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ABSTRACT

Graphs are widely used as essential modeling tools to represent protein-protein
interaction networks. However, they are often subject to uncertainty due to noise or
incomplete data collection. This research aims to address the challenges associated
with uncertain weighted graphs, where each edge is characterized by both a
probability of existence and a numerical weight. We propose two novel greedy
algorithms, GreedyUWDS and GreedyBWDS, designed to extract dense and reliable
subgraphs from uncertain weighted graphs. GreedyUWDS optimizes subgraph
density by leveraging the expected weighted density metric, whereas GreedyBWDS
introduces a flexible reliability threshold parameter to effectively balance density and
reliability, enabling users to adjust the algorithm to prioritize either highly reliable
subgraphs at the expense of density or greater density at the expense of reliability,
thereby addressing a critical trade-off that previous methods have not effectively
managed. Experimental validation on protein-protein interaction networks
demonstrates that the proposed algorithms outperform existing techniques in terms
of weighted edge density and subgraph reliability. Specifically, GreedyBWDS
achieves approximately a 20% improvement in graph density over GreedyUWDS,
while reducing runtime by a factor of 2.5. GreedyBWDS consistently identifies
subgraphs with higher values for the combined density and reliability objective, and
demonstrates significantly greater computational efficiency. These results underscore
the flexibility and efficiency of our proposed approaches, offering practical solutions
for analyzing uncertain weighted graphs in biological contexts, with a primary focus
on protein-protein interaction networks. This research advances the field of graph
mining by enabling users to fine-tune the balance between density and reliability
according to their specific application requirements.

Subjects Data Mining and Machine Learning, Data Science
Keywords Graph mining, Greedy algorithms, Reliable dense subgraphs, Subgraphs, Uncertain
weighted graphs

INTRODUCTION

Graph theory, the study of graphs and their properties, is a fundamental area of computer
science. Graphs are widely used to represent complex systems, capturing relationships in
biological systems such as protein-protein interaction networks (PPI). A central concept in
this discipline is finding the densest subgraph, typically defined as the subgraph with
the highest edge density, the ratio of the number of edges to the number of vertices
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(Dondi et al., 2021). Identifying such dense substructures is important for many
applications. For example, in biology, discovering connected groups of entities can reveal
community structures and functional modules. Traditionally, the densest subgraph
problem has been studied using deterministic graphs; however, additional challenges arise
when uncertainty is introduced into these graph models.

In uncertain weighted graphs, each edge is characterized by both a probability of
existence and a numerical weight. This model captures not only the variability of
connections, due to noise or incomplete data, but also their relative importance. For
example, as noted by Rual et al. (2005), PPI networks (Szklarczyk et al., 2015) demonstrate
that each protein bond can influence both structural and biological function, yet the
presence or absence of these bonds is often uncertain. A graph that models this uncertainty
is called an uncertain graph, and when weights are also assigned to edges, it becomes an
uncertain weighted graph.

A key analytical challenge in uncertain weighted graphs is to identify subgraphs that are
both dense and reliable. Focusing solely on density, without accounting for the reliability of
edges, may result in dense subgraphs that rely on highly uncertain connections.
Conversely, optimizing only for reliability could yield trivial subgraphs. Therefore,
balancing both density and reliability is necessary to extract meaningful subgraphs from
uncertain weighted graphs. An essential concept is the most reliable subgraph, consisting
of edges with the highest collective probability of existence.

This research aims to develop an effective strategy for identifying subgraphs that are
both dense and reliable in uncertain weighted graphs. We consider both connection
density and edge reliability, striving for a balance that yields subgraphs with high density
and high overall reliability of connections. This is especially important in applications such
as PPI network analysis, where subgraphs must be both structurally dense and statistically
reliable to be useful. Existing methods are insufficient because they typically optimize only
one aspect—either density or reliability—or assume that all edges are unweighted
(Lu, Huang ¢ Huang, 2019). Classic densest subgraph algorithms ignore uncertainty,
while previous work on reliable subgraphs in uncertain graphs does not account for
varying edge weights.

Our approach provides practical tools specifically tailored for protein-protein
interaction networks to address these complex challenges and is expected to make a
significant contribution to the analysis of biological networks.

RELATED WORK

Researchers have shown great interest in identifying dense subgraphs, particularly in
uncertain graph models. The probabilistic nature of edge existence makes the task of
discovering dense and reliable subgraphs more challenging. Greedy approximation
methods, such as the Charikar algorithm (Charikar, 2000), offer valuable insights into
network density within specific contexts. Other studies, such as those by Khuller ¢ Saha
(2009) and Andersen ¢ Chellapilla (2009), focus on enhancing subgraph density by
reducing subgraph size, a problem known to be NP-hard. Additionally, Moreira, Campos
¢ Meira (2020) developed methods for evaluating complex hierarchical structures within
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bipartite graphs, broadening the field and providing insights for future applications in
healthcare research. Methods such as finding the densest k-connected subgraphs have also
been studied (Bonchi et al., 2021), demonstrating the breadth of dense subgraph research.

Research on uncertain graphs began with fundamental work by Gao & Gao (2013),
which led to the development of models such as graph reliability (Zou et al., 2010) and
clustering approaches (Kollios, Potamias ¢ Terzi, 2013). The concept of the largest clique
in uncertain graphs was introduced by Zou ¢ Zhu (2013), who also proposed methods for
identifying highly probable cliques (fully connected subgraphs) in large uncertain graphs.
Since finding large cliques is NP-hard, the idea was extended to quasi-cliques, which
permit some missing edges, offering a trade-off between density and computational
feasibility.

