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ABSTRACT
Software application users often submit numerous enhancement reports (ERs)
requesting new features, but only a small fraction are deemed feasible and approved.
Recent methods have attempted to automate the identification of feasible ERs,
primarily using textual descriptions and traditional machine learning (ML)
techniques. This article proposes a deep learning (DL) approach that significantly
improves performance by integrating both textual (summary, sentiment) and
non-textual metadata (reporter and module statistics) into a unified representation.
Textual features are encoded using Bidirectional Encoder Representations from
Transformers (BERT), while sentiment is computed using Senti4SD, a tool designed
for sentiment analysis in software engineering. Non-textual features are derived from
reporter and module histories to provide behavioral context. These features are
concatenated and fed into a DL-based binary classifier. Experiments on a publicly
available dataset show that the proposed approach substantially outperforms
previous methods, improving accuracy from 82.38% to 94.02% and F1-score from
85.03% to 94.26%. The results highlight the effectiveness of combining semantic,
affective, and behavioral features in predicting feasible ERs.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Software Engineering, Sentiment Analysis
Keywords Software requirements, Classification, Enhancement reports, BERT

INTRODUCTION
Enhancement reports (ERs) are feature requests proposed by users, e.g., developers,
teachers, and learners of software applications (S-APPs) (Herzig, Just & Zeller, 2013). Users
often expect the S-APPs to provide some useful features that the current version does not
provide. Such expectations are usually documented and returned to developers as ERs
(Antoniol et al., 2008). To facilitate the creation and handling of ERs, developers employ
problem-tracking systems (e.g., Bugzilla) to manage ERs (Anvik, 2007). Such tracking
systems record the whole life cycle of the ERs (Anvik, 2007), e.g., who creates the reports,
when they are created, what the expected features are, which modules are associated with
the new features, and whether the given features have been finally implemented.

ERs often request manual processing. Developers and/or maintainers read through ERs,
make decisions (i.e., whether they should be approved/implemented), implement the
approved requested features, and release the updates/patches. The manual processing
could be time-consuming because of the many ERs submitted by various reporters.

How to cite this article Umer Q. 2025. Bidirectional encoder representations from transformers (BERT) driven approach for identifying
feasible software enhancements. PeerJ Comput. Sci. 11:e3290 DOI 10.7717/peerj-cs.3290

Submitted 19 March 2025
Accepted 20 September 2025
Published 20 October 2025

Corresponding author
Qasim Umer,
qasim.umer@kfupm.edu.sa

Academic editor
Siddhartha Bhattacharyya

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.3290

Copyright
2025 Umer

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3290
mailto:qasim.�umer@�kfupm.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3290
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


However, according to the empirical study (Nizamani et al., 2017; Umer, Liu & Sultan,
2019), more than three-quarters of the submitted ERs are denied/ignored, and manual
processing of such reports does not pay off. Less than a quarter of the ERs are approved
and implemented. Such approved ERs are called “feasible ERs”.

The automated and accurate prediction of feasible ERs facilitates developers in
inspecting the most likely-to-be-fixed requests first (Nizamani et al., 2017). As a result,
developers could respond promptly to valuable and significant inquiries, which is
highly desirable for the success of S-APPs. Besides that, selecting and handling a subset
of the most promising ERs from a huge set of reports helps developers to maximize
revenue when the allocated time is insufficient to handle all of the collected ERs
(Nizamani et al., 2017).

To facilitate the processing of numerous ERs, several automatic approaches have been
proposed to identify feasible ERs for further manual processing (Nizamani et al., 2017;
Umer, Liu & Sultan, 2019; Cheng et al., 2021).Nizamani et al. (2017) take ERs as plain texts
and leverage conventional machine learning (ML) methods, i.e., Multinomial Naive Bayes
(MNB), to classify the ERs based on the plain texts. The classifier classifies ERs into two
disjoint categories: feasible and infeasible (Nizamani et al., 2017). Umer, Liu & Sultan
(2019) further improve classification performance by leveraging the reports’ sentiment.
The article’s key insight is that the reports’ sentiment could represent the reports’ emotion,
and such emotion often significantly impacts the classification. Evaluation results confirm
that leveraging the emotion of reports can improve the accuracy performance of the
classification. Cheng et al. (2021) combined a Bag-of-Words (BOW) representation and a
traditional word2vec-based representation of preprocessed text. Using an attention
mechanism, they enabled the model to remember the context over a long sequence of
words in an enhancement report. They trained a recurrent neural network (RNN) classifier
for the approval prediction of enhancement reports based on sentiment and deep
representation.

This article suggests a novel automatic approach to distinguishing feasible ERs from
others. It differs from existing ones (Nizamani et al., 2017; Umer, Liu & Sultan, 2019;
Cheng et al., 2021) in two aspects. First, existing approaches take ERs as plain texts,
whereas this approach leverages both textual and non-textual features of ERs. Although
sentiment leveraged by Umer, Liu & Sultan (2019) is numerical, it is computed according
to the text of the reports. Thus, it should be taken as a derived attribute of the text (natural
language description). Second, existing approaches leverage traditional ML techniques, i.e.,
MNB and support vector machine (SVM), whereas this approach employs more advanced
DL techniques. DL techniques, like Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018), have been proven more accurate in various
domains like text classification (Ali et al., 2023), speech recognition (Ashraf et al., 2023),
and image classification (Luqman et al., 2024). The proposed approach is evaluated with
real-world ERs to assess the suggested method. Evaluation results indicate that the
proposed approach significantly improves the state-of-the-art (SOTA) in identifying ERs.
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In this article, the following contributions are made:

. An innovative method for automated identification of feasible ERs is proposed. Unlike
existing approaches, which use textual features alone or apply DL methods without
integrating structured metadata, the approach combines deep contextual embeddings
with auxiliary sentiment and non-textual features (e.g., reporter/module statistics) in a
unified model. This is among the first works to systematically integrate such
heterogeneous features for ER feasibility prediction using BERT.

. Significant feature engineering of ERs using BertTokenizer that converts reports into
token IDs and attention masks and eliminates the need for natural language processing
(NLP) processing.

. Results indicate that the proposed DL approach successfully identifies ERs. It improves
accuracy and F1-score by 14:12% and 13:21%, respectively.

The remaining sections of the article are organized as follows: ‘Related Work’ talks
about the literature review, and ‘Approach’ gives more details about what the article
proposes. ‘Evaluation’ shows how well the proposed approach works, and ‘Conclusions
and Future Work’ concludes and directs to future work.

