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ABSTRACT

People with disabilities need ongoing support and a balanced lifestyle. Smart cities
like NEOM are emerging worldwide. The Saudi government has implemented
several disability accessibility programs in public spaces and transportation. This
article addresses a critical yet often neglected challenge: accurately recognizing and
interpreting facial emotions in individuals with cognitive disabilities to foster better
social integration. Current emotion detection systems frequently overlook the unique
needs of this demographic (slower response times, difficulty interpreting subtle cues,
and varied attention spans) and provide limited transparency, undermining trust and
hindering real-time applicability in complex, dynamic contexts. To overcome these
limitations, we present a novel, comprehensive framework that utilizes the Internet of
Things, fog computing, and advanced You Only Look Once (YOLO)v8-based deep
learning models. Our approach incorporates adaptive feedback mechanisms to tailor
interactions to each user’s cognitive profile, ensuring accessible, user-centric
guidance in diverse real-world scenarios. Besides, we introduce EigenCam-based
explainability techniques, which offer intuitive visualizations of the decision-making
process, enhancing interpretability and trust for both users and caregivers. Seamless
integration with assistive technologies, including augmented reality devices and
mobile applications, further supports real-time, on-the-go interventions in
therapeutic and educational contexts. Experimental results on benchmark datasets
(RAF-DB, AffectNet, and CK+48) demonstrate the framework’s robust performance,
achieving up to 95.8% accuracy and excelling under challenging conditions. The
EigenCam outputs confirm that the model’s attention aligns with meaningful facial
features, reinforcing the system’s interpretability and cultural adaptability. By
delivering accurate, transparent, and context-aware emotion recognition tailored to
cognitive disabilities, this research sets a promising step for inclusive artificial
intelligence (AI)-driven solutions, ultimately promoting independence, reducing
stigma, and improving quality of life.
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INTRODUCTION

Smart cities increasingly focus on developing inclusive environments that address the
needs of all residents, including individuals with limitations in utilizing everyday
technologies (Makkonen ¢ Inkinen, 2024). Several nations are preparing to implement the
concept of smart cities in their municipalities. Public transportation planning and
analytical methodologies are insufficient when addressing the needs of the disability
community. Attaining disability justice necessitates that all individuals have access to the
transportation resources essential for leading a meaningful, dignified, and fulfilling life
(Levine ¢ Karner, 2023). The convergence of the Internet of Things (IoT), cloud
computing, big data, and advanced artificial intelligence (AI) revolutionizes
transportation provision. This revolution is aimed at improving city infrastructure
(Bennett & Vijaygopal, 2024).

The Saudi Arabian government is focused on ensuring that all citizens and residents can
lead decent lives, especially people who experience disability. Disabilities affect nearly
every individual at some point, whether temporarily or permanently. Persons with
disabilities may require continuous supportive services and a balanced lifestyle (Bindawas
¢ Vennu, 2018). NEOM City is one of the forthcoming smart cities globally. Saudi Arabia
has garnered attention due to its economic diversification and modernization program,
which are associated with this significant project. Besides, the Saudi government has
launched several initiatives to improve disability access to public spaces and
transportation. The government has created the “Accessible Public Transportation
Program” to make public transit more accessible for disabled people by providing
specialized buses and other facilities (Makkonen ¢ Inkinen, 2024).

Emotions play a pivotal role in human communication. Keltner ¢» Cordaro (2017)
categorized emotions into six emotions. There are fear, disgust, anger, happiness, sadness,
and surprise (Keltner ¢» Cordaro, 2017). Integrating these emotions into social interactions
is integral to human life (Razzaque, 2020; Miller ¢» Wallis, 2011). It enables people to
express intentions, interpret social cues, foster relationships, and build connections
(Morris & Keltner, 2000; Van Kleef, 2009).

However, individuals with cognitive disabilities, such as autism spectrum disorder
(ASD), intellectual disabilities, Down syndrome, or certain neurodegenerative diseases,
often face significant challenges in recognizing, interpreting, and expressing emotions
(Grieco et al., 2015; Sappok, Diefenbacher & Winterholler, 2019; Yates & Le Couteur, 2016).
These difficulties can hinder their ability to connect and integrate with others, sometimes
leading to feelings of isolation, miscommunication, anxiety, and a diminished quality of
life (Segrin, 1996).

The global prevalence of cognitive disabilities further underscores the magnitude of this
challenge that faces those individuals. According to the Centers for Disease Control and
Prevention (CDC), ASD alone is estimated to affect 1 in 36 children for Disease Control
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and Prevention (Centers for Disease Control and Prevention, 2024; Maenner, 2023).
Moreover, the World Health Organization (WHO) estimates that 1 in 100 children
worldwide are diagnosed with ASD (World Health Organization, 2024; Zeidan et al., 2022).
Intellectual disabilities and other cognitive impairments also impact millions globally,
creating a critical need for tools that enhance emotional comprehension (Sappok et al,
2022; Des Portes, 2020; Harris, 2006).

As society increasingly integrates individuals with cognitive disabilities into educational,
workplace, and social environments, emotional intelligence becomes paramount (Clark ¢
Polesello, 2017; Zeidner, Roberts ¢ Matthews, 2008; Matthews, Zeidner ¢ Roberts, 2007). A
lack of this skill can impede relationship-building, collaboration, and social comfort.
Despite advances in therapies and assistive technologies (Szabé et al., 2023), current
interventions are often generalized, time-intensive, and dependent on human facilitators,
leaving a significant gap in tailored support.

Individuals with cognitive disabilities often encounter many challenges when navigating
public transportation systems (Mogaji ¢» Nguyen, 2021). Beyond the physical hurdles of
entering a bus, finding the correct platform, or transferring between routes, these travelers
must also manage complex cognitive tasks such as interpreting signs, processing auditory
announcements, and understanding sudden route changes. Emotional states, such as
stress, anxiety, or confusion, can exacerbate these difficulties, making it harder to absorb
critical information or respond promptly to unexpected situations. For instance, a crowded
station or a delayed train can heighten stress levels, leading to disorientation or even
deterring individuals from attempting future journeys. This emotional burden reduces
overall mobility, hinders social inclusion, and compromises the independence and
well-being of those affected.

Despite strides in intelligent transportation systems (ITS) and urban accessibility
measures (ranging from accessible route planning apps to audio-visual wayfinding aids),
these solutions generally focus on standardized requirements, failing to consider the
cognitive and emotional dimensions influencing a user’s experience. ITS refers to applying
advanced information and communication technologies to manage and optimize
transportation networks. These systems enhance traffic efficiency, safety, and user
experience through real-time data processing, automation, and smart infrastructure. These
current ITS platforms often lack personalization features that address cognitive
impairments and emotional awareness capabilities that can dynamically adapt guidance
and support mechanisms to a traveler’s emotional state. As a result, even the most
technologically advanced ITS installations may struggle to provide effective,
confidence-building assistance to individuals who require it most.

While various accessibility solutions (such as tactile maps, audio cues, and augmented
reality (AR) guidance) have enhanced public transit usability for many, the absence of
emotion-aware interventions explicitly tailored for cognitive disabilities remains a glaring
gap. These existing tools rarely integrate affective signals that could inform real-time
adjustments, like simplifying instructions when a user appears confused, delaying prompts
for those who need additional processing time, or offering stress-reducing suggestions in
overwhelming situations. This research aims to bridge that gap by introducing a real-time
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framework that detects and interprets facial emotions and employs explainable AI
techniques and adaptive feedback mechanisms. By doing so, the proposed system ensures
that ITS solutions can cater to travelers’ cognitive and affective needs, creating a more
inclusive and supportive transportation environment.

Advances in Al and deep learning (DL) present a promising avenue for addressing this
challenge. Specifically, emotion detection systems based on facial image analysis have the
potential to bridge this gap by providing real-time, personalized support for emotion
recognition (Kaur ¢» Kumar, 2024; Marechal et al., 2019).

