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ABSTRACT

Wind speed prediction in the South China Sea is crucial for enhancing maritime
safety, supporting operational planning, and optimizing economic activities in
sectors such as offshore energy, shipping, and disaster preparedness. In recent years,
the statistical auto-regressive integrated moving average (ARIMA) model and
advanced deep learning models such as recurrent neural networks (RNN), long
short-term memory (LSTM) networks, and Bidirectional LSTM (BiLSTM) have
shown strong potential for time series forecasting due to their capacity to model

temporal dependencies. However, these models often face limitations in
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simultaneously capturing rapid short-term fluctuations and long-term temporal

Published 27 October 2025 patterns in meteorological data. To address this challenge, we propose a novel hybrid
Corresponding author architecture, h-RNN-BiLSTM, which integrates the short-term dynamic modeling
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Additional Information and (ECMWF) and the Global Forecast System (GFS). Data preprocessing, including
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Specifically, the model reduced error by 99.7% compared with ARIMA, 70.3%
compared with RNN, 30.7% compared with LSTM, and 37.6% compared with
BiLSTM. For MAPE, the improvements were 84.3% over ARIMA, 38.8% over RNN,
40.3% over LSTM, and 32.1% over BiLSTM. To the best of our knowledge, this is the
first study to integrate RNN and BiLSTM for multi-scale wind speed prediction in the
South China Sea, demonstrating improved predictive accuracy over both deep
learning and statistical baselines. These findings highlight the model’s operational
potential for energy planning, navigation safety, and weather risk management.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Scientific
Computing and Simulation, Theory and Formal Methods

Keywords Deep learning, Machine learning, Wind speed prediction, Bidirectional long short term
memory, Recurrent neural network, South China Sea

INTRODUCTION

Wind speed is a crucial factor in meteorology, with significant implications for logistics,
renewable energy generation, aviation, and coastal operations (Nasir et al., 2023). Its
importance lies in shaping weather patterns and influencing environmental conditions
(Liu et al., 2022). Excessive wind speeds can pose severe hazards, particularly in coastal
regions, leading to catastrophic events such as hurricanes and cyclones that threaten both
human life and infrastructure. Accurate prediction of wind speed is therefore essential, as it
informs decision-making and supports the development of adaptive strategies for
managing environmental risks. The South China Sea (SCS), recognized as a promising site
for floating wind farms, offers abundant wind resources, frequent high-speed winds, and
stable wind power density (Nasir et al., 2023). Reliable wind speed forecasts are especially
valuable for the offshore wind energy industry, as they guide turbine placement, support
energy production planning, and ensure operational safety while mitigating risks from
extreme weather events. Thus, accurate wind speed forecasting in the SCS is critical for
optimizing resource management, enhancing safety, and promoting economic resilience
across multiple sectors.

A wide range of approaches including physical (numerical), statistical, and deep
learning methods have been applied to the challenging task of wind speed forecasting.
Numerical weather prediction (NWP) methods, based on complex physical equations,
provide highly detailed simulations but demand substantial computational resources and
long processing times (Samad et al., 2020). Statistical methods such as the autoregressive
integrated moving average (ARIMA) and its variants have been widely applied in wind
speed forecasting due to their demonstrated effectiveness (Soman et al., 2010; Jung &
Broadwater, 2014; Li et al., 2018; Aasim & Mohapatra, 2019; Kushwah & Wadhvani, 2025;
Taoussi, Boudia & Mazouni, 2025). However, ARIMA is generally more effective for linear
time series than for nonlinear ones (Qin, Li ¢ Du, 2017). The inherently stochastic and
nonlinear characteristics of wind speed highlight the limitations of these statistical
methods in capturing complex dynamics.
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Recently, deep learning has been used in the time series prediction to effectively handle
the unpredictability and instability of wind speed sequences. This approach facilitates
enhanced performance by directly extracting optimal features from raw time-series data
(Khodayar, Kaynak ¢ Khodayar, 2017). The deep learning approaches are known for their
relatively simple implementation and low computing requirements (Salman et al., 2018).
The models mostly consist of neural networks with intricate hidden layer architectures
(Aly, 2020). Neural networks such as artificial neural networks (ANN) and recurrent
neural networks (RNN) are commonly used for wind speed forecasting due to their
capacity to capture nonlinear input-output relationships (Zhu et al., 2018; Cali & Sharma,
2019; Marndi, Patra & Gouda, 2020). RNN is a type of neural network specifically designed
to analyze time-series data and make predictions based on a given set of intervals
(Khodayar, Kaynak ¢ Khodayar, 2017). In the literature, researchers have utilized RNN
based models for the purpose of wind speed prediction (Liu, Mi ¢ Li, 2018; Duan et al.,
2021; Khan et al., 2024; Kacimi et al., 2025). This network has the ability to accept
information from a previous state and store it in the hidden layer, which can then be
accessed in the current state. Thus, this network is well-suited for forecasting wind speed
using historical time series data (Gonzalez ¢ Yu, 2018; Liu et al., 2020). A comparative
study of three learning models, namely support vector machine, ANN, and RNN for
weather prediction revealed that RNN yielded the most optimal outcomes (Singh et al.,
2019). Nevertheless, while RNN’s excel at forecasting short-term weather patterns, they
may have difficulties in capturing long-term relationships because of the vanishing
gradient problem.

