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ABSTRACT

Speech emotion recognition (SER) is a challenging task that involves identifying
human emotions from speech. Traditional sequence models like recurrent neural
network (RNN) and long short-term memory (LSTM) are limited by vanishing
gradients and difficulty in capturing long-range dependencies. This article presents a
novel model based on the Hybrid-Module-Transformer, which leverages the
capabilities of Transformer modules to extract feature representations effectively,
even with limited data. The model combines the strengths of Hidden-Unit BERT
(HuBERT), LSTM, and Residual Network (ResNet-50) to achieve superior
performance in speech emotion classification tasks. In the model, we utilized
Mel-frequency cepstral coefficients (MFCC) and Spectrogram for feature extraction.
Then, a HuBERT-LSTM framework is used to perform both speech-to-text
recognition and emotion classification. We evaluate the model on two benchmark
datasets: Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
and Multimodal EmotionLines Dataset (MELD). On the RAVDESS dataset, the
model achieves a maximum accuracy of 76% and precision of 78%, while on the more
challenging MELD dataset, it attains an accuracy of 72.9% and precision of 72.3%.
These results demonstrate the effectiveness and generalizability of our model in both
controlled and real-world conversational scenarios, making it a competitive solution
for robust speech emotion recognition.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Natural Language and Speech, Neural Networks
Keywords Speech emotion recognition, Deep learning, HuBERT, NLP

INTRODUCTION

Speech emotion recognition (SER) is like a puzzle where we try to figure out how someone
feels by listening to their voice. It is not easy because people show their feelings in many
ways when they talk. Thus, researchers have proposed many methods to deal with this
challenge.

Traditional methods involve hidden Markov models (HMMs), which are suited for
time-series data and widely used in the fields, including speech recognition, natural
language processing, and bioinformatics (Mao et al., 2019; Feng ¢» Narayanan, 2024;
Dwivedi et al., 2022; Akbulut, Perros & Shahzad, 2020). Mao et al. (2019) focus on the
development and evaluation of HMM-based architectures for utterance-level speech
emotion recognition. They propose three HMM-based architectures for speech emotion
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recognition: Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), Subspace
Gaussian Mixture Model-Hidden Markov Model (SGMM-HMM), and Deep Neural
Network-Hidden Markov Model (DNN-HMM). In the experimental evaluation, various
HMM-based architectures were assessed on the CASIA corpus, achieving a maximum
accuracy of 86.88%. However, HMMs rely heavily on hand-crafted features, which require
expert knowledge and may not capture all the details of the data. Besides this, they cannot
capture intricate patterns and relationships in the data.

Researchers have proposed deep neural networks (DNNs) as a means to learn complex
patterns in data. These networks are effective for both feature extraction and classification
(Trinh Van et al., 2022; Wani et al., 2021; Fahad et al., 2021). Compared to HMMs, DNNs
are better at recognizing intricate patterns and relationships within the data, making them
particularly effective for SER tasks. For example, in the work of Fahad et al. (2021) they
combine the excitation source features and the Mel-frequency cepstral coefficients
(MFCC) features to develop an emotion recognition system called DNN-HMM. The
experimental results show that the epoch feature set is complementary to the MFCC
feature set for emotion classification. The average emotion recognition rate of the
proposed model using epoch features is 54.52% (Fahad et al., 2021). DNNs offer a robust
and adaptable framework for modeling complex data, but they fail to process information
from previous inputs, which is essential for time series prediction and language modeling.

Recurrent neural networks (RNNSs) are more effective than traditional DNNs when
dealing with sequential data because they can retain information over time. This capability
enables RNNs to process inputs of varying lengths and to take into account the context and
dependencies within a sequence. As a result, RNNs are well-suited for tasks such as
language modeling, speech recognition, and time series prediction (Yadav et al., 2022;
Trinh Van et al., 2022; Kons et al., 2022; Jermsittiparsert et al., 2020). For example,
Trinh Van et al. (2022) present the results of speech emotion recognition with the
Interactive Emotional Dyadic Motion Capture Database (IEMOCAP) corpus. In their case,
three deep neural network models, convolutional neural network (CNN), convolutional
recurrent neural network (CRNN), and gated recurrent unit (GRU), were used for emotion
recognition. The results show that the proposed model gave the highest average
recognition accuracy of 97.47% (Trinh Van et al., 2022). However, RNNs have difficulty
learning long-range dependencies due to two main issues: the vanishing gradient problem,
where gradients become too small to effectively update weights, and the exploding gradient
problem, where gradients grow excessively large and destabilize the network.

Research shows that using self-supervised training on audio data enables full utilization
of large volumes of unlabeled audio for learning latent features. This reduces the need for
data labeling and associated costs (Zhao ¢ Zhang, 2022; Chang et al., 2021; Chiu et al.,
2022). Wav2Vec2, a transformer-based model trained with self-supervised methods, has
offered several advantages over RNN-based models in SER tasks (Yi et al., 2020; Jain et al.,
2023; Shahgir, Sayeed & Zaman, 2022). For example, Yi et al. (2020) applied the
pre-trained wav2vec2.0 model to address the low-resource SER task. The model achieved
over 20% relative improvements in six languages compared to previous work (Yi ef al,
2020). Wav2Vec2 offers a combination of speed, efficiency, and accuracy that makes it a
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preferred choice for modern SER systems. While Wav2Vec2 is a powerful model for SER,
it does have limitations, such as the need for massive computational resources and reliance
on the availability of unlabeled data. These limitations highlight the need for further
research and improvements to the SER model.

In recent years, Transformers have become a trend in SER tasks (Hazmoune ¢
Bougamouza, 2024; Andayani et al., 2022; Wagner et al., 2023; Triantafyllopoulos et al.,
2022). The Transformer architecture, introduced by Vaswani et al. (2017), represents a
significant advancement in the field of sequence modeling, offering several advantages over
traditional RNNs, DNNs, and HMMs. Unlike RNNs, which process data sequentially,
Transformers are effective in capturing long-range dependencies. They are not constrained
by the limitations of sequential processing, which allows for more efficient parallel
computation and a significant reduction in training times. This advantage is beneficial for
utilizing modern hardware capabilities, such as GPUs. Roy et al. (2021) propose the
Routing Transformer, which utilizes content-based sparse attention inspired by
non-negative matrix factorization. Unlike local attention models, the Routing Transformer
does not rely on fixed attention patterns while maintaining a similar space-time
complexity. Additionally, compared to previous approaches to content-based sparse
attention, it does not require the computation of a full attention matrix. Instead, it selects
sparsity patterns based on content similarity (Roy et al., 2021).