This research hypothesizes that utilizing AI-powered emotion detection systems,
specifically utilizing advanced deep learning models, can significantly enhance the ability
of individuals with cognitive disabilities to interpret and respond to social and emotional
cues. These systems can empower users to navigate social interactions more confidently
and independently by providing real-time, context-aware emotion recognition. The study
further posits that such technology, tailored to the unique needs of this demographic, can
promote inclusivity, reduce stigma, and improve the quality of life for affected individuals.

The current study proposes a comprehensive framework for facial emotion detection
and intervention explicitly designed to address the needs of individuals with cognitive
disabilities. This framework integrates state-of-the-art YOLOv8-based deep learning
models to achieve robust, real-time emotion classification across datasets such as RAF-DB,
AffectNet, and CK+48. Key features of the proposed system include explainability through
EigenCam visualizations, adaptive feedback mechanisms tailored for slower response
times and varied attention spans, and seamless integration with assistive technologies such
as AR glasses or mobile applications.

This research aims to develop an explainable, emotion-aware ITS framework that
empowers individuals with cognitive disabilities to navigate public transportation
networks confidently and independently. By embedding real-time emotion detection,
adaptive feedback, and transparent Al decision-making into the ITS ecosystem, the
approach enables more inclusive, user-centric transit experiences.

The contributions of this research are multifaceted, addressing critical gaps in emotional
recognition technology for individuals with cognitive disabilities. They can be listed as
follows:

— ITS-integrated emotion detection: Introduces a novel Al-driven framework utilizing
YOLOV8-based deep learning models to detect and interpret facial emotions in real-time
within transportation environments. This emotional awareness enables ITS interfaces
(such as route guidance apps, digital signage, and AR-based navigation aids) to
dynamically adjust instructions and support strategies.

- Adaptive ITS feedback mechanisms: Tailor’s navigational prompts, notifications timing,
and instructions complexity based on users’ emotional states and cognitive profiles.
Doing so reduces stress and confusion at transit hubs, making journey planning,
transfers, and service updates more accessible and less intimidating.

- Explainable Al in transit settings: Incorporates EigenCam-based visualizations, allowing
users, caregivers, and transit personnel to understand how and why the system suggests
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particular routes or interventions. This transparency fosters trust, ensuring stakeholders
are comfortable relying on the system in busy or unfamiliar transit scenarios.

- Wearable and mobile integration for on-the-go support: Ensures seamless compatibility
with assistive ITS technologies (such as AR glasses and smartphone applications),
delivering real-time emotional support and context-sensitive instructions in dynamic
transit conditions, including crowded stations, moving platforms, or irregular service
patterns.

- Advancing equity and quality of life in ITS: Moves beyond essential operational
efficiency to create a more inclusive public transportation environment. By
accommodating emotional and cognitive needs, the framework reduces barriers,
mitigates stigma, and enhances the overall travel experience, contributing to smarter,
more human-centered urban mobility solutions.

The rest of this article is organized as follows: ‘Related Studies’ reviews the related works
and recent technology devoted to exploring facial emotion detection. ‘Methodology’
introduces the proposed system that integrates facial emotion detection with ITS by
utilizing advanced fog and cloud computing infrastructures and the suggested framework
for facial emotion detection and intervention for cognitive disabilities. ‘Experiments and
Discussion’ elaborates on the experiments that were conducted. ‘Limitations’ introduces
the study limitations and ‘Conclusions’ summarizes the study.

RELATED STUDIES

Substantial scholarly efforts have been devoted to the exploration of facial emotion
detection. This is evidenced by the many publications in academic literature. They have
consistently strived to deliver an in-depth evaluation of methodologies encompassing both
machine and deep learning frameworks (Li ¢» Deng, 2020; Huang et al., 2019; Ekundayo ¢
Viriri, 2021; Mellouk ¢ Handouzi, 2020; Khan, 2022).

For instance, Ge et al. (2022) summarized the research on deep facial expression
recognition methods over the past decade, categorized current approaches into static and
dynamic recognition, compared the performance of advanced algorithms on expression
databases, and discussed the challenges of overfitting and real-world interference while
suggesting multimodal models to improve recognition accuracy.

Focusing on deep learning, Jaiswal, Raju & Deb (2020), Jain, Shamsolmoali ¢» Sehdev
(2019), and Khattak et al. (2022) utilized convolutional neural networks for facial emotion
detection from images. Jaiswal, Raju ¢ Deb (2020) evaluated using two datasets, namely
the facial emotion recognition challenge (FERC-2013) and Japanese female facial emotion
(JAFFE). They reported 70.14% and 98.65% accuracies for FERC-2013 and JAFFE datasets,
respectively. Jain, Shamsolmoali & Sehdev (2019) used Extended Cohn-Kanade (CK+) and
JAFFE datasets and reported 95.23% and 93.24% accuracies for JAFFE and CK+,
respectively. Khattak et al. (2022) reported an accuracy of 95.11% on Jaffe and 92.19% on
the Extended Cohn-Kanade (CK+) dataset.

Shifting to vision transformers (ViTs), Chaudhari et al. (2022) utilized them for emotion
detection. They applied their proposed system to a merged dataset combining FER-2013,
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CK+48, and AffectNet datasets and reported 53.10% accuracy. Following the same
approach, Chen et al. (2023) proposed few-shot facial emotion detection with a
self-supervised ViT (SSF-ViT) by integrating self-supervised learning (SSL) and few-shot
learning (FSL). They reported accuracies of 74.95%, 66.04%, 63.69%, and 90.98% on the
FER2013, AffectNet, SFEW 2.0, and RAF-DB datasets, respectively.

Adding more complexity, Ma, Sun & Li (2021) suggested the ViTs with attentional
selective fusion. They reported the performance on three datasets: RAF-DB with 88.14%,
FERPlus with 88.81%, and AffectNet with 61.85%.

Dalabehera et al. (2024) proposed a mist-fog-assisted framework for real-time
emotion recognition using deep transfer learning, specifically designed for Smart City
4.0 applications. This approach integrates mist computing (at the edge) and fog
computing (near-edge processing) to enhance scalability and efficiency in urban
environments. The study demonstrated the framework’s capability to process high
volumes of video and emotional data with minimal latency, making it ideal for dynamic
and distributed settings. Similarly, Bebortta et al. (2023) introduced the DeepMist
framework, which utilizes deep learning models operating over mist computing
infrastructure to manage healthcare big data effectively. Their approach uses a Deep Q
Network (DQN) algorithm for heart disease prediction, achieving 97.67% accuracy while
maintaining low energy consumption and delay. These frameworks illustrate the potential
of deploying deep learning at the mist computing layer for low-latency, high-efficiency
computations.

Integrating explainable AI (XAI) techniques into emotion detection systems addresses
the critical challenge of trust and transparency. EigenCam, introduced by Bany
Muhammad ¢ Yeasin (2021), provides saliency maps to visualize key facial features
influencing model predictions. This technique ensures that outputs are interpretable and
align with user expectations, particularly in high-stakes applications where decision
transparency is vital. Lau (2010) developed a portable real-time emotion detection system
using physiological signals such as heart rate and skin conductance. The system was
designed to enhance emotional awareness and interaction for disabled users by identifying
emotional states in real time. This pioneering work highlights the role of accessible and
portable technologies in supporting individuals with disabilities.

While existing research in facial emotion detection has made significant strides, several
critical gaps remain unaddressed, particularly concerning the needs of individuals with
cognitive disabilities. This study aims to fill the following gaps:

- Limited personalization for cognitive disabilities: Most emotion detection systems are
designed for the general population, often neglecting the unique challenges faced by
individuals with cognitive disabilities, such as slower response times, difficulty
interpreting subtle facial cues, and varied attention spans. This study addresses these
issues by tailoring the emotion recognition framework to include adaptive feedback
mechanisms and simplified interfaces for this demographic.