Another often-used deep learning approach for creating predictions based on
time-series data is the long short-term memory (LSTM) network (Ibrahim et al., 2020).
The LSTM model, as presented by Shi et al. (2015) is an enhanced version of the ANN
model that successfully addresses the issue of vanishing gradients in RNNs. This is
achieved by incorporating cell state and gates to regulate the flow of information. The
model is versatile and may be used in various types of situations, as mentioned by Nasser,
Rashad ¢ Hussein (2020). An important benefit of LSTM is its ability to retain knowledge
over extended periods, enabling it to effectively address long-range dependence issues
(Zhang et al., 2017; Liang, Nguyen & Jin, 2018; Puspita Sari et al., 2021; Kannan, Subbaram
¢ Faiyazuddin, 2023). Research has shown that LSTM achieves better predictive accuracy
than the feed forward approach for wind speed forecasting in the Indian Ocean (Biswas ¢
Sinha, 2021). In one separate investigation, Hossain et al. (2015) implemented a deep
neural network with an auto-encoder in predicting meteorological conditions in Nevada.
Meanwhile, a variant of LSTM was proposed by Sun et al. (2023) in predicting short term
wind speed in the SCS region. A deep learning multi-stacked architecture based on LSTM
was also suggested by Akram ¢~ El (2016), which can predict meteorological characteristics
such as temperature, wind speed, and humidity. However, due to its limitation in encoding
bidirectional information, LSTM can only consider one side of a time-series connection.
To overcome this problem, Graves ¢ Schmidhuber (2005) introduced the Bidirectional
LSTM (BiLSTM) neural network, which has two LSTM layers. In this state-of-the-art deep
learning model, the input data is processed in both forward and backward directions,
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leading to more accurate predictions. The BiLSTM model and its variants models have
demonstrated good performance in several meteorology prediction tasks, including wind
speed prediction (Biswas ¢ Sinha, 2021; Liu, Shu ¢ Chan, 2025), wave height prediction
(Wang et al., 2022), wind power prediction (Ma ¢ Mei, 2022; Wan et al., 2024), wave
energy prediction (Song et al., 2023) and weather prediction (Zhang et al., 2024). While
BiLSTM effectively handles long-range dependencies, it is less sensitive to rapid short-term
fluctuations compared to RNN.

It is important to note that wind speed characteristics vary significantly across different
geographic regions, implying that a single predictive model may not yield optimal accuracy
in all locations for ensuring operational safety and building resilience against the potential
negative impacts of strong winds (Liu ¢ Chen, 2019; Lau et al., 2022). In addition to
geographical factors, the choice of dataset used for forecasting also plays a crucial role in
determining prediction accuracy. Among the most widely used datasets in weather
forecasting research are the European Centre for Medium-Range Weather Forecasts
(ECMWF) dataset (ECMWF, 2023) sourced from https://www.ecmwf.int/en/forecasts/
datasets and the Global Forecast System (GFS) dataset (GES, 2023) sourced from https://
www.ncei.noaa.gov/products/weather-climate-models/global-forecast both of which are
publicly available and provide multivariate, time-sequenced weather parameters. These
datasets exhibit complex temporal patterns that require models capable of capturing both
short-term variations and long-term dependencies. Consequently, there is an urgent need
for deep learning models that can effectively address these dynamics.

In contrast to the studies reviewed earlier, which typically rely on statistical methods or
a single deep learning framework such as RNN, LSTM, or BiLSTM, this study proposes a
hybrid RNN-BiLSTM model (h-RNN-BiLSTM). By integrating RNN and BiLSTM
architectures, the h-RNN-BiLSTM model complements the strengths of both approaches
and is specifically tailored for wind speed forecasting in the SCS. Moreover, most studies
are limited to a single dataset or geographic context, whereas this study employs both
ECMWEF and GFS datasets to comprehensively evaluate short-term and long-term
forecasting performance. By doing so, the proposed approach addresses the unique
meteorological dynamics of the SCS; a region underexplored despite its strategic
importance for offshore wind energy. It also demonstrates the benefits of dataset diversity
in enhancing model generalization. To the best of our knowledge, no prior work has
developed or tested a hybrid RNN-BiLSTM model for wind speed forecasting in this
region, making this study a distinctive contribution that bridges methodological
innovation with regional applicability. The key contributions of the article are the
following:

* A new hybrid deep learning model (h-RNN-BiLSTM) is proposed to forecast wind speed
in the SCS region, integrating RNN and BiLSTM architectures for enhanced multi-scale
temporal pattern learning.

» Two meteorological datasets, ECMWF and GFS are employed to evaluate model
performance in short-term (GFS and ECMWF) and long-term (ECMWF) forecasting
scenarios.
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Figure 1 Framework of research methodology. Full-size Ka] DOT: 10.7717/peerj-cs.3303/fig-1

e The proposed model is compared to the well-known statistical method, ARIMA, and the
state-of-the-art deep learning models which are RNN, LSTM and BiLSTM models.

The manuscript’s structural framework is presented in the following manner: ‘Materials
and Methods’ outlines the materials and methods employed in this study. ‘Results’
provides experimental results, while ‘Discussion’ offers a detailed discussion of those
results. ‘Conclusion’ serves as a summary of the final insights obtained from the study’s
findings.

MATERIALS AND METHODS

The methodology employed in this study comprises several key steps: data collection, data
preprocessing, model development, model training and testing, and performance
evaluation of the forecasting results. The overall workflow is illustrated in Fig. 1, which
presents the overall framework of the study.

Data collection
Spatial-temporal weather data over the SCS were obtained from ECMWF and GEFS. At the
time of this study, the GFS dataset was publicly available only from 00:00:00 on December
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Figure 2 Missing values of sea surface temperature (SST) in the ECMWF dataset.
Full-size K&l DOT: 10.7717/peerj-cs.3303/fig-2

2, 2022, to 18:00:00 on May 31, 2023. To enable direct comparison, the ECMWF dataset
was restricted to the same period. For extended experimentation, a longer ECMWTF dataset
covering the period from 00:00:00 on January 1, 2019, to 21:00:00 on August 31, 2023, was
also utilized. Accordingly, two groups of datasets were defined: (i) short-term datasets
(December 2, 2022-May 31, 2023, from both GFS and ECMWFE), and (ii) long-term
datasets (January 1, 2019-August 31, 2023, from ECMWFE). All datasets were collected at a
temporal resolution of 3-h intervals (timestamps). The weather data (parameters) which
serve as crucial features in our forecasting model that contribute vital information to
predict the target variable (wind speed) are longitude, latitude, sea surface temperature
(SST), maximum 2m temperature (t2m), mean sea level pressure (msl), mean total
precipitation rate (mtpr), and the 10m u and v direction components of wind. All
parameters collectively capture the multidimensional aspects of the atmospheric
conditions over the SCS. Analyzing these parameters enables a comprehensive
understanding of the complex interactions influencing wind speed dynamics in the SCS
region.