The densest subgraph in an uncertain graph was first formally discussed by Zou et al.
(2010), who defined the expected subgraph density based on edge existence probabilities.
Subsequently, Jin, Liu ¢» Aggarwal (2011) addressed the problem of identifying reliable
subgraphs by introducing reliability measures and developing sampling-based algorithms
to find subgraphs that are highly likely to exist. However, their approach focuses solely on
reliability and does not directly ensure high density.

In Lu, Huang & Huang (2019), the authors proposed the 3-subgraph method and an
associated optimal subgraph algorithm to balance density and reliability. A subgraph was
defined as “B-dense” if it remained dense after filtering out edges with probability below 3.
While this approach improved the reliability of the resulting subgraph, it assumed equal
edge weights (effectively treating the graph as unweighted) and applied a fixed threshold 3
to all edges. These limitations of the 3-subgraph approach reduce its applicability to
uncertain weighted graphs.

In contrast, our GreedyBWDS algorithm generalizes this idea by accommodating
variable edge weights and dynamically applying the b threshold during the greedy removal
process, rather than as a one-time filter. Miyauchi ¢ Takeda (2018) laid the groundwork
for addressing weighted uncertainty in dense subgraph discovery. Additionally, the study
in Cheng et al. (2014) on shortest-path algorithms provided further insights into uncertain
weighted graphs and contributed to the development of our methodology.

More recently, a powerful framework for detecting dense subgraphs in graphs was
introduced in Chen et al. (2024), offering a range of useful features for deterministic
graphs. Regrettably, it cannot be applied to uncertain graphs.

In addition to previous works on densest subgraphs and cliques, researchers have
extended other notions of cohesive subgraphs to uncertain graphs. For example, k-core
decomposition, which identifies the maximal subgraph in which each vertex has at least k
neighbors, has been adapted to probabilistic settings. In Luo et al. (2023), scalable parallel
algorithms were proposed to identify densest subgraphs in undirected and directed graphs
by leveraging k-core decomposition, achieving substantial performance improvements on
large-scale networks. In Peng et al. (2018), efficient algorithms were developed to compute
the probabilistic k-core of an uncertain graph, introducing models that retain vertices with
a high probability of being connected to at least k others. Similarly, a k-truss, defined as a
subgraph in which each edge participates in at least k-2 triangles, has also been extended to
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uncertain graphs. In Sun et al. (2021), the authors studied the probabilistic k-truss, the
largest subgraph in which each edge belongs to at least k-2 triangles with a probability of at
least gamma. These approaches aim to find dense substructures based on vertex degree or
triangle count under uncertainty.

In Saha et al. (2023), the concept of the most probable densest subgraph in uncertain
graphs was introduced, along with algorithms that prioritize subgraphs likely to exhibit
dense structures while taking edge uncertainty into account. Expanding on this, Kawase,
Miyauchi & Sumita (2023) explored multilayer networks and proposed stochastic methods
that yield probability distributions over vertex subsets, enabling the discovery of dense
subgraphs in complex systems. However, these methods generally focus on specific
structural patterns such as cores or trusses, rather than directly optimizing a combined
density-reliability objective. In contrast, we define a unified objective function capturing
both edge density and reliability, and design algorithms to directly optimize this joint
criterion.

The application of dense subgraph discovery has extended from theoretical settings to
real-world applications. Dense subgraphs have been utilized in PPI network analysis
(Rual et al., 2005), as well as in fraud detection (Ma et al., 2021). Such applications have
deepened our understanding of dense subgraphs within these complex structures.

Recent research has focused on dynamic methods. For example, Bera et al. (2022)
introduced novel methodologies for finding the densest sub-hypergraphs within larger
graph frameworks. Furthermore, Map-Reduce approaches have been used to address
high-density subgraph problems. However, applying these principles to real-time or
streaming contexts remains challenging.

Another active area of related research is the use of dense subgraph mining for anomaly
and fraud detection, especially in dynamic or streaming graphs. Hooi et al. (2016)
introduced Fraudar, an algorithm for detecting fraudulent clusters in static graphs by
identifying anomalously dense subgraphs, while accounting for camouflage, which refers
to efforts by fraudsters to hide within normal patterns. Fraudar effectively identifies
suspiciously dense bipartite substructures in rating or follower networks. Shin et al. (2017)
proposed DenseAlert, which incrementally maintains dense sub-tensors in multi-aspect
data and detects sudden increases in density. These works highlight the importance of
efficient dense subgraph discovery in streaming and evolving contexts.

Yan et al. (2021) developed real-time anomaly detection frameworks based on dense
subgraph identification in network streams, successfully handling dynamic and uncertain
data. Bhatia et al. (2023) proposed a sketch-based streaming anomaly detection method
that approximates graph structure on the fly to detect anomalies in real time, which
implicitly involves tracking dense connectivity patterns in a dynamic graph. Jiang et al.
(2022) introduced Spade, a real-time fraud detection framework that incrementally
maintains dense subgraphs on evolving graphs to catch fraudulent groups nearly
instantaneously. In addition, Sawlani ¢ Wang (2020) proposed fully dynamic algorithms
for maintaining the densest subgraphs in evolving graphs, improving upon previous static
methods. All these advances address the challenges of finding dense substructures under
various constraints.
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Our proposed methods are complementary to the studies mentioned above. We
specifically address the case of uncertain weighted graphs and introduce methods that
explicitly balance density and reliability. This fills a niche not fully covered by prior works.
While previous studies have focused on static vs. dynamic settings or on unweighted
graphs, we address uncertain graphs with weighted edges and provide a tunable approach
that allows users to emphasize reliability as needed.