RELATED WORK
Classification of ERs
The most closely related work are Nizamani’s (Nizamani et al., 2017), Umer’s (Umer, Liu
& Sultan, 2019), and Cheng’s (Cheng et al., 2021). Nizamani et al. (2017) suggested a
method to categorize ERs and predict whether they will be approved automatically. To my
knowledge, they proposed the first approach to the automated identification of feasible
ERs. They designed an MNB-based classifier for the binary classification. Evaluation
results suggest that their approach can reach a high accuracy of 89.25%.

Umer, Liu & Sultan (2019) proposed another method to predict the approval of
improvements. Different from Nizamani’s (Nizamani et al., 2017), Umer, Liu & Sultan
(2019) leverage the sentiment of ER. Besides that, they also exploited the SVM for the
approval prediction instead of the MNB employed by Nizamani et al. (2017). They
evaluated their approach with cross-application validation on real-world ERs. Evaluation
results suggest their approach is more accurate than Nizamani’s approach (Nizamani et al.,
2017). On the other hand, different from Nizamani’s and Umer’s, Cheng et al. (2021)
combined BOW representation and traditional word2vec-based representation of
preprocessed text. Using an attention mechanism, they enabled the model to remember
the context over a long sequence of words in an enhancement report. They trained an RNN
classifier for the approval prediction of enhancement reports based on sentiment and deep
representation. The results of their proposed approach improve the precision from 86:52%
to 90:56%, recall from 66:45% to 80:10%, and f-measure from 78:12% to 85:01%.

The proposed approach differs from Nizamani’s (Nizamani et al., 2017), Umer’s (Umer,
Liu & Sultan, 2019), and Cheng’s (Cheng et al., 2021) in the following aspects. It differs
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from existing ones (Nizamani et al., 2017; Umer, Liu & Sultan, 2019; Cheng et al., 2021) in
two aspects. First, existing approaches take ERs as plain texts, whereas this approach
leverages both textual and non-textual features of ERs. Second, existing approaches
leverage traditional ML/DL techniques, i.e., MNB, SVM, and RNN, whereas this approach
employs more advanced DL techniques, i.e., BERT.

Classification of bug reports
Several researchers have investigated the automatic categorization of reports in software
engineering (Youn & Mcleod, 2006; Gad & Rady, 2015; Santos et al., 2012; Zhang et al.,
2014; Jin et al., 2015; Moraes, Valiati & Neto, 2013; Khan et al., 2010; Lin et al., 2016;
Sharma, Sharma & Gujral, 2015). Such approaches have been proposed to predict the
severity and priority of bug reports, classify them incorrectly, and avoid duplication.

For predicting severity, Menzies & Marcus (2008) introduced a novel ML-based
approach called SEVERIS. Lamkanfi et al. (2010) and Roy & Rossi (2014) collected bug
reports originating from Eclipse, GNOME, and Mozilla, and compared different
classification techniques in the severity prediction of bug reports. Evaluation results
suggest that a naive Bayes classifier results in the best performance. Chaturvedi & Singh
(2012) applied different ML classifiers to bug reports from NASA to anticipate their
severity. Sharma, Sharma & Gujral (2015) utilized info-gain and chi-square for selecting
features and found that MNB and k-nearest neighbor demonstrate superior performance
in predicting the severity of bug reports.

For forecasting priority, Abdelmoez, Kholief & Elsalmy (2012) suggested using a naive
Bayes classifier for predicting the priority of bug reports. They gathered bug reports from
three large open-source projects: Mozilla, Eclipse, and GNOME, and tested the proposed
method on these reports. Using linear regression, Tian, Lo & Sun (2012) introduced an
approach named DRONE for the same purpose, achieving an average F1-score of up to
29%. Alenezi & Banitaan (2013) utilized two feature sets and applied naive Bayes, decision
trees, and random forests for priority prediction. The evaluation results indicated that
decision trees outperformed naive Bayes and random forests. Tian et al. (2015) employed
nearest-neighbor-based methods to predict the priority of over 65,000 Bugzilla reports.
Pooja introduced a priority prediction model that utilized SVM to allocate priorities by
analyzing Firefox crash reports according to their occurrence rate and randomness
(Choudhary, 2017).

To predict duplicate bug reports, several studies have been conducted (Banerjee, Cukic
& Adjeroh, 2012; Thung, Kochhar & Lo, 2014; Alipour, Hindle & Stroulia, 2013). Šarić et al.
(2012) proposed a method using supervised ML to ascertain the text resemblance in bug
reports. Subsequently, Lazar, Ritchey & Sharif (2014) enhanced Šarić et al.’s (2012)
approach by incorporating 25 new textual similarity features. Lin et al. (2016) and Tian,
Sun & Lo (2012) employed SVM for detecting duplicate bug reports. Feng et al. (2013)
utilized consumers’ profiles to identify duplicate reports. Based on the summary and
description attributes of reports, Thung, Kochhar & Lo (2014) suggested an SVM-based
tool (DupFinder) for measuring similarity between reports. Importantly, DupFinder has
been successfully integrated into Bugzilla.
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Sentiment analysis in software engineering
An empirical study by Lin et al. (2018) suggested that existing sentiment analysis
approaches often result in inaccuracy in software engineering. Islam & Zibran (2018b)
proposed a SentiStrength-SE especially for software engineering. The assessment outcomes
indicate that this software engineering-specific method performs better than existing
approaches not tailored to a specific domain, such as SentiStrength, Natural Language
Toolkit, and Stanford NLP. Islam & Zibran (2018a) also introduced another tool for
sentiment analysis called DEVA for bug reports. The tool analyzes sentiments and captures
emotional states. A quantitative evaluation was conducted using 1,795 JIRA bug reports. A
high precision rate of 82% and a high recall rate of 78% have been reported for DEVA.
Ahmed et al. (2017) also presented SentiCR, a sentiment analysis tool for software
engineering. Senti4SD proposed by Calefato et al. (2018) has been proven more accurate
than other approaches. Consequently, the proposed approach leverages Senti4SD for
sentiment analysis on ERs.

While prior works such as Cheng et al. (2021) applied DL models (e.g., recurrent neural
networks (RNNs)) with textual and sentiment-based features, they did not incorporate
non-textual structured metadata, i.e., reporter/module statistics. This study extends this
research by fusing semantic and behavioral attributes in a single BERT-based model.

Prioritization of pull requests
Pull-based development (PBD) is a distinct way of collaborating in a distributed software
development model. To investigate and analyze the PBD, Gousios, Storey & Bacchelli
(2016), Gousios et al. (2015) conducted surveys on GitHub developers to discuss the
practice and challenges of integrators and contributors in PBD. They found a lack of
integrator responsiveness, pull request quality, and pull request prioritization to be the
main challenges in PBD.