Data preprocessing
The GFS dataset contained no missing values, whereas the ECMWF dataset exhibited
missing entries for the SST parameter, as illustrated in Fig. 2.

Based on Fig. 2, the bar chart shows the amount of data available for each parameter,
highlighting the presence of missing values in SST. To address this issue, mean imputation
was applied to the SST column, thereby producing a complete dataset for model training as
demonstrated in Fig. 3. Although more sophisticated methods exist, mean imputation was
chosen due to the relatively low proportion of missing entries and to maintain
computational efficiency for large-scale time series.

In order to mitigate bias and ensure equitable contribution of variables to model fitting
and learned functions, data standardization was applied using the Standard Scaler
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technique. This transformed the data by scaling it to have a mean of 0 and a standard
deviation of 1. This transformation ensured that the features had a comparable scale,
preventing certain features from dominating others during model training. This
preprocessing step established a consistent and balanced dataset, providing a solid
foundation for accurate and reliable wind speed forecasting using deep learning
techniques.

Model development

This study developed a hybrid deep learning model, h-RNN-BiLSTM, which combined the
strengths of RNN for capturing short-term fluctuations and BiLSTM networks for
modeling long-range dependencies. In this subsection, we first describe the individual
RNN, LSTM, and BiLSTM architectures, followed by the proposed h-RNN-BiLSTM
model.

The recurrent neural network

RNNs are widely used for modeling sequential data, particularly in applications where
temporal dependencies are critical, such as short-term and rapidly changing patterns in
meteorological time series (Rathore et al., 2018). Unlike conventional feed-forward neural
networks, RNNs incorporate recurrent connections that enable information to persist
across time steps. This allows the network to capture contextual relationships within a
sequence and recognize temporal patterns that span multiple time intervals. At each time
step t, the RNN receives an input vector x; which in this study consists of the
meteorological parameters: longitude, latitude, SST, t2m, msl, mtpr, and the 10m u and v
wind components. These features collectively represent the atmospheric state at time ¢. The
network then updates its hidden state h%, which serves as a memory that summarizes both
the current input and the information carried over from previous time steps. The hidden
state is updated based on both the current input and the previous hidden state, thereby
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Figure 4 RNN model architecture. Full-size K&l DOTI: 10.7717/peer;j-cs.3303/fig-4

maintaining temporal continuity throughout the sequence. This recurrent mechanism
enables the network to handle sequences of variable length effectively. Figure 4 displays the
RNN model architecture that implements the updating of recurrent hidden state hX.

Figure 4 illustrates the unfolded RNN architecture, where the hidden state is propagated
forward through recurrent connections, enabling the model to learn how past atmospheric
conditions influence future wind speed, thereby maintaining temporal continuity
throughout the sequence. According to Fig. 4, the recurrent hidden state h% is computed as
follows:

hf =v(S x4+ -hi, +b). (1)
Here, S is the weight matrix for the current input, and ] is the recurrent weight matrix for
the previous hidden state h* |. The bias term is denoted by b. The function v (*) is a
nonlinear activation such as ReLU. The hidden state is then transformed into an
intermediate output vector KX as:

KR = v(S¥ - bR 4 b¥) (2)

where SK and b¥ are the output weights and bias, respectively. The feedback loop formed
by J - h® | allows temporal information to be retained and updated over time. During
training, the network optimizes these parameters to minimize the prediction error. For
prediction, KR is passed to a fully connected (FC) layer to produce the scalar output

91 = WoKR + by where Wy is the FC layer weight matrix, and b, is its bias. Both are
trainable parameters and optimized during training. For meteorological sequences, RNNs
effectively capture short-horizon wind fluctuations such as diurnal or gust events.

The long short-term memory

The LSTM architecture was proposed by Hochreiter ¢ Schmidhuber (1997) as a solution to
the vanishing gradient problem. LSTMs extend the standard RNN architecture by
introducing a memory cell and a gating mechanism that regulates the flow of information,
enabling the network to capture effectively long-term dependencies on sequential data.
Unlike RNN, LSTM has an input gate, a forget gate, and an output gate, as seen in Fig. 5.
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Based on Fig. 5, the formulation of equations in the LSTM framework is derived as

follows:

ir=0(Sx+J -h_ +b)
ft:a(Sf-xt—l—]f-hf_l—l—bf)

ke =o(SE x4+ 5 bl +b)

m; = tanh(S'” cx I hf_l + bm)
=i Om+fr ©cq

h! =k, ® tanh(c;).

Here:

e i, is the input gate.

e f; is the forget gate.

e k; is the output gate.

e o(-) is the activation function.

e x; is the input vector at time ¢.

e hR | is the hidden state from the previous time step.

e W and J © are the input and recurrent weight matrices for each gate.

e b are bias terms for each gate.

(3)
(4)
(5)
(6)
(7)
(8)

o m; is the candidate memory content, generated as a non-linear transformation of the

current input and previous hidden state.

e tanh (-) is the hyperbolic tangent activation.

e © denotes elementwise (Hadamard) multiplication.

The roles of the gates are as follows:

e Input gate i, (Eq. (3)) regulates how much new information enters the cell state, ;.

o Forget gate f; (Eq. (4)) determines how much of the previous cell state ¢;_; is retained.
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e Output gate k; (Eq. (5)) controls how much of the updated cell state contributes to the
hidden state output hr.