Many recent approaches have addressed the problem of reliable subgraph mining in
uncertain graphs. In Lu, Huang ¢ Huang (2019), the authors introduced the -subgraph
method, defining a subgraph as 3-dense if it remains dense after removing all edges with
probability less than 3. However, this method treats the graph as unweighted and applies a
hard probability threshold, potentially discarding valuable edge information in weighted
networks. Our GreedyBWDS algorithm generalizes this approach by allowing for arbitrary
edge weights and providing a tunable parameter b that enables a continuous trade-off
between density and reliability, rather than a strict cut-off.

Similarly, the approach in Jin, Liu & Aggarwal (2011) focuses on maximizing the
expected number of edges within a subgraph, but it relies on the probability that all edges
exist simultaneously and does not consider edge weights. This results in high
computational cost for large graphs, and limits its applicability in practical scenarios. By
contrast, our proposed algorithms extend these objectives to weighted graphs, and leverage
efficient greedy techniques that maintain theoretical guarantees while scaling to much
larger networks.

In summary, the proposed GreedyUWDS and GreedyBWDS algorithms improve upon
previous research by optimizing a joint density-reliability objective. Unlike prior densest
subgraph algorithms, our GreedyBWDS includes an adjustable parameter b that allows
users to smoothly navigate the trade-off between subgraph density and edge reliability.
This adaptability is particularly useful in applications such as PPI networks (our primary
example). Precisely modeling uncertain relationships is essential, and different scenarios
may require different balance points between density and reliability.

PRELIMINARIES AND DEFINITIONS

This section introduces the notations and definitions used throughout the article. Table 1
presents the key notations and definitions essential for understanding the content.

Definition 1. An uncertain weighted graph is a semi-random discrete structure
G = (v, E), where v is the set of deterministic vertices, and E is the set of random edges,
each edge E € E follows a Bernoulli distribution with weight Wt(E) = wtg or Wt(E) = 0.
An uncertain weighted subgraph G' = (v/, E’) is extracted from G = (v, E), where
E' = {E(u,v)|E(u,v) € E,u € v/,v € v'}. In an uncertain weighted graph, the random
edges are mutually independent.

For example, Fig. 1 represents a simple uncertain weighted graph with three vertices
(A, B, C),and their edge having probabilities: E(A, B) having a weight Wt(E) = 20 and a
probability Pr(Wt(E)) = 0.7, E(B, C) having a weight Wt(E) = 30 and a probability
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Table 1 Mathematical notations and their corresponding explanations.

Notion Explanation
G An uncertain weighted graph
v The set of deterministic vertices
E The set of random edges
u, v The edge incident to the vertices u and v
(u, v) g
Wt(E) Edge Weight
Pr(Wt(E) = wtg) Probability of the edge weight = wtg
v The order of the graph
vl grap
|E| The size of the graph
[v] % (Jv| — 1)/2 The size of the corresponding complete graph
Mot The average edge weight
o\
>
3

"~

>

k=)

o

Figure 1 An example of uncertain weighted graph. Full-size K] DOTI: 10.7717/peerj-cs.3304/fig-1

Pr(Wt(E)) = 0.8, E(B, D) having a weight Wt(E) = 40 and a probability
Pr(Wt(E)) = 0.5.

Definition 2. An uncertain weighted subgraph G’ = (v/, E’) is considered nontrivial if it
satisfies the condition |E'| > 1. We focus on nontrivial subgraphs because a single-edge
subgraph, while trivially dense, is often not meaningful for our analysis of dense subgraphs.
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Definition 3. The adjoint logarithmic reliability is defined in Eq. (1). By summing
logarithms, we avoid numerical underflow that can occur when multiplying many
probabilities. This approach provides a measure of subgraph reliability, where larger values
indicate a higher joint probability that all the edges exist.

reli(G) = ) _ logio(Pr(Wt(E) = wtg)). (1)

For example, the adjoint logarithmic reliability of the graph in Fig. 1 is calculated as
log10(0.7) + l0g10(0.8) + log19(0.5) = —0.552.

Definition 4. The average edge weight is defined in Eq. (2)

_ > pep(Pr(Wt(E) = wig) * wig) .

2
| ()

apew(G)

For example, average edge weight of the graph in Fig. 1 is calculated as
(20 % 0.7 4 30 * 0.8 + 40 % 0.5) /3 = 19.333.

Definition 5. The standard deviation of edge weight is defined in Eq. (3).

o(G) = \/2 wig + (Pr(WL(E) = wiz) — 1,,)° 6

ZEGE Wtg

This measures the variability of edge weight within the graph. A low value of o indicates
that the edges have similar probabilities, whereas a high value of o suggests that some
edges are much less certain than others.

For example, the standard deviation of edge weight of the graph in Fig. 1 is calculated

O'(G) N (WtAB * (WtAB - IJ«Wt)z + wigc * (WtBC — }Lwt)z -+ wigp * (WtBD — th)z)
wiap + wigc + wipp
= 8.165.

Definition 6. The edge weight density is defined in Eq. (4).

For example, the edge weight density of the graph in Fig. 1 is calculated as
(20 % 0.7 + 30 % 0.8 + 40 % 0.5) /6 = 9.667.

Problem statement
An important challenge in graph theory is to identify dense subgraphs in uncertain
weighted graphs. Dense subgraphs consisting of closely connected vertices often contain
important information about the properties of a graph. Therefore, extracting dense
subgraphs from large graphs is an essential task in graph research.

However, advanced analytical techniques are required to extract dense and reliable
subgraphs from uncertain graphs, especially when each edge has a different probability of
existence. Furthermore, treating all edge weights equally often fails to capture the

Duong and Nguyen (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3304 7/23


http://dx.doi.org/10.7717/peerj-cs.3304
https://peerj.com/computer-science/

PeerJ Computer Science

complexity of their interrelationships. Therefore, new methods are needed to incorporate
edge weights, which represent the strength of relationships, into graph models.