Veen, Gousios & Zaidman (2015) proposed a PRioritizer system to prioritize the pull
requests. It exploits a ML model and predicts whether the pull request will receive user
updates. It only uses daily user updates but does not use the acceptance likelihood of the
pull requests, which is the main limitation of the system. To mitigate this limitation, Azeem
et al. (2020) proposed an approach based on Prioritizer by considering the acceptance
likelihood of each pull request to support integrators/developers to take actions against the
actual pull request feedback. Other studies (Panichella, 2018; Zhou et al., 2020) also
explored the actions while considering user feedback. Although the works about pull
request merge employ classification techniques, they are applied to completely different
artifacts and thus extract completely different features. Such an essential feature difference
also results in a significant difference in their classification techniques compared to the
proposed approach.

Bibliometric context and motivation
To contextualize the work, a bibliometric profiling of ER research is performed using Web
of Science (2016–2023), and 73 key publications (17 journals, 25 conference papers) are
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retrieved, collectively citing 4,496 times and authored by 137 researchers. Keyword
co-occurrence and term frequency visualizations (Figs. 1 and 2) reveal recurring themes,
i.e., “user feedback,” “feature requests,” “maintenance,” and “prioritization,” indicating
sustained research interest.

While this trend validates the importance of ER feasibility analysis, it also highlights a
gap: most existing works rely solely on textual features, lacking integration with sentiment
or metadata. The proposed approach addresses this gap by proposing a fused
representation that combines textual embeddings (BERT embeddings) with sentiment
polarity (computed from Senti4SD) and module/reporter statistics. This fusion enables
deeper contextual and behavioral understanding of ERs, aligning well with the bibliometric
evidence of where the field is heading.

APPROACH
Identification of feasible ERs is essentially a binary classification: all submitted ERs get
automatically sorted into two categories, i.e., feasible and infeasible reports. Figure 3

Figure 1 Co-occurrence network. Full-size DOI: 10.7717/peerj-cs.3290/fig-1

Figure 2 Word cloud. Full-size DOI: 10.7717/peerj-cs.3290/fig-2
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depicts a summary of the proposed methodology. An ER r from a set of ER R can be
described as follows:

r ¼ <txt; num; label> (1)

where text represents the report’s textual information (i.e., summary), and label represents
the resolution attribute of r, i.e., whether it has been approved. num is the non-textual
information (numeric features) of the ER. Non-textual information is composed of two
parts: SR (statistics of the reporter who submitted the ER), and SM (statistics of the module
associated with the ER):

numIn ¼ <SR; SM> (2)

SR ¼ <nR; rR> (3)

SM ¼ <nM; rM> : (4)

SR is composed of two metrics: nR and rR, where nR is the number of approved ERs
posted by the reporter, and rR is the approval rate for the reporter (i.e., what percentage of
his reports have been approved). SM is also composed of two metrics nM and rM. nM is
the number of approved ERs associated with the given module, and rM is the average
approval rate for the ERs associated with the module.

Labels of the ERs are extracted from issue tracking systems automatically (Nizamani
et al., 2017). For example, in the proposed approach, ERs are extracted from Bugzilla where
the status of such reports is specified with the attribute resolution. Possible values of this
attribute include duplicate, expired, fixed, incomplete, invalid, moved, wontfix, and
worksforme. An ER is feasible if and only if its resolution is fixed. Notably, open reports
(whose status attribute is neither verified nor closed) should be ignored because their status
will change soon. Consequently, they cannot be taken as feasible or infeasible reports.
Similarly, duplicate reports are ignored because duplicate does not reveal whether the

Figure 3 Proposed model overview. Full-size DOI: 10.7717/peerj-cs.3290/fig-3
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requested features have been approved/implemented. Other reports that are neither
feasible nor ignored are taken as infeasible reports.

Consequently, the automated prediction of a new r can be represented as a function z
such that:

z : r ! l
l 2 f easible; inf easiblef g; r 2 R

(5)

where l is the binary-class output of the classifier that has the potential to be either feasible
or infeasible.

Non-textual feature engineering
To enrich the representation of each r, four key non-textual features are incorporated,
derived from behavioral history and contextual metadata:

. Reporter Count (nR): total number of ERs submitted by the reporter.

. Reporter Approval Rate (rR): ratio of approved ERs to total ERs submitted by the
reporter.

. Module Count (nM): total number of ERs submitted for the target module.

. Module Approval Rate (rM): ratio of approved ERs to total ERs for the module.

The four non-textual features were computed by parsing historical enhancement report
entries from the Bugzilla-based issue tracker. Each r contains metadata fields including
reporter, component (used as a module), and resolution. The process first iterates through
the training split to count the number of ERs each reporter has submitted (nR) and the
number of those labeled fixed. The approval ratio (rR) is then calculated as the number of
fixed ERs divided by nR for each reporter. A similar approach is followed for modules
(component field), where it counts the number of ERs associated with each module (nM)
and the number of them labeled fixed to compute rM. These statistics are calculated
solely using the training fold to prevent data leakage.

These features are computed from the labeled dataset using only the training partition
to avoid data leakage. During evaluation, lookup tables (dictionaries) are constructed using
only the training split for reporters and modules.

If a reporter or module does not appear in the training set (i.e., unseen in the test fold),
the missing feature is imputed using the global average from the training data. This ensures
generalization and fairness.

The raw count features (nR, nM) are normalized to [0, 1] using min-max scaling fit on
the training split. However, the ratio features (rR, rM) are naturally bounded in [0, 1] and
are used as-is. These four features are concatenated into a four-dimensional numeric
vector and later combined with the sentiment score and the contextual BERT embedding
from the [CLS] token to produce a joint feature representation for classification.

Sentiment analysis
Results of the existing study (Nizamani et al., 2017) suggested that some emotional words
strongly correlate with the resolution status of ERs. For example, on average, only 76.25%
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of the ERs are denied/ignored. However, the ratio (of ignored reports) increases
significantly to 92.3% for such reports that contain the keyword “stupid”. To leverage the
correlation between emotional words and resolution status, the sentiment (noted as sen) of
ERs is computed, and the resulting sentiment is presented as one of the key features of the
reports:

senðrÞ ¼ CompSenðr:txtÞ (6)

where r is an ER, r:txt is the textual feature of the report, and senðrÞ is the sentiment of the
report.

Senti4SD (Calefato et al., 2018) is leveraged to compute the sentiment of reports (i.e.,
function CompSen). It computes and provides the sentiment associated with the ER based
on emotion-words, modifiers (the words that enhance the polarity of other words, e.g.,
“very”), and negations (the words that invert the polarity of different words, e.g., “not”) in
the summary of ER. A significant advantage of Senti4SD is that it was specially designed
for software engineering. In contrast, widely used algorithms, e.g., SentiWordNet
(Baccianella, Esuli & Sebastiani, 2010), are intended for generic natural language
descriptions.

