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ABSTRACT

Background: As a crucial cognitive and motor function, handwriting can reveal
dyslexia, dysgraphia, and other neurodevelopmental conditions. With the emergence
of Al, deep learning (DL) models can analyze handwriting patterns for early
identification and categorization of these conditions with high level of accuracy.
Objective: This study presents a literature review by examining DL models in
classifying learning disabilities using handwriting data. It identifies models’
shortcomings and suggests future research directions, improving model accuracy,
fairness, and usability.

Methodology: By employing the standard literature guidelines, the authors identified
24 studies from a pool of 502 studies. They extracted dataset details, methodologies,
and key findings from the studies.

Findings: The findings indicate the dominance of convolutional neural networks in
improving learning disabilities classification through the extraction of fine-grained
spatial handwritten patterns. Vision transformers (ViTs) show potential for
long-range contextual feature extraction to enhance the model’s generalization
capabilities. Despite these advances, dataset size, model generalizability,
computational efficiency, interpretability, and real-world deployment continue to be
significant challenges.

Conclusions: The review findings underscore the transformative potential of
DL-based handwriting analysis in educational and clinical settings, providing early
detection and intervention in learning disabilities.

Subjects Artificial Intelligence, Computer Education, Computer Vision, Data Science,

Visual Analytics

Keywords Dyslexia, Dysgraphia, Feature extraction, Handwritten images, Learning disabilities,
Deep learning

INTRODUCTION

Learning disabilities are neurodevelopmental conditions, impairing the brain’s ability to
process, store, and respond to information (Niazov, Hen ¢ Ferrari, 2022; Yen, Wong ¢
Chen, 2024). These disabilities, including dyslexia and dysgraphia, cause significant
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challenges to individuals, educational institutions, and healthcare professionals (Yen,
Wong & Chen, 2024). Diagnostic and therapeutic approaches relied on standardized
assessments, such as behavioral observations and manual analysis of written content
(Schwartz & Kelly, 2021). Although these approaches deliver positive outcomes, they are
time-consuming and lack an understanding of the complex patterns associated with these
conditions (Georgiadou, Vlachou ¢ Stavroussi, 2022). Dyslexia affects reading and
language processing (Georgiadou, Viachou ¢ Stavroussi, 2022). Despite possessing normal
intelligence and access to adequate educational opportunities, individuals with dyslexia
face challenges in deciphering words, recognizing patterns, and interpreting written
material (Parmenter, 2021). Phonological processing variations in the brain pose
significant challenges to individuals in connecting sounds to letters and words (Parmenter,
2021). Consequently, the individuals struggle to remember and organize information. As
reading and writing cognitive processes are closely related, dyslexia typically co-occurs
with other learning disorders, resulting in inconsistent handwriting.

Dysgraphia is characterized by challenges in writing and fine motor skills (Thapliyal
et al., 2022). It typically leads to poor handwriting, uneven letter formation, and difficulties
with spelling and grammar. Motor dysgraphia is characterized by problems with fine
motor skills and hand-eye coordination, whereas linguistic dysgraphia is characterized by
difficulties in converting mental representations into written language (Thapliyal et al.,
2022; Yen, Wong & Chen, 2024). Handwriting images may be used to study the writing
speed, excessive erasures, and uneven pen pressure of individuals with dysgraphia (Faci
et al., 2021; Shin et al., 2023; Mathew et al., 2024; Yen, Wong & Chen, 2024).
Understanding the cognitive and physical difficulties associated with dysgraphia may be
significantly aided by these visual indicators (Santhiya et al., 2023; Sharmila et al., 2023).
Additionally, various learning disabilities may affect handwriting, overlapping with
dyslexia and dysgraphia. Attention deficit hyperactivity disorder (ADHD) may cause
individuals to have difficulties in maintaining attention and organization, resulting in
inconsistent and impulsive writing patterns (Shin et al., 2023). Developmental
coordination disorder (DCD) affects motor abilities, causing unsteady handwriting with
inconsistent letter sizes (Yasunaga et al., 2024). Individuals with autism spectrum disorder
(ASD) frequently exhibit repetitive or rigid writing patterns (Shin et al., 2023; Yasunaga
et al., 2024). The coexistence of these conditions influences self-esteem, social
relationships, and long-term career prospects. These conditions share common patterns,
including irregular spacing, inconsistent pressure, and poor alignment, rendering
handwriting images an effective source for learning disability detection (Shin et al., 2023).

