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ABSTRACT
Understanding public attention to special education is vital for promoting
educational equity and achieving the Sustainable Development Goals (SDGs). This
study aims to examine the spatiotemporal patterns of public attention to special
education in China and to develop and evaluate a hybrid forecasting model to
anticipate trends in such attention. Temporal trends and spatial disparities were
assessed using geographic information system (GIS) techniques and spatial
autocorrelation analysis. A hybrid forecasting approach combining Seasonal
Autoregressive Integrated Moving Average (SARIMA) and long short-term memory
(LSTM) models was applied, and its accuracy was evaluated using multiple
performance metrics. The results suggest that public attention to special education
remains stronger in the developed eastern regions and lags in the west. There are
clear regional disparities and seasonal peaks in public attention, with the hybrid
model outperforming single-model approaches in forecasting accuracy. This study
integrates big data analytics, spatiotemporal modeling, and hybrid forecasting,
contributing to future assessments of public attention to special education. The
findings illustrate a framework for effectively improving responsiveness to
educational policies, enhancing the efficiency of educational resource allocation, and
promoting equitable and sustainable development in education.

Subjects Artificial Intelligence, DataMining andMachine Learning, Social Computing, Spatial and
Geographic Information Systems, Sentiment Analysis
Keywords Spatiotemporal, Forecasting, SARIMA-LSTM, GIS, Baidu Index, Public attention,
Special education

INTRODUCTION
The Sustainable Development Goals (SDGs) have become central to global policy
discourse. SDG 4 calls for inclusive and equitable quality education and lifelong learning
opportunities for all (Adams, Jameel & Goggins, 2023). Special education plays a critical
role in achieving this goal, serving as a pathway to educational equity and social inclusion
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(Cooc & Yang, 2016). While inclusive education policies and greater recognition of the
rights of individuals with special needs have heightened attention to this field, students
with special educational needs still face barriers such as uneven resource allocation, societal
prejudice, and limited policy implementation (Kolbe, Dhuey & Doutre, 2023). Increasing
public attention to special education contributes to building a more inclusive and equitable
educational ecosystem, serving as a key driver in advancing the realization of the SDGs
(Sulasmi, Prasetia & Rahman, 2023).

Traditional research methods, such as surveys and interviews, provide valuable insights
but lack the timeliness needed to track rapid changes in public sentiment (Amer-Mestre,
Ayarza-Astigarraga & Lopes, 2024). In contrast, internet-based behavioral data,
particularly search engine indices, enable real-time and continuous monitoring of
attention trends, offering an innovative resource for capturing shifts in public interest
(Ikegwu et al., 2022). Such data have been widely applied in education, healthcare,
environmental awareness, and social policy studies to capture patterns of public attention
(Havranek & Zeynalov, 2021; Sycinska-Dziarnowska et al., 2021; Han et al., 2024; Rahdari
et al., 2024; Urman & Makhortykh, 2024). They also provide a dynamic lens for
interpreting public engagement with special education (Simionescu & Cifuentes-Faura,
2022; Tubadji, Boy &Webber, 2023), serving as a valuable direction in educational research
(Zhao, Li & Liu, 2024). Meanwhile, public attention to special education shows both
temporal fluctuations and regional disparities. Differences in economic development,
educational resources, and cultural context contribute to spatial clustering or dispersal of
attention (Fegert et al., 2020; Li et al., 2022; Qi et al., 2023).

However, despite the growing use of search engine data in educational research, few
studies have systematically examined public attention to special education from both
temporal and spatial perspectives. Existing work often focuses on single events, policy
evaluation, or limited geographic contexts (Tefera & Fischman, 2020), without revealing
long-term dynamics or regional disparities. Moreover, the integration of advanced
forecasting techniques—particularly hybrid models combining statistical and deep
learning methods—into this field remains rare, limiting the ability to anticipate shifts in
public interest and inform timely policy action. Addressing these gaps is essential for
developing a data-driven framework that explains current attention patterns and generates
actionable forecasts to guide equitable resource allocation and awareness strategies.

Geographic information system (GIS) tools enable visualization of spatial distribution
and identification of regional disparities in public attention (Rovetta, 2021). Forecasting
methods, from time series analysis to machine and deep learning, have been widely applied
in public health, socioeconomic research, and finance (Rahdari et al., 2024). These
techniques provide a feasible pathway for integrating spatial analysis with temporal
forecasting models, enabling a comprehensive exploration of public attention to special
education.

Accordingly, this study pursues two research objectives (ROs):
RO1: To examine the spatiotemporal variation in public attention to special education

and identify its evolutionary patterns.
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RO2: To construct and evaluate a forecasting model to accurately capture public
attention to special education.

To achieve these objectives, the study combines GIS technology with a Seasonal
Autoregressive Integrated Moving Average (SARIMA)-LSTM hybrid model. It employs
tools such as Excel, GeoDa, ArcGIS, SPSS, and Python to analyze the spatiotemporal
evolution and forecasting of public attention to special education in China, using data from
the Baidu Index. By employing web-based big data, it enriches the literature and promotes
interdisciplinary integration between education and data sciences. The findings reveal
temporal and spatial evolution patterns, providing evidence for inclusive education policy,
resource allocation, and public engagement, thereby supporting SDGs in education.
Furthermore, the study develops a framework that combines time series forecasting with
spatial analysis, enhancing monitoring accuracy and offering a replicable approach for
studying public attention in other social science contexts.

LITERATURE REVIEW
Special education
Special education aims to offer fair and inclusive learning opportunities for children with
special educational needs (McLaughlin, Krezmien & Zablocki, 2009; Snozzi, Carmen &
Müller, 2024). Currently, public attention to special education has continued to rise, and
societal understanding of children with special needs has gradually shifted from viewing
them as “disabled” to recognizing them as having “special learning needs.” Increasing
attention is also being given to non-traditional groups (Garner et al., 2020; Keles, ten Braak
& Munthe, 2024).

At the same time, social media and public-interest campaigns have enhanced public
awareness and contributed to greater societal support for special education (Bakombo,
Ewalefo & Konkle, 2023; Bitman, 2023; Clegg & Lansdall-welfare, 2024). Developments in
technologies such as artificial intelligence, remote education, and assistive devices have not
only broadened the avenues through which special education can be delivered, but have
also stimulated public interest in the concept of technology-enabled special education
(Chen et al., 2022; Marino et al., 2023; Yang et al., 2024). These trends suggest that special
education research is increasingly oriented towards inclusive and intelligent education,
with related topics becoming focal points of interest for the public and scholars.

