv10s backbone.

Upon analysing the data in Table 11, it is evident that the model employing
ShuffleNetV2 as the backbone network achieves the highest mAP value. Notably, relative
to YOLOv10s integrated with MobileNetV4, FasterNet, EfficientNet, and GhostNetV2, the
model based on ShuffleNetV2 also exhibits clear advantages across all three
model-complexity metrics. In comparison with YOLOv10s+MobileNetV4, it reduces the
parameter count by 3.3M, the model size by 6.7MB, and FLOPs by 15.3G. The
experimental results indicate that the ShuffleNetV2 network maintains higher detection
accuracy while markedly reducing computational complexity through techniques such as

Table 11 Comparison of the effects of backbone reconstruction using different lightweight
networks. Bold entries indicate the best results in each column.

Model mAP (%) Params (M) Size (MB) FLOPs (G)

YOLOv10s 90.6 7.2 16.6 21.4

YOLOv10s+MobileNetV4 90.1 8.9 20.0 28.6

YOLOv10s+FasterNet 91.1 6.9 15.9 16.4

YOLOv10s+EfficientNet 91.3 8.3 18.6 16.7

YOLOv10s+GhostNetV2 91.3 6.6 15.5 14.1

YOLOv10s+ShuffleNetV2 92 5.6 13.3 13.3

Figure 17 Comparison of heat maps with different attention mechanisms. (A) YOLOv10s.
(B) YOLOv10s+CA. (C) YOLOv10s+SimAM. (D) YOLOv10s+SE. (E) YOLOv10s+eSE. (F) YOLOv10s
+EMA. Full-size DOI: 10.7717/peerj-cs.3307/fig-17
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grouped convolution and channel shuffle. Relative to other lightweight networks, it
outperforms them in four key metrics and is therefore more suitable for resource-limited
scenarios. Consequently, ShuffleNetV2 is selected to restructure the backbone for the
pomegranate fruit detection task.

Evaluation and comparative analysis of anti-interference capability
To evaluate the enhancement in robustness provided by the C2f_LEMA module and the
anti-interference capability of the PGLD-YOLO algorithm, this study introduces varying
levels of noise into the test set and compares the detection performance of three models:
the baseline YOLOv10s, YOLOv10s enhanced solely with the C2f_LEMA module, and the
complete PGLD-YOLO approach. Specifically, different levels of Gaussian noise, salt-and-
pepper noise, and a combination of both are added to the test set of the Pomegranate
Images Dataset. The mAP values of the three algorithms are obtained through
experimental evaluation, with the results presented in Tables 12–14, where the optimal
values are highlighted in bold and suboptimal values are underlined.

Tables 12, 13, and 14 present the comparative mAP values for the YOLOv10s,
YOLOv10s+C2f_LEMA, and PGLD-YOLO approaches under varying levels of Gaussian
noise, salt-and-pepper noise, and combinations of both, introduced into the test set of the
Pomegranate Images Dataset. The corresponding curves are shown in Fig. 18. The results
in Tables 12–14 and Fig. 18 indicate that the detection accuracy of all three approaches
declines to varying extents as noise levels increase. Among them, the YOLOv10s
+C2f_LEMA method achieves the highest mAP values in all three comparative
experiments involving different noise levels, while the PGLD-YOLO method records a
total of 14 suboptimal mAP values. These findings suggest that the improved C2f_LEMA
module in this study markedly strengthens the model’s resistance to noise-induced
interference. Notably, in all three comparative experiments—except under salt-and-pepper
noise with a density of 0.02—the mAP values of the PGLD-YOLO method exceed those of
the baseline YOLOv10s, yet remain slightly lower than those of the YOLOv10s
+C2f_LEMA method. This is attributable to the fact that, in addition to incorporating the
C2f_LEMA module, PGLD-YOLO also replaces the backbone with a lightweight
architecture and adopts the GNSH detection head, diminishing overall model complexity.
These findings indicate that the PGLD-YOLO improves robustness and resilience to noise
disturbances while maintaining a lightweight design. Furthermore, Fig. 18 shows that,
under all noise conditions, the mAP curves of both PGLD-YOLO and YOLOv10s
enhanced solely with the C2f_LEMA module decline more gradually than those of the

Table 12 Comparison of mAP values for three methods on test set with varying levels of Gaussian
noise. Bold entries indicate the best results, and underlined entries indicate the second-best results in
each column.