Recent advances have explored dynamic-scope Transformer architectures that allow
models to adapt their attention span based on input characteristics (Chen et al., 2023a;
Wang et al., 2023, 2024; Chen et al., 2023b). Examples include the Deformable Speech
Transformer (DST) (Chen et al., 2023b), which learns token-specific window sizes; and the
Time-Frequency Transformer (Wang et al., 2023), which models temporal and spectral
attention separately before fusing them. These models share a core philosophy: letting the
data guide the scale and focus of attention, rather than relying on fixed windows. While
they improve performance on benchmarks such as IEMOCAP and Multimodal
EmotionLines Dataset (MELD), they also introduce higher model complexity. For
instance, DST achieves up to 71.8% weighted accuracy (WA) and 73.6% unweighted
accuracy (UA) on IEMOCAP, but its dynamic modules require careful regularization to
avoid overfitting on smaller datasets, highlighting a trade-off between flexibility and
efficiency.

Capsule networks (CapsNets) have also emerged as a promising direction in SER due to
their ability to preserve hierarchical relationships between features. Unlike traditional
CNNess that lose spatial relationships during pooling, capsule networks use dynamic routing
to retain part-whole relationships, making them particularly effective for capturing
complex emotional cues in speech. Recent studies have explored their potential in SER
tasks (Zhang et al., 2024, 2025). For example, Zhang et al. (2024) proposed a
capsule-enhanced neural network (CENN) that integrates multi-head attention, residual
blocks, and capsule layers. Their model achieved 72.88% accuracy on the Interactive
Emotional Dyadic Motion Capture Database (IEMOCAP) dataset, showcasing the
advantages of capsule-based architectures in capturing fine-grained emotion-related
teatures (Zhang et al., 2024). However, CENN exhibits high computational complexity and
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performs less effectively on smaller datasets like Surrey Audio-Visual Expressed Emotion
Database (SAVEE), highlighting the trade-off between representational power and model
efficiency.

Inspired by these works, this article presents an idea to enhance SER models through the
integration of various techniques, including HuBERT, LSTM, and ResNet (Yi et al., 2020;
Jain et al., 2023; Hattori ¢» Tamura, 2023; Li, 2021). Traditional approaches often struggle
with either extracting meaningful features from raw audio, modeling long-range temporal
dependencies, or recognizing hierarchical spatial patterns. The proposed model uses
HuBERT’s self-supervised learning to extract richer and more discriminative audio
representations without requiring large labeled datasets, leverages the sequential
processing capabilities of LSTM to capture long-range dependencies, and incorporates
convolutional layers inspired by ResNet-50 for effective pattern recognition. This hybrid
design is motivated by the need to unify strengths across domains—self-supervised
learning, temporal modeling, and spatial feature extraction—to form a more robust SER
framework. This combination leads to a system that is more accurate and flexible for SER
tasks. Additionally, it is capable of generalizing with limited labeled data, enhancing the
overall performance and robustness of speech recognition tasks. The proposed method has
been evaluated on two widely-used benchmark datasets for speech emotion recognition:
Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) and MELD.
On RAVDESS, which features high-quality emotional speech samples in a controlled
environment, the model achieves a maximum accuracy of 76% and a precision of 78%. On
the more challenging MELD dataset, which contains multi-party conversations with rich
emotional diversity, the model attains an accuracy of 72.9% and a precision of 72.3%.
Compared to existing approaches, including AlexNet, ResNet-50, and ResNet-101, our
Hybrid-Module-Transformer model demonstrates superior performance across both
datasets.

The main contributions of our article are as follows:

e We have developed an integrated Transformer model, which is designed for SER tasks.
The hybrid model leverages the strengths of HuBERT for robust feature extraction and
LSTM for capturing the temporal dynamics of emotions, leading to enhanced accuracy
and contextual understanding. This integrated approach allows for better generalization
across different speakers and emotional states. Compared to Wav2Vec2, HuBERT
focuses on learning high-level representations of unmasked inputs to accurately infer the
targets of masked ones, leading to an improvement in low-resource scenarios where
Wav2Vec2 may struggle.

o The HuBERT module serves as the feature extractor, leveraging its Transformer
architecture to extract robust features from raw speech data. HuBERT is trained on a
large amount of unlabeled audio data using a self-supervised learning approach, allowing
it to learn complex patterns and representations of speech.

e The LSTM module effectively extracts features while managing temporal dynamics,
offering considerable advantages for processing speech data. This approach not only
enhances the precision of emotion recognition across a spectrum of emotional states but
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Table 1 Comparative assessment of different speech emotion recognition models.

Model Features Advantages Disadvantages

SGMM-HMM MFCC + pitch + voicing (47-dim) Compact; reduces overfitting Weak in nonlinear representation

DNN-HMM  MFCC + epoch-based features (69-dim) Effective speaker adaptation Requires extensive training

GRU Mel-spectrogram (153-dim) Captures long-term dependencies Gradient instability limits long-range

learning
DST Spectrogram + deformable attention Learns flexible attention spans Risk of overfitting on small datasets
CENN MEFCC + attention + capsule features Strong spatial modeling; high Performance drops on small datasets
accuracy

Our model MFCC + Spectrogram + HuBERT + LSTM +  Combines HuBERT, LSTM, and High computational complexity and

ResNet-50 ResNet-50 training time

also improves classification accuracy. By utilizing LSTM’s capability to capture speech
patterns and understand the sequential flow of emotions over time, this model delivers
reliable and detailed results for SER tasks.

e ResNet-50 is traditionally used for image recognition, but we applied its convolutional
layers for feature extraction in audio processing. This approach allows the model to learn
complex hierarchical features from audio data, capturing both low-level and high-level
characteristics. This is especially beneficial in speech classification tasks, where the
frequency content of speech signals is important for identifying different languages or
emotional states.

e The hybrid Transformer model demonstrates exceptional performance in SER tasks,
surpassing traditional models such as LSTM and ResNets. Experiments conducted on
the RAVDESS Emotional Speech Audio dataset achieved an accuracy rate of 78%.