Public attention
With the advancement of big data analytics, researchers have begun to utilize online
behavioral data (such as search engine indices and social media activity) as proxies for
public interest, treating public attention as a key indicator of societal awareness and
engagement with specific issues (Nghiem et al., 2016). Eysenbach was among the first to
explore the concept of “infodemiology” in public health using web-based data, a concept
that was later extended to educational research (Eysenbach, 2009).

Search engine indices, as important digital indicators reflecting the level of public
concern for social issues, are increasingly offering data-driven, quantitative methodologies
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for studies in education (Kansal et al., 2021). Previous studies have employed Google
Trends to examine shifts in educational models and trends in public interest (Phelan et al.,
2017; Brody et al., 2024), as well as to analyze public attention to various forms of
education, including higher education, online education, artificial intelligence in
education, adult education, and lifelong learning (Zhao, Li & Wang, 2021; Tan et al., 2022;
Artyukhov et al., 2023; Tan et al., 2024; Jiang & Fu, 2025).

In addition, some scholars have investigated how changes in education policy affect
public attention to special education, using search engine data as the analytical foundation
(Long et al., 2022). These studies indicate that identifying and forecasting public interest
trends in education through search engine indices has become a new direction in
educational big data research.

Spatial analysis
Although the application of search engine indices in studying public attention has
established a solid foundation, there remains a lack of systematic investigation into the
spatial distribution characteristics of public concern. Public behavior often exhibits distinct
patterns of clustering and heterogeneity within geographic space, and relying solely on
temporal analysis is insufficient to uncover regional disparities and underlying
mechanisms of dissemination.

Spatial autocorrelation tools have been widely employed in fields including public
health, urban planning, and regional economics (Rovetta, 2021; Lin et al., 2023;
Vardopoulos et al., 2023; Musikhin & Karpik, 2023) to identify behavioral patterns and
clustering trends across geographic areas (Yousefi et al., 2020). These tools enable the
quantification of spatial relationships among variables, revealing hotspots, cold spots, and
anomalies in spatial distribution (Pászto, Burian & Macků, 2020).

In the context of educational research, spatial analysis methods have also demonstrated
considerable value. For instance, in exploring paradigm shifts in education during the age
of artificial intelligence (AI), mapping the environments of students engaging in online
learning, and examining topological structures in educational systems (Du et al., 2022;
Lingard, 2022; Zhong & Zhao, 2025). Empirical studies have shown that GIS technologies
and spatial autocorrelation analysis can effectively reveal regional disparities and
distributional characteristics in public attention to education (Konstantakatos & Galani,
2023). As such, the integration of spatial analysis methods into the study of public
attention offers valuable insights into regional differences in educational awareness, policy
receptiveness, and information dissemination effectiveness.

Forecasting model
Autoregressive Integrated Moving Average (ARIMA) based models, such as SARIMA,
have been widely used in educational forecasting research. For instance, prior studies have
applied such models to forecast higher education quality, the cost of educational facilities,
and trends in teacher demand (Jeong, Koo & Hong, 2014; Kharitonov et al., 2021; Reyes
Reyes et al., 2022; Zhu, 2023). However, these linear models present certain limitations
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when dealing with the non-linear characteristics and context-sensitive patterns frequently
observed in real-world public attention data.

To address these shortcomings, recent research has increasingly incorporated deep
learning methods, particularly long short-term memory (LSTM) networks, due to their
ability to identify long-range patterns and handle intricate non-linear dynamics within
time series data (Bousnguar, Najdi & Battou, 2022). LSTM models are especially suited to
handling dynamic sequences influenced by multiple factors, such as public behavior and
educational feedback, owing to their ability to retain historical information across multiple
time layers (Van Houdt, Mosquera & Nápoles, 2020).

Further studies have shown that hybrid forecasting models integrating traditional
statistical approaches (such as SARIMA) with LSTM architectures can significantly
enhance both forecasting accuracy and robustness, outperforming the performance of
single models (Tuğba Önder, 2024; Bilgili, Pinar & Durhasan, 2025). These hybrid
models are particularly effective in managing complex datasets characterized by
external shocks, time lags, and trend reversals, making them well-suited to highly
dynamic social science contexts such as education policy evaluation and public opinion
analysis.

Although SARIMA and LSTM models have been widely used for temporal forecasting,
and Moran’s I has revealed spatial clustering patterns, few studies have integrated these
methods within a unified framework to analyze public attention to special education.
Approaches that combine spatiotemporal modeling with hybrid forecasting techniques
remain underexplored. This study aims to enrich existing research by integrating the
SARIMA-LSTM hybrid model with spatial autocorrelation analysis, offering a robust
methodology for understanding and forecasting the public attention to special education.
This approach not only facilitates the analysis of public perceptions and needs regarding
special education but also enhances the sociological understanding of the field.
Furthermore, it provides a scientific foundation for the optimization of special education
policies, public awareness initiatives, and the advancement of educational equity, thereby
carrying both theoretical significance and practical value.

METHODOLOGY
Date source
This study covers 31 provinces across China, with Hong Kong, Macau, and Taiwan
excluded due to data limitations. The base map used for spatial visualization was sourced
from the Amap Open Platform (Amap, 2025). Data were collected from Baidu Index, with
the sample comprising Chinese internet users. Baidu is the first search engine in China (Xie
et al., 2024), and the Baidu index has been extensively applied in studies on public
attention. To enhance data completeness, this study employed the Baidu Index’s keyword
accumulation function for data collection (Shu et al., 2020). In line with the platform’s
limitation of three keywords per query (Baidu, 2025), the following selection strategy was
adopted: “special education” was chosen as the core keyword; related candidate terms were
identified using Baidu Index demand map based on semantic relevance; the two most
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frequently occurring terms over the past year were then selected as supplementary
keywords.

As a result, “special education major” (特殊教育专业) and “special education schools”
(特殊教育学校) were identified as supplementary terms. These, along with “special
education” (特殊教育), formed the final keyword combination. The Baidu Index data for
these keywords, covering the period from 2020 to 2024, were retrieved and used as the
primary dataset for measuring public attention.

Research method
This methodological framework addresses the gap identified in the preceding sections,
namely the limited integration of temporal–spatial analysis and advanced hybrid
forecasting in studies on public attention to special education. By combining GIS-based
spatial analysis with a SARIMA-LSTM model, the study captures both regional disparities
and complex temporal patterns.