Input formatting of ERs
The identification of ERs of S-Apps is closely linked to accurately representing crucial
textual elements for BERT and providing a numerical representation for training the BERT
classifier. Recent studies (GLO, 2022; Zaland, Abulaish & Fazil, 2023) emphasize various
techniques for word representation in the field of NLP, i.e., illustrated by Word2Vec
(Mikolov et al., 2013), GloVe (GLO, 2022), and FastText (Zaland, Abulaish & Fazil, 2023).
Nevertheless, BERT (Devlin et al., 2018) distinguishes itself as a powerful NLP model
pre-trained on comprehensive text datasets. It is highly effective for diverse tasks because it
can understand contextually rich word and phrase representations. As illustrated in Fig. 3,
formatting input data outlines the steps for preparing data to be input into the BERT
model. This encompasses generating token IDs and attention masks and enabling
classification. To accomplish this, the proposed study employs the tokenizer
“BertTokenizer” from the “Transformers” library, specifically utilizing the “bert-base-
uncased” variant. The process of formatting r is outlined as follows:

Before text processing, cleaning operations must be performed, removing extraneous
characters, punctuation, and special symbols. In this step, the proposed approach ensures
that the ER’s data is appropriately formatted for subsequent processing by the
BERTTokenizer. The BertTokenizer breaks down the ER’s content into a sequence of
subword units. Using a pre-established vocabulary, these units are then converted into
integer identifiers (IDs). Moreover, the tokenizer incorporates specific tokens, namely CLS
for classification and SEP for separation, which mark the beginning and end of the ER’s
data. The procedure for the tokenizer can be outlined as follows:

SubW ¼ ½½CLS� þ word1 þ word2 þ � � � þ wordn þ ½SEP�� (7)

where, SubW symbolizes the sequence of subwords within r, wordi represents an
individual subword, and n signifies the overall count of subwords in a r.
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The BERT tokenizer employs a pre-established vocabulary encompassing every
conceivable token comprehensible to a DL model. Every token in this vocabulary is linked
to a numeric identifier, often called an index. Once the sequence of tokens, denoted as
SubW, is tokenized, each token is matched with its corresponding index according to the
vocabulary of the BERT tokenizer.

Consider the following tokens, along with their corresponding index assignments, as
part of the vocabulary of the BERT tokenizer:

½CLS� ! index 101

word1 ! index 5001

word2 ! index 5002

word3 ! index 5003

. . .

wordn ! index 500n

½SEP� ! index 102:

Essentially, the vocabulary of the BERT tokenizer enables the smooth transition of each
token in a provided sequence into its corresponding index. This representation allows the
model to process and understand textual data based on indices, enhancing its effectiveness
in working with text.

The sequence of token indexes is transformed into input IDs, serving as the ultimate
input for the BERT model. These numeric IDs correspond to tokens within a predefined
vocabulary, and this relationship can be represented as follows:

IDs ¼ ½101; id1; id2; . . . ; idn; 102�:
In this notation, IDs represents the series of input IDs, where idi denotes a specific input

ID, and n indicates the overall count of input IDs for each r. The resultant sequence IDs
effectively encodes the tokenized text into a numerical format that the model can interpret.
This index-based representation serves as the input for the model to carry out tasks like
classification, sentiment analysis, or any other subsequent task.

Padding and truncation are processes aimed at readying sentences for streamlined batch
processing, ensuring uniformity. At this stage of input preparation, the token IDs are
settled to achieve the highest sequence length suitable for ER. The proposed approach
aligns with the defined full sequence length of 256.

Padding is implemented when the total number of token IDs in a given input sequence
falls short of the 256-token limit. This involves extending the sequence using a designated
token ‘0’ until the desired length is reached. Conversely, if an input sequence surpasses 256
tokens, the surplus tokens are removed to comply with the specified limit. This process can
be described as follows:

IDs01:256 ¼
IDs1:l þ ½PAD�256�l if l < 256
IDs1:256 if l > 256

�
:

IDS0½1:256� represents the ultimate input ID, following the truncation and padding

processes in r. The variable l signifies the number of token IDs in the input sequence.
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The padding and truncation process guarantees that input sequences are uniform in
length, enabling smooth processing within the BERT model.

Attention masks help distinguish real words from added ones in a sentence. This is
important because the transformer’s attention mechanism relies on these masks to
concentrate on real words and disregard added ones. These masks are binary, with 0s for
added words and 1s for real words.

For example, if S-App has a sequence with n items and needs to make it a certain length
l by adding padding, the attention mask will look like this: ½1; 1; . . . ; 1; 0; 0; . . . ; 0�. The
initial n elements are 1s, showing the real items, and the remaining l–n elements are 0s,
indicating added padding. In a matrix representation, the attention mask can be
represented as:

MIDs0 ¼

1 1 � � � 1
1 1 � � � 1
..
. ..

. . .
. ..

.

1 1 � � � 1
0 0 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � 0

2
6666666664

3
7777777775
:

The attention mask, represented asMIDs, aligns with the input sequence IDs. Attention
masks allow the model to concentrate on significant tokens and ignore padding during
processing. This significantly enhances efficiency and leads to more meaningful analysis.

Using a sequence length of 32, the proposed approach formats the text as follows:

Text: “Pressing tab for location bar autocomplete should only complete up to the longest
common prefix (instead of selecting the first item)”.

Tokenization and Addition of Special Tokens: [[CLS] ‘Pressing’ ‘tab’ ‘for’ ‘location’ ‘bar’
‘autocomplete’ ‘should’ ’only’ ’complete’ ‘up’ ‘to’ ‘longest’ ‘common’ ‘prefix’ ‘(instead’ ‘of’
‘selecting’ ‘first’ ‘item)’ [SEP]].

Token IDs: [101, 3220, 2901, 2109, 4501, 1455, 3005, 1469, 2511, 12686, 129, 2291, 3297,
5926, 8631, 6996, 3141, 8231, 5647, 2023, 2052, … 102].

Padding and Truncation: [101, 3220, 2901, 2109, 4501, 1455, 3005, 1469, 2511, 12686,
129, 2291, 3297, 5926, 8631, 6996, 3141, 8231, 5647, 2023, 2052, … 102, 0, 0, 0, 0, 0, 0].

Attention Masks: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, … 1, 0, 0, 0, 0, 0, 0].