To demonstrate the advancements brought by our proposed approach, we compare its
performance with several representative SER models reported in the literature. The
baseline models include traditional architectures such as SGMM-HMM and DNN-HMM,
as well as deep learning-based models like gated recurrent unit (GRU). In addition, we
include two recent and competitive models: the Deformable Speech Transformer (DST),
which represents the adaptive-attention Transformer family, and the CENN, which
incorporates capsule structures for improved spatial relationships. While these models
have shown impressive results on the IEMOCAP and Berlin Emotional Speech Database
(EMODB) datasets, our Hybrid-Module-Transformer model achieves competitive
performance on both RAVDESS and MELD, demonstrating strong generalization across
diverse SER scenarios. Table 1 presents a quantitative comparison of these models,
highlighting their features, advantages, and disadvantages. This comparison further
motivates the hybrid design of our model, which balances the strengths of HuBERT,
LSTM, and ResNet-50 to enhance speech emotion recognition.

This article is organized as follows: We first introduce our proposed model in
‘Methodology’. In ‘Implementation and Experiments’, we evaluate the proposed model
using several evaluation metrics. After assessing the model’s performance, we summarize
our findings and discuss future work in ‘Materials and Methods’.
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Figure 1 The system architecture of the proposed model. Full-size k&l DOI: 10.7717/peerj-cs.3292/fig-1

METHODOLOGY

In this study, we propose a hybrid approach for feature extraction in SER by leveraging the
complementary strengths of HuBERT-LSTM and ResNet-50. The process of speech
emotion recognition in our model is shown in Fig. 1.

First, the original raw audio data is transformed into a 3-s Log-Mel Spectrograms. This
transformation converts the audio signal into a format that is more manageable for our
model. After the feature extraction, the Log-Mel Spectrograms is fed separately into the
HuBERT-LSTM and ResNet-50 modules. The output from the ResNet-50 module consists
of learned features that capture various aspects of the audio data. Next, the HuBERT model
is employed to capture both the content and context of the audio. These features are then
input into an LSTM network, which models the sequential dependencies in the audio data.
Finally, all the feature sets are concatenated and input into a Transformer module for SER
classification. By integrating these components, our model leverages the strengths of each
module, enhancing overall system performance and leading to more accurate and robust
emotion classification results.

ResNet-50 module

In order to better extract rich, hierarchical features from the Log-Mel Spectrograms, we
have adopted ResNet-50 for audio processing. As shown in Fig. 2, the adapted ResNet-
50 module consists of the following steps:

 Audio to spectrograms: Since ResNet-50 was originally designed for image recognition
tasks, we convert raw audio signals into Log-Mel Spectrograms, which are 2D
representations of the audio’s frequency content over time. This transformation makes
audio data compatible with ResNet-50.

 Convolutional layers for feature extraction: The model utilizes the initial layers of
ResNet-50 to extract low-level features from the spectrograms. These layers are effective
at capturing local patterns and textures within the spectrograms. Each convolutional
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Figure 2 The architecture of the ResNet-50 module.  Full-size Kl DOI: 10.7717/peerj-cs.3292/fig-2

layer applies a set of filters to the input to extract features. The output of a convolution
operation can be represented by the Eq. (1). Where F is the feature map, I is the input
audio (Log-Mel Spectrograms), K is the kernel (filter), and * denotes the convolution
operation.

F(x,y) = [+ K)(xy) = S0 5 Lm,n) - K(x = m,y — ). 1)

 Batch normalization: After convolutional layers, we apply batch normalization
to normalize the activations. The normalized output is described by Eq. (2). In
the equation, z represents the input to the batch normalization layer, p is the mean
of z, g2 is the variance of z, and ¢ is a small constant helps to prevent division by
zero. After convolutions, Rectified Linear Unit (ReLU) activation functions are used to
learn complex patterns in the audio data that indicate different emotions.
P )

Vol +e

¢ Max pooling: A max pooling layer is employed to reduce the spatial dimensions of the
feature maps, emphasizing the most significant elements. We use a 3 x 3 pooling window
that moves across the feature map with a stride of 2. The window captures the highest
value within its area, discarding the rest, and this process is repeated across the map. Max
pooling reduces the network’s parameter count and computational load, thereby
enhancing efficiency.

HuBERT-LSTM module

The HuBERT-LSTM architecture for SER tasks combines the strengths of
self-supervised learning and sequence modeling to recognize emotions from speech
signals effectively. Detailed workflow and architecture of the HuBERT-LSTM are shown
in Fig. 3.
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Figure 3 The architecture of the HuBERT-LSTM module.
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First, the raw audio data is transformed into Log-Mel Spectrograms and then fed
into the HuBERT model. This model has been trained in a self-supervised manner,
allowing it to learn robust speech representations without requiring labeled data. The
HuBERT model outputs a sequence of embeddings that capture the acoustic features of the
speech signal.

Next, these embeddings are processed by an LSTM network, which is effective at
capturing long-term dependencies within sequence data due to its gating mechanisms. The
workflow within an LSTM unit can be described by the following steps:

- Forget gate: The forget gate determines how much of the previous cell state should be
retained. As shown in Eq. (3), o represents the sigmoid function, Wy are the weights
associated with the forget gate, h;_, is the hidden state from the previous time step, x; is the
input at time step ¢, and by are the biases.

ﬁ = O'(Wf . [ht_l,xt] + bf) (3)

- Input gate: The input gate controls how much of the new input will be added to the cell
state, while the candidate cell state represents the new information to be stored. This is
expressed in Eq. (4). Here, i; denotes the input gate activation, ¢ is the candidate value for
the cell state, and W;, W, b;, and b¢ are the weights and biases for the input gate and
candidate cell state, respectively.

l:f — O-(Wi : [ht—laxt] + bl) (4)
C; = tal’lh(Wc . [ht_1,xt] + bc)
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After the LSTM processes the sequence, the output is passed through a fully connected
layer and a softmax layer to classify the input audio into different emotional categories.
The softmax function is given by Eq. (5). Where z; is the output of the fully connected
layer for class k, and K is the total number of emotion classes.

Finally, the outputs from HuBERT-LSTM and ResNet-50 are fed into a Transformer
model for SER outputs. This combines the sequential information captured by LSTM with
the spatial features extracted by ResNet-50. This combined architecture leverages
HuBERT’s ability to extract meaningful acoustic features and LSTM’s capability to model
the temporal dynamics of speech, providing a practical framework for recognizing
emotions in speech signals.

k) — exp(zk)
PO =) =S iz ©

IMPLEMENTATION AND EXPERIMENTS

In this experiment, we conducted a comparative analysis and ablation studies with
traditional SER models, including AlexNet, ResNet50, ResNet101, LSTM, and LSTM-
HuBERT. Our study utilized the RAVDESS Emotional Speech Audio Dataset, which is
well-known for its comprehensive emotional annotations and diverse vocal expressions,
serving as the foundation for our experiments.