Dense subgraphs in protein networks often reflect protein complexes and indicate how
groups of proteins interact to perform specific biological functions. For example, the
Fanconi protein complex is involved in DNA repair (Wang, 2007). The use of dense
subgraphs in uncertain weighted graphs is essential for identifying and predicting
previously unknown protein complexes.

The density of a graph G(V, E) with |V| = n,|E| = m equals 3(G) = % The goal is to

find a subset of vertices S C V' that has the highest density. Zou ef al. (2010) described the
concept of expected density in uncertain graphs and highlighted the challenge of finding
dense subgraphs in such graphs. In uncertain graphs, both edges and weights are
probabilistic, which makes the identification of dense and reliable subgraphs challenging
(Jin, Liu & Aggarwal, 2011) examined the reliability of uncertain graphs by evaluating the
reliability of their subgraphs and introduced the idea of subgraph reliability. This work also
proposed sampling-based methods to find subgraphs with high reliability in uncertain
graphs.

However, the subgraphs discovered using this method raise some concerns. For
example, consider two uncertain subgraphs, A and B, both of which have the same
expected density of 0.7. Subgraph A may consist of only a few edges, but each edge has a
high probability of existence, indicating strong but sparse connections. In contrast,
subgraph B may contain many more edges, reflecting a denser structure, but the
probability of existence for each edge is very low. Although their expected densities are
identical, it is not sufficient to compare graphs based solely on this measure. The reliability
of a subgraph, which reflects the overall certainty of the connections, becomes an
important criterion. As a result, the reliability of a subgraph is often prioritized over its
density.

Lu, Huang ¢ Huang (2019) developed a 3 subgraph method and an optimal subgraph
algorithm for finding dense and reliable subgraphs, with positive results in various
real-world applications. However, these methods assume all edge weights are equal and
therefore do not address the challenge of uncertainty in edge weights. The present research
attempts to address the challenge of balancing density and reliability in the context of
uncertain weighted graphs.

The problem of mining highly reliable dense subgraphs from uncertain weighted graphs
is defined in Eq. (5).

/ / / : /
G = G’({Rg’))(gG{‘E | * pewd(G')x* reli(G') }. (5)

This problem is NP-hard in general, as it generalizes the densest subgraph problem and
also relates to finding high-probability subgraphs. Therefore, we seek heuristic or
approximation algorithms that can efficiently find good solutions on large graphs. We
design our methods for protein-protein interaction networks.
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Proposed methods
We propose two algorithms for mining highly reliable dense subgraphs from uncertain
weighted graphs: GreedyUWDS and GreedyBWDS.

GreedyUWDS extends the GreedyUDS method (designed for unweighted uncertain
graphs) by incorporating edge weights and probabilities into the density computation, thus
handling uncertainty in edge existence while optimizing subgraph density. GreedyUWDS
uses expected weighted density metrics to guide the search for dense regions. At each step,
it removes the vertex that contributes the least to the subgraph’s overall expected density.
By doing this iteratively, the algorithm identifies a sequence of vertex-removal steps that
yield progressively smaller subgraphs. Among all these subgraphs, it keeps track of the
subgraph with the highest density measure encountered.

Similarly, the GreedyBWDS method is intended for finding dense and reliable
subgraphs. This algorithm introduces a tunable parameter b € (0, 1), which acts as a
reliability threshold. The parameter b allows us to filter out or downweight edges with low
existence probability during the subgraph extraction process. By adjusting b, we control
the penalty for uncertain edges. A higher value of b means that only very reliable edges
contribute significantly, thus favoring reliability but potentially removing many edges and
reducing density. In contrast, a lower value of b is more permissive, favoring the retention
of more edges and hence higher density, even if some edges are less reliable.

According to our experimental results, GreedyBWDS can be flexibly applied to a range
of scenarios within protein-protein interaction networks by tuning parameter b. In
applications where reliability is paramount, a relatively high value of b should be set to
ensure that the edges in the output subgraph are mostly of high probability. In scenarios
where having as many connections as possible is desired and some decrease in reliability is
acceptable, a lower value of b can be chosen to prioritize density. A key novelty of our
approach is that it allows users to fine-tune the trade-off between density and reliability
based on the specific needs of the application domain.

In addition to these improved approaches, we also consider a baseline brute-force
method for finding the optimal subgraph with respect to our objective function. This
approach is similar in principle to the GreedyUWDS algorithm. The brute-force technique
examines all possible subgraphs in the graph and selects the one with the highest expected
weighted density. While brute force is a useful benchmark for evaluating the performance
of more advanced algorithms such as GreedyUWDS and GreedyBWDS, it is not suitable
for large or complex graphs due to its inefficiency.

Both GreedyUWDS and GreedyBWDS have made significant strides in addressing the
challenges of finding dense subgraphs in uncertain graph environments. These algorithms
offer deeper insights into the density and reliability of uncertain weighted graphs, opening
up new possibilities for future research and applications.

Brute force method

When searching for dense subgraphs in uncertain weighted graphs, the traditional
brute-force technique serves as an important benchmark. The brute-force method analyzes
every possible subset of vertices within the graph and evaluates each subset using expected
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weighted density, which incorporates both the overall weight of the edges and their
probabilities of existence. While the brute-force approach guarantees an optimal solution
by exhaustively considering all possible options, it faces a significant limitation in terms of
computational complexity. For large graphs, as the number of vertices increases, the
number of possible subsets grows exponentially, rendering the algorithm infeasible in
practice. Specifically, the brute-force algorithm has time complexity of O(2").