The selection of methods was informed by their proven suitability in similar research
contexts. GIS-based spatial analysis has been widely applied to identify and visualize
spatial disparities in education-related studies (Konstantakatos & Galani, 2023), while
SARIMA effectively models linear and seasonal patterns in time series data (Kumar Dubey
et al., 2021). LSTM networks are well suited to capturing non-linear dependencies
and long-term temporal relationships (Van Houdt, Mosquera & Nápoles, 2020). The
hybrid SARIMA-LSTM model leverages the complementary strengths of both
approaches, as supported by prior studies showing its superior forecasting performance in
complex social datasets (Peirano, Kristjanpoller & Minutolo, 2021; Bilgili, Pinar &
Durhasan, 2025).

The data analysis in this study utilized software including Excel, SPSS, ArcGIS, GeoDa,
and Python, and adopted a quantitative research approach. First, the temporal trends of
public attention to special education in China are examined. Subsequently, GIS-based
spatial analysis is utilized to examine the spatial variation, and visual maps are generated to
present its spatial evolution. Finally, a SARIMA-LSTM hybrid model is used to construct a
forecasting model of public attention to special education, and the model’s forecasting
accuracy is evaluated. The selection of analytical tools was aligned with the study’s dual
focus on spatial pattern detection and temporal forecasting. Excel was used for data
preprocessing and initial calculations, SPSS for statistical and regression analysis, ArcGIS
for spatial visualization, GeoDa for spatial autocorrelation analysis, and Python for
implementing SARIMA, LSTM, and hybrid models. This combination ensures
methodological robustness and replicability.

The following subsections detail the spatial correlation analysis and forecasting model
construction adopted in this study.

Spatial correlation analysis
Moran’s I is a common indicator in spatial statistical analysis (Balash et al., 2020). It is
typically categorized into Global and Local (Mathur, 2015). In this study, Moran’s I values
are computed and visualized using GeoDa software to conduct a comprehensive analysis of
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the spatial correlation of public attention at both the overall and local levels. This enables
the identification of spatial clustering patterns and regional disparities in public interest.
The equations are:

I ¼ nPn
i¼1

Pn
j¼1 Wij

�
Pn

i¼1

Pn
j¼1 Wij Xi � �Xð Þ Xj � �X

� �
Pn

i¼1 Xi � �Xð Þ2 (1)

IL ¼ nPn
i¼1

Pn
j¼1 Wij

� Xi � �Xð ÞPn
j¼1 Wij Xj � �X

� �
Pn

j¼1 Xi � �Xð Þ2 (2)

where I and IL denote the Global and Local indices, respectively, X represents the observed
indicator of interest, and Xi and Xj refer to the values of X in regions i and j. n is the
number of regions under investigation, andWij is the spatial weight. In this study,Wij is set
to 1 if regions i and j share a geographical boundary, and zero otherwise.

To ensure the validity of the index, a Z-score is typically used to conduct a significance
test. The equation is:

Z Ið Þ ¼ I � E Ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR Ið Þp : (3)

Here, Z(I) represents the standardized test statistic for significance, E(I) denotes the
expected value of the Moran’s I index, and VAR(I) is its variance. According to the 95%
confidence interval criterion, if |Z| exceeds 1.96, the spatial autocorrelation is considered
statistically significant; conversely, if |Z| is less than 1.96, the observed values are regarded
as randomly distributed (Ohana-Levi et al., 2019).

Local spatial autocorrelation analysis can be used to identify spatial clustering patterns
within regions (Appice & Malerba, 2014), which are typically categorized into: High–High
(H–H), Low–Low (L–L), High–Low (H–L), and Low–High (L–H). Among these, H–H and
L–L indicate spatial association in public attention levels, while H–L and L–H reflect
spatial heterogeneity. In this study, visual representations of local clustering patterns are
generated using GeoDa software to illustrate the spatial distribution and evolution of
public attention towards special education.

Forecasting model
(1) SARIMA model

The Autoregressive Integrated Moving Average (ARIMA) model is applied for
forecasting non-stationary data in real-world applications (Box et al., 2015). It has been
extensively applied across various domains in both the social and natural sciences. The
idea of ARIMA is to eliminate local levels or trends in a non-stationary series through
differencing, thereby transforming it into a stationary series that can be modeled using an
ARMA structure (Fattah et al., 2018). The equation is:

yt ¼ lþ
Xp
i¼1

ciyt�1 þ
Xq
i¼1

hiyt�1 þ et: (4)
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Here, yt denotes the value of the differenced time series X at time t, µ is the constant
term, while p and q indicate the respective orders of the autoregressive (AR) and moving
average (MA) components. The term et indicates the error term, γi refers to the
autoregressive coefficients, and θi represents the moving average coefficients.

On this basis, the SARIMA model integrates seasonal effects, which is suitable for
analyzing and forecasting time series with cyclical temporal behavior (Kumar Dubey et al.,
2021). It captures linear and seasonal structures in the data, which are essential for
understanding recurring patterns in public attention.

The SARIMA model is usually expressed as SARIMA(p, d, q) × (P, D, Q)s, where p, d,
and q correspond to the orders of the non-seasonal autoregressive term, differencing, and
moving average term, respectively. Meanwhile, P, D, and Q refer to the seasonal
counterparts of these parameters, and s signifies the seasonal cycle length. The equation is:

�P Bsð Þf Bð Þ 1� Bsð ÞD 1� Bð Þdyt ¼ cþ�Q Bsð Þhq Bð Þet: (5)

In this equation, yt represents the observed value of the time series at time t, and εt
corresponds to the white noise at that point in time. The constant term is denoted by c. The
operator B is the backshift (or lag) operator, where applying Bs to yt yields yt−s, indicating a
shift of s time steps. The terms ϕp(B) and θq(B) refer to the polynomials for the
non-seasonal AR and MA components of orders p and q, respectively. Similarly, ΦP(B

s)
and ΘQ(B

s) denote the seasonal AR and MA polynomials of orders P and Q, constructed
based on the seasonal lag s. The SARIMA framework is defined by seven key parameters: p,
d, q, P, D, Q, and s. Selecting suitable values for these parameters is known as the model
identification or order selection process.