Feature fusion
The final prediction for each ER relies on its textual information processed by BERT and
auxiliary numerical features, i.e., sentiment score and reporter/module statistics. These
features are combined after the BERT encoder stage to enrich the input representation.
Specifically, after extracting the final hidden state of the [CLS] token from BERT (which
summarizes the semantic information of the entire report), the vector is concatenated with
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the sentiment score senðrÞ derived from Senti4SD, the non-textual numeric vector
num ¼ <nR; rR; nM; rM> . Detailed computation and normalization of these features are
provided in ‘Non-Textual Feature Engineering’.

Let BERTclsðrÞ denote the output embedding of the [CLS] token (a 768-dimensional
vector for BERT base). The final feature vector Fr for an ER r is:

Fr ¼ BERTclsðrÞ � senðrÞ � num (8)

where � denotes vector concatenation, and num includes the four numeric values
described in ‘Approach’. The resulting vector Fr has a dimensionality of 773 (768 from
BERT + 1 sentiment score + 4 numeric values).

This fused representation Fr is then passed to a fully connected layer, followed by a
softmax classifier, to predict the ER’s feasibility label.

Model training and prediction
To facilitate training and prediction of the BERT model, the dataset of S-Apps ERs is
divided using a stratified 80–20% train-test split. Stratification ensures that training and
test sets maintain the original class distribution of feasible and infeasible reports, which is
important given the inherent class imbalance.

To improve robustness and minimize the impact of random initialization or
split-induced variance, the entire process is repeated across five different random seeds.
Results are averaged across these five independent runs to reduce bias and better generalize
the performance. Each run includes feature extraction, model training, and evaluation on
the isolated test set. This repeated stratified splitting is a lightweight alternative to k-fold
cross-validation, which is computationally expensive for transformer-based models.

All preprocessing operations, including text cleaning, sentiment scoring, feature
engineering, tokenization, normalization, and resampling, are performed solely on the
training set of each split. The test set is kept completely isolated until evaluation to prevent
data leakage.

The BERT-based framework uses the bert-base-uncased word-piece model (English),
pre-trained on BookCorpus and Wikipedia by Google (https://github.com/google-
research/bert). The BertForSequenceClassification model is utilized to predict feasibility
labels for ERs, using the default hyperparameters suggested in the original BERT article
(Devlin et al., 2018). These include 12 transformer layers, 12 attention heads, a hidden size
of 768, ε ¼ 1� 10�8, and a learning rate of 2� 10�5 (see Table 1).

The textual input (i.e., summary of the enhancement report) is passed through the
BERT tokenizer. Each sequence is truncated or padded to a fixed maximum of 256 tokens.
This threshold is based on empirical analysis: over 95% of ER summaries fall below this
length. This choice is further validated through an ablation study comparing 256-token
and 512-token truncation. The resulting F1-score difference was less than 0.5%,
confirming that 256 tokens are sufficient for capturing most relevant information, while
reducing memory usage and training time.

The output embedding from the [CLS] token, capturing the semantic representation of
the report, is concatenated with a sentiment score (from Senti4SD) and four non-textual
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features (nR, rR, nM, rM) to form the final feature vector Fr . This 773-dimensional fused
vector is passed to a fully connected layer, followed by a softmax classifier, to generate the
feasibility prediction.

For the hyperparameter selection, the default BERT fine-tuning configuration is
adopted from Devlin et al. (2018). Preliminary experiments showed that higher learning
rates (e.g., 5� 10�5) and larger batch sizes (e.g., 32) resulted in marginal improvements
(<0.3% F1-score) at the cost of reduced stability and higher memory usage. Hence, the
default setup was retained for computational efficiency and reproducibility.

Training uses a single graphics processing unit (GPU) (Tesla T4 or Tesla K80) on
Google Colab. The model is trained for 10 epochs per run using a batch size of 16. After
each epoch, performance metrics (accuracy, precision, recall, and F1-score) are computed
on the held-out test set. The reported results are averages over the five repeated, stratified
splits to ensure fairness, reduce randomness, and enhance reproducibility.

While BERT-based models are computationally intensive, the experiments were
conducted on a single GPU (Tesla T4 or K80) in Google Colab, demonstrating that the
proposed approach is feasible even on moderately resourced platforms. Each training run
(10 epochs) was completed in under 30 min. For production use, the model can be
fine-tuned once and then used for inference, which is significantly faster and can be
optimized further using quantization or distillation techniques. Thus, while deep learning
requires more resources than traditional methods, the proposed approach remains viable
for practical applications, especially in batch-processing or server-side deployment
scenarios.

EVALUATION
The main objective of this section is to evaluate the proposed approach using
open-source ERs.

Validation strategy
To ensure robust evaluation and avoid data leakage, the dataset is split (stratified) 80/20,
with 80% used for training and 20% reserved for testing. The stratification maintains the
original class distribution across both sets, which is crucial given the class imbalance in
feasible and infeasible ERs.

Table 1 Hyper-parameters specification of the proposed approach.

Specification Value

Model BERT base

Transformer layers 12

Attention heads 12

Hidden size 768

Epsilon 1� 10�8

Max sequence length 256

Learning rate 2� 10�5

GPU Google Colab (Tesla T4 or Tesla K80)

Umer (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3290 13/25

http://dx.doi.org/10.7717/peerj-cs.3290
https://peerj.com/computer-science/


Importantly, all preprocessing steps, including feature extraction, sentiment scoring,
text vectorization, and resampling, are applied exclusively to the training data. The test
data remains completely isolated during training and preprocessing. This ensures that no
information from the test set leaks into the training phase, preserving the integrity of the
evaluation results.

To ensure reproducibility, the random seed is fixed for splitting and sampling
operations. The evaluation metrics (accuracy, precision, recall, F1-score) are reported on
the held-out test set.

Research questions
The following are the research questions investigated by the evaluation:

. RQ1:What is the potential of the proposed approach in identifying feasible ERs? Can it
outperform the SOTA approaches?

. RQ2:What impact does the variation in features of ERs have on the performance of the
proposed approach?

. RQ3: Is the performance of the proposed classifier superior to that of other classifiers in
identifying feasible ERs?

. RQ4: What is the effect of resampling on the performance of the proposed approach?

. RQ5: Are the performance improvements achieved by the proposed approach over
traditional M/DL baselines (LSTM, CNN) statistically significant?

Dataset
The evaluation is conducted with the publicly available dataset (https://github.com/
shanniz/Bugzilla, accessed on 12 March 2025) (Nizamani et al., 2017) created byNizamani
et al. (2017) and reused by other researchers (Umer, Liu & Sultan, 2019; Cheng et al., 2021).
It is evaluated on different sentiment analysis tools, which reveal that Senti4SD performs
best on the dataset. They extracted 40,000 real-world ERs from Bugzilla. Notably, the
dataset does not contain non-textual information. The proposed approach employs the
non-textual information mentioned in ‘RQ2: Impact of Different Features’ because
existing methods do not leverage such non-textual information. To this end, such
information is extracted from Bugzilla according to the URL in the public dataset.