The comparative experiments aimed to benchmark the performance of our proposed
model against several commonly used SER models. We evaluated the models using
standard metrics, including accuracy, precision, recall, and the F1-score. These metrics
allowed us to perform a detailed assessment of each model’s efficiency.

Additionally, we conducted an ablation study to assess the impact of various model
components. By selectively disabling or modifying certain features, we were able to isolate
the contributions of individual elements to the overall performance of the model. This
process was instrumental in identifying which aspects of our model were most influential
in achieving good performance in emotion recognition tasks.

Dataset

To evaluate the effectiveness and generalizability of the proposed model, we conduct
experiments on two widely used emotional speech datasets: the RAVDESS Emotional
Speech Audio Dataset and the MELD. These datasets differ in modality, speaker diversity,
and conversational structure, providing complementary perspectives for benchmarking
SER performance.

RAVDESS

The RAVDESS Emotional Speech Audio Dataset (Livingstone ¢» Russo, 2019) consists of
1,440 audio files, generated from 60 trials per actor across 24 professional actors (12 female
and 12 male). Each actor vocalizes two lexically matched statements in a neutral North
American accent. The dataset covers eight emotion categories: calm, happy, sad, angry,
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Table 2 Number of samples per emotion in the RAVDESS emotional speech audio dataset.

ID Emotion Size
1 Disgust 192
2 Happy 192
3 Fear 192
4 Sad 192
5 Angry 192
6 Neutral 96

tearful, surprise, disgust, and neutral. Except for the neutral class, all emotions are
expressed at two levels of intensity (normal and strong). Each audio file is uniquely
identified by a seven-part numerical filename (e.g., 03-01-06-01-02-01-12.wav). Table 2
shows the distribution of audio samples across selected emotion categories used in our
experiments.

MELD

The MELD dataset, or the Multimodal EmotionLines Dataset (Poria ef al., 2018), is a
comprehensive benchmark for emotion recognition in conversations. It is an extension of
the EmotionLines dataset, enhanced with audio and visual modalities in addition to text.
MELD comprises over 1,400 dialogues and 13,000 utterances from the popular TV series
“Friends”, capturing a wide range of emotional expressions. Each utterance is meticulously
labeled with one of seven distinct emotions: anger, disgust, sadness, joy, neutral, surprise,
and fear. Moreover, MELD also includes sentiment annotations (positive, negative, and
neutral) for each utterance. The dataset’s multi-party nature, with dialogues involving
multiple speakers, adds to its complexity and makes it a challenging benchmark for
evaluating emotion recognition models. The distribution of samples across emotion
categories is shown in Table 3, highlighting the class imbalance that must be addressed in
model development. This rich multimodal dataset provides a robust foundation for
developing and testing advanced emotion recognition systems.

Experiment environment

The raw audio signals used in this study are sampled at a rate of 16 kHz. Each audio
utterance is split into several segments. If a segment is less than 3 s long, we add zero
padding to ensure it meets the required length. The final prediction for an audio utterance
depends on all segments derived from that utterance.

In the experiments, both MFCCs and spectrogram features are used to capture
diverse aspects of speech. MFCCs are 40-dimensional features derived from Mel
frequencies, which are mainly designed to reflect the human auditory system’s response to
sound.

A series of Hamming windows is used to generate spectrograms. Each window
segment lasts for 50 ms and advances with a hop length of 15 ms. These windowed
segments, or frames, are then subjected to the Discrete Fourier Transform (DFT), which is
applied with a length of 800. The first 200 DFT points from each frame are selected as
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Table 3 Number of samples per emotion in the MELD dataset.

ID Emotion Sample count
1 Disgust 271

2 Joy 1,743

3 Fear 268

4 Sadness 683

5 Anger 1,109

6 Neutral 4,710

7 Surprise 1,205

input features, resulting in a spectrogram image of dimensions 300 x 300 for each audio
segment.

The model is implemented using PyTorch. We use the AdamW Optimizer with a
learning rate of 1e—4 and a weight decay of 5e—4. The training batch size is set to 8. To
improve performance when the loss shows no improvement, we adjust the learning rate by
a factor of n. Additionally, we have set the system to run for a maximum of 30 epochs. The
complete processing steps and code can be found in the GitHub Repository.

During the feature extraction stage, two types of features are synchronously derived
from each 3-s audio segment, corresponding to the dual-branch structure of the proposed
model. First, a 300 x 300 Log-Mel spectrogram is generated using a window size of 50 ms,
hop length of 15 ms, and FFT size of 800. The resulting single-channel image is duplicated
across three channels and fed into the ResNet-50 network to capture localized
time-frequency patterns. Second, a 40-dimensional MFCC feature sequence with 300
frames (aligned with the spectrogram frame count) is extracted and passed into a
HuBERT-LSTM branch to model long-range temporal dependencies. The ResNet-50
branch outputs a 2,048-dimensional vector after global average pooling, while the
HuBERT-LSTM branch produces a 768-dimensional hidden state. These two
representations are concatenated into a 2,816-dimensional feature vector, which is then
input into a four-layer Transformer encoder for high-level feature modeling and final
emotion classification. This dual-branch structure effectively integrates both spatial and
temporal characteristics of the audio signal, enhancing the model’s ability to discriminate
speech emotions.

Comparative study

To comprehensively assess the effectiveness of our model, we perform comparative
experiments on two datasets: RAVDESS and MELD. The following subsections present the
detailed results and analysis on each dataset respectively.

Experiments on RAVDESS
Table 4 provides a comparative analysis of the performance of various models in SER.
According to the results, “Our model” demonstrates the highest Recall with 0.78,

indicating they successfully recognize 78% of the actual emotional instances. This
performance surpasses that of LSTM-HuBERT, ResNet-101, ResNet-50, and AlexNet,

Huang et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.3292 11/20


https://github.com/qpqpaall/ser-main
http://dx.doi.org/10.7717/peerj-cs.3292
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Evaluation results of various models in SER tasks.