- Explainability in emotion detection models: Many existing models lack transparency,
providing high accuracy but minimal insights into their decision-making processes. This
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study incorporates EigenCam-based explainability to visualize and understand the
model’s focus areas, enabling users and caregivers to trust and interpret the system’s
outputs effectively.

— Real-time applicability in dynamic environments: Current approaches often fail to
deliver real-time performance in practical, socially dynamic settings. This study
emphasizes real-time detection and intervention, ensuring seamless integration into
wearable devices or assistive technologies for on-the-go support.

These identified gaps highlight the need for a novel framework that not only addresses
the unique challenges faced by individuals with cognitive disabilities but also integrates
explainability, personalization, and real-time performance. Building upon these insights,
the following section presents our proposed framework. It introduces an explainable,
emotion-aware ITS utilizing YOLOv8-based deep learning models and EigenCam
explainability. The architecture is designed to operate within fog and cloud computing
environments, enabling adaptive, context-aware emotional support tailored to
user-specific cognitive profiles.

METHODOLOGY

The proposed system integrates facial emotion detection with ITS using advanced fog and
cloud computing infrastructures. Fog computing extends cloud computing by enabling
data processing at the network edge, closer to where data is generated. This reduces
latency, enhances responsiveness, and supports real-time decision-making, which is
particularly beneficial for emotion-aware systems operating in transit settings. The
suggested architecture ensures real-time, location-aware, and emotion-sensitive support
for individuals with cognitive disabilities. Figure 1 presents the system’s data flow and
functionality breakdown.

Cameras installed along roads, bus stops, and transit hubs capture real-time facial
images of individuals. These images are transmitted wirelessly to nearby signal towers
(roadside units) using communication networks such as cellular systems. The roadside
units act as initial processing nodes, directing the data to the appropriate computing layers
for further analysis.

Signal towers relay the captured images to fog brokers, specialized computing units with
local databases. These brokers are part of a broader fog management area, a distributed
network of fog servers designed for intermediate processing tasks. The fog brokers perform
tasks such as (1) Facial recognition to identify individuals. (2) Location tagging based on
the camera location and the individual’s presence.

These fog units reduce latency and improve responsiveness by performing initial
processing close to the data source. The processed data is then forwarded to the cloud for
advanced analysis.

Fog servers in the fog management area are interconnected with a cloud computing
infrastructure, where advanced emotion recognition occurs. The emotion detection
framework, based on YOLOVS, processes the facial images to identify emotional states
such as stress, confusion, or fear (see Fig. 2). This step involves: (1) Extracting meaningful
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Figure 1 Visualization of the data flow and functionality breakdown of the system, highlighting how cameras installed along roads, bus stops,
and transit hubs capture real-time facial images. They are then transmitted wirelessly to nearby signal towers and processed through fog brokers
and cloud computing infrastructures for emotion detection and intervention. Full-size K&l DOT: 10.7717/peerj-cs.3301/fig-1

facial features from the image. (2) Determining the individual’s emotional state through
robust classification models. (3) Combining emotional data with location information for
context-aware decision-making.

The system generates a query based on the individual’s detected emotion and current
location. This query specifies the required assistance type, such as calming messages, route
guidance, or emergency response. The system then identifies the closest available helping
location, such as a transit support center, caregiver unit, or an on-ground incident
response team. The most efficient dispatch route is dynamically determined using signal
tower data and fog computing units, and the query is transmitted to the selected location.

Data acquisition
This study utilizes three publicly available datasets: CK+48, RAF-DB, and AffectNet. These
datasets were selected due to their relevance in facial emotion recognition research and
widespread use in benchmarking approaches.

The CK+48 dataset (Lucey et al., 2010), also known as the Extended Cohn-Kanade
Dataset, is a benchmark in emotion recognition studies. Each image sequence in
CK+48 captures the transition from a neutral to a peak emotional expression. This
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Figure 2 Visualization of the proposed framework, demonstrating the integration of YOLOvS8-based deep learning models and EigenCam
explainability techniques within fog and cloud computing environments to provide adaptive, context-aware emotional support tailored to
user-specific cognitive profiles. Full-size K&l DOT: 10.7717/peerj-cs.3301/fig-2
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gradual progression facilitates robust model training by providing intermediate

states that help learn nuanced facial transformations. The dataset includes frontal

facial images with minimal occlusions and uniform lighting, simplifying preprocessing.
Researchers have widely used CK+48 to evaluate models focused on distinguishing
between universally recognized emotions, making it a reliable choice for benchmarking the
proposed approach.

RAF-DB extends the scope of facial emotion recognition by incorporating diverse
real-world scenarios. The images in RAF-DB are annotated using a crowdsourcing
approach, ensuring high-quality and reliable labeling. The dataset’s inclusion of compound
emotions (combinations of basic emotions) offers a more granular analysis of human
emotional states. This feature aligns with the need for advanced models to understand
subtle and mixed emotions. Moreover, the diversity in demographics, poses, and lighting
conditions in RAF-DB simulates real-world environments, challenging the model to
generalize effectively (Shan ¢» Deng, 2018).

AffectNet significantly enhances the understanding of emotional expressions by
providing a vast collection of images annotated for categorical and dimensional affective
representations. Its categorical labels include emotions like anger, disgust, fear, and
happiness, while the dimensional labels provide arousal and valence scores, offering a
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richer perspective on emotional intensity and polarity. The dataset includes

challenging cases such as occlusions, extreme poses, and images captured in varied cultural
contexts. These attributes make AffectNet an essential resource for training models that
aim to achieve robust performance across diverse scenarios (Mollahosseini, Hasani ¢
Mahoor, 2017).

Before model training, all datasets underwent standardized preprocessing to improve
consistency and performance. Images were resized to a uniform resolution of 100 x 100
pixels to align with the input requirements of the YOLOVS8 architecture. Using min-max
scaling, pixel values were normalized to the range [0, 1]. No additional data augmentation
was applied during training, as YOLOVS8’s built-in augmentation pipeline (e.g., random
flipping and HSV adjustments) was used instead.

Model architecture

YOLOVS is a state-of-the-art deep learning architecture designed for real-time object
detection. It represents a significant evolution in the YOLO family of models, introducing
innovations that enhance both detection accuracy and computational efficiency. It
combines high accuracy with fast inference speeds, making it ideal for applications like
facial emotion recognition in dynamic environments. The model’s backbone utilizes a deep
convolutional architecture with residual connections, which help mitigate the vanishing
gradient problem during training. These connections also enable the network to extract
fine-grained and high-level features critical for emotion classification (Sohan et al., 2024;
Terven, Cordova-Esparza ¢ Romero-Gonzdlez, 2023).

These connections can be formulated as presented in Eq. (1), where x is the input, and
F (referred to as the residual mapping) represents the transformation applied to the input
by a series of convolutional layers parameterized by weights { W;}. Intuitively, # captures
the additional information that needs to be added to the input to produce the desired
output. This design enables the network to learn hierarchical features more efficiently
while preserving fine-grained and high-level semantic features, facilitating robust emotion
detection.

y = F(x AW} +x. 1)
The feature pyramid network (FPN) in YOLOvV8 merges multi-scale features to improve
the detection of subtle facial expressions and global facial context. The multi-scale feature
extraction process can be expressed as shown in Eq. (2), where P; represents the feature
map at level /, C; is the feature map from the convolutional backbone at level /, and
UpSample is an operation that increases the resolution of feature maps from higher levels.
This merging of high-resolution details with coarse semantic information enhances the

network’s ability to handle varying face sizes and poses, as seen in challenging datasets
such as RAF-DB and AffectNet.