The involved ERs come from ten well-known S-APPs: Bugzilla, Calendar,
Camino Graveyard, Core, Core Graveyard, Firefox, MailNews Core, SeaMonkey,
Thunderbird, and Toolkit. Notably, the applications do not evenly distribute the
ERs. Bugzilla, Calendar, Camino Graveyard, Core, Core Graveyard, Firefox,
MailNews Core, SeaMonkey, Thunderbird, and Toolkit account for 12.45%, 4.00%,
3.15%, 18.98%, 2.69%, 18.00%, 5.35%, 20.59%, 10.34%, and 4.45% of the reports,
respectively.
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Results and Discussions
RQ1: Comparison against SOTA approaches
In addressing RQ1, the proposed approach is evaluated through comparison against
Nizamani’s approach (Nizamani et al., 2017) (called Nizamani’s), Umer’s approach
(Umer, Liu & Sultan, 2019) (called Umer’s), and Cheng’s approach (Cheng et al., 2021)
(called Cheng’s). Evaluation results are described in Table 2. The first column specifies the
evaluated approaches, the second column presents the employed performance metrics, and
the other columns show the performance on different testing applications. The final
column displays the average performance of the assessed approaches on all testing
applications. The first row specifies testing applications, and the other rows present the
performance of the evaluated approaches on the given testing applications. Note that all
performance improvements mentioned below are based on the average values reported in
the final column of Table 2, which aggregates the results across all S-APPs.

From Table 2, the following observations are noted:

. Initially, the proposed approach marks a notable enhancement over the existing SOTA.
Compared to Cheng’s, Nizamani’s, and Umer’s, the proposed approach improves the
average accuracy by 14.12%, 37.78%, and 20.68%, respectively. Concerning other
performance metrics, the proposed approach also significantly outperforms existing
approaches. The minimal improvement in average precision, average recall, and average
F1-score is 10.85%, 94.35%, and 26.47%, respectively.

. Second, concerning the synthetic metrics (accuracy and F1-score), proposed approach
significantly outperforms Cheng’s, Nizamani’s and Umer’s on every testing applications.
The improvement in accuracy varies from 13.10% to 14.93% (compared against

Table 2 Improving the SOTA.

Bugzilla Calendar Camino
Graveyard

Core Core
Graveyard

Firefox MailNews
Core

SeaMonkey Thunderbird Toolkit Average

Proposed
approach

Accuracy 94.54% 94.74% 93.72% 93.81% 93.27% 93.78% 93.92% 93.95% 94.05% 94.46% 94.02%

Precision 93.98% 93.43% 95.55% 93.43% 93.12% 95.05% 93.14% 94.97% 94.39% 95.52% 94.26%

Recall 94.17% 93.97% 94.32% 94.46% 94.67% 93.32% 93.82% 93.12% 93.31% 93.86% 93.90%

F1-score 94.08% 95.31% 94.97% 94.14% 93.89% 94.18% 93.48% 94.03% 93.85% 94.68% 94.26%

Cheng’s
approach

Accuracy 82.60% 81.36% 81.52% 81.15% 83.77% 82.87% 83.00% 83.04% 82.98% 81.51% 82.38%

Precision 91.97% 90.74% 91.94% 90.22% 89.91% 90.71% 91.09% 89.70% 89.57% 90.45% 90.63%

Recall 79.81% 79.42% 79.26% 81.48% 81.07% 79.43% 79.27% 81.62% 79.12% 80.45% 80.09%

F1-score 85.46% 84.70% 85.13% 85.63% 85.26% 84.69% 84.77% 85.47% 84.02% 85.16% 85.03%

Nizamani’s
approach

Accuracy 60.23% 54.08% 71.08% 65.64% 64.92% 74.03% 76.93% 56.56% 78.79% 80.13% 68.24%

Precision 55.64% 58.82% 51.63% 53.65% 39.75% 45.11% 50.51% 29.29% 40.51% 56.30% 48.12%

Recall 75.70% 39.26% 23.17% 72.40% 76.00% 55.13% 41.50% 44.30% 38.01% 60.48% 52.60%

F1-score 64.14% 47.09% 31.99% 61.63% 52.20% 49.62% 45.56% 35.26% 39.22% 58.32% 48.50%

Umer’s
approach

Accuracy 74.66% 78.66% 77.90% 78.64% 72.70% 80.02% 73.76% 83.29% 79.52% 79.90% 77.91%

Precision 75.16% 95.79% 97.12% 70.36% 90.91% 75.94% 97.92% 76.49% 88.35% 94.75% 86.28%

Recall 53.34% 63.61% 61.68% 73.08% 59.27% 71.46% 68.65% 73.83% 73.52% 66.01% 66.45%

F1-score 62.40% 76.45% 75.45% 71.69% 71.76% 73.63% 80.71% 75.14% 80.26% 77.81% 74.53%
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Cheng’s), 18.23% to 72.47% (compared against Nizamani’s), and from 13.75% to 28.29%
(compared against Umer’s). Improvement in F1-score varies from 11.30% to 11.26%
(compared against Cheng’s), 48.60% to 192.22% (compared against Nizamani’s), and
from 18.09% to 49.66% (compared against Umer’s).

. Third, the proposed approach significantly improves recall on every testing application
with an average improvement of 17.24% (compared against Cheng’s), 78.52% (compared
against Nizamani’s), and 41.31% (compared against Umer’s). As the cost of the
significant improvement in recall, the precision of the proposed approach reduces
slightly on some of the testing applications (compared to Umer’s), i.e., 2.53% on
Calendar, 1.64% on Camino Graveyard, and 5.13% on Mailnews Core. In contrast, it
improves recall much more significantly in these applications by 47.73%, 52.92%, and
36.66%, respectively. As a result, the proposed approach significantly improves the
synthetic metrics F1-score on such applications.

To further reveal the significant improvement, analysis of variance (ANOVA) and
Wilcoxon test (pairwise) are performed on the synthetic measure F1-score to investigate
the distinction in performance between the evaluated approaches. ANOVA analysis
suggests that f-ratio is 105.94 and p-value is 6.35E−18 that is significantly smaller than 0.05
(Fig. 4). Results of the Wilcoxon test suggest p-value = 4.07E−6, which is also considerably
smaller than 0.05. Based on the evaluation results, it is concluded that both ANOVA and
Wilcoxon test suggest that there is a significant difference in the performance (F1-score) of
different approaches. A similar analysis of other performance metrics also confirms the
significant improvement.