The examination of pen strokes, letter construction, and spatial organization offers a
unique opportunity to discover dyslexia (Faci et al., 2021; Mahto ¢ Kumar, 2024).
Researchers may utilize handwriting images to diagnose dyslexia in the early stages. Minor
signs, such as uneven letter spacing, inconsistent scaling, or commonly misspelled words,
can be used to distinguish between cognitively neutral and abnormal individuals (Mahto &
Kumar, 2024). In recent years, the possibilities for studying and treating learning
impairments have emerged with the development of machine learning (ML) models
(Alone & Bamnote, 2023; Dinusha, Sreekumar ¢ Lijiya, 2024; Zaibi ¢ Bezine, 2024).
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Several factors contribute to the need for ML-based learning disability detection models.
The primary factor is the increasing awareness of the limitations of conventional
diagnostic procedures. These approaches are unable to deliver valuable outcomes. Deep
learning (DL) models are advanced ML architectures, offering personalized and scalable
solutions, recognizing patterns, and providing data-driven insights (Ahire et al., 2023).
These models allow educators and therapists to focus on intervention by automating
handwriting, speech, and other behavioral data processing. The proliferation of digital
devices, including tablets, styluses, and smart pens, offers an opportunity to collect
high-resolution data on handwriting dynamics, such as pen pressure, stroke direction, and
writing frequency (Ahire et al., 2023).

Convolutional neural networks (CNNs) are a specialized class of DL models, learning
spatial hierarchies of features from the images (Panjwani-Charania ¢» Zhai, 2023). Vision
transformers (ViTs) are a type of DL model, using transformers to capture the long-range
spatial relationships (Panjwani-Charania ¢ Zhai, 2023). Artificial intelligence (AI)-driven
systems may be customized to individual features. For instance, a deep neural network can
be trained to identify the unique handwriting patterns related to each subtype of
dysgraphia in order to provide more targeted and individualized therapies. Due to a broad
spectrum of learning disability symptoms and severity, this customization is essential
(Vanitha & Kasthuri, 2021). The incorporation of deep learning models into educational
and therapeutic environments may narrow the gap between research and practice. These
models allow educators, parents, and clinicians to select intervention techniques with
real-time feedback and actionable information (Santhiya et al., 2023). For instance,
Predictive analytics may support clinicians in identifying individuals at risk of learning
impairments in the initial stages. The existing reviews emphasize the accuracy and
performance of DL models in controlled settings. The existing studies lack adequate
solutions for key issues, such as data privacy, informed consent, and algorithmic bias,
which are critical to the ethical development and deployment of Al-driven solutions
(Nawer et al., 2023). Language, cultural, and socioeconomic position biases in DL-based
learning disability detection remain unexplored. There is a lack of extensive information
regarding the model’s generalizability, leaving educators and clinicians ill-equipped to
assess the tools’ applicability to their requirements (Vanitha ¢» Kasthuri, 2021; Ahire et al.,
2023; Panjwani-Charania & Zhai, 2023; Dinusha, Sreekumar & Lijiya, 2024). Another
significant limitation is the inability to consider the ethical and social consequences. The
current reviews lack a critical evaluation of the methodological limitations (Ahire et al,
2023; Vanitha & Kasthuri, 2021; Panjwani-Charania & Zhai, 2023; Dinusha, Sreekumar &
Lijiya, 2024). The shortcomings, including small sample sizes and insufficient validations,
are not thoroughly analyzed. There is a demand for rigorous and transparent evaluation of
the DL-based learning disabilities detection models. A holistic understanding of the
challenges associated with developing DL model is crucial for building an explainable
learning disability detection model. Moreover, the existing reviews either focused on a
single disorder or evaluated algorithmic performance exclusively.

This study presents a literature review of DL applications for detecting dyslexia,
dysgraphia, ADHD, ASD, and related conditions using handwriting data. Unlike technical
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evaluations, it includes algorithmic bias and model generalizability across populations. In
addition, this evaluation bridges the gap between clinical and technological viewpoints by
identifying the models with the greatest quality of performance and their applicability in
real-time educational and healthcare environments. In addition, the study suggests a future
research roadmap that places an emphasis on explainable artificial intelligence (XAI),
multimodal integration, and lightweight architectures ideal for deployment in
low-resource settings. The contributions are as follows:

1. Comprehensive synthesis of existing studies associated with DL-driven learning
disabilities detection and classification.

By analyzing studies addressing disorders, such as dyslexia, dysgraphia, and related
conditions, this review offers a comprehensive overview of the current state of the field. It
highlights the significance of extracting subtle handwriting patterns associated with
disorders. Additionally, it presents the strengths and limitations of the existing studies.
2. Identification of research gaps and future directions.

This review emphasizes the importance of developing an interpretable model, offering
insights into the underlying patterns of learning disabilities. It highlights the demand for
developing models based on multi-modality data, including handwriting, speech, and
eye-tracking data. It provides a roadmap for future research, presenting effective and
practical solutions for diagnosing and managing learning disabilities. In this review, the
authors underscore the significance of addressing ethical concerns, including data privacy,
informed consent, and algorithmic bias. This review advocates for the development of
inclusive models, emphasizing linguistic, cultural, and socioeconomic diversity. It
recommends the use of advanced adaptive techniques, rendering services for different
languages. Additionally, it provides guidelines for collecting and using sensitive data.