Model Precision Recall Accuracy F1-score
Alexnet 0.55 0.54 0.54 0.55
ResNet-50 0.59 0.59 0.59 0.59
ResNet-101 0.64 0.67 0.65 0.65
LSTM-HuBERT 0.75 0.77 0.75 0.76
Our model 0.78 0.78 0.76 0.78

which have Recall scores of 0.77, 0.67, 0.59, and 0.54, respectively. This indicates that “Our
model” is more effective at recognizing emotional states in audio data. In contrast, AlexNet
is the least effective, detecting nearly half of the actual emotional instances.

When evaluating the accuracy, which reflects the overall correctness of a model’s
classifications, both LSTM-HuBERT and our model demonstrate high reliability with
scores of 0.75 and 0.76, respectively. These results indicate the high accuracy of our model.

Precision also shows promising results. LSTM-HuBERT and our model lead with scores
of 0.75 and 0.77, suggesting a lower rate of false positives compared to other models.

The F1-score, which balances precision and recall, further highlights the performance of
LSTM-HuBERT and our model, which achieve the highest scores at 0.76 and 0.78,
respectively. This indicates that our model provides a good trade-off between precision and
recall, offering a more comprehensive measure of performance.

Opverall, the proposed model performs competitively with other state-of-the-art models,
as evidenced by its strong recall and F1-score. The high precision and accuracy further
demonstrate the model’s effectiveness in SER tasks. These results can be attributed to its
integration of HuBERT-LSTM’s ability to capture long-range dependencies in speech data
with ResNet-50’s strength in feature extraction, leading to a robust hybrid architecture that
effectively recognizes emotional states.

Experiments on MELD

To assess the model’s performance in more natural and conversational scenarios, we
conduct additional experiments on the MELD dataset. Unlike RAVDESS, MELD contains
multi-party dialogues and multimodal emotion expressions, posing greater challenges for
recognition models. As shown in Table 5, our Hybrid-Module-Transformer model
achieves superior results compared to several strong baselines, including AlexNet,
ResNet-50, ResNet-101, and LSTM-HuBERT.

Our model achieved a precision of 0.723, a recall of 0.718, an accuracy of 0.729, and an
F1-score of 0.720. In contrast, AlexNet recorded a precision of just 0.482, a recall of 0.469,
an accuracy of 0.501, and an F1-score of 0.475. This clearly shows that our model surpasses
AlexNet in all metrics, with improvements exceeding 0.20 in both precision and recall.

ResNet-50 fared better than AlexNet, achieving a precision of 0.615, a recall of 0.602, an
accuracy of 0.628, and an F1-score of 0.608. However, our model still outshines it by over
0.10 in precision and recall.
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Table 5 Comparison of different models on the MELD dataset.

Model Precision Recall Accuracy F1-score
AlexNet 0.482 0.469 0.501 0.475
ResNet-50 0.615 0.602 0.628 0.608
ResNet-101 0.630 0.621 0.645 0.625
LSTM-HuBERT 0.684 0.679 0.692 0.681
emotion2vec - - 0.5188 (WA) 0.487 (WF1)
1D-CNN with feature fusion 0.932 0.938 0.940 0.935

Our model 0.723 0.718 0.729 0.720

ResNet-101 further enhances these metrics, with a precision of 0.630, a recall of 0.621,
an accuracy of 0.645, and an F1-score of 0.625. Even with these advancements, our model
maintains a significant edge over ResNet-101, outperforming it by nearly 0.10 in both
Precision and Recall.

LSTM-HuBERT achieved a precision of 0.684, a recall of 0.679, an accuracy of 0.692,
and an F1-score of 0.681. While it shows commendable performance, our model distinctly
surpasses it by approximately 0.04 in precision and recall.

Beyond these baselines, two recent works provide valuable points of comparison. The
first is emotion2vec (Ma et al., 2023), which employs large-scale self-supervised
pre-training with utterance-level and frame-level objectives. On MELD, emotion2vec
reported a weighted accuracy (WA) of 51.88% and a weighted F1(WF1) score of 48.7%.
Although these values are below our 72.9% accuracy, emotion2vec demonstrates
impressive cross-lingual and cross-task generalization, highlighting the strength of
universal pre-trained representations. Our model, in contrast, is specifically designed
for speech emotion recognition and therefore achieves higher performance in this
focused task.

The second is the CNN-based approach of Waleed ¢ Shaker (2025), which integrates
MFCCs, Mel-spectrograms, and Chroma features through a 1D-CNN with feature fusion.
Their method achieved an outstanding 94.0% accuracy on MELD, far surpassing our
result. The difference lies mainly in methodology: their network directly exploits
complementary handcrafted spectral features with an efficient CNN pipeline, while our
approach relies on HuBERT for representation learning combined with LSTM and ResNet
modules to capture temporal and hierarchical structure. Although our Transformer-based
design provides a balanced framework with strong generalization, their feature-fusion
strategy demonstrates that careful exploitation of complementary acoustic cues can
significantly boost accuracy. This suggests a promising direction for future work, where
our architecture may be further enhanced by incorporating similar multi-feature fusion
strategies.

In summary, the Hybrid-Module-Transformer model demonstrates exceptional
performance on the MELD dataset, outperforming multiple strong baselines and showing
competitive accuracy against recent specialized models. While CNN-based fusion models
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Table 6 Ablation study results for our model.

Model Precision Recall Accuracy F1-score
Full model 0.7727 0.7852 0.793 0.789
w/o transformer attention 0.7689 0.7714 0.7929 0.7820
w/o ResNet-50 0.7538 0.7518 0.7819 0.7665
w/o transformer and ResNet-50 0.7538 0.756 0.7741 0.7649

currently achieve higher accuracy, our results establish a strong balance between
robustness, generalization, and architectural flexibility.

Ablation study

First, we examine the impact of different modules in our model. As shown in Table 6, the
“Full Model” serves as the baseline, demonstrating strong performance with a precision of
0.7727, Recall of 0.7852, accuracy of 0.793, and an F1-score of 0.789. These results indicate
a well-balanced trade-off between precision and recall.

The ablation study reveals the significance of each component for the model’s
performance. When the Transformer Attention mechanism is removed (“w/o
Transformer Attention”), there is a slight decrease across all metrics, with precision
dropping to 0.7689 and recall to 0.7714. This suggests that attention plays a crucial role in
capturing relevant features for emotion recognition. When ResNet-50 is excluded (“w/o
ResNet-50"), we observe a drop in precision (0.7538) and accuracy (0.7819), highlighting
its importance in stabilizing the learning process and enhancing generalization.
Additionally, omitting ResNet-50 leads to a marginal decrease in recall (0.7518), indicating
its contribution to preventing overfitting.