As a result, although brute force serves as a vital benchmark, it is typically used only in
theoretical analyses or as a comparison method for small graphs. It is rarely reccommended
for large and complex graphs due to its severe performance limitations. Therefore, the
GreedyUWDS and GreedyBWDS algorithms are generally preferred for finding dense and
reliable subgraphs in uncertain weighted graphs.

GreedyUWDS method

Definition 7. The expected weighted degree of a vertex v € v/ of the graph G' = (V/, E') is
calculated as the sum of probabilistic edge weight of incident edges (Eq. (6)).

ewdg(v) = Y [wtg * Pr(Wt(E')) = wig]. (6)
E'cE
For example, the expected weighted degree of vertex B of the graph in Fig. 1 is
ewdg(B) = 20 % 0.7 +30 % 0.8 +40 * 0.5=58.

Definition 8. The expected weighted density of the uncertain weighted subgraph
G = (v, E') produced by the graph G = (v, E) is defined in Eq. (7).
D opep WHE') ¥ Pr(WH(E') = wtp)

ewd(G') = ] : (7)

For example, the expected weighted density of the uncertain weighted graph in Fig. 1 is
wed(G') = (20 % 0.7 + 30 % 0.8 + 40  0.5) /4 = 14.5.

Definition 9. The subgraph G’ = argmax {ewd(G'))|v' C v} is referred to as the densest
uncertain weighted subgraph.

The GreedyUWDS presented in this research is a modification of the minimal cut
concept described in Jin, Liu ¢» Aggarwal (2011) and is also based on the Charikar
algorithm (Charikar, 2000). It has been adapted to capture the characteristics of uncertain
weighted graphs. Algorithm 1 provides the full pseudocode for the algorithm.

GreedyBWDS method

Definition 10. For a vertex v € v and a set of edges I = {E € E, E dependent v} and
b € (0,1), its excess weighted degree is defined in Eq. (8).

ewdg(v,b) = Z[(Pr(Wt(E) = wtg) — b) * wtg] (8)

Given b = 0.5 and the graph in Fig. 1, we have ewdg(B, 0.5) = (Pr(wtsp) — 0.5) * wtap
+(Pr(thC) - 0.5) * (thc) + (PI‘(WtBD) - 0.5) * wtgp = 13.
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Definition 11. Given a reliability threshold b € (0, 1), the average excess weighted degree
of graph G is defined in Eq. (9).
_ 2perl(Pr(WH(E) = wtg) — b) + wtg]

aewdg(G,b) = w )

The average excess weighted degree of the graph in Fig. 1 in case b = 0.5 is:

(Pr(thB) — 0.5) * Wlap + (PI‘(thc) — 0.5) * Wige + (Pr(thD) — 0.5) * Witgp
4

aewdg(G,0.5) =
= 3.25.

The GreedyBWDS method is similar to the GreedyUWDS but uses the parameter b to
control the selection. Based on the average excess weighted degree, it identifies the most
reliable dense subgraph. The method determines the subgraph with the highest average
excess weighted degree.

In addition, we use a min-heap to efficiently extract the best vertex. The improved
version runs in time O(nlog(n)), where n is the order of the graph.

The GreedyBWDS method relies on the parameter b, which serves as a key threshold for
determining the most reliable dense subgraph. The method effectively handles vertex
evaluations by strategically using the average excess weighted degree as a critical variable in
subgraph evaluation. It utilizes a min-heap structure to methodically find and remove
vertices with the lowest excess degree. This process is repeated iteratively, reducing the
graph’s complexity until it reaches a subgraph that is likely to be dense and reliable. This
subgraph, characterized by its high average excess weighted degree, serves as the final
output of the algorithm and provides valuable insights into the fundamental graph
structure.

Scalability analysis

The scalability of the proposed methods, GreedyUWDS and GreedyBWDS, was
investigated to determine their effectiveness on large-scale uncertain weighted graphs.
GreedyUWDS has a time complexity of O(n?), where n is the number of vertices, making it
ideal for small to medium-sized networks. In contrast, GreedyBWDS leverages a min-heap
data structure to improve runtime, resulting in a significant improvement in scalability and
making it suitable for larger networks.

In comparison with other approaches, the brute-force method, with its exponential time
complexity of O(2"), is computationally challenging for large networks but serves as a
benchmark for small networks. The Charikar algorithm, designed for deterministic
networks, has a time complexity of O(m + nlogn), where m is the number of edges and n
is the number of vertices. While Charikar’s technique is efficient, it fails to account for
uncertainty or edge weights, which limits its applicability in real-world scenarios. The
proposed GreedyBWDS method provides a balance between computational efficiency and
the ability to handle the complexity of uncertain weighted graphs. As a result,
GreedyBWDS achieves higher performance in large-scale applications.
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Algorithm 1 GreedyUWDS.
1. Initialize best_subgraph and best_expected_weighted_density

2. Fori=ndown to 2do:

3. Determine the expected weighted density for the current subgraph.

4. Update the values of best_subgraph and best_expected_weighted_density as
appropriate

5. Calculate the expected weighted degree of each vertex and remove the worst one.
6. End for

7. Return best_subgraph and best_expected_weighted_density

Trade-offs between density and reliability
Trade-offs between density and reliability is achieved through the use of dedicated
evaluation metrics and tunable threshold parameters, enabling the algorithms to adapt to
the requirements of specific applications. Density and reliability are combined into a single
objective function to identify subgraphs that are both dense and reliable, ensuring that the
resulting subgraph maintains structural consistency while addressing edge uncertainty.
The GreedyUWDS algorithm identifies the densest subgraph by maximizing
probabilistic edge weight density while preserving high reliability scores. In contrast, the
GreedyBWDS algorithm employs the parameter b as a threshold to filter edges based on
their degree and reliability. Adjusting the value of b enables the algorithm to prioritize
either density or reliability, depending on the application context. A larger value of b
emphasizes reliability, resulting in subgraphs with stronger and more dependable
connections. Conversely, a lower value of b is more permissive, potentially favoring density
by retaining more edges, even if some are less reliable.