Noise level 0.005 0.01 0.015 0.02 0.025

YOLOv10s 90.2% 90.1% 90% 89.9% 89.7%

YOLOv10s+C2f_LEMA 92.2% 92.2% 92.1% 91.9% 91.7%

PGLD-YOLO 91.7% 91.7% 91.5% 91.4% 91.3%
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baseline YOLOv10s. This suggests a slower deterioration in detection accuracy under noise
interference, accordingly corroborating the efficacy of the improved C2f_LEMAmodule in
strengthening model robustness.

In summary, this study proposes the PGLD-YOLO method, which demonstrates
enhanced robustness and anti-interference capability while concurrently minimising
model size, parameter count, and computational complexity. It effectively mitigates
background distractions and sustains high detection accuracy in the localisation and
recognition of pomegranate fruits in natural environments.

Although the model proposed in this study attains a commendable balance between
detection accuracy and lightweight design, and shows a degree of robustness against
varying levels of Gaussian and salt-and-pepper noise interference, certain limitations

Table 13 Comparison of mAP values of the three methods on the test set with varying levels of salt-
and-pepper noise. Bold entries indicate the best results, and underlined entries indicate the second-best
results in each column.

Noise Level 0.005 0.01 0.015 0.02 0.025

YOLOv10s 88.9% 86.5% 83.6% 80.2% 74.2%

YOLOv10s+C2f_LEMA 91.2% 88.6% 85.7% 81.2% 76.7%

PGLD-YOLO 90.6% 88.2% 84.7% 79.7% 76.1%

Table 14 Comparison of mAP values of the three methods on the test set with varying levels of
Gaussian and salt-and-pepper noise. Bold entries indicate the best results, and underlined entries
indicate the second-best results in each column.

Noise Level 0.005 0.01 0.015 0.02 0.025

YOLOv10s 89.2% 87.8% 85.8% 83.4% 80.6%

YOLOv10s+C2f_LEMA 91.4% 89.9% 87.8% 84.8% 81.7%

PGLD-YOLO 91% 89.2% 86.9% 83.6% 80.9%

Figure 18 Comparison of mAP for the three methods on test sets with varying levels of Gaussian noise, salt-and-pepper noise, and
combinations of both noise types. (A) Gaussian noise. (B) Salt-and-pepper noise. (C) Gaussian+salt-and-pepper noise.

Full-size DOI: 10.7717/peerj-cs.3307/fig-18
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remain. In particular, in the detection of small-scale and densely distributed fruits, both
accuracy and robustness still require improvement. Moreover, the model has not been
trained through multiple independent runs, thus lacking an evaluation of its stability.
Future research will therefore focus on small fruit targets, aiming to incorporate feature
extraction methods capable of withstanding environmental interference to augment the
model’s applicability. In parallel, the model’s stability will be assessed through repeated
experiments and statistical analyses. Additionally, collaboration with agricultural experts is
planned to deploy the proposed model on agricultural drones or integrated picking
systems for testing and evaluation, to verify its performance in real orchard environments
and to strengthen its practical utility in precision agriculture.

CONCLUSIONS
To address the challenges of low accuracy, large parameter size, and high computational
complexity in existing pomegranate detection algorithms, this study proposes
PGLD-YOLO, a lightweight fruit localisation and recognition algorithm based on an
improved YOLOv10s architecture for natural environments. First, ShuffleNetV2 is
employed as a lightweight backbone for feature extraction, significantly minimising model
complexity while improving detection accuracy. Second, a C2f_LEMA module is designed
to refine the neck, improving feature representation while maintaining model
lightweightness. This effectively minimises false and missed detections of pomegranate
fruits in natural environments, augmenting the model’s robustness. Finally, a lightweight
detection head, GNSH, is proposed to replace the original detection head, further
decreasing the model size and parameter count, as well as lowering the missed detection
rate. Relative to the baseline YOLOv10s model, PGLD-YOLO achieves an mAP of 92.6%
on the data-enhanced Pomegranate Images Dataset, accompanied by a 34.7% reduction in
parameters to 4.7MB, and reductions in model size and FLOPs of 40.4% and 35.5%,
respectively. The proposed model also demonstrates improved detection accuracy on the
public Apple Object Detection and the VOC2007 datasets compared with the baseline,
while retaining a lightweight architecture, thereby indicating strong generalisation
capability and practical applicability. Comparative experiments with other mainstream
object detection algorithms reveal that the proposed approach achieves a favorable balance
among detection accuracy, localisation precision, and model complexity, thus meeting the
requirements for real-world deployment. Visualisation results further indicate that the
proposed method can effectively localise and recognise pomegranate fruits in natural
environments, providing a technical reference for its implementation and practical
application on embedded devices.
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