The remaining part of this study is structured as follows: ‘Survey Methodology’ offers
survey methodology for thoroughly analyzing DL models’ performance in
handwriting-based learning disability identification. To guarantee clarity and
comparability across studies, this framework guides the selection, categorization, and
synthesis of relevant literature. The synthesized findings across diverse learning disabilities
are presented in ‘Handwriting-based Learning Disabilities Detection Models’. This section
reveals the diagnostic potential of DL models. ‘Discussions’ presents the review
implications and future research directions. It outlines the ethical framework, ensuring
inclusivity, data privacy, and equitable AI applications. Finally, ‘Conclusions’ summarizes
the review’s contributions and reinforces its role in guiding future research.

SURVEY METHODOLOGY

In this section, we describe the selection criteria and thematic classification, exploring the
application of DL models in detecting learning disabilities using handwriting analysis. We
synthesize DL-driven studies on learning disability detection and classification aligning
with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (Sarkis-Onofre et al., 2021). This approach encompasses formulating research
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Table 1 Inclusion and exclusion criteria.

Criteria Inclusion Exclusion

Study focus Studies based on the application of DL models Studies unrelated to learning disabilities and handwriting images
Target disabilities Dyslexia, dysgraphia, and other learning disabilities Studies focusing on non-cognitive motor impairments
Publication type Peer-reviewed journal articles and conference papers Non-reviewed literature and unpublished research studies
Language Studies published in English Non-English and translated studies

Data characteristics

Studies using real-world datasets with sufficient details ~ Studies with insufficient dataset details

questions, establishing eligibility criteria, developing a search strategy, selecting studies,
extracting data, assessing bias, and synthesizing results. A well-structured research
questions are the foundations for the literature reviews. We employ the Population,
Intervention, Comparison, and Outcome (PICO) framework to formulate the research
questions in this study, ensuring specificity and relevance. The research questions are listed
as follows:

Research question 1 (RQ1): How can DL models identify and classify learning
disabilities, including dyslexia and dysgraphia, through handwriting?

Research question 2 (RQ2): What are the future avenues to improve the performance of
the learning disability detection model? What ethical considerations need to be taken into
account, and how can the model design be made more inclusive?

Al-based handwriting analysis, model efficacy, and limitations are considered during
the research selection process. The extracted data highlights the features and shortcomings
of DL models in addressing dyslexia, dysgraphia, and other learning disabilities. The
authors conducted a comprehensive search of databases, including PubMed, IEEE Xplore,
Scopus, and Web of Science, in order to retrieve peer-reviewed studies. By using Boolean
operators and keyword combinations with key terms, including “deep learning” AND
“handwriting analysis” AND “learning disabilities,” “CNNs OR RNN OR transformers”
AND “dyslexia OR dysgraphia,” and “pen stroke analysis” AND “Al-based handwriting
recognition”, the authors extracted the articles. The relevant literature was obtained using
this comprehensive approach. The authors focused on empirical studies using
performance indicators such as accuracy, precision, recall, and F1-measure. Non-deep
learning, generic handwriting recognition (e.g., OCR), or non-peer-reviewed studies in
grey literature or opinion articles were excluded. The inclusion and exclusion criteria are
outlined in Table 1. These criteria facilitated the selection of relevant and high-quality
studies.

Using eligibility criteria, two independent reviewers examined study titles and abstracts
to exclude irrelevant articles. Subsequently, full-text review was conducted to guarantee
that the articles aligned with inclusion criteria. Any discrepancies during the selection
procedure were addressed through consultation with a third reviewer. To visualize the
research selection process, a PRISMA flow diagram is used for recording the total number
of studies identified, evaluated, and ultimately included.

In order to maintain uniformity between investigations, data was extracted
using a predetermined extraction form. Key features, including study characteristics
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(authors, year, journal/conference), objective (deep learning and handwriting analysis
study aims), methodology (type of DL model, dataset, preprocessing techniques, and
evaluation metrics), findings (model accuracy, precision, recall, F1-score), challenges (data
scarcity, computational costs, model interpretability), and proposed solutions, were
extracted. To identify similarities and trends across the studies, the extracted data were
combined.

To synthesize the data, the authors employed qualitative and quantitative methods. The
results were classified into key themes through a qualitative thematic analysis. These
themes include: (1) Methods for handwriting feature extraction (e.g., stroke pressure, letter
spacing, and fluency); (2) DL model architectures (e.g., CNNs vs. recurrent neural
networks (RNNs) vs. transformers); (3) challenges with Al-based diagnoses (e.g., data
imbalance, model interpretability, bias in training datasets); and (4) clinical applications
and implications (e.g., integration into healthcare and educational settings). The authors
aggregated model accuracy, precision-recall values, and F1-scores across trials in a
quantitative meta-analysis. The review approach, research selection criteria, and data
extraction methods were recorded for transparency and reliability, reflecting the current
landscape of DL-based handwriting classification in the context of learning disabilities.
The following section presents the findings of this survey, establishing a foundation for
understanding the significance of handwriting-based DL techniques in identifying learning
disabilities.