The cell state update ¢; in Eq. (7) blends newly candidate memory information m; of
Eq. (6) with the retained memory ¢;_;. The hidden state hf is then mapped to the final
output yy = Woh! + by via the FC layer where W, and by are the trainable weight and bias
of the FC layer and optimized during training. For regression, a linear activation is applied
to ensure y; can take any continuous value. The gating mechanism allows LSTMs to
effectively preserve relevant information over extended sequences, making them highly
suitable for wind speed prediction tasks where both short-term fluctuations and long-term

seasonal trends are important.

The bidirectional LSTM
The BiLSTM network extends the standard LSTM by processing sequence data in both
forward and backward directions. It employs two independent LSTM layers: one that
captures dependencies from past to future (forward layer) and another that captures
dependencies from future to past (backward layer). This dual processing enables the model
to leverage both preceding and succeeding contexts, providing a more comprehensive
representation of the sequence compared to unidirectional LSTMs. The BiLSTM
architecture is illustrated in Fig. 6.

As illustrated in Fig. 6, at each time step ¢, the forward LSTM generates a hidden state i
while the backward LSTM produces h? expressed as:

hi = LSTMg(h;_y, xi,c;_,) )
h} = LSTMg(h?.,, x:,cl.,). (10)
Here:

* x; is the input vector at time ¢.

. hfﬂ and th are the previous and next hidden states in the forward and backward
layers, respectively.

e ¢/, and ¢f, | are the corresponding cell states in the forward and backward layers,
respectively.
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o LSTMy and LSTMpg denote the LSTM functions applied in the forward and backward
directions, respectively.

The outputs from the forward and backward hidden states are concatenated to form the
BiLSTM feature vector at time step t:

je=[h,hY]. (11)
Finally, for prediction, j; is passed through an FC layer to map the feature vector into the
scalar target output y; = Wyj; + by where W and b are the trainable weight matrix and
bias term of the output layer, respectively. Both parameters are optimized during training.
BiLSTM networks offer significant advantages over unidirectional LSTMs, particularly in
tasks where the entire sequence is available during training. By incorporating future
context alongside past information, BiLSTMs can effectively manage long-range
dependencies and capture more intricate temporal relationships. This makes them
well-suited for wind speed prediction in the SCS, where both historical trends and
upcoming atmospheric changes can influence short-term forecasts.

The proposed hybrid RNN and BiLSTM

We propose a two-stage recurrent architecture that combines the RNN layer as a feature
extractor with a subsequent BiLSTM for context aggregation. At each time step ¢, the RNN
transforms the raw input x; (the meteorological parameters: longitude, latitude, SST, t2m,
msl, mtpr, and the 10m u and v wind components) into a compact representation KX (cf.
Eq. (2)), emphasizing short-range temporal cues. The BiILSTM then consumes KX in both
forward and backward directions to capture long-range dependencies from past and future
context, after which the two directional states are concatenated and passed to an FC layer.
The FC layer maps the high-dimensional concatenated features into the final wind speed
prediction, ;.

The RNN layer is placed before the BILSTM to extract short-horizon temporal patterns
and suppress high-frequency noise before long-range aggregation. This order preserves
and enhances the BiLSTM’s ability to learn bidirectional dependencies without losing
context to the RNN’s shorter memory. Reversing the order would risk degrading long-term
meteorological patterns, increase computational cost, and reduce interpretability for
multi-scale wind variability in the SCS. The architecture of the proposed h-RNN-BiLSTM
model, which includes the FC layer, is depicted in Fig. 7.

Based on the schematic in Fig. 7, the forward direction of the proposed h-RNN-BiLSTM
framework can be formulated as follows:

it =o(S-Kf+J -hi_, +V) (12)
fF=o( K+ -H +V) (13)
K =o(S" K} + 5 HE | 4+ 0Y) (14)
m; = tanh(S" - K} +J" - hl_, + b™) (15)
d=ifFom +ffod, (16)
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Figure 7 A hybrid RNN and BiLSTM (h-RNN-BiLSTM) architecture.
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h{ =k; © tanh(c; ). (17)
The backward direction can be formulated as follows:
=o(SK}+T R, + ) (18)
= (Sf KR +7- ht+1 + bf) (19)
= o(S* K+ TR, + 8Y) (20)
mf tanh(sm KX +T" b +b") (21)
d=iloml+ffod, (22)
hf = kf ® tanh(c}). (23)
Here:

o if and i are the input gates in the forward and backward directions, respectively.
o fF' and f? denote the forget gates in the forward and backward directions, respectively.

e kI and kP represents the output gates corresponding to the forward and backward
directions, respectively.

e hf | and h} | are the previous and next hidden states in the forward and backward
directions, respectively.

e o(-) is the activation function.
o KR is the output from RNN model.

o cf and P are the current or updated cell states in the forward and backward directions,
respectively.

e cf  and P, are the corresponding previous and next cell states in the forward and
backward directions, respectively.

e Y and J © are the input and recurrent weight matrices for each gate.

e b ¥ are bias terms for each gate.
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o mF and m? are the candidate memory contents in the forward and backward directions,
respectively.

e tanh (-) is the hyperbolic tangent activation.

* © denotes elementwise (Hadamard) multiplication.

In compact form, the proposed h-RNN-BiLSTM model is defined as follows:

h; = LSTMg(h_,, K}, ci_)) (24)
hf = LSTMg(h?. K}, ct,,). (25)

Here, hf' and h? denote the forward and backward hidden states, respectively. The two
directional states are concatenated such that

je = [hi h] (26)
and mapped to the output
yr = Woji + bo (27)

where W, and b, are the weight matrix and the bias vector of the final FC output layer
respectively. Both Wy and b, are trainable parameters and optimized during training to
minimize the prediction loss. No manual assignment of these values is required. The
integration of short-term dynamics captured by the RNN with the long-term bidirectional
dependencies modeled by the BILSTM enables the proposed approach to effectively exploit
the multi-scale wind variability characteristic of the SCS meteorological system. In this
architecture, the RNN front-end emphasizes short-horizon dynamics (e.g., gustiness),
while the BiLSTM aggregates bidirectional context to model the multi-scale temporal
structure driven by monsoon transitions and synoptic variability in the region. This
division of labor facilitates fine-grained pattern recognition and enhances generalization
performance compared to using either the RNN, LSTM or BiLSTM in isolation.