P; = Conv(C;) + UpSample(P;,). (2)

The anchor-free detection mechanism in YOLOvV8 removes the dependency on
predefined anchor boxes, allowing the network to directly predict the object center (x, )
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and dimensions (w, h) of bounding boxes. These predictions are parameterized relative to
the grid cell as presented in Eq. (3), where (£, t,, t,,, t) are the predicted offsets, (c, ¢,)
represent the grid cell coordinates, and (p,,, p) are the predefined prior dimensions. The
sigmoid function o(-) ensures that offsets remain bounded, leading to more precise

localization.

x=0(t) + cx
( +c

w=p, X e

h =pn X e

Emotion classification is performed using a SoftMax output layer. For an input
image x, the classification probabilities for each emotion category are computed as
presented in Eq. (4), where z; represents the logits (unnormalized scores) for class i, and C
is the total number of emotion categories. The SoftMax function converts these logits into
probabilities by normalizing the exponential of each score.

e’

pl—zjilezj, i=1,...,C (4)

The cross-entropy loss function used during training is defined as shown in Eq. (5),
where y;; is the ground truth label for sample i and class j, and p;; is the predicted
probability for the same. This loss quantifies the difference between the predicted and true

distributions, guiding the optimization process.

N C
L dass = —% X Z Zy x log(pij). (5)
i=1 j=1
YOLOV8 employs a hybrid optimization strategy that combines stochastic gradient
descent (SGD) and adaptive moment estimation (Adam). The weight update rule for SGD
with momentum is given by Eq. (6), where v, is the velocity term that accumulates
gradients over time, w; are the model weights, f§ is the momentum parameter that controls
the influence of past gradients, and # is the learning rate.

Vi=pxVvi1+ (1= p) x VL(w)

Wil = We — 1 X Vg

(6)

Adam further incorporates adaptive learning rates through Eq. (7), where m; and v; are
the first and second-moment estimates of the gradients, respectively. These moments help
adjust the learning rate for each parameter individually, improving convergence.
Hyperparameters f3; and f3, control the decay rates of these moments, and ¢ is a small
constant to prevent division by zero, as shown in Eq. (8).

my = Py x m_y + (1= B1) x VL(w,)

b= By X Vs + (1= ) X (VL ()Y 7
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A lightweight attention mechanism is integrated into YOLOVS to refine feature
extraction further. The attention weights are computed as shown in Eq. (9), where o;
represents the importance (or weight) assigned to feature map f; based on its score s;.
Intuitively, this mechanism allows the network to focus on regions of the face that are most
indicative of emotions, such as the eyes and mouth, by selectively amplifying relevant
features.

e’
- e
DL
f/ = E o X fi
i

o

(9)

Explainability with EigenCam

EigenCam is an explainable AI technique that visualizes which regions of an image most
influence a model’s predictions. It enhances the interpretability of deep learning models by
generating saliency maps that visualize the contribution of individual pixels or regions to
the model’s predictions. Unlike traditional methods like Grad-CAM, EigenCam employs
principal component analysis (PCA) on activation maps to isolate the most informative
components, reducing noise and highlighting critical regions. For emotion recognition,
EigenCam elucidates which facial features (such as the eyes, mouth, or eyebrows) are
pivotal for classification decisions. This methodology enables researchers to interpret the
spatial focus of YOLOvV8 during emotion classification, thereby increasing trust in the
model’s outputs (Bany Muhammad ¢ Yeasin, 2021).

The saliency maps in EigenCam are generated by performing PCA on the
high-dimensional activation maps from specific convolutional layers. The principal
components are computed as shown in Eq. (10) where A represents the activation maps, uy
is the k-th principal component, and vy is the corresponding eigenvector. These
components highlight the most significant spatial features contributing to the model’s
prediction. The saliency maps are then back-projected onto the input space to visualize the
regions of interest.

Avy
u =
[[Avi]l (10)
vIATAV’
Vi = argmava

EigenCam’s saliency maps are particularly effective in identifying attention patterns
across various emotions. For example, when predicting “happiness,” the model may
emphasize regions around the mouth and cheeks, while for “anger,” it may focus on
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furrowed brows. These visualizations provide an intuitive understanding of the
decision-making process, ensuring that the model’s predictions align with human
expectations. Additionally, the method allows for comparing focus areas between correct
and incorrect predictions, highlighting discrepancies that may inform future model
improvements.

A key application of EigenCam in this study is evaluating the model’s spatial attention
during misclassifications. For example, saliency maps may reveal that the model is
distracted by background elements or occluded regions of the face, such as sunglasses or
scarves. These insights are quantified using localization error, defined in Eq. (11), and
pixel-level correlation metrics that measure the alignment between the highlighted regions
and annotated ground truth regions. Such evaluations not only identify weaknesses in the
model’s focus but also suggest areas for improvement.

Intersection of Highlighted Region and Ground Truth
Union of Highlighted Region and Ground Truth

(11)

Localization Error = 1 —

Another critical use of EigenCam is detecting and mitigating biases in the model’s
predictions. Saliency maps often reveal whether the model’s attention disproportionately
favors demographic-specific features, such as cultural variations in expressions or skin
tone. For instance, maps may show that the model interprets a raised eyebrow
differently for different ethnic groups, leading to biased predictions. This capability
aligns with fairness objectives, ensuring the model performs equitably across diverse
populations.

EigenCam is also instrumental in guiding iterative model refinement. By analyzing
saliency maps, researchers can pinpoint architectural components that require
modification. For example, the feedback might suggest adding attention mechanisms to
improve focus on relevant facial regions or adjusting convolutional layers to enhance
feature extraction. These modifications are validated through repeated analysis with
EigenCam, forming a feedback loop that optimizes both the accuracy and explainability of
the proposed YOLOVS8-based approach.

The integration of EigenCam bridges the gap between performance and interpretability,
offering a robust framework for evaluating and refining deep learning models for emotion
recognition. This methodology improves transparency and empowers developers to
address ethical concerns, ensuring that the model aligns with human expectations and

societal normes.

Comparison of EigenCam with other XAl tools
While several XAI methods exist for visualizing deep learning model decisions, EigenCam
offers distinct advantages over commonly used tools such as Grad-CAM. Grad-CAM
generates heatmaps by computing the target class output gradients with respect to the
feature maps in the final convolutional layer. While effective, it often includes noisy
activations and may not accurately highlight the most discriminative regions.
EigenCam, in contrast, applies PCA directly to activation maps, extracting dominant
components that contribute most to the model’s decision. This results in cleaner, more
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interpretable saliency maps that better align with human perception of emotional
expressions.

Furthermore, EigenCam does not require gradient computation, making it
computationally lighter and suitable for real-time applications. It also provides consistent
attention localization across different emotions (such as focusing on the mouth for
happiness and brows for anger), which is critical in assistive technologies where
interpretability and trust are paramount.

Computing infrastructure

The research was conducted on a Windows 11 (64-bit) system equipped with an Intel Core
i7-1165G7 processor (four cores, eight threads, 2.8 GHz base, 4.7 GHz boost), 8 GB DDR4
RAM, and a 512 GB NVMe SSD for storage. The software environment was built around
Python 3.10, using Jupyter Notebook as a development platform. Key libraries included

NumPy and Pandas for data processing, Scikit-Learn, TensorFlow 2.9, and PyTorch 1.12
for machine learning tasks, and Matplotlib and Seaborn for data visualization.

Evaluation metrics

The confusion matrix provides a granular view of model performance, offering insights

into misclassification trends across emotion categories. For example, it may reveal that the
model frequently confuses fear with surprise due to their overlapping facial expressions.
Such analysis helps pinpoint areas for improvement in the model’s feature extraction and
classification stages (Powers, 2020).

Accuracy, while a commonly used metric, is complemented by other measures to
address its limitations in imbalanced datasets. For instance, accuracy alone may not reflect
true performance in scenarios where one emotion dominates the dataset. By incorporating
precision and recall, the evaluation framework ensures a balanced assessment of the
model’s ability to identify and distinguish emotions.