The construction of a SARIMA model generally follows a sequence of critical steps,
including data preprocessing, stationarity assessment, white noise verification, parameter
identification, model diagnostics, and ultimately, forecasting. In this study, the Augmented
Dickey–Fuller (ADF) test is applied to evaluate the stationarity of the series, while the
Ljung–Box Q test is utilized to determine if the model residuals exhibit the characteristics
of a white noise process (Paparoditis & Politis, 2018; Hassani & Yeganegi, 2019).
(2) LSTM model

The LSTM network is a type of recurrent neural network (RNN) specifically designed to
capture long-term dependencies in sequential data. It incorporates three gating
mechanisms—input, forget, and output gates—that regulate information flow and mitigate
the vanishing and unstable gradient problems common in conventional RNNs (Gers,
Schmidhuber & Cummins, 2000), making it effective for modeling complex, non-linear
fluctuations in public attention data.

Its structure processes information from three inputs: the current input (xt), the
previous hidden state (st−1), and the previous cell state (Ct-1) (see Fig. 1). Its core
components include the input gate (it), forget gate (ft), output gate (ot), and memory cell
(Ct). These gates regulate information flow within the network, enabling it to retain
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essential data and discard irrelevant details, thereby supporting the modeling of long-term
dependencies (Sherstinsky, 2020).

The forget gate controls the proportion of past cell state information that is maintained
or eliminated. The equation is defined as:

ft ¼ r Wf � St�1; xt½ � þ bf
� �

: (6)

In this context, σ(·) represents the sigmoid activation function, Wf denotes the weight
matrix corresponding to the forget gate, and bf is its associated bias vector.

The input gate determines which new information is added to the cell’s memory. The
equation is defined as:

it ¼ r Wi � St�1; xt½ � þ bið Þ (7)
~Ct ¼ tanh Wc � St�1; xt½ � þ bcð Þ: (8)

In this equation, Wi and Wc denote the weight matrices associated with the input gate
and the candidate memory vector, respectively, while bi and bc are their corresponding bias
terms. ~Ct denotes the candidate memory cell state.

The updated cell state Ct is obtained by combining the outputs from the forget gate (ft),
input gate (it), and the candidate memory ~Ct . This process performs a gated update,
blending previous memory with newly processed information to support long-term
dependency learning. The equation is as:

Ct ¼ ft � Ct�1 þ it � ~Ct: (9)

The output gate controls what information from the memory cell is sent forward to
influence subsequent computations. The equation is given as:

ot ¼ r Wo � St�1; xt½ � þ b0ð Þ: (10)

Here,Wo refers to the weight matrix associated with the output gate, while bo denotes its
corresponding bias term.

Figure 1 Structure of LSTM model. Full-size DOI: 10.7717/peerj-cs.3293/fig-1
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To produce the hidden state st at the current time step, the model integrates ot with Ct,
modulated through a non-linear transformation. This operation determines the
information passed on to subsequent time steps or network layers, as described by the
following equation:

st ¼ ot � tanh Ctð Þ: (11)

(3) SARIMA-LSTM model
To improve forecasting accuracy, this study constructs a model that combines the

SARIMA with LSTM. This integrated approach is designed to address the limitations of
using a single forecasting model (Peirano, Kristjanpoller & Minutolo, 2021). The
SARIMA-LSTM model has been shown to produce more robust and accurate results
across various application domains (Bilgili, Pinar & Durhasan, 2025).

Figure 2 illustrates the key steps of the workflow, including data preparation, data testing,
SARIMA modeling and forecasting, residual extraction, LSTM modeling of the residual
series, and the final combination of outputs to produce the complete forecast.

Figure 2 Workflow of the SARIMA-LSTM model. Full-size DOI: 10.7717/peerj-cs.3293/fig-2
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(4) Model evaluation
To provide a clear understanding of each method, a brief comparison is offered: ARIMA

is simple and interpretable but performs poorly with seasonality and non-linear patterns;
SARIMA captures seasonality and improves accuracy over ARIMA yet remains less
effective for abrupt or complex non-linear changes; and SARIMA-LSTM handles both
seasonal and non-linear dynamics, commonly achieving the highest accuracy though with
greater computational cost.

The reliability of forecasting results is largely evaluated by comparing forecast values
with actual observations. To evaluate the effectiveness of the model, a set of commonly
used metrics is applied, including mean absolute percentage error (MAPE), root mean
squared error (RMSE), directional accuracy (DA), and the coefficient of determination
(R2) (Vivas, Allende-Cid & Salas, 2020; Chicco, Warrens & Jurman, 2021). These indicators
provide quantitative insight into the precision, consistency, and trend-following ability of
the forecasting model. The equations are:

MAPE ¼ 1
n

Xn
i¼1

yi � y0i
yi

����
���� (12)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi � y0i
� �2s

(13)

DA ¼ 1
n

Xn
i¼1

ai (14)

where,

ai ¼ 1; yi � yi�1ð Þ y0i � y0i
� � � 0

0; yi � yi�1ð Þ y0i � y0i
� �

< 0

�

R2 ¼ 1�
Pn

i¼1 yi � y0i
� �2Pn

i¼1 yi � �yð Þ2 : (15)

In these equations, n refers to the total number of observations. The symbols yi and y0i
represent the actual and forecast values for the i-th data point, respectively, while yi-1 and
y0i�1 correspond to the actual and forecast values from the previous time step (i−1). The term

ȳ indicates the average of all actual values in the dataset. Lower values of MAPE and RMSE
indicate better forecasting performance. A DA value closer to 1 suggests that the model more
accurately captures the direction of change in comparison to the actual observations.

In this study, MAPE and RMSE indicate the magnitude of forecast errors, with lower
values reflecting higher accuracy. DA measures the proportion of correctly predicted
directional changes, which is important for timely policy responses to shifts in public
attention. R2 reflects how well the model explains variability in the observed data,
indicating its explanatory power. Together, these metrics provide a balanced evaluation of
forecasting precision, trend detection, and practical applicability for decision-making in
educational policy.

Xu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3293 11/31

http://dx.doi.org/10.7717/peerj-cs.3293
https://peerj.com/computer-science/


RESULTS
Temporal evolution of public attention
Yearly variation analysis

The yearly variation in public attention to special education from 2020 to 2024 shows a
steady upward trend overall (see Fig. 3). The annual average value increased from 1,222 in
2020 to 1,277 in 2022, with relatively modest growth rates of 4.42% and 0.78%,
respectively, indicating a period of relative stability in public interest. A significant increase
was observed in 2023, with the annual average rising to 1,413, representing the highest
growth rate over the 5 years at 10.65%, possibly driven by policy initiatives or concentrated
media coverage. In 2024, although the growth rate declined modestly to 6.94%, public
attention to special education continued to stay at a relatively high level. This trend reflects
a sustained increase in societal concern for special education in recent years, with a
particularly notable surge beginning in 2023. Such a pattern offers a solid data foundation
for developing forecasting models and the formulation of relevant policy interventions.