Training the proposed h-RNN-BiLSTM model
The training process was conducted on both short-term and long-term datasets. The
short-term datasets consisted of GFS and ECMWF records from 2 December 2022 to
31 May 2023, while the long-term dataset comprised ECMWF records from 1 January
2019 to 31 August 2023. Both datasets were prepared with temporal resolutions of 3 h. For
each dataset, the training procedure involved feeding the standardized meteorological
predictors (longitude, latitude, SST, t2m, msl, mtpr, and u/v wind components) into the
h-RNN-BiLSTM architecture. The RNN layer first transformed the input sequence into
compact feature representations, as described in Eqgs. (1) and (2), emphasizing short-term
temporal variations. These features were then processed by the BiLSTM layer in both
forward and backward directions (Eqgs. (12)-(23)) to capture bidirectional long-term
dependencies. The concatenated output from the BiLSTM (Eq. (26)) was passed to the
tully connected layer (Eq. (27)) to produce the final prediction ;.

The proposed h-RNN-BiLSTM architecture was trained using 80% of the available data
for model training and 20% for testing, for both the GFS and ECMWF datasets. All
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experiments were executed on a workstation equipped with an Intel Core™ i9-13900
processor, 64 GB of RAM, and an NVIDIA GeForce RTX 4090 GPU, running TensorFlow
v2.9.1 (Python 3.8.8) within the Anaconda 4.3 environment. This computing setup
ensured the capability to process large-scale meteorological time series efficiently and
enabled rapid convergence during the training process. All hyperparameters were
determined through a preliminary study conducted prior to the main experiments. This
study systematically explored various model configurations to achieve an optimal trade-off
between forecasting accuracy and computational efficiency. Specifically, different neuron
counts were evaluated for the proposed h-RNN-BiLSTM architecture. Multiple activation
functions, including tanh, sigmoid, and ReLU, were tested. Batch sizes of 32, 64, and 128
were examined and epoch counts ranging from 5 to 30 were considered. Finally, different
optimizers, including stochastic gradient descent (SGD), RMSProp, and Adam, were
compared.

The final model configuration consisted of h-RNN-BiLSTM layer with 50 neurons
which represents the size vector hf € R* (Eq. (24)) and h? € R*® (Eq. (25)) using the
ReLU activation function, o (-) for its faster convergence and lower susceptibility to
vanishing gradient issues. A fully connected output layer with one neuron was employed to
produce scalar wind speed predictions y; (Eq. (27)). The Adam optimizer was chosen for
its adaptive learning rate capability, which proved particularly effective for sequential
meteorological data. Adam updates all trainable parameters in the h-RNN-BiLSTM and
fully connected layers by computing the gradient of the MSE loss defined as:

N
MSE = %Z (e _j’t)z (28)
t=1

where y; is the actual wind speed, y; is the predicted value, and N is the total number of
observations. Instead of computing Eq. (28) over the entire dataset at once, the MSE is
computed over a mini batch of size N = 64. This approach provides stable gradient updates
while avoiding excessive memory consumption. In practice, the MSE loss is computed over
64 samples at a time, after which the Adam optimizer updates the model weights. Training
was performed for 10 epochs, where an epoch corresponds to one complete pass through
the training dataset. The choice of 10 epochs was determined to be sufficient for model
convergence while reducing the risk of overfitting.

Testing and performance evaluation

Following model training, the optimized parameters (weights, W, and biases, b)) in

Eq. (27) were applied to the testing phase, which involved predicting wind speeds (y;) for
unseen data. To evaluate the forecasting performance of the proposed model, this study
employed two widely used error-based accuracy metrics: root mean squared error (RMSE)
in Eq. (29) and mean absolute percentage error (MAPE) in Eq. (30). The RMSE metric
provides an insight into the residual variance between the actual y; value and the predicted
value y;, while the MAPE metric signifies the average absolute percentage deviation. Lower
MAPE and RMSE values are preferred, indicating enhanced predictive accuracy.
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1 & X
RMSE =\ |=> (e = 3,)” (29)
t=1
505
MAPE = — 71, (30)
N ; Y

The proposed h-RNN-BiLSTM model was benchmarked against established models
including RNN, LSTM, BiLSTM, and the well-known statistical method, ARIMA, to
demonstrate the effectiveness of the hybrid architecture.

RESULTS

We conducted training, testing, and evaluation of the proposed hybrid model within the
source domain under two experimental setups. Experiment 1 employed short-term
datasets from both the GFS and the ECMWF, while Experiment 2 utilized long-term
datasets from ECMWE.

Experiment-1: short-term GFS and ECMWF datasets

In the first experiment, the proposed h-RNN-BiLSTM architecture was trained using 80%
of the short-term datasets from both the GFS and the ECMWF, covering the period from 2
December 2022 to 31 May 2023. The convergence behavior of the model was monitored
using the mean squared error (MSE) of Eq. (28) during training. Figure 8 presents the MSE
curves over 10 training epochs for both datasets.