Specificity is particularly crucial in applications where false positives carry significant
consequences, such as diagnosing cognitive disabilities. High specificity ensures the model
avoids misclassifying neutral expressions or unrelated facial features as emotional states,
enhancing its reliability in clinical contexts.

Balanced accuracy (BAC) is employed to mitigate the effects of class imbalance. By
averaging recall and specificity, BAC provides a comprehensive metric that evaluates the
model’s ability to handle underrepresented emotion categories. This is especially
important for datasets such as AffectNet, where some emotions are sparsely represented.

Intersection over Union (IoU) measures the accuracy of face localization, which directly
impacts emotion classification performance. High IoU scores indicate that the model
consistently identifies and focuses on relevant facial regions, reducing the influence of
extraneous features. IoU is particularly relevant for datasets with occlusions or extreme
poses, where precise localization is challenging.

To validate the robustness of the proposed approach, evaluation is conducted across
multiple datasets using cross-dataset testing. This involves training the model on one
dataset and testing it on another to assess generalizability. Additionally, statistical tests,
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such as paired t-tests and Wilcoxon signed-rank tests, are performed to confirm the
significance of performance improvements over baseline methods.

Low-latency performance for real-time interventions
To ensure timely interventions in dynamic transit settings, the framework prioritizes
low-latency performance through a combination of technical measures:

- Optimized model architecture: The YOLOv8 model, particularly the smaller variants
(YOLOV8 S and M), is known for its computational efficiency, enabling rapid inference
with minimal processing overhead. The framework utilizes these architectures to ensure
swift emotion detection even on resource-constrained devices like smartphones or AR
glasses.

- Edge computing: Processing emotion data on edge devices, such as onboard
cameras or user smartphones, minimizes the reliance on cloud communication,
significantly reducing latency. This enables near-instantaneous responses to detected
emotions, which is crucial for timely interventions in crowded stations or on moving
buses.

- Hardware acceleration: The framework is designed to utilize hardware acceleration
capabilities available on modern devices, such as GPUs and specialized neural network
processors. By harnessing these resources, the system achieves significantly faster
processing speeds, enabling real-time emotion analysis without noticeable delays.

- Data preprocessing optimization: Efficient data preprocessing techniques, such as
image resizing and region-of-interest cropping, are implemented to reduce the
computational burden on the model. This ensures that only the essential visual
information is processed, further enhancing the speed of emotion detection.

- Adaptive feedback mechanisms: The framework incorporates adaptive feedback
mechanisms that adjust the frequency and complexity of interventions based on the
user’s cognitive profile and the dynamic environment.

This approach prevents information overload and ensures that assistance is delivered
promptly and appropriately, even in fast-changing situations. Moreover, these technical
measures collectively ensure that the emotion detection pipeline operates with minimal
latency, facilitating seamless integration with ITS components and enabling real-time,
context-aware interventions to support individuals with cognitive disabilities throughout
their journeys.

To further validate the system’s suitability for real-world ITS environments, ongoing
efforts are being made to deploy the framework in pilot smart transit hubs where real-time
facial emotion detection can be tested under varying crowd densities, lighting conditions,
and environmental dynamics.

The evaluation method
The proposed YOLOvS8-based framework will be evaluated using three prominent facial
emotion datasets: RAF-DB, AffectNet, and CK+48. Comprehensive performance metrics,
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including accuracy, precision, recall, specificity, F1-score, IoU, BAC, and MCC, were
employed to assess the effectiveness and robustness of the approach. Additionally,
explainability aspects using EigenCam were examined to provide deeper insights into
model decision-making.

A systematic model selection process was conducted to ensure optimal model
performance. Among the YOLOV8 variants (N, S, M, L, XL), the YOLOvV8 S model was
selected as the final architecture due to its balanced trade-off between high classification
accuracy (95.80% on RAF-DB) and computational efficiency, making it suitable for

real-time emotion detection in dynamic transit environments.

EXPERIMENTS AND DISCUSSION

Performance analysis on RAF-DB

Table 1 demonstrates the performance metrics for RAF-DB. Among the YOLOv8
variations, the small version (YOLOV8 S) emerged as the most effective, achieving an
accuracy of 95.80% and a balanced accuracy (BAC) of 92.25%. Integrating multi-scale
feature extraction and anchor-free design proved advantageous for handling the diverse
pose variations and facial occlusions in RAF-DB.

Precision and recall values underscore the model’s ability to classify emotions while
minimizing false positives and negatives correctly. YOLOV8 S recorded a precision of
87.46% and a recall of 87.56%, reflecting its balanced performance across the dataset’s
complex emotional expressions.

The ToU metric highlights the model’s capability to localize emotion-relevant facial
regions accurately. YOLOvV8 S demonstrated a higher IoU (78.49%) compared to other
variants, affirming the efficacy of its lightweight yet powerful architecture.

Specificity values across models indicate robust performance distinguishing between
emotional and neutral faces. This aligns with the architecture’s ability to suppress
irrelevant background features while maintaining focus on facial expressions.

The choice of YOLOVS S over other variants was guided by several key considerations.
While larger models like YOLOvV8 M, L, and XL achieved comparable accuracy, they
incurred significantly higher computational costs, making them less suitable for real-time
applications on edge devices such as smartphones or AR glasses. In contrast, YOLOv8 S
strikes an optimal balance between performance and efficiency, offering near state-of-the-
art accuracy while maintaining low latency and resource consumption. Additionally, the
lightweight nature of YOLOV8 S ensures faster inference speeds, which is critical for
supporting individuals with cognitive disabilities who rely on real-time feedback. The
model’s superior IoU score further validates its ability to accurately localize facial regions
relevant to emotion recognition, a key factor in ensuring reliable performance in dynamic
environments.

Figure 3 presents the visualization of the ROC curve for the RAF-DB dataset across
various categories, utilizing the YOLOv8 S model. The ROC curve demonstrates the
model’s performance in distinguishing between the different emotional expressions
present in the dataset. A higher AUC indicates better classification accuracy, with the
YOLOV8 S model showcasing its strong ability to identify emotions such as happiness,
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Table 1 Tabular presentation of the performance metrics applied on the RAF-DB dataset. The model
in bold is the best-utilized YOLOVS in the framework.

Model Accuracy  Precision  Recall  Specificity  F1 IoU BAC MCC
YOLOvV8 N 95.36 85.77 86.05 96.56 85.77 76.23 91.31 82.73
YOLOvVS S 95.80 87.46 87.56 96.94 87.41 78.49 92.25 84.62
YOLOv8 M 95.66 86.80 86.96 96.93 86.79 77.61 91.94 83.93
YOLOvVS L 95.76 87.40 87.56 96.87 87.37 78.40 92.22 84.55
YOLOV8 XL 95.49 86.62 86.70 96.77 86.51 77.16 91.73 83.55

anger, sadness, and surprise with high sensitivity and specificity. The curve further
validates the model’s effectiveness in real-time emotion detection, underlining its
potential for applications supporting individuals with cognitive disabilities, where accurate
emotion recognition is crucial for improving social interactions and emotional
understanding.

Performance analysis on AffectNet

The performance metrics for AffectNet, presented in Table 2, reveal similar trends, with
YOLOV8 S excelling across most metrics. AffectNet, characterized by its large-scale and
diverse data, presents a unique challenge due to its fine-grained emotional annotations.
YOLOV8 § achieved an accuracy of 93.95%, reflecting its adaptability to complex datasets.

Precision and recall values (74.26% and 74.19%, respectively) indicate the model’s
balanced performance in identifying subtle variations in facial expressions. The F1-score
(74.11%) further highlights its effectiveness in managing the dataset’s inherent class
imbalances.