It is concluded that the proposed approach significantly increases the SOTA in
identifying feasible ERs based on the preceding analysis.

RQ2: impact of different features
Using the proposed approach, it is evaluated to what extent some of the employed features
would reduce its performance to answer research question RQ2. Evaluation results are
presented in Table 3. The first column specifies the setting, i.e., which features are disabled.
Other columns present the proposed approach’s performance with the specified setting.

Figure 4 ANOVA analysis on F1-score. Full-size DOI: 10.7717/peerj-cs.3290/fig-4
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From Table 3, the following observations are made:

. First, deactivating any of the employed features results in a reduction in performance.
Compared to such a sub-optimal setting where some of the features are disabled, the
default setting of the proposed approach (where all of the features are leveraged) leads to
the highest accuracy, the highest F1-score, the highest precision, and the highest recall.

. Second, textual information (including the summary of the reports and the sentiment of
the summary) is critical for the proposed approach. Compared to other features, turning
off all textual information results in the greatest reduction in performance of the
proposed approach, 81.99% in accuracy, 46.96% in precision, 77.17% in recall, and
62.41% in F1-score.

. Third, non-textual features (i.e., statistics of reporters and statistics of software modules)
are useful. Turning off non-textual features reduces accuracy, precision, recall, and F1-
score by 3.32%, 2.83%, 2.75%, and 2.98%, respectively.

. Fourth, disabling modules’ statistics results in a minor reduction in performance. The
resulting reduction in performance metrics (accuracy, precision, recall, and F1) is less
than one percentage point. In contrast, disabling statistics of reporters results in a much
more significant reduction in performance, 1.34% in accuracy, 2.33% in precision, 0.97%
in recall, and 1.85% in F1-score. It may suggest that, concerning the identification of
feasible ERs, statistics of reporters are more useful than statistics of modules.

. Finally, it is observed that disabling nR results in a more significant performance
reduction than rR. It may suggest that nR is more useful than rR in predicting whether a
new ER is feasible.

After analyzing all of the employed features, it is concluded that they are all useful. A
significant increase in performance is achieved by leveraging non-textual features,
especially statistical reports.

Table 3 Impact of different features.

Disabled features Accuracy Precision Recall F1

Default setting 94.02% 94.26% 93.90% 94.26%

All textual features 51.66% 64.14% 53.00% 58.04%

Text 50.37% 64.77% 51.07% 57.11%

Sentiment 91.10% 91.45% 91.06% 91.26%

Non-textual info 91.00% 91.67% 91.39% 91.53%

Reporter’s statistics 90.27% 90.73% 91.41% 91.07%

nR 91.54% 91.67% 90.28% 90.97%

rR 90.28% 93.28% 92.03% 92.65%

Module’s statistics 92.78% 92.11% 93.00% 92.55%

nM 92.54% 92.76% 93.67% 93.22%

rM 93.12% 93.39% 91.73% 92.55%
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RQ3: results of proposed approach compared to M/DL classification algorithms
To answer RQ3, the proposed BERT-based approach is compared with three alternative
models: SVM, long short-term memory (LSTM), and convolutional neural network
(CNN). Their results are shown in Table 4. To ensure fairness in comparison, all models
are trained and evaluated using the same BERT-based embedding matrix as input and the
same non-textual features. Furthermore, each baseline model undergoes appropriate
hyperparameter tuning as shown in Table 5. Furthermore, the detailed configuration of
hyperparameters for the proposed BERT-based approach is summarized in Table 1.

SVM is evaluated using a grid search over kernel types (linear and radial basis function
(RBF)), regularization parameter C 2 f0:1; 1; 10g, and class weight settings (balanced vs.
unbalanced). The best configuration uses the linear kernel with C ¼ 1 and balanced class
weights. However, a sequential architecture is constructed with one LSTM layer (64 units),
followed by a dropout layer (rate = 0.2), and L2 regularization. The final output layer uses a
sigmoid activation function. Training is performed for 10 epochs using a batch size of 32
and a validation split of 0.1. Early stopping is applied to prevent overfitting. The CNN
model is also based on a sequential architecture. It consists of two convolutional layers
with 32 and 64 filter sizes, followed by a MaxPooling1D layer (pool size = 2), and a fully
connected dense layer with 64 units. ReLU is used for activation, and dropout (rate = 0.2) is
applied. Like the LSTM model, CNN is trained using 10 epochs, a batch size of 32, and a
validation split of 0.1. Notably, all models are trained using stratified splits with fixed
random seeds for reproducibility, and all text inputs are processed using the same BERT
tokenizer and sequence settings.

Table 4 presents the performance comparison of these models based on accuracy,
precision, recall, and F1-score. Results confirm that the proposed approach outperforms all
alternatives across all metrics, validating the benefit of combining contextual embeddings
with auxiliary features in a unified architecture.

Table 4 Results of proposed approach compared to M/DL classification algorithms.

Algorithm Accuracy Precision Recall F-measure

Proposed approach 94.02% 94.26% 93.90% 94.26%

CNN 82.16% 91.81% 82.95% 87.16%

LSTM 80.73% 91.56% 74.81% 82.34%

SVM 80.25% 85.82% 76.58% 80.94%

Table 5 Hyperparameter settings for comparative models.

Model Tuned parameters

SVM Kernel: linear/RBF, C: 0.1–10, class_weight: balanced

LSTM Units: 64, Dropout: 0.2, L2: 0.01, Epochs: 10

CNN Filters: 64, Kernel: 3, Dropout: 0.2, Dense units: 64
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From Table 4, the following observations are made:

. BERT surpasses LSTM, CNN, and SVM in performance. This enhanced performance
can likely be attributed to its utilization of pre-training on extensive data, enabling it to
acquire more insightful and versatile text representations. Furthermore, BERT
incorporates attention mechanisms to grasp distant relationships and contextual details,
enhancing its proficiency in comprehending and processing natural language.

. The proposed approach surpasses the CNN model by improving accuracy, precision,
recall, and F1 at 14.43%, 2.67%, 13.20%, and 8.15%, respectively. This is because BERT is
better for natural language processing tasks. After all, it captures contextual information
and relationships between words, leading to a more nuanced understanding of language,
while CNN primarily focuses on local patterns without considering word dependencies.

. The BERT model surpasses the LSTM model by improving accuracy, precision, recall,
and F1 at 16.46%, 2.95%, 25.52%, and 14.48%, respectively. BERT captures bidirectional
contextual information, capturing more complex relationships and nuances in language
than LSTM’s sequential processing.

As described in the earlier analysis, applying the proposed approach leads to significant
and noteworthy results in automatically identifying feasible ERs compared to other M/DL
models.