To examine the temporal pattern of public attention to special education between 2020
and 2024, an ordinary least squares (OLS) regression analysis was performed. The
regression yielded a coefficient of 71.5, with an R2 of 0.904 and a p-value of 0.0131,
demonstrating a statistically meaningful upward trend at the 5% level. These results
provide strong evidence of a consistent rise in public concern over the 5 years. Fluctuations
in the annual growth rate may reflect the impact of various factors, including policy
developments, major social events, and intensified media exposure. Future studies could
delve deeper into these dynamics to better understand their effects and improve the ability
to anticipate and respond to shifts in public engagement.

Monthly variation analysis
Figure 4 presents the monthly variation in public attention to special education in China
during the period from 2020 to 2024. This forms a distinctive trend marked by a rapid

Figure 3 Yearly public attention to China’s special education (2020–2024).
Full-size DOI: 10.7717/peerj-cs.3293/fig-3

Xu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3293 12/31

http://dx.doi.org/10.7717/peerj-cs.3293/fig-3
http://dx.doi.org/10.7717/peerj-cs.3293
https://peerj.com/computer-science/


increase in attention, immediately succeeded by a sharp drop, an annual rhythm that
remains consistent throughout the observed period. A comparison of the monthly curves
across different years shows that, despite varying annual contexts, public interest generally
increases steadily from January to May, reaches its peak in June, declines during the July to
September period, and in some years experiences a slight rebound after October. Notably,
while the peak in 2020 occurred in July, the peaks from 2021 to 2024 consistently appeared
in June, aligning with the timing of the national college entrance examination (Gaokao) in
those years. These peaks also coincide with related events such as national policy
announcements and the release of education-related reports, which may temporarily
intensify public interest.

This structural fluctuation reflects the concentrated impact of specific events such as
policy announcements, school entry assessments, and focused media campaigns. It also
highlights the influence of public discourse and communication rhythms in driving
attention. These observed trends provide a theoretical foundation for forecasting models
such as SARIMA and SARIMA-LSTM, supporting the improvement of timeliness in
educational communication and the scientific allocation of resources.

To investigate the trend over time, a regression model was fitted using the OLS
approach. The results yielded an R2 value of 0.008, a regression coefficient of 2.19, and a
p-value of 0.495. These findings reveal that public attention has exhibited only a marginal
upward trend over time, indicating a lack of statistical significance (p = 0.495 > 0.05).
Public attention appears to vary without following a clear upward or downward linear
pattern. Instead, it reflects fluctuations primarily driven by seasonal factors or specific
annual events, rather than a monotonic temporal evolution.

Temporal evolution of public attention
Spatial distribution analysis

Based on Baidu Index data from 2020–2024, public attention to special education shows
significant spatial disparities across Chinese provinces. Five provinces (Guangdong,
Shandong, Zhejiang, Jiangsu, and Sichuan) recorded average values above 300, while
regions such as Hainan, Ningxia, Qinghai, and Xizang remained below 100. Using the
quartile method (Xu et al., 2024), attention values were classified into four levels: Level I
(high) ranges from 262 to 399; Level II (relatively high) from 201 to 261; Level III

Figure 4 Monthly public attention to China’s special education (2020–2024).
Full-size DOI: 10.7717/peerj-cs.3293/fig-4
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(relatively low) from 166 to 200; and Level IV (low) from 15 to 165. Spatial
distribution maps of attention levels across 31 provinces were generated using ArcGIS and
Dycharts (see Fig. 5).

The map highlights pronounced disparities and evolutionary trends in public attention
between 2020 and 2024. Higher levels are concentrated in the eastern and central regions,
while lower levels are typical of western and peripheral provinces, reflecting the influence
of economic development and population distribution.

Level I provinces are mainly found in the eastern coastal and central regions, including
Guangdong, Jiangsu, Zhejiang, Shandong, Sichuan, and Henan. By contrast, Level IV
regions such as Xizang, Xinjiang, Qinghai, and Ningxia remain at the lowest levels of
attention. Provinces in Levels II and III, mostly in central and western China, show
moderate levels with gradual improvement in some cases, such as Shaanxi. Sichuan stands
out in the west, reflecting strong information sharing and active public engagement, while
Henan, with its large population, shows a broad base of awareness. In comparison, Xizang
and Xinjiang show little growth, which may be linked to smaller populations, lower
internet access, and fewer educational resources.

Overall, the spatial pattern can be described as “higher in the east, lower in the west.” To
narrow this gap, more efforts should be directed to western regions by improving internet
access, distributing educational resources more fairly, and strengthening advocacy for
special education. These measures would help promote balanced regional development of
inclusive education.

Figure 5 Spatial distribution patterns of public attention to China’s special education (2020–2024). (A) 2020; (B) 2021; (C) 2022; (D) 2023; (E)
2024. Base maps sourced from Amap (© 2025 Amap), generated using Dycharts, and modified by the authors for academic publication.

Full-size DOI: 10.7717/peerj-cs.3293/fig-5
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Spatial correlation analysis
Based on Eqs. (1) and (3), the global spatial autocorrelation of public attention to special
education across 31 provinces from 2020 to 2024 was calculated and tested for statistical
significance (see Table 1). The results show that spatial correlation first increased and then
declined. Moran’s I reached its highest values in 2021 and 2022 (above 0.22, p < 0.05),
indicating clear positive spatial autocorrelation, but fell afterwards and was no longer
significant in 2024. This points to a shift from regional concentration to a more balanced
national distribution, likely supported by wider information channels and growing
awareness campaigns.

Local Moran’s I analysis shows further changes in clustering (see Fig. 6). H–H clusters
were mainly found in eastern and central provinces such as Shandong, Jiangsu, and Anhui,
but by 2024 Jiangsu had dropped out of this group, suggesting weaker clustering as

Table 1 Global spatial correlation of public attention to China’s special education (2020–2024).

Year Global Moran’s I Z-score p-value

2020 0.1541 1.5613 0.0660

2021 0.2305 2.2269 0.0190

2022 0.2272 2.1908 0.0210

2023 0.1697 1.7083 0.0490

2024 0.1271 1.3295 0.0990

Figure 6 Local spatial correlation of public attention to China’s special education (2020–2024). (A) 2020; (B) 2021; (C) 2022; (D) 2023; (E) 2024.
Base maps sourced from Amap (© 2025 Amap), generated using Dycharts, and modified by the authors for academic publication.