IoU analysis (61.04%) underscores the model’s capacity to localize key facial features
despite challenges posed by occlusions and diverse facial attributes. Specificity and BAC
values validate the model’s robustness in distinguishing emotional features from noise.

Figure 4 presents the ROC curve for the AffectNet dataset, utilizing the YOLOv8 Large
(YOLOVS8 L) model for emotion classification. The ROC curve visualizes the model’s
performance in differentiating between various emotional categories, such as happiness,
sadness, and surprise. A higher AUC indicates superior classification ability. The results
from the AffectNet dataset demonstrate the YOLOv8 L model’s robust capacity for
accurate emotion detection, which is essential for improving social communication and
emotional comprehension for individuals with cognitive disabilities. This model’s high
accuracy and reliability further support the potential of AI-driven emotion detection
systems in real-world applications.

Performance analysis on CK+48

The CK+48 dataset yielded perfect scores across all YOLOVS variants, as shown in Table 3.

The dataset’s relatively small size and well-annotated nature facilitated the model’s ability

to achieve 100% accuracy, precision, recall, specificity, F1-score, IoU, BAC, and MCC.
This exceptional performance validates the proposed framework’s strength in

recognizing prototypical emotional expressions under controlled conditions. However, as
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Figure 3 Visualization of the ROC curve for the RAF-DB dataset using the YOLOV8 S model across
various emotion categories. The curve illustrates the model’s high sensitivity and specificity in distin-
guishing between different emotional expressions, such as happiness, anger, sadness, and surprise. A
higher AUC indicates better classification performance, demonstrating the model’s strong capability for
real-time emotion detection in individuals with cognitive disabilities.

Full-size K&l DOT: 10.7717/peerj-cs.3301/fig-3

Table 2 Tabular presentation of the performance metrics applied on the AffectNet dataset.

Model Accuracy  Precision  Recall  Specificity  F1 IoU BAC MCC
YOLOv8 N 93.74 73.53 73.41 96.41 73.36 60.11 84.91 69.86
YOLOvVS S 93.95 74.26 74.19 96.51 74.11 61.04 85.35 70.73
YOLOv8 M 93.91 74.05 74.05 96.50 74.02 60.85 85.28 70.56
YOLOvVS L 93.97 74.22 74.28 96.51 74.17 61.12 85.39 70.78
YOLOv8 XL 93.68 73.23 73.18 96.35 73.16 59.81 84.77 69.58

demonstrated by RAF-DB and AffectNet, generalizability to more challenging datasets

provides a more comprehensive view of the model’s capabilities.

Explainability and analysis

Figure 5 showcases the saliency maps generated using EigenCam, highlighting the model’s
focus areas for different emotions, including fear, happiness, surprise, and anger. The
visualizations emphasize key facial regions, such as the eyes and mouth, aligning with
established psychological emotional expression theories.
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Figure 4 Visualization of the ROC curve for the AffectNet dataset using the YOLOv8 L model. This
curve reflects the model’s robust ability to differentiate between fine-grained emotional expressions like
happiness, sadness, and surprise. The high AUC values confirm the model’s reliability in detecting subtle
emotional cues, essential for supporting individuals with cognitive disabilities in dynamic environments

like public transportation.
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Table 3 Tabular presentation of the performance metrics applied on the CK+48 dataset.

Model Accuracy Precision Recall Specificity F1 IoU BAC MCC
YOLOvV8 N 100 100 100 100 100 100 100 100
YOLOvV8 S 100 100 100 100 100 100 100 100
YOLOv8 M 100 100 100 100 100 100 100 100
YOLOvS L 100 100 100 100 100 100 100 100
YOLOv8 XL 100 100 100 100 100 100 100 100

EigenCam outputs reveal that the model consistently attends to widened eyes and raised

eyebrows for surprise, furrowed brows for anger, and a smiling mouth for happiness. This

concordance with human intuition validates the model’s interpretability, particularly when

applied to assistive technologies for individuals with cognitive disabilities.

Quantitative evaluations of saliency maps, such as localization error and pixel-level

correlation with annotated regions, support these qualitative insights. Localization error

values remain low across datasets, affirming the reliability of the EigenCam visualizations.
The model’s explainability also aids in identifying biases, such as over-reliance on
specific facial regions or demographic features. For instance, the analysis revealed that the
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Figure 5 Visualization of the EigenCam output through the appliance on four different emotions:
fear, happiness, surprise, and anger. The visualization is applied by increasing the number of target
layers for more aggregation and explainability. Full-size K&l DOT: 10.7717/peerj-cs.3301/fig-5

model occasionally misinterpreted cultural variations in emotion presentation, prompting
further adjustments to enhance fairness and inclusivity.

A good explainability should also ensure trust calibration to boost user engagement and
prevent both misuse and disuse of the system (Morandini et al., 2023). Misuse refers to
excessive reliance on a system, while disuse indicates insufficient reliance despite the
system’s actual capabilities (Alvarado-Valencia ¢ Barrero, 2014). Sperrle et al. (2021) and
Rong et al. (2023) emphasize the persuasive influence of Al model explanations,
highlighting their ability to convince users to accept model decisions, regardless of their
accuracy. They argue that effective explanations should calibrate user trust, encouraging
users to trust only accurate advice while being skeptical of incorrect guidance.

Naiseh et al. (2020) noted that both over-trust and under-trust pose risks related to
explanations. Over-trust involves a high agreement with incorrect decisions, whereas
under-trust signifies a low agreement with correct ones. Zerilli, Bhatt ¢» Weller (2022)
further pointed out that information overload (excessive transparency) can result in
under-trust, while inadequate or confusing explanations may lead to a negative perception
of the model. To mitigate these issues in EigenCam, several strategies can be employed,
such as nudging through friction (Naiseh et al., 2021), offering interactive explanations,
providing personalized insights based on user personality, and incorporating uncertainty
(Naiseh et al., 2020).

EigenCam enhances the framework’s applicability to cognitive disabilities by offering a
transparent mechanism for emotion recognition. Understanding the anatomical and
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physical cues utilized by the model fosters trust. It ensures that the framework operates in
alignment with human expectations. This transparency is crucial for assistive technologies,
as users and caregivers require confidence in the system’s decisions and predictions.

The experiments underscore the efficacy and explainability of the proposed YOLOVS-
based framework. Performance metrics confirm its robustness, while EigenCam
visualizations provide actionable insights, bridging the gap between accuracy and
interpretability.

Our adaptive feedback mechanisms represent a significant advancement over prior ITS
solutions in several keyways. Unlike traditional ITS systems that provide static or one-size-
fits-all guidance, our framework incorporates dynamic adjustments tailored to each user’s
cognitive profile and emotional state. This includes modifying the timing and complexity
of navigational prompts based on real-time emotion detection, which is particularly
beneficial for users with cognitive disabilities who may require additional processing time
or simplified instructions.

Furthermore, our system’s integration with wearable and mobile technologies enables
context-sensitive interventions in dynamic transit environments; a capability not present
in most existing ITS platforms. These innovations address critical gaps in personalization
and real-time adaptability that have limited the effectiveness of previous ITS solutions for
individuals with cognitive impairments.

Our analysis revealed potential cultural biases in emotion interpretation that
warrant further investigation. While datasets like RAF-DB and AffectNet include
diverse samples, a closer examination of demographic distributions showed uneven
representation across ethnic groups. For instance, approximately 65% of subjects in
RAF-DB identify as East Asian, while Western populations are overrepresented in
AffectNet (45%) compared to other regions. These imbalances may contribute to the
model’s reduced accuracy for certain ethnic groups, particularly in detecting subtle
expressions.

We observed a 5-7% performance gap between best-represented and underrepresented
groups across key metrics. To address these limitations, future work will incorporate
targeted data augmentation strategies and develop culturally-specific training subsets.
Additionally, we will implement fairness metrics to systematically evaluate and mitigate
demographic biases during model development.