Intended audience
This review is intended for a multidisciplinary audience, including researchers,
practitioners, and policymakers. Specifically, it targets the following groups:

AT and ML researchers: The included studies covers DL models for
biomedical, behavioral, or educational data, supporting researchers to understand
the current applications of CNNs and vision transformers. Additionally, it
provides challenges associated with data imbalance, generalizability, and
interpretability.

Clinician, special educators, and neurodevelopmental specialists: This review offers
valuable insights into the early detection of learning disabilities, summarizing model
capabilities, ethical considerations, and model implementation barriers. It outlines the
diagnostic potential of Al-based tools in augmenting traditional assessments.

Policymakers: Using the study findings, policymakers can find guidance on ethical
considerations, data privacy, and fairness issues related to the model deployment.

HANDWRITING-BASED LEARNING DISABILITIES
DETECTION MODELS

This section synthesizes findings from selected studies, emphasizing the role of DL models
in diagnosing and classifying learning disabilities. The findings are organized into three
categories based on the specific conditions: dysgraphia, dyslexia, and other
neurodevelopmental disorders. The methodological approaches, dataset characteristics,
handwriting sample types, and performance metrics reported in the studies are presented
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in this section. This structured analysis lays the groundwork for broader insights into their
effectiveness and potential for real-world deployment.

Figure 1 presents the extraction process based on the PRISMA standards. The
identification phase involves a comprehensive search across multiple databases, including
PubMed, Scopus, IEEE Xplore, and Web of Science, resulting in the identification of 502
studies.

Figure 2 presents the trends in the number of publications, focusing on the use of DL
models in detecting learning disabilities, over the period from 2017 to 2024. It reveals
significant insights into the evolution of the novel DL models. The period between 2017
and 2019 reflects the early stages of research based on DL models. During this phase, the
research communities explore the foundational aspects of integrating Al with cognitive
and motor impairments. The lack of large annotated datasets may have contributed to this
slow progress. Between 2020 and 2022, the research outputs experienced a gradual rise.
The introduction of accessible and cost-effective devices allowed researchers to collect
high-quality handwriting datasets. In 2023, there is a significant surge in publications,
reflecting a heightened interest among researchers in handwriting-based learning disability
detection. The technological advancements in neural network architectures enabled the
development of models to handle complex handwriting patterns with high accuracy.
However, the year 2024 indicates a slight decline in research outputs. The slow pace of
publications may reflect the prioritization of ethical considerations and inclusivity in
model development, enhancing the quality of learning disability detection.

Figure 3 illustrates the distribution of the reviewed studies. It highlights that 54.2% of
the studies focused on dysgraphia while dyslexia (20.8%) and other conditions accounted
for 25.0%. The focus on dysgraphia indicates the importance of handwriting analysis as a
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diagnostic tool for this condition. The strong connection between this condition and
handwriting motivated the researchers to build automated tools for the dysgraphia
detection. Due to the reliance on other modalities, dyslexia detection based on handwriting
is lesser than dysgraphia detection. The remaining studies emphasized other disabilities,
including autism spectrum disorder (ASD) and attention deficit hyperactivity disorder
(ADHD). These studies highlight the significance of handwriting analysis in uncovering
neurological and developmental disorders.
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Identification of learning disabilities using the key features

The review of 24 studies demonstrates the significance of handwriting images in
diagnosing learning disabilities. These studies cover various conditions, including
dysgraphia, dyslexia, and other learning disabilities. Handwriting requires fine motor
skills, cognitive planning, and spatial awareness, offering a rich dataset to DL models.
Through handwriting analysis, the studies uncover and categorize learning disabilities.
With the use of multiple convolutional layers, CNNs capture intricate handwriting
features. These models identify basic visual features such as edges and curves.
Subsequently, the extracted features are refined in order to recognize higher-order
structures, including letters, shapes, and stroke formations. Darker or thicker regions in
the image typically indicate higher pressure while writing. However, features like pressure
are deduced indirectly from pixel intensity and stroke width. Analyzing stroke continuity,
curvature, and intersection points helps in approximating trajectory characteristics.
Despite the lack of temporal data in images, CNNs use spatial clues to reconstruct probable
sequences of strokes. Features such as uneven spacing, jagged contours, and abrupt
directional shifts may be used to evaluate velocity and fluency, which are frequently
disrupted in individuals with motor or cognitive impairments. To improve the extraction
of inferred temporal relationships from image-based data, more complex systems integrate
CNNs with sequence models such as long short-term memory (LSTMs) or ViTs, allowing
the extraction of pseudo-kinematic features from handwriting samples for complex
diagnostic categorization without real-time input. Figure 4 outlines the features, such as
stroke-based, spatial, temporal, texture, edge, structural, and geometric, serving as critical
indicators in evaluating handwriting irregularities associated with learning disabilities.
However, these features are not universally applicable to all types of learning disabilities.
Certain features are more indicative of specific conditions. Stroke-based and temporal
features are relevant to dysgraphia and ADHD. For instance, children with dysgraphia and
ADHD are frequently display inconsistent stroke length, frequent pauses, or unnatural
pressure variation. Texture and edge features are associated with dyslexia detection,
supporting to identify letter reversals, uneven spacing, and irregular shapes. Structural and
geometric features, such as shape symmetry, letter height, and line alignment, are useful in
identifying ASD.