Experiment setup

We implemented all algorithms in Python 3.9.16. Experiments were conducted on a PC
with an AMD Ryzen 5 5600H 3.3 GHz CPU, 8 GB of RAM, and Windows 10. Our
implementation and datasets are publicly available in our GitHub repository to ensure
reproducibility: https://github.com/dqakiet/CDNC1_222805401_DuongQuocAnhKiet_
NguyenChiThien.git.

We compare the performance of the GreedyUWDS and GreedyBWDS algorithms in
finding subgraphs that achieve high density, reliability, and efficiency. Both algorithms
were applied to the same set of PPI networks. All networks were obtained from the
STRING database (Szklarczyk et al., 2023) (https://string-db.org). The first two features in
the database represent proteins, where “combine_score” feature indicates the probability of
the protein connection. The remaining features are weights of the connection.

Following STRING’s scoring scheme, each channel score is stored as an integer
0 to 1,000. Scores of 0 indicate “no evidence” but still carry a baseline prior probability
p = 0.041. To avoid undefined value in log(0) and preserve this background likelihood, we
replaced any score of 0 by p x 1,000 = 41 before computing expected weighted density
and adjoint logarithmic reliability. This substitution maintains all weights on the same
0-1,000 scale, ensuring that edges with no direct evidence are treated with baseline
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Algorithm 2 GreedyBWDS.

Input: Uncertain Weighted Graph G(v,E) of n vetices, Wt(E) and Pr(Wt(E)) for each E € E,
and a value b

Output: A highly reliable dense subgraph

1. Initialize best_subgraph and best_aewdg

2. Initialize min_heap

3. For each vertex v in the graph:

4. Compute ewdg of v

5. Insert v into min_heap

6. For i =n down to 2:

7. Compute aewdg of the current subgraph

8. Update the values of best_subgraph and best_aewdg
9. If len(minHeap) > O:
10. Extract the vertex v from the top of the min_heap
11. End if
12. Retrieve all neighbors of v
13. Remove v from the graph
14. For each neighbor of v:
15. If the vertex is not in the min_heap:
16. Calculate its ewdg and add it to min_heap
17. End for

18. End for
19. Return best_subgraph

confidence rather than being artefactually removed. For comparison with GreedyUWDS,
the default value for the parameter b in the GreedyBWDS method is set to 0.6.

Table 2 provides an overview of the four PPI networks of varying scale and complexity
used in our experiments: 579,138, 86,666, 1,811,976, and 511,145. These networks vary
widely in scale, ranging from several thousand to hundreds of thousands of edges, and
represent different organisms or experimental sources. For each network, we report only
the number of vertices and edges to highlight the increasing scale and complexity. This
information demonstrates the diversity and size of the PPI networks included in our study.

To further analyze the impact of weight assignment, we examined all available edge
weight types for the four representative networks. Table 3 summarizes the average
probabilistic edge weight and standard deviation of probabilistic edge weight, averaged
over seven weight types: neighborhood (1), fusion (2), cooccurrence (3), coexpression (4),
experimental (5), database (6), and textmining (7). These statistics highlight the diversity
of edge reliability distributions, emphasizing the necessity for flexible algorithms capable of
identifying dense and reliable subgraphs under heterogeneous weighting schemes.

We evaluate algorithm performance on the identified subgraphs using several key
metrics: probabilistic edge weight density and adjoint logarithmic reliability. We also
report the number of edges in the subgraphs, which indicates their size and helps
contextualize the trade-off between quantity and certainty of connections. Because our
algorithms are deterministic, performance metrics such as expected weighted density and
aggregated logarithmic reliability remain consistent across runs. Therefore, we present
only representative results without standard deviation. To summarize the trade-oft
between subgraph size, density, and reliability, we also report a composite objective
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Table 2 Summary statistics of protein-protein interaction networks.

PPI network Number of vertices Number of edges
579,138 1,676 106,739
86,666 3,210 287,458
1,811,976 3,577 411,949
511,145 4,140 492,380

Table 3 Statistical properties of networks.

Network Average probabilistic edge weight Standard deviation of probabilistic edge weight

579,138 39.855 240.845
86,666 33.013 212.309
1,811,976 33.987 195.935
511,145 35.605 242.330

function value calculated from the number of edges, probabilistic edge weight density, and
adjoint logarithmic reliability.

To assess parameter sensitivity, we further investigated the effect of varying the b
parameter in the GreedyBWDS algorithm on the largest network, 511,145, using weight
type 5 and b values ranging from 0.1 to 0.8. This ablation study demonstrates the flexibility
of GreedyBWDS and provides practical guidance for parameter selection in real-world
biological networks.

RESULTS AND DISCUSSION

Figure 2 compares the execution times of the GreedyUWDS and GreedyBWDS algorithms
on the four networks, averaged over seven weight types. It is evident that GreedyBWDS
consistently achieves faster runtimes, being approximately 2.5 times quicker than
GreedyUWDS. In addition, as the network size increases, the performance advantage of
GreedyBWDS becomes more significant. This highlights that GreedyBWDS not only
outperforms GreedyUWDS in terms of efficiency for diverse weighting schemes, but also
demonstrates significantly better scalability to larger PPI networks.

Table 4 provides a detailed comparison of GreedyUWDS and GreedyBWDS on the four
networks, averaged over seven weight types. For each network, results are averaged across
all seven STRING-defined weight types, with evaluations based on probabilistic edge
weight density, adjoint logarithmic reliability, and the overall objective function value.