As shown, the MSE values decreased steadily as the number of epochs increased,
indicating stable convergence. The final MSE value for GFS was 3.81 x 10>, while the
corresponding value for ECMWF was 2.03 x 10™°. The consistently lower MSE for
ECMWEF suggests that this dataset provides more reliable and consistent atmospheric
representations, which facilitates better generalization to unseen data. In all cases, the
curves exhibited smooth convergence without significant divergence, demonstrating stable
learning behavior with minimal signs of overfitting. These results confirm that the
hyperparameters selected during the preliminary study (‘Training the Proposed h-RNN-
BiLSTM Model’) were effective in achieving low errors while maintaining generalization
capability across datasets. The optimized weights, W, and biases, b, from this training
which correspond to Eq. (27) were then applied to the target domain model for wind speed
() prediction. The predicted wind speeds, y; generated by the proposed h-RNN-BiLSTM
model were compared against actual wind speeds, y; using both scatter plots and
time-series plots, as presented in Figs. 9 and 10.

Figures 9 and 10 illustrate the comparative performance of the h-RNN-BiLSTM model
using the GFS and ECMWF datasets. Across both scatter plots (Fig. 9) and time-series
plots (Fig. 10), the ECMWE-based configuration consistently outperformed the GFS
counterpart. This closer alignment in the ECMWF dataset was evident in the tight
clustering within the scatter plots and the minimal deviation observed in the time-series
curves. These results indicate that ECMWEF’s greater spatial resolution and temporal
consistency provided a stronger foundation for short-term wind speed forecasting in the
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Figure 8 Mean squared error (MSE) over epochs during training of the h-RNN-BiLSTM model.
(A) MSE based on the GFS dataset (MSE = 3.81 x 107°). (B) MSE based on the ECMWF dataset
(MSE = 2.03 x 107°). Full-size K&l DOT: 10.7717/peerj-cs.3303/fig-8

SCS. In contrast, while the GFS-based models captured the general patterns, they exhibited
noticeably larger deviations, particularly at higher wind speeds. These visual findings are
reinforced by the quantitative results in Table 1, which report the RMSE and MAPE values
for ARIMA, RNN, LSTM, BiLSTM, and the proposed h-RNN-BiLSTM model.

As shown in Table 1, the proposed h-RNN-BiLSTM consistently yielded the lowest
RMSE values across all configurations, reflecting improved predictive accuracy in terms of
RMSE and MAPE. Specifically, the model attained RMSE values of 0.0148 (GFS) and
0.0104 (ECMWE), representing substantial improvements over other deep learning
baselines (RNN, LSTM, BiLSTM) and ARIMA. In terms of MAPE, which measures
relative percentage error, the h-RNN-BiLSTM also delivered the best performance in most
cases, particularly with ECMWF (0.5343) and GFS (0.9771). On the GFS dataset, the
proposed model achieved substantial error reductions, lowering RMSE by 99.3% compared
to ARIMA, 72.9% to RNN, 84.2% to LSTM, and 74.5% to BiLSTM. Comparable
improvements were observed in MAPE, with accuracy gains of 36.3%, 71.9%, 80.5%, and
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Figure 9 Scatter plots of actual vs. predicted wind speed for the h-RNN-BiLSTM model using (A) the GFS dataset and (B) the ECMWF dataset.
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Figure 10 Time series plots of actual vs. predicted wind speed for the h-RNN-BiLSTM model using (A) the GFS dataset and (B) the ECMWF
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Table 1 The RMSE and MAPE values for ARIMA, RNN, LSTM, BiLSTM and h-RNN-BiLSTM
models using short-term GFS and ECMWF datasets.

Model GFS ECMWF

RMSE MAPE RMSE MAPE
ARIMA 2.2596 1.5345 4.0072 32114
RNN 0.0546 3.4781 0.0285 0.9153
LSTM 0.0935 5.0199 0.0306 1.6112
BiLSTM 0.0581 4.6780 0.0220 1.2859
h-RNN-BiLSTM 0.0148 0.9771 0.0104 0.5343

79.1% over ARIMA, RNN, LSTM, and BiLSTM, respectively. Consistent performance was
also obtained on the ECMWF short-term dataset, where RMSE decreased by 99.7%, 63.5%,
66.0%, and 52.7% relative to ARIMA, RNN, LSTM, and BiLSTM, while MAPE was
reduced by 83.4%, 41.6%, 66.8%, and 58.5% against the same baselines. These results
highlight that the proposed hybrid model is particularly effective for high-frequency
short-term forecasting, where minimizing both absolute and relative errors is critical.
Conversely, ARIMA, while less accurate in terms of RMSE, remains competitive for
coarser time intervals when MAPE is prioritized.

Experiment-2: long-term ECMWF datasets

In the second experiment, the proposed h-RNN-BiLSTM model was evaluated using
long-term ECMWTF datasets to assess its performance under extended temporal coverage.
The training set comprised 80% of the data, spanning from 1 January 2019 to 31 August
2023. As in Experiment 1, Eq. (28) (the MSE) was adopted as the loss function, and the
results are illustrated in Fig. 11.

Figure 11 shows the convergence behavior of the h-RNN-BiLSTM model when trained
on the long-term ECMWF dataset. The loss decreased sharply within the first epoch and
then stabilized, indicating efficient parameter optimization and convergence. The final
MSE was 7.44 x 107°, suggesting that the extended dataset supports more precise wind
speed prediction. The training curve indicates stable learning without divergence, reducing
the likelihood of overfitting across the long-time span. The optimized weights, W, and
biases, by from this training which correspond to Eq. (27) were then applied to the testing
set to generate wind speed predictions, y,. Figure 12 presents scatter plots and time-series
plots comparing actual and predicted wind speeds obtained using the proposed h-RNN-
BiLSTM model.