Dysgraphia detection

Table 2 presents the characteristics of DL-based dysgraphia detection models. It outlines
various classification techniques, feature extraction approaches, and neural network
architectures. The models rely on spatial, temporal, and kinematic handwriting features for
differentiating typically normal individuals from individuals with dysgraphia. CNNs were
typically used for extracting fine-grained spatial features. Drotdr ¢ Dobes (2020) used
sigma-lognormal models and CNNs to organize strokes into the kinematic components,
revealing learning disability-related motor planning and execution deficits. Kedar (2021)
used letter-spacing and writing fluency features to identify dysgraphia. Similarly, Gemelli
et al. (2023) discussed the importance of stroke patterns and tremors in dysgraphia
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detection. Visual kinematics and feature fusion techniques were employed for improving
the classification accuracy. Tablet-based models, including (Asselborn et al., 2018;
Asselborn, Chapatte ¢ Dillenbourg, 2020) are ideal for analyzing children’s handwriting,
capturing dynamic features such as stroke pressure, writing fluency, and pen velocity. The
lack of temporal resolution and dependence on spatial patterns reduce the performance of
models based on scanned images. Feature-rich approaches, including (Kedar, 2021) and
(Sharmila et al., 2023) report high accuracy due to use of the high-resolution images.
However, these models encounter challenges in extracting crucial features related to the
disorders. The majority of the models depend on private or language-specific datasets,
limiting its generalizability. CNNs-based models offer promising outcomes in real-time
settings. However, broader dataset diversity and lightweight deployment architectures are
essential to enhance accessibility and inclusiveness.

Dyslexia detection

Table 3 highlights the performance of DL-based dyslexia detection models. The models
were based on CNN, hybrid architectures, and deep feature extraction techniques. The
studies showcase the effectiveness of the models in achieving classification accuracy greater
than 99.0%. For instance, Alkhurayyif ¢ Sait (2023) integrated CNN and gradient boosting
algorithms to detect abnormal handwriting patterns. Similarly, Algahtani, Alzahrani ¢
Ramzan (2023), employed a DL model with feature engineering for analyzing images. They
extracted features, including letter reversals, inconsistent spacing, and stroke fluidity
variations, for the image classification. From a reproducibility standpoint, these
approaches are commendable and essential for benchmarking and transparency in future
research. Jasira, Laila & Jemsheer Ahmed (2023) explored CNN and long short-term
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Table 2 Characteristics of DL-based dysgraphia detection models.

Authors Dataset Sample type Data Methodology Key findings Limitations
availability
Rosenblum ¢ Handwriting of 50 Scanned Private Handwriting kinematic Accuracy: 89.9% Dataset homogeneity

Dror (2017)

Asselborn et al.
(2018)

Dankoviéovd,
Hurtuk ¢
Fecilak
(2019)

Drotar &
Dobes (2020)

Asselborn,
Chapatte &
Dillenbourg
(2020)

Kedar (2021)

Gouraguine,
Qbadou &
Mansouri
(2022)

Sharmila et al.
(2023)

Kunhoth et al.
(2023)

Lomurno et al.
(2023)

Gemelli et al.
(2023)

cognitively normal and

49 children with
dysgraphia

Handwritings of 448
children

Handwritings of 78
children

Handwriting images of
120 Children

Handwritings of 448
children

Handwritings of 59
children

Handwritings of 110
children

810,000 isolated character

images

480 images

Handwriting of 210

children (99 Female and

111 Male)

475 handwriting lines of

children and 106
handwriting pages of
adults

Digital tablet

Scanned

Scanned

Tablet

Digital stylus

Digital

Digital

Scanned

Digital tablet

Scanned

Public

Not specified

Not specified

Public

Not specified

Not specified

Private

Not specified

Private

Private

feature classification

CNNs-based tablet
model

Random Forest
classification model

Sigma-lognormal
model with machine
learning classifiers

Utilized visual
kinematic markers
using CNN’s

CNNs based
classification using
letter spacing and
writing fluency

Robot aided data
collection with
DL-based
classification

Ensemble learning
approach

CNN based feature
fusion

Accuracy: 84.62%
Precision: 100
Recall: 6.25%

F1: 11.76%

DL classifier with
pre-trained CNNG.