The findings reveal several important trends:

1. Consistent superiority of GreedyBWDS: Across all networks, GreedyBWDS
consistently identifies subgraphs with higher probabilistic edge weight density and
higher adjoint logarithmic reliability compared to GreedyUWDS. For instance, the
average probabilistic edge weight density achieved by GreedyBWDS is substantially
greater than that of GreedyUWDS for all networks. This result indicates a clear
advantage in discovering denser and more reliable subgraphs.
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2. Generalizability across networks: The strong performance of GreedyBWDS is not
confined to a single network. The algorithm demonstrates robust and broadly applicable
results, even when the underlying biological context or network scale differs.

3. Algorithmic efficiency: In addition to its higher solution quality, GreedyBWDS
demonstrates noticeably improved computational efficiency, as supported by the
runtime analysis. This efficiency makes GreedyBWDS a practical choice for large-scale
uncertain graph mining.

Opverall, the results presented in Table 4 confirms that GreedyBWDS is both effective
and efficient across diverse PPI networks. These outcomes support its suitability for
mining highly reliable dense subgraphs in various uncertain weighted graph scenarios.

Figure 3 presents the execution time of the GreedyBWDS algorithm on the 511,145
network with different values of reliability threshold b in case of “experimental (5)” weight
type. As the value of b grows, the algorithm’s execution time becomes faster. When the b
value is set to 0.1, the GreedyBWDS outputs are extremely similar to those produced by the
GreedyUWDS method, indicating a level of density but a low degree of reliability.
However, raising the value of b results in a significant improvement not only in the density
of the subgraph but also in reliability, objective G.

Table 5 shows the impact of varying b parameter values on the quality of subgraph
generated by the GreedyBWDS algorithm on the 511,145 network. As the value of b
increases, there is a corresponding improvement in all evaluation metrics, especially
adjoint logarithmic reliability. This demonstrates GreedyBWDS’s adaptability in PPI
network analysis, enabling flexible tuning according to the characteristics of each PPI
network and the goals of the study.

The parameter b in GreedyBWDS serves as a threshold to filter out edges with low
reliability. Adjusting b directly affects the balance between subgraph density and reliability:

e Lowvaluesof b (b = 0.1,0.2): The method favors density by including edges with lower
probability. This increases the number of edges and the probabilistic edge weight density
but significantly decreases adjoint logarithmic reliability. For instance, when b = 0.1, the
number of edges increases, but reliability drops substantially.

» Moderate values of b (b = 0.4, 0.5): The method provides a good trade-off between
density and reliability. At b = 0.5, reliability increases dramatically, with only a slight
decrease in edge count compared to lower thresholds. This indicates that moderate levels
of b are suitable for applications that require both density and reliability.

 High values of b (b = 0.8): The algorithm removes most low-reliability edges, resulting
in fewer but much more reliable edges. For example, at b = 0.8, the number of edges
decreases, but reliability increases sharply. This demonstrates the algorithm’s ability to
adapt to applications requiring high reliability, such as identifying robust protein
interactions in noisy networks.

These results highlight the flexibility of GreedyBWDS in adapting to diverse analysis
requirements for protein-protein interaction networks by adjusting the parameter b. Users
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Figure 2 Comparison of execution time for GreedyUWDS and GreedyBWDS.
Full-size K&l DOT: 10.7717/peerj-cs.3304/fig-2

Table 4 Comparison of subgraph quality identified by GreedyUWDS and GreedyBWDS.

Network Density Reliability G

UWDS BWDS UWDS BWDS UWDS BWDS
579,138 781.3143 1,016.1 -1,247.99 —71.5143 -1,117,810,485 -230,411,294
86,666 745.7286 1,148.657 -1,057.51 -114.914 -2,583,130,901 -324,657,130
1,811,976 687.9286 844.1857 -15,277.3 -501.186 —-19,936,314,805 -1,779,450,291
511,145 1,026.986 1,228.714 -1,439.19 -102.229 -14,563,381,829 —-259,242,521

can prioritize density, reliability, or a balance of both, depending on the specific objectives

of PPI network analysis.

GreedyBWDS was compared to fundamental approaches such as the Charikar
algorithm, brute force, and GreedyUWDS.

» GreedyBWDS optimizes both density and reliability, opposing the Charikar method,

which only considers density. This provides subgraphs with improved structural

consistency in uncertain weighted graphs.

Duong and Nguyen (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3304

16/23


http://dx.doi.org/10.7717/peerj-cs.3304/fig-2
http://dx.doi.org/10.7717/peerj-cs.3304
https://peerj.com/computer-science/

PeerJ Computer Science

1366.89
1338.50
1300 1 1292.59
1200 A
[}
£ 1100 1077.42
[_4
=
g
=
5]
2 1000
o
PR 920.85
900 -
800
747.86
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Reliability Threshold

Figure 3 Effect of the reliability threshold on execution time of the GreedyBWDS algorithm.
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o GreedyBWDS is more efficient than brute force for large networks, having a time
complexity of O(nlogn). This makes it suitable for enormous networks such as
STRING-DB.

o Adaptability: GreedyUWDS promotes density despite uncertainty, but limits
adaptability to balance density and reliability. GreedyBWDS, with parameter b,
compares to GreedyUWDS for situations demanding reliable subgraph mining.

GreedyBWDS typically outperforms basic methods on protein-protein interaction
networks, achieving high density and reliability across all studied weight types. This
demonstrates its suitability specifically for identifying dense subgraphs in uncertain
weighted graphs arising from PPI networks. The parameter b allows users to adjust the
algorithm’s behavior, enabling a balance between density and reliability. This adaptability
highlights the effectiveness of GreedyBWDS for protein-protein interaction analysis,
allowing researchers to tailor results to the specific requirements of each PPI network.