Full-size DOI: 10.7717/peerj-cs.3293/fig-6

Xu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3293 15/31

http://dx.doi.org/10.7717/peerj-cs.3293/fig-6
http://dx.doi.org/10.7717/peerj-cs.3293
https://peerj.com/computer-science/


national attention became more balanced. L–L clusters continued in western provinces
such as Xinjiang and Gansu, though Qinghai moved out of this category in 2024,
showing some improvement in public awareness. Sichuan consistently displayed an H–L
pattern, reflecting its strong influence compared with neighboring provinces. In contrast,
Shanghai and Hainan at times showed L–H clustering, meaning lower attention than
nearby regions.

Overall, both high-value and low-value clusters have contracted over the past 5 years,
suggesting a gradual shift toward spatial balance in public attention. Nevertheless, regional
gaps remain: western provinces continue to lag, while key provinces such as Sichuan
maintain a leading role. Future policies should provide greater support to low-attention
regions by expanding awareness programs and ensuring fairer access to resources, thereby
promoting more balanced development of special education nationwide.

Forecasting model of public attention
Stationarity test

The dataset from January 2020 to December 2023 was used for model training, while data
from January to December 2024 served as the validation set for assessing forecasting
performance. The ADF test was applied to assess the stationarity of the time series
reflecting public attention to special education (see Table 2, Fig. 7). The test statistic was
below the critical threshold at all conventional significance levels, with a p-value less than

Figure 7 ACF and PACF of time series. Full-size DOI: 10.7717/peerj-cs.3293/fig-7

Table 2 ADF stationarity test of time series.

Statistic P-value Critical value

1% 5% 10%

−4.01 0.00136 −3.616 −2.941 −2.609
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0.05. This result supports the rejection of the unit root hypothesis, confirming that the
series is stationary during the training period and does not require differencing.

Figure 7 illustrates the autocorrelation function (ACF) and partial autocorrelation
function (PACF) of the time series. The ACF reveals a gradual decline over time,
whereas the PACF displays a sharp drop after the initial lags. This implies that the
series is influenced by both seasonal cycles and short-term dependencies. Together
with the ADF test results, these patterns provide clear guidance for model parameter
selection and confirm that the series meets the basic conditions for SARIMA modeling.

SARIMA model construction
An initial examination of the time series data on public attention to special education
indicates that the prerequisites for applying the SARIMA model are met. As such, the
differencing order d is set to 0, and the seasonal period s is defined as 12. The MAPE is used
as the evaluation metric, as it is a measure that intuitively captures relative forecasting
errors. A model with a smaller MAPE is considered to have superior forecasting accuracy
and is therefore more suitable for future forecasting and analysis.

This study applied a grid search approach to systematically explore all possible
parameter configurations, selecting values of P, D, Q, and s based on the minimumMAPE.
The results indicate that the SARIMA (2, 0, 1) × (1, 0, 0)12 model yields the lowest MAPE
value and is thus chosen as the optimal model for forecasting public attention to special
education.

The Ljung Box Q test was applied to the standardized residuals of the fitted model. At a
lag of 12, the test produced a p-value of 0.890, which exceeds the 0.05 significance
threshold. This outcome indicates that the null hypothesis, stating that the residuals
follow a white noise process, cannot be rejected. As a result, there is no evidence
of autocorrelation remaining in the residuals, suggesting that the model is correctly
specified.

SARIMA-LSTM model construction
Although the SARIMAmodel effectively captures both trend and seasonal components, its
residual series still exhibits certain non-linear fluctuations. To further improve forecasting
accuracy, the residuals from the SARIMA model are treated as a new time series and used
as input for non-linear modeling through an LSTM neural network. Table 3 summarizes
the LSTM model settings.

Upon completion of model training, the LSTM network was used to forecast the
monthly residuals for 2024. These forecast residuals were subsequently combined with the
SARIMA model’s forecasts to produce the final SARIMA-LSTM forecasting results. The
standardized residuals from the hybrid model were tested using the Ljung Box Q test at lag
12, yielding a p-value of 0.831. Given that this value is well above the 0.05 significance
threshold, the result does not provide sufficient statistical grounds to refute the null
assumption. This suggests that the error terms behave similarly to a white noise process,
with no detectable signs of strong autocorrelation. As a result, the model can be considered
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well-specified, with no apparent structural deficiencies, and is suitable for reliable
forecasting.

Figure 8 presents a comparative analysis of the 2024 forecast outcomes generated by the
SARIMA-LSTM model and those from the standalone ARIMA and SARIMA models.

The Fig. 8 shows how the forecasted values correspond to the actual public attention
levels in 2024, as generated by the ARIMA, SARIMA, and SARIMA-LSTM models. The
SARIMA-LSTM model aligns most closely with actual public attention trends across most
months, reflecting its strong performance in fitting the data. The SARIMA model also
performs well, particularly in capturing seasonal variations, and generally yields better
results than the traditional ARIMA approach.

Although the ARIMAmodel captures the overall direction of the data reasonably well, it
tends to diverge significantly during months with sharp fluctuations, especially in June and
December. In comparison, the SARIMA-LSTM model achieves higher accuracy by

Figure 8 Forecasting of ARIMA, SARIMA, and SARIMA-LSTM models. Full-size DOI: 10.7717/peerj-cs.3293/fig-8

Table 3 LSTM model parameter settings.

Category Parameter Value

Input configuration Input feature dimension 1

Window size 3

Network architecture Number of layers 1

Number of units 64

Activation function ReLU

Output layer structure Dense (1)

Training settings Number of epochs 100

Optimizer Adam

Loss function MSE (Mean squared error)

Normalization method Feature scaling Min-Max scaling

Output type Forecast type Single-step forecasting
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combining the strengths of both linear and non-linear modeling techniques. These
findings underscore the value of deep learning in time series forecasting and suggest that
SARIMA-LSTM offers a more effective framework for modeling complex temporal
patterns in public behavior.

Model evaluation and validation

To evaluate forecasting performance, four indicators including MAPE, RMSE, DA and R2

are used. These measures were applied to assess and compare the forecasting effectiveness
of the three models (see Table 4).