Sensitivity: 90.0%
Specificity: 90.0%
Receiver operating
Characteristic: 0.91
Sensitivity: 96.6%
Specificity: 99.2%
Fl-score: 97.98% and
False positive rate: 0.78
Accuracy: 76.2 + 3
Sensitivity: 75.8 £ 5
Specificity: 76.6 + 9

Accuracy: 79.5%
Sensitivity: 79.7%
Specificity: 96.17
Sensitivity: 91.0%
Specificity: 90.0%

Accuracy: 92.59%
Precision: 92.85%
Recall: 92.85%
F1-score: 92.85
Accuracy: 75.0%
Recall: 75.0%
Precision: 66.0%
Specification: 75.0%
F1-score: 67.0%
Accuracy: 98.22%
Sensitivity: 95.84%
Specificity: 96.17%
Accuracy: 97.3%

Integrated DL and
Procrustes analysis

Precision: 0.819 =
0.080

Recall: 0.802 + 0.063
F1-score: 0.800 + 0.061

affects
generalizability

Reliance on Latin script

Limited linguistic
representation

Language specific
analysis and fixed
writing tasks

Participants were
native French
students

Lacks real-time
corrective feedback
for handwriting
improvement

Moderate model
accuracy

Fixed image resolution

High computational
resources

High false negatives
rate

Focus on single
language, lacking
diversity

(Continued)
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Table 2 (continued)

Authors Dataset Sample type Data Methodology Key findings Limitations
availability
Bublin et al. 12 Female and 10 Male  Digital Private SensoGrip-based DL Accuracy: 99.8% Hardware dependent
(2023) analysis Fl-score: 97.7% data collection and

Small dataset
Root mean square

deviation: 0.68

Ramlan et al. 267,930 images Digital Not specified Customized CNN Sequential Network Limited scope for
(2024) architecture (Accuracy: 86.0%) multimodal
Directed acyclic graph ~ integration
network (Accuracy:
87.75%)
Table 3 Characteristics of DL-based dyslexia detection models.

Authors Dataset Sample Data Methodology Key findings Limitations

type availability

Sasidhar et al. 78,275 Normal, 52,196 Reversal, Digital Not Residual neural Accuracy: 90.0% High computational
(2022) and 8,029 Corrected samples specified  network Precision: 97.6% demand

Recall: 97.6%
F1-score: 97.5%

Alkhurayyif & Sait 208,372 images Digital  Public CNNs and gradient  Accuracy: 99.2% Absence of clinical

(2023) boosting algorithms  p ecision: 96.8% validation
Recall: 97.3%
F1-score: 97.6%

Algahtani, 176,673 images Digital  Public Hybrid DL models Accuracy: 99.33%  Limited dataset
Alzahrani & with feature Precision: 99.13% diversity and
Ramzan (2023) engineering Recall: 99.4% real-time testing

F1-score: 99.2%
Jasira, Laila & 86,115 images Digital  Private CNN-LSTM hybrid ~ Accuracy: 98.2% Lack of real-time
Jemsheer Ahmed model Precision: 97.5% handwriting tracking
2023
(2023) Recall: 98.9%
F1-score: 98.2%

Aldehim et al. (2024) 39,912 images of NIST special Digital ~ Public Customized CNN Accuracy: 96.4% High computational

database 19 model Precision: 95.0% costs

Recall: 96.0%
F1-score: 96.0%

memory (LSTM) models to identify temporal dependencies in handwriting sequences.
However, the absence of data availability limits the performance of these models. The type
of handwriting samples and data availability significantly influence the model’s
interpretability and deployment readiness.

Other learning disabilities detection
Table 4 outlines the significance of DL models in detecting ADHD, ASD, and other
cognitive impairments. These models utilize CNNs, ViTs, and multimodal approaches to
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Table 4 Characteristics of DL-based other learning disabilities detection models.

Authors Type of Dataset Sample Data Methodology Key findings Limitations
learning type availability
disabilities
Faci et al. ADHD Handwriting  Digital  Public DL model based on pen  Accuracy: 90.78% Require optimization for
(2021) of 12 stroke kinematics real-world applications
children
Vilasini et al. Cognitive 22,000 images Digital Not specified CNN and ViT with hybrid CNN Accuracy: Lack of external
(2022) disorders feature extraction 79.47% validation
ViT Accuracy: 86.22%
Shin et al. ADHD Handwriting  Digital  Private Multi-feature ML model ~ Accuracy: 93.1% Bias in datasets towards
(2023) and ASD  of 29 for ADHD and ASD Precision: 95.0% specific languages
children
Recall: 90.48%
F1-score: 92.68%
ROC: 0.93
Nawer et al. ~ ASD Handwriting  Digital ~Not specified SWIN transformer with ~ Accuracy: 98.0% Computationally
(2023) of 17 EEG multi-modal fusion g} _ccore: 98.0% expensive for
children deployment
ROC: 0.98
Cohen’s Kappa: 0.97
Mathew et al. ASD 90 images Scanned Not specified Customized CNN Specificity: 99.2% Requires specialized
(2024) Sensitivity: 98.9% hardware
Yen, Wong ¢ ASD Handwriting ~ Scanned Not specified Fine-tuned CNN F1-score: 93.6% Rely on Chinese
Chen (2024) of 27 character patterns
children

extract features associated with neurodevelopmental disorders. Faci et al. (2021) used pen
stroke kinematics to analyze handwriting patterns of ADHD individuals, achieving an
accuracy of 90.78%. Vilasini et al. (2022) implemented a hybrid model through the
integration of CNN and ViT models. They revealed the capabilities of ViTs in capturing
long-range dependencies in handwriting images. Shin et al. (2023) developed a
multi-feature ML model for classifying ADHD and ASD. Nawer et al. (2023) showed the
effectiveness of multi-modal approaches by combining handwriting and
electroencephalogram (EEG) signals, enhancing classification performance. The absence
of open datasets, variability in sample types, and hardware dependencies present
challenges in model deployment. For instance, Yen, Wong ¢» Chen (2024) is tailored to
Chinese character patterns, limiting its generalizability. The standardization of input
formats and broader language presentation are crucial for developing effective diagnostic
models to serve neuro-diverse populations.