Figure 12 illustrates the performance of the proposed h-RNN-BiLSTM model for wind
speed prediction using long-term ECMWF datasets. The scatter plot in Fig. 12A shows the
spatial distribution of actual and predicted wind speeds across the study domain. The
predicted values closely follow the observed measurements, with only minor deviations
across different latitudes and longitudes. This reflects a relatively consistent spatial
agreement between actual and predicted values, indicating reliable spatial fidelity. The time
series plot in Fig. 12B further demonstrates the model’s predictive accuracy across the full
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Figure 11 MSE over epochs for training of h-RNN-BiLSTM model.
Full-size K4l DOIL: 10.7717/peerj-cs.3303/fig-11

temporal span from 1 January 2019 to 31 August 2023. The predicted curves closely
overlap with the actual wind speed measurements, effectively capturing both
high-magnitude peaks and low-magnitude troughs with minimal phase shifts. The strong
alignment with observed values, particularly during rapid wind speed fluctuations,
suggests that finer temporal resolution improves the model’s ability to capture dynamic
changes. Table 2 presents the RMSE and MAPE values for ARIMA, RNN, LSTM, BiLSTM,
and the proposed h-RNN-BiLSTM models using long term ECMWF datasets.

Table 2 summarizes the RMSE and MAPE for ARIMA, RNN, LSTM, BiLSTM, and the
proposed h-RNN-BiLSTM model using long-term ECMWF datasets. The h-RNN-
BiLSTM achieved the lowest RMSE (0.0106) and MAPE (0.4671), consistently
outperforming all baseline models. In terms of RMSE, the proposed model reduced error
by 99.7% compared with ARIMA, 70.3% compared with RNN, 30.7% compared with
LSTM, and 37.6% compared with BiLSTM. For MAPE, the improvements were 84.3% over
ARIMA, 38.8% over RNN, 40.3% over LSTM, and 32.1% over BiLSTM. These percentage
gains highlight the hybrid model’s effectiveness and its ability to capture both sequential
dependencies (via RNN) and bidirectional temporal contexts (via BILSTM). Overall, the
findings confirm that h-RNN-BiLSTM consistently yields more reliable and accurate
predictions across long-term datasets, making it well-suited for operational wind speed
forecasting.

DISCUSSION

This section synthesizes the findings from both Experiment 1 (short-term GFS and
ECMWF datasets) and Experiment 2 (long-term ECMWF datasets) to interpret the
performance of the proposed h-RNN-BiLSTM model in the context of wind speed
forecasting for the SCS. The novelty of the h-RNN-BiLSTM lies in its architectural
integration of two complementary recurrent units: the RNN front-end, which captures
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Figure 12 (A) Scatter plot and (B) time series plot of actual vs. predicted wind speed for the h-RNN-
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BiLSTM model using the ECMWF dataset.

immediate short-term dependencies and efficiently models rapid fluctuations in wind
speed such as gustiness, and the BiLSTM back-end, which models bidirectional long-term
dependencies by utilizing both past and future contextual information within the input

sequence. This division of labor between sequential components allows the model to
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Table 2 The RMSE and MAPE values for ARIMA, RNN, LSTM, BiLSTM and h-RNN-BiLSTM
models using long-term ECMWF datasets.

Model RMSE MAPE
ARIMA 3.9736 2.9693
RNN 0.0357 0.7631
LSTM 0.0153 0.7827
BiLSTM 0.0170 0.6878
h-RNN-BiLSTM 0.0106 0.4671

extract multi-scale temporal features in a manner that has not been commonly explored in
meteorological forecasting literature, where models are often limited to single RNN, LSTM
and BiLSTM architectures or hybrids involving convolutional layers. By combining RNN
and BiLSTM layers, the proposed approach leverages the strengths of both structures to
deliver improved accuracy in capturing the complex temporal dynamics of wind speed.

The performance of the proposed h-RNN-BiLSTM model and baseline methods were
assessed using two error-based metrics: RMSE and MAPE. RMSE, defined in Eq. (29),
penalizes large deviations more heavily, making it particularly important for wind speed
forecasting where extreme events such as gusts or squalls can have disproportionate
operational impacts. MAPE, defined in Eq. (30), provides a normalized measure of
forecasting accuracy that facilitates comparisons across datasets with different wind speed
ranges. Taken together, these metrics offer a complementary view: RMSE captures
robustness against large errors, while MAPE emphasizes relative precision across varying
temporal resolutions and datasets. The inclusion of both metrics ensures that the
evaluation is not biased toward either absolute or relative error, and it aligns with best
practices in meteorological time-series forecasting literature.

According to the short-term dataset results presented in Table 1 from Experiment 1, the
h-RNN-BiLSTM model achieved RMSE values of 0.0148 (GFS) and 0.0104 (ECMWF),
which represent substantial improvements over the baseline models. Specifically, the
proposed model reduced RMSE by 99.3% (vs. ARIMA), 72.9% (vs. RNN), 84.2% (vs.
LSTM), and 74.5% (vs. BILSTM) on the GFS dataset. Similar trends were observed in
MAPE, where h-RNN-BiLSTM improved accuracy by 36.3% (vs. ARIMA), 71.9% (vs.
RNN), 80.5% (vs. LSTM), and 79.1% (vs. BILSTM). On the ECMWF short-term dataset,
improvements remained consistent, with RMSE reductions of 99.7% (vs. ARIMA), 63.5%
(vs. RNN), 66.0% (vs. LSTM), and 52.7% (vs. BILSTM). The corresponding MAPE
reductions were 83.4% (vs. ARIMA), 41.6% (vs. RNN), 66.8% (vs. LSTM), and 58.5% (vs.
BiLSTM). These results demonstrate that the hybrid model effectively captures both
sequential dependencies and bidirectional temporal dynamics, providing strong
short-term predictive accuracy.