Removing both the Transformer and ResNet-50 from the model results in a global
decline in performance. Precision drops to 0.7538, recall to 0.756, and accuracy to 0.7741.
Furthermore, the F1-score decreases to 0.7649. These results show how various
components contribute to enhancing the model’s overall performance.

In summary, the results show the role of each component in the model’s architecture
and their contribution to the performance of the Full Model. The relatively high
performance of the Full Model compared to its ablated versions supports the design of the
proposed architecture in achieving effective results in SER.

The impact of removing different modules from the proposed architecture on
classification precision is evident in Fig. 4. For instance, when the ‘sad’ emotion
classification is analyzed, there is a drop in accuracy from 0.85 in the full model (d) to 0.8
in the model without the Transformer (c), and further down to 0.7 in the model without
ResNet-50 (b).

When both the Transformer and ResNet-50 are omitted (as shown in (a)), there is a
substantial decrease in accuracy across multiple emotion classifications. The ‘fear’ emotion
classification, in particular, drops from 0.88 in the full model (d) to 0.86 in the model
without the Transformer and ResNet-50 (a).
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Figure 4 The normalized confusion matrix for the SER without and with the proposed modules. (A) w/o Transformer and ResNet-50: Diagonal
(per-class) accuracies—disgust 0.780, happy 0.570, fear 0.860, sad 0.700, angry 0.840, neutral 0.900. Overall accuracy is lowest in this setting:
although fear and angry reach relatively high values (0.860 and 0.840), sad is notably low (0.700) and the diagonal is generally lighter than in other
configurations, indicating reduced discrimination across emotions. (B) w/o ResNet-50 (Transformer only): Diagonal accuracies—disgust 0.760,
happy 0.540, fear 0.950, sad 0.700, angry 0.800, neutral 0.950. The Transformer strongly boosts fear and neutral (both 0.950); however, happy falls to
0.540 (the lowest across settings), suggesting the CNN/ResNet path is important for capturing timbral cues associated with happiness. (C) w/o
Transformer (ResNet-50 only): Diagonal accuracies—disgust 0.820, happy 0.610, fear 0.860, sad 0.800, angry 0.720, neutral 0.950. Retaining ResNet-
50 raises disgust (0.820) and keeps neutral high (0.950), but without attention the model struggles more with angry (0.720), indicating the
Transformer’s key role in modeling frame-to-frame dependencies for emotions such as anger. (D) Full model (Transformer + ResNet-50): Diagonal
accuracies—disgust 0.760, happy 0.590, fear 0.880, sad 0.850, angry 0.780, neutral 0.900. The combined model yields the most balanced performance
overall, with the highest sad accuracy (0.850) and strong fear accuracy (0.880). The diagonal is the darkest and off-diagonal errors are smallest,
confirming the complementary benefits of integrating both Transformer and ResNet-50. Full-size K&l DOT: 10.7717/peerj-cs.3292/fig-4

Removing the Transformer (c) also leads to decreased accuracy in classifying the ‘sad’
and ‘angry’ emotions, which fall from 0.85 and 0.78 in the full model (d) to 0.8 and 0.72,
respectively. The ‘fear’ classification similarly decreases from 0.88 to 0.86.
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The inclusion of both the Transformer and ResNet-50 (as in the full model (d)) results
in an improvement in performance, with enhancements in the classification accuracy of
‘fear’ and ‘sad’ emotions. The ‘sad’ classification, in particular, benefits from the full model
architecture, with a high accuracy of 0.85 compared to others.

In summary, the confusion matrices and their corresponding accuracy rates illustrate
the significant contribution of each component to the model’s performance in correctly
classifying emotional states. The data underscores the importance of an integrated model
architecture that includes both the Transformer and ResNet-50, as seen in the full model
(d), to achieve optimal performance in emotion recognition tasks.

MATERIALS AND METHODS

System implementation and usage

The hybrid modular Transformer architecture combining HuBERT, LSTM, and ResNet-
50 was implemented as an open-source project with the following implementation details
and usage instructions:

Environment setup

All experiments were conducted in a containerized environment using the pytorch/
pytorch:1.13.1-cudall.6-cudnn8-devel Docker image to ensure reproducibility.
This environment provided PyTorch 1.13.1 with CUDA 11.6 and cuDNN 8 support.
Additional dependencies were managed through a requirements file.

Dataset acquisition

The RAVDESS and MELD datasets were employed for training and evaluating our
proposed model. The RAVDESS dataset (https://zenodo.org/records/1188976) provides
high-quality acted speech recordings with labeled emotional content, suitable for
evaluating performance in controlled settings. In contrast, the MELD dataset (https://
affective-meld.github.io/) offers multimodal, multi-speaker conversations sourced from
television dialogues, making it ideal for assessing model robustness in more natural and
dynamic scenarios. Both datasets are publicly available and widely used in speech emotion
recognition research.

Feature extraction pipeline

A dedicated preprocessing pipeline was implemented to transform raw audio data into
suitable input formats. The feature_extract.py script extracts intermediate features
from speech samples and stores them in a structured format (arrays.pkl): python
feature_extract.py

CONCLUSION

This article presents a Hybrid Module Transformer model for speech emotion recognition,
demonstrating its effectiveness even with limited data. By combining HuBERT, LSTM, and
ResNet-50, our model excels in both feature extraction and emotional classification.
Experiments conducted on the RAVDESS dataset achieved an impressive accuracy rate
of 78%, highlighting the robustness of the model in low-data situations. Furthermore, the
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model achieved an accuracy of 72.9% on the MELD dataset, demonstrating its robustness
in more complex, real-world conversational scenarios involving multimodal emotional
expressions. While our Hybrid Module Transformer model demonstrates promising SER
results, a major limitation is its dependence on substantial computational resources, which
could limit its applicability in low-resource environments. In future work, we plan to
improve the model’s accuracy by exploring additional features and refining its architecture.
We also aim to expand its capabilities to recognize a broader range of emotions and adapt
to new languages with minimal retraining.