The following section builds on these insights to draw cross-condition comparisons. It
proposes future directions for advancing the field of learning disability detection.

DISCUSSIONS

Based on the comparative outcomes presented in the previous section, this section delves
deeper into the implications of the selected studies. The study findings have significant
implications for healthcare professionals, academics, and Al developers. The authors
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addressed RQ1 and RQ2 by providing strengths and limitations of existing models and
future avenues for developing effective, inclusive Al-driven learning disabilities detection
applications. Inconsistent letter sizes, slow writing rates, excessive pen pressure, and
frequent corrections were the primary characteristics of dysgraphia handwriting. Likewise,
dyslexic handwriting includes letter reversals, improper spacing, and unusual stroke
sequences. The diagnostic accuracy has been greatly enhanced by the ability of DL
algorithms to autonomously extract these micro-patterns. Several studies compared
traditional diagnostic procedures, including neuropsychological evaluations and
handwriting screening tests, with DL-based handwriting analysis. DL models provide
standardized evaluations with consistent performance, whereas traditional approaches are
typically affected by subjectivity and inter-rater variability. Based on the results, AI-based
handwriting assessments are faster, objective, and scalable. However, these models lack the
contextual knowledge and clinical experience of human investigators, affecting the
reliability of their outcomes.

Quality and risk of bias in included studies

The existing DL models are effective in identifying handwriting-based learning disabilities.
Focusing on handwriting-based models may introduce selection bias, neglecting potential
studies associated with learning disabilities. Additionally, several limitations prevent its
widespread application in clinical and educational contexts. The limitations include
dataset problems, computational limits, model interpretability, and real-world validation.
Addressing these limitations is crucial for developing a dependable AI-powered
handwriting analysis tool for practical application.

The majority of studies use small or demographic-specific datasets. For instance, many
dyslexia and dysgraphia detection models were trained on Latin script datasets, restricting
their applicability to Arabic, Chinese, or other languages. Variations in handwriting style
due to aging are frequently underestimated. Each age group has various handwriting traits.
However, most datasets are biased toward children, making it hard for models to
generalize to real-world applications. The accuracy of AI models across diverse
populations is affected by the underrepresentation of gender-based variances, handedness
(left vs. right-handed writers), and cultural writing variants in existing datasets. CNN, ViT,
and hybrid architecture deep learning models demand substantial computational
resources. The high resource requirements of the existing models make them unsuitable
for use on mobile devices, tablets, or school-based computers. For instance, studies,
including (Kunhoth et al., 2023) and (Nawer et al., 2023) employed customized CNNs
architectures and Transformers. These models demand the use of graphical processing
units or cloud-based infrastructure, which can be costly and impractical for schools,
educators, and healthcare professionals who may not have access to high-performance
computer resources. Moreover, due to deep learning inference, real-time handwriting
analysis is challenging.

Insufficient interpretability in DL models for handwriting-based impairment diagnosis
is another limitation. The reviewed studies are not transparent, offering predictions using
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complicated hierarchical feature extraction without explaining their association with
disabilities. Lack of explainability in AI-driven exams leads to a trust gap for educators,
healthcare professionals, and parents. Most models were trained on standardized writing
tasks such as copying sentences or writing words. The controlled tasks contribute to model
benchmarking. However, they fail to reflect natural and spontaneous handwriting.
Similarly, the intricacy of handwriting differs across different writing media. For instance,
Sharmila et al. (2023) and Bublin et al. (2023) concentrated on digital handwriting, which
may not describe real-world note-taking. Currently, there is no universal benchmark for
assessing the performance of DL-based handwriting analysis models for learning
impairment diagnosis. It is challenging to determine which model is the best for real-world
applications. For instance, some studies apply accuracy, precision, and recall, while others
employ F1-scores or ROC. The most effective methodology for detecting learning
disabilities cannot be reliably determined in the absence of a standardized screening
framework. Additionally, the existing studies face challenges in maintaining data privacy,
reducing algorithmic bias, ensuring fairness, accessibility, and ethnic diversity.

Ethical considerations

Data governance and model performance across varied contexts are required to improve
the ethical and practical impact of DL-based learning disability detection models,
demanding ethical data collection, model interpretation, fairness, and generalizability.
Integrating industry standards in various domains is essential for fostering credibility,
fairness, and practicality in practical contexts.