Table 2 presents the results of Experiment 2 using long-term ECMWF datasets. With
the extended temporal coverage of 2019-2023, the h-RNN-BiLSTM model consistently
achieved the lowest RMSE (0.0106) and MAPE (0.4671). Compared with ARIMA, the
improvements were 99.7% (RMSE) and 84.3% (MAPE), highlighting the inadequacy of
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statistical models in handling nonlinear and long-range wind speed dynamics. Against
deep learning baselines, the proposed model also delivered consistent gains: RMSE
reductions of 70.3% (vs. RNN), 30.7% (vs. LSTM), and 37.6% (vs. BILSTM), along with
MAPE reductions of 38.8% (vs. RNN), 71.0% (vs. LSTM), and 32.1% (vs. BILSTM). These
findings confirm the hybrid model’s ability to sustain stable learning across extended
periods, mitigating overfitting while ensuring precise long-term forecasts. In addition, the
hybrid deep learning architecture benefits more from larger datasets and longer historical
sequences, allowing it to learn richer temporal patterns that conventional statistical
methods cannot capture. Individual models like RNN, LSTM or BiLSTM yielded less
precise results, as Tables 1 and 2 demonstrate. Possible factors that can affect the outcome
include individual models’ limited ability to accurately represent complex patterns and
relationships in the dataset, a lack of coordination between short-term and long-term
memory aspects, and a failure to effectively utilize the advantages of combined architecture
for accurate prediction (Almeida, Neves ¢ Horta, 2018; Yuan et al., 2023).

Another key observation is the effect of dataset length on the performance of the
proposed model. When comparing short-term ECMWF (Table 1) with long-term
ECMWEF (Table 2), the RMSE values remain nearly identical (0.0104 vs. 0.0106), indicating
consistent control of absolute errors across different temporal horizons. However, MAPE
improved from 0.5343 in the short-term dataset to 0.4671 in the long-term dataset,
reflecting a 12.6% improvement in relative accuracy. This suggests that the proposed
h-RNN-BiLSTM is particularly suitable in maintaining proportional predictive accuracy
when trained on longer datasets due to the richer temporal dependencies captured over
extended periods. This stability across forecasting horizons demonstrates the adaptability
of the model, an important attribute for practical deployment in meteorological forecasting
where both short-term and long-term accuracy are essential. The comparative analysis also
highlights the utility of combining short-term and long-term evaluations for validating
model accuracy. In operational contexts, short-term datasets are often used for immediate
forecasting, whereas long-term datasets are critical for climate-informed planning and
energy management. The ability of h-RNN-BiLSTM to achieve stable RMSE and improved
MAPE across both settings confirms its potential applicability in diverse scenarios, ranging
from wind forecasting to strategic planning for renewable energy integration. Thus, the
model offers technical advantages over existing approaches and is practically relevant for
meteorological and energy-related applications.

However, certain limitations should be acknowledged. The model’s performance is
sensitive to data quality and completeness where gaps or inconsistencies in historical
records can reduce forecasting reliability. While the primary focus of this study is
forecasting accuracy, we also emphasize that the proposed h-RNN-BiLSTM model incurs
longer training and testing times compared to baseline models due to its deeper
architecture. Specifically, training required 23.2 s and testing 5 s for the short-term GFS
dataset, 107.6 and 27 s for the short-term ECMWF dataset, and 816.1 and 158 s for the
long-term ECMWF dataset (2019-2023). Importantly, the testing phase remains
computationally manageable, indicating that once trained, the h-RNN-BiLSTM model can
generate forecasts rapidly, making it suitable for near real-time wind speed prediction.
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Although the higher training cost reflects the model’s recurrent and bidirectional layers,
the relatively low inference time suggests that efficiency is not a bottleneck for operational
forecasting scenarios.

CONCLUSION

This study introduced an h-RNN-BiLSTM model for wind speed forecasting in the South
China Sea and evaluated its performance using short-term GFS/ECMWF datasets and
long-term ECMWEF datasets. The evaluation employed RMSE and MAPE as performance
metrics, providing detailed insights into both error magnitudes and relative accuracy. The
experimental results revealed that the h-RNN-BiLSTM model consistently achieved the
lowest RMSE and MAPE across all datasets. Improvements ranged from 30% to over 99%
in RMSE and 32% to over 84% in MAPE, depending on the baseline and dataset
considered. These findings demonstrate the hybrid model’s advantage over statistical
method and standalone deep learning architectures. More importantly, they highlight its
ability to balance short-term accuracy with long-term stability, which is essential for
real-world forecasting applications. The novelty of this work lies in its hybridization
strategy, which effectively integrates RNN with BILSTM. From a modeling perspective, the
architecture effectively integrates the short-term temporal dynamics captured by the RNN
layer with the long-term bidirectional dependencies modeled by the BiLSTM, enabling
multi-scale representation of wind speed variability; a defining characteristic of
meteorological systems in the SCS. This design yields improved generalization across
different datasets. The comparative results against multiple baselines establish clear
empirical evidence of the model’s contribution. From an application perspective, the
proposed approach is particularly relevant to renewable energy integration, grid
management, and long-term planning of wind power resources, where reliable forecasting
is crucial for ensuring energy stability and efficiency.

These combined technical and practical implications indicate that the h-RNN-BiLSTM
can function not only as a high-performing research prototype but also as a viable
component in operational forecasting workflows. Although the hybrid model
demonstrates clear performance gains over baseline methods, its accuracy remains
contingent on the availability of high-quality, continuous historical data, as gaps or
inconsistencies may undermine predictive reliability. Furthermore, enhanced capability
comes at the cost of increased computational demands during training, which warrants
careful consideration in real-world deployments. While training times were longer due to
the model’s deeper recurrent and bidirectional layers, the prediction phase remained rapid,
enabling near real-time wind speed forecasting. This balance of accuracy and efficiency
underscores the model’s potential for practical application in meteorological forecasting
and renewable energy integration. Future research directions include: (i) integrating
additional meteorological variables (e.g., temperature, pressure, and humidity) as
multivariate inputs, (ii) fusing multiple reanalysis and observational datasets to improve
generalization across regions, (iii) incorporating advanced attention mechanisms to
strengthen temporal dependency modeling, (iv) extending the framework to other
geographic contexts to evaluate its transferability, and (v) investigating the efficiency
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aspect, including optimization of execution time and memory usage, to support real-time
forecasting and practical deployment in offshore and marine applications.
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