CODE REPOSITORY URL
The experimental code has been uploaded to GitHub, and the URL of the code is: https://
github.com/qpqpaall/ser-main.
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This study utilizes publicly available third-party datasets for training and evaluation. The
datasets and their respective access links are listed below:
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e MELD: https://github.com/declare-lab/MELD.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the National Key Research and Development Program of
China (No. 2022YFF0708500); the Natural Science Foundation of Fujian Province grant
number (Nos. 2022J011273, 2022J011275); and the National Natural Science Foundation
of China (No. 62372392). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

National Key Research and Development Program of China: 2022YFF0708500.
Natural Science Foundation of Fujian Province: 2022J011273, 2022J011275.
National Natural Science Foundation of China: 62372392.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

* Xindong Huang conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the
final draft.

Huang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3292 17/20


https://github.com/qpqpaall/ser-main
https://github.com/qpqpaall/ser-main
https://zenodo.org/records/1188976
https://github.com/declare-lab/MELD
http://dx.doi.org/10.7717/peerj-cs.3292
https://peerj.com/computer-science/

PeerJ Computer Science

e Wuhui Lin conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, and approved the final draft.

e Maming Chen conceived and designed the experiments, analyzed the data,
performed the computation work, prepared figures and/or tables, and approved the
final draft.

e Hua Shi conceived and designed the experiments, analyzed the data, performed the
computation work, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental File and at GitHub and Zenodo: https://
github.com/qpgpaall/ser-main.

Huang, X, lin, W., Chen, M., & Shi, H. (2025). Hybrid-module transformer: Enhancing
speech emotion recognition with HuBERT, LSTM, and ResNet-50. Zenodo. https://doi.
org/10.5281/zenodo.17190242.

The RAVDESS dataset is available at Zenodo: Livingstone, S. R., & Russo, F. A. (2018).
The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [Data
set]. In PLoS ONE (1.0.0, Vol. 13, Number 5, p. €0196391). Zenodo. https://doi.org/10.
5281/zenodo.1188976.

The MELD dataset is available at GitHub and ACL Anthology: https://github.com/
declare-lab/MELD.

Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik
Cambria, and Rada Mihalcea. 2019. MELD: A Multimodal Multi-Party Dataset for
Emotion Recognition in Conversations. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 527-536, Florence, Italy. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/P19-1050.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3292#supplemental-information.

REFERENCES

Akbulut FP, Perros HG, Shahzad M. 2020. Bimodal affect recognition based on autoregressive
hidden markov models from physiological signals. Computer Methods and Programs in
Biomedicine 195(11):105571 DOI 10.1016/j.cmpb.2020.105571.

Andayani F, Theng LB, Tsun MT, Chua C. 2022. Hybrid LSTM-transformer model for emotion
recognition from speech audio files. IEEE Access 10:36018-36027
DOI 10.1109/access.2022.3163856.

Chang X, Maekaku T, Guo P, Shi J, Lu Y-J, Subramanian AS, Wang T, Yang S-W, Tsao Y, Lee
H-Y, Watanabe S. 2021. An exploration of self-supervised pretrained representations for end-

to-end speech recognition. In: 2021 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU). Piscataway: IEEE, 228-235.

Huang et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.3292 18/20


http://dx.doi.org/10.7717/peerj-cs.3292#supplemental-information
https://github.com/qpqpaall/ser-main
https://github.com/qpqpaall/ser-main
https://doi.org/10.5281/zenodo.17190242
https://doi.org/10.5281/zenodo.17190242
https://doi.org/10.5281/zenodo.1188976
https://doi.org/10.5281/zenodo.1188976
https://github.com/declare-lab/MELD
https://github.com/declare-lab/MELD
https://doi.org/10.18653/v1/P19-1050
http://dx.doi.org/10.7717/peerj-cs.3292#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3292#supplemental-information
http://dx.doi.org/10.1016/j.cmpb.2020.105571
http://dx.doi.org/10.1109/access.2022.3163856
http://dx.doi.org/10.7717/peerj-cs.3292
https://peerj.com/computer-science/

PeerJ Computer Science

Chen W, Xing X, Xu X, Pang J, Du L. 2023b. DST: deformable speech transformer for emotion
recognition. In: ICASSP, 2023—2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Piscataway: IEEE.

Chen S, Xing X, Zhang W, Chen W, Xu X. 2023a. DWFormer: dynamic window transformer for
speech emotion recognition. In: ICASSP, 2023—2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).

Chiu C-C, Qin J, Zhang Y, Yu J, Wu Y. 2022. Self-supervised learning with random-projection
quantizer for speech recognition. In: International Conference on Machine Learning. PMLR,
3915-3924.

Dwivedi TU, Gupta S, Upadhyay SK, Shukla Y, Ahuja S. 2022. Automatic speech recognition
system using hybrid hidden Markov model and human emotion recognition system. SSRN
Electronic Journal DOI 10.2139/ssrn.4021329.

Fahad MS, Deepak A, Pradhan G, Yadav J. 2021. DNN-HMM-based speaker-adaptive emotion
recognition using MFCC and epoch-based features. Circuits, Systems, and Signal Processing
40(1):466-489 DOI 10.1007/s00034-020-01486-8.

Feng T, Narayanan S. 2024. Foundation model assisted automatic speech emotion recognition:
transcribing, annotating, and augmenting. In: ICASSP 2024—2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE,
12116-12120.

Hattori T, Tamura S. 2023. Speech recognition for minority languages using HuBERT and model
adaptation. In: ICPRAM, 350-355.

Hazmoune S, Bougamouza F. 2024. Using transformers for multimodal emotion recognition:
taxonomies and state of the art review. Engineering Applications of Artificial Intelligence
133(3):108339 DOI 10.1016/j.engappai.2024.108339.

Jain R, Barcovschi A, Yiwere MY, Bigioi D, Corcoran P, Cucu H. 2023. A wav2vec2-based
experimental study on self-supervised learning methods to improve child speech recognition.
IEEE Access 11:46938-46948 DOI 10.1109/access.2023.3275106.

Jermsittiparsert K, Abdurrahman A, Siriattakul P, Sundeeva LA, Hashim W, Rahim R,
Maseleno A. 2020. Pattern recognition and features selection for speech emotion recognition
model using deep learning. International Journal of Speech Technology 23(4):799-806
DOI 10.1007/s10772-020-09690-2.

Kons Z, Aronowitz H, Morais E, Damasceno M, Kuo H-K, Thomas S, Saon G. 2022. Extending
RNN-T-based speech recognition systems with emotion and language classification. ArXiv
DOI 10.48550/arXiv.2207.13965.

Li B. 2021. Hearing loss classification via AlexNet and extreme learning machine. International
Journal of Cognitive Computing in Engineering 2:144-153 DOI 10.1016/j.ijcce.2021.09.002.