It is typical for handwriting data to include sensitive information, especially when it is
collected from children in educational or therapeutic settings. Informed consent involves
informing participants or their legal guardians about the study’s objective, how the data
will be used, and any risks or advantages. Language on consent forms should be easy to
understand and use, and participants should be able to withdraw their consent at any time
without negative consequences.

To safeguard the identity of participants, anonymizing and minimizing data is essential.
This involves removing names, identities, and information that could identify individuals.
Encrypting digital samples and storing them on secure servers with strong access rules may
prevent unauthorized usage. Researchers should strive for data sharing agreements that
enable others to utilize information while preserving ethical standards, facilitating
replication and benchmarking across studies.

Additionally, it is essential to ensure that the data gathering process is inclusive.
Preventing cultural or linguistic bias requires handwriting samples to represent a diverse
variety of languages, scripts, socioeconomic origins, and learning qualities, enhancing the
model’s generalizability.

Future avenues
To maximize the use of the DL-based learning disability detection in real-time
applications, future research should focus on enhancing dataset diversity, integrating
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multi-modal learning, improving model interpretability, and developing adaptive
Al-driven interventions. Developing large-scale diverse handwriting datasets,
capturing a wider range of writing styles, linguistic variations, age groups, and diverse
populations, can improve the efficiency of the existing models. The inclusion of
handwriting samples from left- and right-handed individuals can reveal differences in
writing orientation. Additionally, there is a demand for a centralized dataset covering
dyslexia, dysgraphia, ADHD, and ASD, allowing researchers to compare models
effectively.

To minimize the high computational power, lightweight architectures can be used.
Techniques, including pruning, quantization, and knowledge distillation, enable
handwriting analyzing tools to operate on tablets, smartphones, and low-cost computing
devices. By leveraging efficient neural networks, reliance on cloud-based Al models can be
reduced. The development of green Al solutions with lower energy footprints can facilitate
the integration of handwriting analysis into sustainable learning environments.

Future research should focus on integrating multiple modalities to improve
classification accuracy. The use of multi-modalities can provide deeper insights into
cognitive and motor impairments. Nawer et al. (2023) revealed the significance of
electroencephalogram (EEG) signals in detecting learning disabilities. Similarly,
combining handwriting images and real-time eye tracking can enhance the classification
performance. Al-assisted educational tools can facilitate real-time feedback to students,
enhancing early diagnosis and personalized interventions.

SHapley Additive exPlanations (SHAP) interprets the predictions made by AI models,
quantifying the importance of a specific feature in the predicting learning disability.
Gradient-weighted class activation mapping (Grad-CAM) generates heatmaps indicating
the areas of an input image that were influential in the model’s decision-making process.
These techniques can provide visual explanations of handwriting features, leading to the
development of explainable Al. By adding confidence levels to predictions, educators can
use the Al-driven learning disabilities detection tools. Future AI handwriting tools can
leverage edge Al techniques, reducing data exposure risks and enhancing user control over
personal information. Data encryption, anonymization, and secure storage protocols can
be applied to ensure compliance with privacy laws and maintain user trust. In addition,
researchers can explore alternative data collection methods, such as synthetic handwriting
generation, mimicking diverse handwriting variations.

While this review provided deeper insights into diverse learning disabilities and their
Al-driven diagnosis and management, it has certain limitations. The review relies on
peer-reviewed manuscripts, leading to limited insights into real-world implementations.
The dependence on English studies may result in the exclusion of significant research
conducted in non-English-speaking regions. Incorporating multi-lingual research and
industry applications can present a broader perspective on Al-driven handwriting analysis.
The heterogeneity of methodologies and evaluation metrics may cause challenges in
comparing the performance of the models. Focusing on a universal evaluation protocol can
facilitate objective model comparisons.
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CONCLUSIONS

This review highlights the significant role of DL in handwriting analysis for early and
accurate diagnosis of learning disabilities. Through a systematic analysis, the authors
identified 24 peer-reviewed studies, classifying dyslexia, dysgraphia, and other
neurodevelopmental disorders. The key contributions of this review are the synthesis of
diverse research methodologies, showcasing the efficacy of Al-powered handwriting
analysis. It highlighted the importance of multi-modal approaches, enhancing handwriting
analysis through the integration of eye-tracking, EEG signals, and other modalities.
Al-driven procedures are more efficient and objective than conventional methods.
However, dataset diversity, model interpretability, and ethical issues should be addressed.
Future research should focus on developing scalable, explainable, and ethical AT models to
improve learning and clinical decision-making in individuals with dyslexia, dysgraphia,
and associated disorders. The incorporation of explainable AI frameworks is an additional
significant research avenue. These frameworks allow models to offer visual explanations
and feature attribution maps, enabling educators, clinicians, and parents to comprehend
the reasons behind the classification of handwriting samples. While this review covered
diverse studies, relevant research published in non-peer-reviewed journals or industry
reports may offer substantial insights into learning disabilities. Broadening the range of
included studies can provide a holistic perspective on AI applications in handwriting
assessment.
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