The findings demonstrate that, among the three models evaluated, the SARIMA-LSTM
approach yields the most favorable overall performance. It achieves the lowest forecasting
error, with a MAPE of 6.94%, an RMSE of 121.53, a DA of 81.82%, and an R2 of 0.79. These
values suggest that the model not only provides a strong fit but also accurately tracks the
trend in public attention.

In contrast, the ARIMA model demonstrates the lowest performance across all
evaluation criteria, with an R2 of –0.59, reflecting a limited capacity to explain the data’s
variability. Although the SARIMA model performs better than ARIMA, particularly in its
ability to capture seasonal structures and reduce forecasting error, its accuracy still falls
short when compared to the SARIMA-LSTM model.

Overall, by integrating linear statistical modeling with the non-linear learning capacity
of neural networks, the SARIMA-LSTMmodel proves to be more effective in handling the
complexity of time series data like public attention, making it a promising tool for
analyzing evolving behavioral patterns.

To further assess the forecasting reliability of the SARIMA-LSTM model, a forecasting
interval coverage probability test was conducted, with the results presented in Fig. 9. The
findings show that the model’s forecasts for 2024 closely match the actual observed values.
Importantly, during periods of greater volatility, particularly in the early months of the
year and toward year-end, the forecast values largely remain within the 95% confidence
interval.

This outcome reinforces the stability and reliability of the SARIMA-LSTM model in
capturing patterns of public attention. It demonstrates not only the model’s strong fit to
the time series but also its ability to account for uncertainty and variability in future trends.

DISCUSSION
Interpreting the spatiotemporal evolution and driving mechanisms
The results reveal a clear upward trend in public attention to special education, suggesting
increased public awareness of educational equity and the rights of individuals with special

Table 4 Evaluation of the model.

Model MAPE RMSE DA R2

ARIMA 13.20% 335.82 52.07% −0.59

SARIMA 7.05% 128.19 81.82% 0.77

SARIMA-LSTM 6.94% 121.53 81.82% 0.79
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needs. The observed trend may be shaped by multiple drivers, including policy
implementation, evolving educational values, shifts in how information spreads through
social media, and the growth of online learning platforms (Özmen, 2015; Hayter & Cahoy,
2018; Zhang & Yuan, 2022). Rising public awareness has been evident not only in search
engine activity but also in its tangible impact on the development of special education itself
(Tuğba Önder, 2024; Keles, ten Braak & Munthe, 2024). As public attention increasingly
reflects the level of societal concern and the visibility of educational issues, it has become
an important reference point for policymaking and for improving the allocation of
educational resources.

Viewed over time, public attention to special education displays a recurring pattern,
with noticeable peaks each June. This surge typically coincides with critical phases in the
academic calendar, such as entrance examinations and admissions-related activities. These
fluctuations are strongly influenced by external factors, including policy announcements,
social events, and media campaigns (Correa, Hinsley & de Zúñiga, 2010; Menachemi,
Rahurkar & Rahurkar, 2017; Wei, 2022). Public consciousness has become an important
driving force behind the advancement of special education (Jacobs, Simon & Nader-
grosbois, 2020). The pattern of public attention is gradually shifting from being primarily
policy-responsive to becoming increasingly demand-driven (Chang & Chang, 2020).
Looking ahead, it is anticipated that public interest will evolve towards a more stable and
balanced long-term trajectory.

Spatial analysis reveals a clear geographical pattern in public attention to special
education, with significantly higher levels in the eastern and south-central regions, and
notably lower attention in western and peripheral areas. This distribution reflects
pronounced regional disparities. Existing studies indicate that shifts in public attention are
influenced by multiple factors, including economic conditions, social context, educational

Figure 9 SARIMA-LSTM forecast with 95% CI. Full-size DOI: 10.7717/peerj-cs.3293/fig-9
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resource allocation, population demographics, and levels of internet access (Guo, Zhang &
Wu, 2021; Zhao et al., 2022; Brody et al., 2024; Sun, Zhang & Guo, 2024). Provinces such as
Guangdong, Shandong, and Zhejiang, characterized by strong economies, abundant
educational resources, high population density, and greater public awareness, have
maintained consistently high levels of attention. In contrast, more remote western regions
tend to suffer from resource constraints, weaker educational infrastructure, and limited
internet access, resulting in relatively low levels of public attention.

Analysis using Moran’s I index and spatial clustering techniques provides further
insight into the geographic dynamics of public attention. The clustering intensity peaked
between 2021 and 2022, but gradually weakened in 2023 and 2024, indicating a trend
toward more even spatial dispersion. High-attention regions (H–H clusters) were
primarily located along the eastern coast and in central provinces, whereas areas with low
levels of attention (L–L clusters) were mostly concentrated in inland western regions. This
spatial arrangement points to the continued existence of regional disparities, though the
overall trend suggests a movement toward a more balanced pattern of public engagement.

The dynamics of public attention to special education reflect a complex interaction
among social perception, policy implementation, and media communication. These
dynamics reveal a strong linkage between regional development levels and public
awareness. In line with the first research objective, GIS-based spatial analysis and spatial
autocorrelation confirm persistent regional disparities, with higher attention in the
developed east and lower levels in the west. These findings highlight the need for
region-specific strategies, directing resources and outreach toward areas of persistently low
attention (Xu et al., 2025).

In light of these findings, it is recommended that education policymakers strengthen
relevant initiatives and encourage greater participation in regions with limited public
involvement, particularly in the western provinces. Additionally, leveraging social media
platforms could further raise awareness and promote more balanced development of
special education across different areas (Barbosa et al., 2018; Artyukhov et al., 2023). With
continued advancements in communication strategies and growing public awareness,
special education is expected to emerge as a sustained area of societal focus, laying a solid
foundation for the development of a more equitable and inclusive educational support
system. The observed trends in public attention have practical implications for policy and
resource allocation. For example, consistent peaks around major examinations or policy
announcements suggest that awareness campaigns and resource deployment could be
strategically timed to coincide with periods of heightened public interest. Regions with
persistently low attention may benefit from targeted outreach and additional funding to
promote inclusive education (Yu et al., 2024). Integrating these insights into policy
frameworks could enhance the responsiveness and equity of special education systems.