Anatomical and physical changes in facial expressions
Facial emotions manifest through distinct anatomical and physical changes in facial
muscles, which can be quantified and analyzed for emotion recognition. These changes
correspond to action units (AUs) defined in the Facial Action Coding System (FACS). The
precise identification of these changes forms the basis of emotion recognition frameworks
like the one proposed in this study. Understanding these changes is critical for designing
effective assistive systems, especially for individuals with cognitive disabilities who may
struggle with emotional interpretation.

For emotions such as happiness, the zygomatic major muscles, responsible for raising
the corners of the mouth, are prominently activated. This action is often accompanied by
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the contraction of the orbicularis oculi muscles, producing “crow’s feet” wrinkles around
the eyes. These dual markers ensure reliable recognition of happiness, even in challenging
conditions.

Sadness often involves lowering the lip corners (depressor anguli oris muscle) and the
contraction of the inner brow raiser (frontalis muscle). These subtle changes, while harder
to detect than those of happiness, provide critical cues for distinguishing sadness. The
proposed YOLOVS8 framework utilizes multi-scale feature extraction to capture these finer
details effectively.

Anger is characterized by the lowering and contraction of the brows (corrugator
supercilii muscle) and the tightening of the lips (orbicularis oris muscle). These distinctive
markers, coupled with the dilation of nostrils, offer robust features for accurate
classification. YOLOVS’s attention mechanisms enhance the model’s ability to focus on
these regions.

Surprise leads to widening the eyes (levator palpebrae superioris muscle activation) and
an elevation of the eyebrows, often coupled with an open mouth. The sharp contrast
between these features and a neutral face makes surprise one of the easier emotions to
detect with high precision.

Fear presents a combination of raised eyebrows, widened eyes, and a slightly open
mouth. This complex pattern, involving multiple muscle groups, necessitates advanced
techniques for accurate classification. The hierarchical feature extraction in YOLOvS
ensures the model captures these intricate patterns.

Impact on cognitive disabilities

For individuals with cognitive disabilities, interpreting these facial changes is often
challenging. Impaired social cognition or atypical sensory processing may hinder their
ability to understand emotional cues, leading to difficulties in social interactions. Assistive
technologies utilizing emotion detection can bridge this gap, enabling better
communication and social integration.

The proposed framework, enhanced with EigenCam-based explainability, provides
actionable insights into the model’s focus areas, ensuring that its interpretations align
with human understanding. For instance, caregivers can rely on the system to detect subtle
signs of distress or discomfort, such as sadness or fear, which might otherwise go
unnoticed.

Emotion recognition systems also promote emotional awareness and learning for
individuals with cognitive disabilities. By displaying real-time feedback on detected
emotions, these systems offer opportunities for users to associate facial cues with
corresponding emotional states, fostering social-emotional learning.

Moreover, using anatomical features ensures the system remains robust across diverse
populations. For individuals with conditions such as autism spectrum disorder (ASD),
who may display atypical facial expressions, the framework’s focus on universal muscle
movements ensures inclusivity and reliability.

Finally, the explainable nature of the framework enhances trust and transparency,
which is crucial for adoption in assistive contexts. EigenCam visualizations allow
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caregivers to verify the system’s decisions, ensuring it does not rely on irrelevant or biased
features. This transparency is critical in high-stakes scenarios, such as monitoring
non-verbal individuals’ signs of fear or distress.

By aligning advanced emotion recognition technology with human anatomical and
social principles, the proposed framework significantly improves support for individuals
with cognitive disabilities, enabling more empathetic and effective interactions.

Enhancing transparency and trustworthiness through emotion
detection and explainability

Emotion detection results and explainability metrics significantly improve the usability,
trustworthiness, and transparency of intelligent transportation systems (ITS) designed to
support individuals with cognitive disabilities. This functionality positively impacts three
primary stakeholder groups: users, caregivers, and transit personnel.

Real-time emotion detection fosters greater self-awareness by providing immediate
feedback on emotional states. This feedback helps users recognize and regulate their
emotions over time, promoting emotional intelligence and self-management. By detecting
signs of distress, the system can initiate interventions, such as suggesting less crowded
transit options or providing calming prompts. This proactive approach reduces anxiety
and stress during overwhelming situations, making travel more manageable. The system
can also support social interactions by offering cues about others’ emotions or suggesting
appropriate responses based on context. This helps users navigate complex social
environments and fosters better communication.

The system enhances the ability of caregivers to detect early signs of emotional distress,
even when subtle. This insight allows timely interventions, preventing escalation and
ensuring the user remains safe and comfortable. Explainability tools like EigenCam
visualizations allow caregivers to understand how the system interprets emotions. These
insights provide the system with a focus on relevant facial features, minimizing biases and
increasing caregivers’ confidence in its reliability.

Emotion detection aids transit personnel in identifying passengers who may require
assistance. For example, users displaying confusion or stress can receive immediate
support, ensuring a smoother transit experience. The system improves security by
identifying potential safety risks, such as individuals showing fear or anger. Transit
personnel can respond quickly to prevent incidents, creating a safer environment for all
passengers. Explainability features, such as visualizations and metrics, promote
transparency in decision-making. This accountability ensures that the system’s actions are
justified and fair, reducing concerns about biases or errors in intervention.

Explainability metrics like EigenCam visualizations show which facial features the
system uses to make predictions. These visual tools demystify the decision-making
process, enabling users and stakeholders to understand how conclusions are
reached. Metrics like localization error and correlation with ground truth data ensure the
model focuses on relevant features while ignoring distractions. Providing this information
to stakeholders fosters confidence in the system’s accuracy and fairness. Explainability
tools also help detect biases, such as over-reliance on cultural or demographic-specific
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teatures. Developers can address these issues to ensure the system provides equitable
support across diverse populations.

Performance in realistic transportation scenarios

To assess the real-world applicability of the YOLOv8-based emotion detection framework,
it is essential to simulate and evaluate its performance in scenarios reflecting actual
transportation environments. These scenarios test the system’s robustness, adaptability,
and responsiveness, addressing critical use cases for individuals with cognitive disabilities.

Crowded terminals: In busy transportation hubs, detecting emotions amidst high traffic,
varied facial expressions, and fluctuating lighting conditions is a significant challenge. The
system’s precision and recall become vital to accurately identifying individuals needing
assistance without triggering false positives. Testing under these conditions can help
evaluate:

— Detection robustness: How well the system isolates relevant faces in dense crowds.

— Emotion recognition accuracy: The framework’s ability to classify emotions correctly
under suboptimal visibility and occlusion.

— Time to intervention: How quickly the system recognizes an emotional change and
initiates a response.

Multi-step journeys: Transportation journeys often involve multiple transfers and modes,
such as buses, trains, and taxis, over extended periods. Evaluating the system across such
scenarios can determine the following:

— Sustained accuracy: The system can consistently detect emotions over time despite user
fatigue or environmental changes.

- Context adaptability: How effectively the system adjusts interventions to align with
evolving journey conditions.

— Latency in dynamic environments: The system’s response time when shifting between
transportation modes or locations.

Unexpected route changes: Unplanned disruptions like delays, cancellations, or rerouting
can escalate stress and anxiety for individuals with cognitive disabilities. The system’s
effectiveness in these situations can be evaluated by:

— Emotion change detection: How quickly the system identifies a shift in emotional state
due to an unexpected event.

— Stress reduction interventions: The ability of the system’s responses (such as alternative
route suggestions or calming prompts) to alleviate distress.