Effect of resampling techniques on the proposed approach
The effect of different resampling strategies on model performance is summarized in
Table 6. It is evident that resampling plays a crucial role in addressing class imbalance.
Without resampling (Synthetic Minority Over-sampling Technique (SMOTE)), the model
yields the lowest performance across all metrics, with an accuracy of 87.91% and an F1-
score of 89.09%. In contrast, both over-sampling and under-sampling lead to noticeable
improvements.

Over-sampling achieves the highest accuracy (92.69%) and recall (92.39%), indicating
that it effectively increases the representation of minority classes without discarding
valuable training data. This balance allows the classifier to better capture positive instances,
leading to a higher F1-score (93.27%).

Under-sampling, while slightly behind in accuracy (90.28%), attains the highest
precision (96.05%), which suggests that reducing the majority class helps the model
become more conservative in its predictions, lowering false positives. However, this comes
at the cost of reduced recall due to the loss of informative samples from the majority class.

Table 6 Effect of different resampling techniques on the proposed model performance.

Method Accuracy Precision Recall F1

No-sampling 87.91% 93.43% 85.16% 89.09%

Over-sampling 92.69% 94.17% 92.39% 93.27%

Under-sampling 90.28% 96.05% 89.55% 92.69%
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Overall, over-sampling is more effective for this dataset since it provides a balanced
improvement across accuracy, recall, and F1-score, whereas under-sampling performs well
only in precision but sacrifices training data richness. The observed differences are likely
amplified by the small and highly imbalanced dataset. With larger datasets, the
performance gap between over-sampling and under-sampling could diminish.

Statistical significance of the proposed approach
For the statistical analysis, paired t-tests are conducted between the proposed model and
each baseline. The evaluation metrics are aggregated from 10-fold cross-validation for
SVM, LSTM, and CNN, and from five repeated stratified train-test splits for the
BERT-based model (as described in ‘Model Training and Prediction’).

As shown in Table 7, all p-values are well below the suggested significance level of 0:05.
This indicates that the proposed approach achieves statistically significant improvements
in accuracy, precision, recall, and F1-score over every baseline. The absolute performance
of the proposed model further underscores this point, on average, it achieves an accuracy
of 0.83, precision of 0.81, recall of 0.80, and F1-score of 0.82, consistently outperforming
SVM (accuracy 0.69, F1-score 0.64), LSTM (accuracy 0.72, F1-score 0.68), and CNN
(accuracy 0.70, F1-score 0.66).

Before applying the paired t-tests, the assumptions of the test are considered. Since the
paired t-test is robust in repeated-measures settings where the same data partitions are
used across competing models, and each model is evaluated on multiple folds of the
dataset, the use of the t-test is justified. The test directly assesses whether the observed
performance improvements of the proposed approach over the baselines are statistically
significant.

In short, the statistical significance analysis confirms that the observed performance
gain of the proposed approach is not due to random variation. The results provide strong
empirical evidence that the proposed approach substantially advances the SOTA in
automatically identifying feasible ERs.

Threats to validity
A possible limitation to external validity is that the evaluation includes only a restricted set
of ERs. The assessment is conducted on the dataset (Nizamani et al., 2017) created by
Nizamani, which is composed of 40,000 ERs from 10 applications. While the effectiveness
of the proposed approach shows slight variations across applications, generalizations based
on the chosen applications may not apply to others.

Another threat to external validity is that while evaluating the effect of BERT, the
proposed method is solely contrasted with SVM, CNN, and LSTM models. CNN, LSTM,

Table 7 Statistical significance of the proposed approach.

Baseline model Accuracy Precision Recall F1-score

SVM 0.004 0.007 0.003 0.001

LSTM 0.003 0.006 0.002 0.001

CNN 0.002 0.005 0.004 0.001
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and SVM are selected because they are highly popular and have been proven effective in
text classification. However, employing other neural network models may result in
different conclusions. In the future, more classification models will be considered to
validate the findings.

A potential concern regarding construct validity is the possibility of inaccuracies in the
labels of the utilized dataset. Umer, Liu & Sultan (2019) labeled the employed ERs
according to their status in issue tracking systems. However, manual labeling could be
inaccurate for various reasons (Umer, Liu & Sultan, 2019), and the status of the reports
may change over time (e.g., reconsidering some ERs). Consequently, some labels may fail
to represent the real status of the associated ERs. Such inaccurate labeling could result in
the evaluation being incorrect.

CONCLUSIONS AND FUTURE WORK
Automatic and accurate identification of feasible ERs from numerous candidates is
strongly preferred. This article proposes a novel approach to automatically identify feasible
ERs. Unlike existing methods, it utilizes non-textual features of ERs that existing methods
have not exploited. Besides that, it leverages advanced DL techniques like BERT that
existing approaches have not yet used. The proposed approach significantly outperforms
existing approaches on real-world ERs from popular applications.

A possible research direction for future work is to explore additional features of ERs.
This article explores and exploits the statistics of reports and the statistics of modules.
Evaluation results suggest that they are useful for automatically identifying feasible ERs.
However, plenty of features have not yet been fully explored, e.g., the time and location of
submission, and the schedule of the next release. In the future, it could be interesting to
explore such features. Another possible research direction for future work is to create a
larger collection of real-world ERs. A large and real-world dataset is critical for the
evaluation of related approaches. Such a dataset is also essential for manual analysis of ERs,
which may result in useful features of ERs. Discovering such new features may facilitate the
automated identification of ERs.

A significant limitation of the proposed approach is the “black box” nature, i.e., lacking
actionable insight. The proposed approach predicts labels for enhancement reports, like all
neural network-based approaches. Still, it is challenging, if not impossible, to understand
what caused it to arrive at this prediction. Consequently, the performance can be presented
in metrics to validate the proposed approach in the evaluation part. However, it cannot be
explained exactly why some predictions are correct, whereas others are incorrect. To this
end, an interesting but challenging task in the future is to reveal the mechanism of the
black box.

Another important direction for future work is to improve the explainability of
predictions made by deep learning models like BERT. Since such models often operate as
“black boxes,” it is challenging to understand which input features contribute most to the
final decision. Techniques such as Local Interpretable Model-agnostic Explanations
(LIME) and SHapley Additive exPlanations (SHAP) could be explored to provide insights
into individual predictions. Applying these methods would enhance user trust and
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facilitate debugging or refinement of the model by highlighting the most influential textual
and non-textual features. Moreover, future work may also include benchmarking the
proposed approach against more recent transformer architectures such as Robustly
Optimized BERT Pretraining Approach (RoBERTa), Distilled BERT (DistilBERT), or A
Lite BERT (ALBERT), which could offer further improvements in performance or
efficiency.
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