Livingstone SR, Russo FA. 2019. RAVDESS emotional speech audio. Kaggle. Available at https://
www.kaggle.com/dsv/256618.

Ma Z, Zheng Z, Ye J, Li J, Gao Z, Zhang S, Chen X. 2023. emotion2vec: self-supervised
pre-training for speech emotion representation. ArXiv DOI 10.48550/arXiv.2312.15185.

Mao S, Tao D, Zhang G, Ching P, Lee T. 2019. Revisiting hidden markov models for speech
emotion recognition. In: ICASSP 2019—2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Piscataway: IEEE, 6715-6719.

Poria S, Hazarika D, Majumder N, Naik G, Cambria E, Mihalcea R. 2018. MELD: multimodal
emotionlines dataset. Affective Computing Group, Carnegie Mellon University. Available at
https://affective-meld.github.io/.

Huang et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.3292 19/20


http://dx.doi.org/10.2139/ssrn.4021329
http://dx.doi.org/10.1007/s00034-020-01486-8
http://dx.doi.org/10.1016/j.engappai.2024.108339
http://dx.doi.org/10.1109/access.2023.3275106
http://dx.doi.org/10.1007/s10772-020-09690-2
http://dx.doi.org/10.48550/arXiv.2207.13965
http://dx.doi.org/10.1016/j.ijcce.2021.09.002
https://www.kaggle.com/dsv/256618
https://www.kaggle.com/dsv/256618
http://dx.doi.org/10.48550/arXiv.2312.15185
https://affective-meld.github.io/
http://dx.doi.org/10.7717/peerj-cs.3292
https://peerj.com/computer-science/

PeerJ Computer Science

Roy A, Saffar M, Vaswani A, Grangier D. 2021. Efficient content-based sparse attention with
routing transformers. Transactions of the Association for Computational Linguistics 9(3):53-68
DOI 10.1162/tacl_a_00353.

Shahgir H, Sayeed KS, Zaman TA. 2022. Applying wav2vec2 for speech recognition on Bengali
common voices dataset. ArXiv DOI 10.48550/arXiv.2209.06581.

Triantafyllopoulos A, Wagner ], Wierstorf H, Schmitt M, Reichel U, Eyben F, Burkhardt F,
Schuller BW. 2022. Probing speech emotion recognition transformers for linguistic knowledge.
ArXiv DOI 10.48550/arXiv.2204.00400.

Trinh Van L, Dao Thi Le T, Le Xuan T, Castelli E. 2022. Emotional speech recognition using deep
neural networks. Sensors 22(4):1414 DOI 10.3390/s22041414.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I.
2017. Attention is all you need. In: Advances in Neural Information Processing Systems. Vol. 30.
Long Beach, CA, USA: Curran Associates, Inc.

Wagner J, Triantafyllopoulos A, Wierstorf H, Schmitt M, Burkhardt F, Eyben F, Schuller BW.
2023. Dawn of the transformer era in speech emotion recognition: closing the valence gap. IEEE
Transactions on Pattern Analysis and Machine Intelligence 45(9):10745-10759
DOI 10.1109/tpami.2023.3263585.

Waleed GT, Shaker SH. 2025. Speech emotion recognition on MELD and RAVDESS datasets
using CNN. Information 16(7):18 DOI 10.3390/info16070518.

Wang Y, Lu C, Lian H, Zhao Y, Schuller B, Zong Y, Zheng W. 2024. Speech swin-transformer:
exploring a hierarchical transformer with shifted windows for speech emotion recognition.
In: ICASSP, 2024—2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). Piscataway: IEEE.

Wang Y, Lu C, Zong Y, Lian H, Zhao Y, Li S. 2023. Time-frequency transformer: a novel time
frequency joint learning method for speech emotion recognition. In: International Conference on
Neural Information Processing (ICONIP).

Wani TM, Gunawan TS, Qadri SAA, Kartiwi M, Ambikairajah E. 2021. A comprehensive review
of speech emotion recognition systems. IEEE Access 9:47795-47814
DOI 10.1109/access.2021.3068045.

Yadav SP, Zaidi S, Mishra A, Yadav V. 2022. Survey on machine learning in speech emotion
recognition and vision systems using a recurrent neural network (RNN). Archives of
Computational Methods in Engineering 29(3):1753-1770 DOI 10.1007/s11831-021-09647-x.

Yi C, Wang J, Cheng N, Zhou S, Xu B. 2020. Applying wav2vec2. 0 to speech recognition in
various low-resource languages. ArXiv DOI 10.48550/arXiv.2012.12121.

Zhang H, Huang H, Zhao P, Yu Z. 2025. Sparse temporal aware capsule network for robust speech
emotion recognition. Engineering Applications of Artificial Intelligence 144(10):110060
DOI 10.1016/j.engappai.2025.110060.

Zhang H, Huang H, Zhao P, Zhu X, Yu Z. 2024. CENN: capsule-enhanced neural network with
innovative metrics for robust speech emotion recognition. Knowledge-Based Systems 304:112499
DOI 10.1016/j.knosys.2024.112499.

Zhao J, Zhang W-Q. 2022. Improving automatic speech recognition performance for low-resource

languages with self-supervised models. IEEE Journal of Selected Topics in Signal Processing
16(6):1227-1241 DOI 10.1109/jstsp.2022.3184480.

Huang et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.3292 20/20


http://dx.doi.org/10.1162/tacl_a_00353
http://dx.doi.org/10.48550/arXiv.2209.06581
http://dx.doi.org/10.48550/arXiv.2204.00400
http://dx.doi.org/10.3390/s22041414
http://dx.doi.org/10.1109/tpami.2023.3263585
http://dx.doi.org/10.3390/info16070518
http://dx.doi.org/10.1109/access.2021.3068045
http://dx.doi.org/10.1007/s11831-021-09647-x
http://dx.doi.org/10.48550/arXiv.2012.12121
http://dx.doi.org/10.1016/j.engappai.2025.110060
http://dx.doi.org/10.1016/j.knosys.2024.112499
http://dx.doi.org/10.1109/jstsp.2022.3184480
http://dx.doi.org/10.7717/peerj-cs.3292
https://peerj.com/computer-science/

	Hybrid-Module Transformer: enhancing speech emotion recognition with HuBERT, LSTM, and ResNet-50
	Introduction
	Methodology
	Implementation and experiments
	Materials and Methods
	Conclusion
	Code repository url
	Third-party data
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