Interpreting the performance of forecasting models
A hybrid forecasting model combining SARIMA and LSTM was constructed and validated
to enhance forecasting accuracy in this study. In the model comparison, ARIMA showed a
basic capacity for capturing overall trends but fell short in handling non-linear variability,
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which led to reduced forecasting accuracy. This observation echoes previous studies that
have raised concerns about the limitations of ARIMA in modeling public attention within
complex social contexts (Bhatti et al., 2021; Kumar Dubey et al., 2021). When seasonal
components were incorporated through the SARIMA model, performance improved
significantly, as reflected in reduced forecasting errors. This outcome affirms the model’s
effectiveness in handling time-dependent patterns influenced by seasonality, aligning with
earlier research in the educational domain (Tefera & Fischman, 2020; Zhao, Li & Liu,
2024). Nevertheless, SARIMA remains less effective when dealing with sudden shifts or
strongly non-linear dynamics, revealing the need for more flexible modeling approaches
under such conditions.

Compared with the ARIMA and SARIMA models applied individually, the
SARIMA-LSTM hybrid approach demonstrates significantly better performance in
forecasting accuracy, capturing underlying trends, and accounting for uncertainty. By
combining traditional statistical modeling with deep learning algorithms, it leverages the
strengths of both methods, offering flexibility, consistency, and proven applicability in
analyzing public attention (Tuğba Önder, 2024; Bilgili, Pinar & Durhasan, 2025). The
model thus provides a reliable and scalable framework for identifying trends and
informing policy decisions in the field of education. The integration of intelligent
forecasting tools such as SARIMA-LSTM is encouraged to enable dynamic monitoring of
public opinion, optimize the timing and content of policy communication, and enhance
responsiveness. Specialized outreach and interactive engagement should also be targeted at
key stakeholder groups, including parents and educators, to foster shared understanding
and institutional trust.

Regarding the second research objective, the SARIMA-LSTM hybrid model
outperformed single-model approaches (ARIMA, SARIMA) across all evaluation metrics,
including MAPE, RMSE, DA, and R2. The combination of low MAPE and RMSE values
indicates that forecasted attention levels are close to observed values, minimizing potential
errors in anticipating public engagement trends. A high DA score demonstrates the
model’s effectiveness in capturing directional shifts, which is crucial for timing
interventions such as awareness campaigns or resource deployment, while a relatively high
R2 reflects strong explanatory power, increasing confidence in policy planning
applications. These results confirm the model’s capacity to balance high accuracy with the
ability to capture both seasonal and non-linear dynamics, providing reliable forecasts of
public attention that can guide the timing of awareness campaigns, optimize educational
resource allocation, and enhance the responsiveness of inclusive education policies.

Research significance
This study based on special education as a point of departure and integrates GIS-based
spatial analysis with SARIMA-LSTM time series modeling to construct a comprehensive
spatiotemporal research framework for analyzing the dynamics of social cognition. This
approach not only broadens the theoretical perspective within the field of special education
but also promotes interdisciplinary integration across education, sociology, geographic
information science, and computer science. It offers a novel methodological pathway for
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modeling and forecasting public attention. On a practical level, the study sheds light on
how public attention to special education has evolved across time and space in China,
providing data-driven insights and decision-making references for policy formulation,
resource allocation, and the optimization of communication strategies. Although the data
are derived from the Chinese context, the analytical framework demonstrates strong
generalizability and transferability, offering valuable theoretical and methodological
reference for education and social science research in other countries and domains.

Limitations and future research
Although this study provides a detailed exploration into the dynamics of public attention
to special education and proposes a forecasting model, it still has certain limitations that
should be acknowledged. A key constraint lies in the data source, which relies heavily on
the Baidu Index. Baidu serves as a valuable and objective proxy for online search interest,
but it does not account for user activity on other digital platforms. This reliance on internet
search data may lead to an underrepresentation of public attention in less connected or
remote regions, where internet usage remains relatively limited. In addition, the sample is
limited to Baidu Index data for 31 provinces over a 5-year period, which, although
comprehensive in geographic coverage, may not fully capture public attention patterns in
populations less active on search engines. We also note that Baidu Index reflects search
behavior from specific user demographics and relies on platform-specific algorithms and
keyword limits (e.g., three-keyword cap), which may introduce measurement bias. These
constraints should be considered when generalizing the findings to other contexts.

While the study offers meaningful insights into time-based trends and spatial clustering
patterns, it does not incorporate external variables such as government policies, public
campaigns, or media exposure. The absence of these contextual factors restricts the ability
to fully explain what drives changes in public attention, especially when sudden or unusual
shifts occur. In addition, the forecasting model does not consider the potential influence of
major societal events or unexpected policy shifts. This may affect its accuracy in periods of
heightened uncertainty.

Future studies may benefit from integrating Baidu Index data with information drawn
from diverse platforms such as Weibo, TikTok, and online news comment sections.
Building a multi-source model of public attention through this integration would allow for
a more comprehensive and nuanced understanding of public discourse. Supplementing
this approach with survey data and policy document analysis could further improve the
depth and accuracy of the evaluation framework (Yan et al., 2021; Gu et al., 2024; Zhao,
Wang & Wu, 2025), thereby enhancing the model’s responsiveness and applicability in
real-world settings.

Moreover, introducing additional external variables and employing methods such as
causal inference, geographical detectors, and multivariate modeling could help uncover the
complex mechanisms that shape the evolution of public attention over time and space
(Anselin, Li & Koschinsky, 2022; Qin et al., 2025). These techniques would enhance the
explanatory strength of the research and enable the simulation of policy or communication
interventions. Taken together, such methodological advancements could offer stronger
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theoretical foundations and more actionable empirical insights to support the formulation
of equitable education policies and more effective public engagement strategies.

CONCLUSION
This study examined the temporal and spatial patterns of public attention to special
education in China and developed a hybrid SARIMA-LSTM model to forecast trends,
using Baidu Index data for 31 provinces from 2020 to 2024.

The spatiotemporal analysis reveals an overall upward trend in public attention to
special education, with seasonal fluctuations gradually diminishing and a more balanced
annual distribution emerging. Spatially, attention levels were higher in the economically
developed east and lower in the west, though the regional gap showed signs of narrowing
and spatial clustering effects weakened over time.

Comparative analysis of the three models shows that the SARIMA-LSTM hybrid model
performs best in terms of forecasting accuracy, trend detection, and fitting capability. Low
error rates, strong directional accuracy, and high explanatory power confirmed the model’s
robustness and reliability for complex time series forecasting.

By combining spatiotemporal analysis with a hybrid forecasting approach, this study
offers a practical, data-driven way to track and forecast changes in public attention. The
findings provide clear guidance for making education policies more responsive, improving
the efficient use of educational resources, and supporting equitable and sustainable
development in education, while also offering insights that can be applied across
disciplines.
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