We conducted additional experiments to assess the contribution of specific components
of our approach, specifically the min-heap optimization in GreedyBWDS. We modified
GreedyBWDS to create a variant that does not use a min-heap. In this variant, at each
iteration, we recompute the excess weighted degree of every remaining vertex to find the
maximum, then remove that vertex and update its neighbors by scanning. This eliminates
the overhead of maintaining a heap but increases the computation required for each
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Table 5 Effect of the reliability threshold on subgraph quality identified by GreedyBWDS.

b Number of edges Density Reliability G
0.1 3,700 1,473.5 -409.3 -2,231,477,918.5
0.2 3,429 1,541.4 -306 -1,617,120,683.5
0.3 3,306 1,576 -268 -1,396,670,122.2
0.4 3,306 1,576 -268 -1,396,670,122.2
0.5 3,306 1,576 -268 ~1,396,670,122.2
0.6 2,941 1,657.5 -163.7 -797,810,287.9
0.8 2,797 1,683.7 -134.6 —-633,744,265.5
[0 GreedyBWDS (No Heap) 1711.57
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Figure 4 Comparison of execution time for GreedyBWDS (No Heap) and GreedyBWDS.
Full-size K&l DOT: 10.7717/peerj-cs.3304/fig-4

iteration. We ran both versions on the same PPI networks using b = 0.6. Figure 4 presents
the execution times for each network, averaged across all weight types. The results
demonstrate that the min-heap version offers a significant performance advantage,
particularly as the graph size increases. The heap-based GreedyBWDS was approximately
1.5 times faster than the non-heap version across all networks tested. Both versions
produced the same output subgraph. Thus the heap does not affect solution quality but
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substantially improves efficiency. This demonstrates that our proposed method is robust
and highly scalable compared to baseline approaches, especially for large-scale networks.
Our experiments were conducted on a range of protein—protein interaction (PPI)

networks with varying scales and organisms. The techniques we developed generalize
robustly within the domain of large-scale PPI networks. While our results are promising
for biological data, the applicability of our techniques beyond protein-protein interaction
networks has not yet been verified. For example, STRING provides interaction networks
for over 12,500 organisms, covering more than 59 million proteins and upwards of 20
billion interactions. By applying our GreedyUWDS and GreedyBWDS algorithms to PPI
networks of various sizes, from tens of thousands up to millions of vertices, we observed
that the runtime scaling behavior and solution quality remained consistent across all
networks. This consistency demonstrates that our methods are both scalable and robust
across a wide range of PPI networks, regardless of the specific organism or graph size.

CONCLUSIONS

In this article, we present a methodology for extracting dense and reliable subgraphs from
uncertain weighted graphs using two greedy algorithms, GreedyUWDS and
GreedyBWDS. GreedyUWDS extends the classic densest subgraph approach to uncertain,
weighted settings by using expected edge weights. GreedyBWDS introduces a threshold
parameter b that acts as a tunable filter for edge reliability. This allows users to select
subgraphs that achieve a desired balance between density and reliability.

Through extensive experiments on PPI networks, we showed that the subgraphs
identified by GreedyBWDS outperform those found by a baseline density-focused greedy
algorithm in terms of both density and reliability. Notably, GreedyBWDS was able to find
subgraphs that were approximately 20% denser and more reliable, while also achieving
significantly lower runtime.

This development enables a wide range of applications in the analyzing of
protein-protein interaction networks and other large biological networks with uncertainty.

We acknowledge some limitations of our current work. First, although our algorithm
was effective on PPI networks, its performance on other types of networks has not been
evaluated in this study. Our focus was exclusively on undirected uncertain graphs derived
from PPI data, and we did not verify the applicability of our methods beyond this context.

Additionally, our approach may not directly handle directed graphs or bipartite graphs
without modification, which limits the scope of applicability. Handling directed uncertain
graphs would require a redefinition of density in the context of directed graphs.

Another limitation is that we concentrated on finding a single dense subgraph. In many
applications, there may be multiple disjoint or overlapping dense subgraphs of interest.
Our algorithms, as presented, identify only the densest subgraph. Extending the approach
to identify multiple dense and reliable subgraphs is an interesting direction for future
work. For example, one could iteratively remove the identified subgraph and repeat the
search on the residual graph, or incorporate diversification strategies to find a set of
subgraphs. However, ensuring that these subgraphs are globally optimal or significant is
non-trivial and was beyond the scope of our current work.
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While our proposed methods GreedyBWDS and GreedyUWDS show promising
performance compared to standard benchmarks such as Charikar’s method and
brute-force approaches, we acknowledge that the experimental comparison could be
further enriched by including more advanced baselines, such as probabilistic quasi-clique
mining and probabilistic k-core decomposition. Nevertheless, our current comparison still
provides meaningful insights, particularly in demonstrating the relative strength of
GreedyBWDS in terms of expected edge density and reliability. In future work, we intend
to include these advanced probabilistic baselines to provide a more comprehensive and
competitive evaluation of our methods.

In future research, we plan to address these limitations. We will test the algorithm on
different networks to evaluate its generality and adaptability. Additionally, we will work on
methods to identify multiple subgraphs from a single graph. This could involve extending
the greedy approach or applying hierarchical clustering techniques to the output subgraph
structure in order to capture multiple dense regions that may exist. Another direction is to
integrate our approach with dynamic graph algorithms. This would enable the method to
update the dense subgraph solution as new edges appear or as edge weight probabilities
change over time.

Overall, we believe that the techniques introduced in this research provide a useful new
tool for graph analysis in uncertain environments. By enabling the discovery of subgraphs
that are both dense and reliable, our work helps bridge the gap between purely structural
graph mining and uncertainty-aware data analysis.
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