- Timeliness of support: Measuring the time from detection to delivery of assistance,
ensuring interventions occur before stress levels peak.
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Ethical considerations

Deploying facial emotion recognition systems, particularly in assistive technologies, raises
important ethical concerns about privacy, consent, and data security. Facial images are
inherently personal and sensitive, and their collection and use must adhere to strict ethical
guidelines to protect user autonomy and confidentiality. To address these concerns, a
framework should incorporate several privacy-preserving strategies as these measures
ensure that the system maintains a high standard of ethical integrity while delivering its
intended benefits:

- On-device processing: To minimize exposure of raw facial data, the system prioritizes
local inference on edge devices (e.g., smartphones, AR glasses). This ensures that
biometric data does not leave the device unless explicitly authorized by the user or
caregiver.

- Data anonymization: Where cloud-based processing or long-term storage is necessary,
facial features can be encoded or transformed into non-reversible representations.
Alternatively, real-time blurring or pixelation of identifying features can be applied
before data transmission.

- Explicit consent mechanisms: The system includes clear prompts for informed consent
before data collection. For users with cognitive disabilities, this may involve parental or
guardian authorization, accompanied by accessible explanations tailored to the user’s
comprehension level.

- Minimal data retention: Only processed emotional states or aggregated trends (e.g.,
frequency of emotions over time) are retained for adaptive feedback rather than storing
raw video or image sequences.

- Compliance with regulatory frameworks: The framework supports integration with
established data protection standards such as the General Data Protection Regulation
(GDPR) and Health Insurance Portability and Accountability Act (HIPAA), where
applicable.

In addition to the above measures, future real-world testing of the system will require
formal ethical oversight to ensure compliance with research ethics standards. Specifically,
the study protocol will need to be submitted to an Institutional Review Board (IRB) or
equivalent ethics committee for approval. The IRB review process will evaluate the
following aspects:

- Risk assessment: Ensuring that potential risks to participants, such as privacy breaches
or misuse of data, are minimized and outweighed by the anticipated benefits of the
research.

- Informed consent procedures: Verifying that consent forms and processes are clear,
comprehensive, and appropriate for the target population, including individuals with
disabilities who may require simplified language or additional support.
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- Data management plan: Reviewing protocols for data collection, storage, and sharing to
ensure compliance with ethical and legal standards, including provisions for secure
anonymization and minimal data retention.

- Equity and inclusivity: Assessing whether the study design adequately addresses
potential biases and ensures equitable access to the technology across diverse
demographic groups.

Obtaining IRB approval will not only validate the ethical robustness of the proposed
research but also enhance trust among stakeholders, including participants, caregivers, and
regulatory bodies. This step is mandatory for ensuring that the deployment of facial
emotion recognition systems adheres to the highest ethical standards and contributes
positively to society.

LIMITATIONS

While the proposed YOLOvV8-based framework demonstrates robust performance across
multiple datasets, several limitations must be acknowledged. The system primarily relies
on visual facial cues, which may reduce its effectiveness in scenarios involving occlusions
(e.g., face masks, sunglasses), extreme lighting conditions, or motion blur, common
challenges in real-world transit environments. Additionally, the model focuses on
prototypical emotional expressions and may struggle with subtle or mixed emotions,
limiting its applicability in nuanced social interactions.

Although the framework incorporates explainability through EigenCam, there remains
a risk of cultural bias in emotion interpretation due to dataset composition and potential
over-reliance on specific demographic features during training. Emotion expression varies
significantly across cultures, and the current implementation does not explicitly account
for these variations.

Moreover, performance may degrade in highly dynamic environments with rapid
movement or poor image quality. The system’s reliance on consistent internet connectivity
for cloud-based processing also poses challenges in areas with limited network coverage.
Finally, while promising in controlled settings, the long-term impact of the system on
emotional learning and social integration for individuals with cognitive disabilities
requires extensive field testing and validation across diverse populations and real-world
ITS contexts.

Preliminary mitigation strategies

To address the identified limitations, we propose the following initial steps toward future
improvements, with a particular focus on integrating physiological sensors to complement
facial emotion recognition. These sensors will enhance the system’s reliability in scenarios
where facial cues are obscured or ambiguous.

- Integration of physiological sensors: To complement facial emotion detection,
wearable devices measuring physiological signals can be incorporated. These
sensors provide additional modalities for emotion recognition, particularly in cases
of occlusion or when facial expressions are subtle or mixed. Specific examples

Almaliki et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.3301 26/32


http://dx.doi.org/10.7717/peerj-cs.3301
https://peerj.com/computer-science/

PeerJ Computer Science

include: electrocardiogram, galvanic skin response, electromyography, and respiration
rate monitoring.

- Data augmentation and synthetic data generation: Advanced data augmentation
techniques, including GAN-based synthesis and domain adaptation, can diversify
training samples across underrepresented populations and improve generalization
across varied cultural expressions.

- Multimodal emotion recognition: Future work will explore combining facial analysis
with voice tone, body language, and contextual cues (e.g., location, time of day) to build a
more holistic understanding of emotional states, reducing dependency on visual-only
inputs.

— Cultural adaptability and fairness: We emphasize the importance of using culturally
inclusive datasets and annotations reflecting regional emotional expression differences
to ensure equitable performance across diverse user groups.

These preliminary initiatives aim to lay the groundwork for addressing the identified
limitations while promoting broader inclusivity and real-world applicability of
emotion-aware ITS frameworks.

CONCLUSIONS

We propose that AI-powered emotion detection systems can significantly improve the
capacity of individuals with cognitive disabilities to understand and respond to social and
emotional cues. This research introduces an Al-driven framework utilizing advanced
YOLOV8 models for accurate, real-time facial emotion detection tailored to the unique
challenges faced by this group. These systems empower users by providing real-time,
context-aware emotion recognition, enabling them to navigate social interactions more
independently and confidently. Cognitive disabilities often hinder emotion recognition
and expression, leading to isolation, miscommunication, anxiety, and reduced quality of
life. Emotional intelligence is increasingly critical for integrating individuals with cognitive
disabilities into educational, workplace, and social environments, as its absence can limit
relationship-building, collaboration, and comfort in social settings.

The study emphasizes the transformative potential of Al-powered systems to address
these challenges by filling the gaps left by current interventions, which are often
generalized, time-consuming, and dependent on human facilitators. By integrating
adaptive feedback mechanisms and explainable AT features, the proposed framework
enhances accessibility, usability, and trust. The framework utilizes YOLOv8-based deep
learning models for robust, real-time emotion classification across datasets like RAF-DB,
AffectNet, and CK+48. Among the tested models, YOLOv8 Small (YOLOVS8 S) achieved
the highest accuracy, with 95.80% on RAF-DB, 93.95% on AffectNet, and 100% on CK+48.

This study advances deep learning applications by fine-tuning models to address diverse
user needs, including varied response times and attention spans. It also promotes
inclusivity by ensuring compatibility with assistive technologies such as AR devices for
seamless integration into daily life. By utilizing these advanced deep learning models, the
framework significantly improves the ability of individuals with cognitive disabilities to
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interpret and respond to social cues. This technology can potentially transform
therapeutic, educational, and social inclusion efforts, reducing stigma and promoting
independence while enhancing the quality of life for affected individuals.

We plan to implement the framework in real-world pilot studies involving smart transit
hubs and wearable assistive devices. These deployments will allow us to evaluate the system
under authentic usage conditions and gather valuable feedback from users with cognitive
disabilities, caregivers, and transit personnel. In parallel, we aim to explore the integration
of physiological sensors (such as heart rate monitors and skin conductance sensors) to
complement facial emotion recognition in occlusion or ambiguous expressions.
Additionally, we intend to enhance model fairness by utilizing data augmentation and
synthetic data generation techniques tailored for underrepresented populations, thereby
improving cross-cultural generalization. In the long term, we envision a fully adaptive,
multimodal, emotion-aware ITS ecosystem that dynamically responds to users’ emotional
and cognitive needs, promoting inclusive urban mobility and fostering greater
independence and social integration for individuals with cognitive disabilities.
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